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Abstract

We consider inflation and government debt dynamics when mon-

etary policy employs a global interest rate rule and private agents

forecast using adaptive learning. Because of the zero lower bound on

interest rates, active interest rate rules are known to imply the exis-

tence of a second, low inflation steady state, below the target inflation

rate. Under adaptive learning dynamics we find the additional pos-

sibility of a liquidity trap, in which the economy slips below this low

inflation steady state and is driven to an even lower inflation floor that

is supported by a switch to an aggressive money supply rule. Fiscal

policy alone cannot push the economy out of the liquidity trap. How-

ever, raising the threshold at which the money supply rule is employed

can dislodge the economy from the liquidity trap and ensure a return

to the target equilibrium.
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1 Introduction

The possibility of a liquidity trap equilibrium has recently received consid-
erable attention as a possible explanation for recent episodes of low inflation
or deflation, close to zero nominal interest rates and low growth, such as
seen in Japan over the last ten years. Global analysis of some standard
macroeconomic models in which monetary policy is conducted using a non-
linear instrument rule, often called a Taylor rule, to set the nominal interest
rate, has shown the possibility of two steady states, including an indetermi-
nate low inflation “liquidity trap” equilibrium πL in addition to the desired
target equilibrium πH . Moreover, the liquidity trap is not only a theoret-
ical curiosity. (Benhabib, Schmitt-Grohe, and Uribe 2001) and (Benhabib,
Schmitt-Grohe, and Uribe 2002) have shown that there are a “large number”
of perfect foresight paths that start from initial values near πH and converge
to πL. These results give a clear warning that a well-meaning regime of
monetary policy may lead to undesirable outcomes. The possibility of con-
vergence of the economy to πL under perfect foresight raises several issues
worthy of further study.

The demonstration of the existence of convergent paths to πL relies heav-
ily on the assumption of perfect foresight in a context involving strongly
nonlinear global dynamics, see Section 6 of (Benhabib, Schmitt-Grohe, and
Uribe 2001). In such settings the hypothesis of rational expectations is
worked very hard as agents must be able to compute these nonlinear con-
vergent paths exactly correctly, i.e. they must have perfect foresight over
these paths. It is important to raise the question of whether the conclu-
sion about the possibility of convergence to a “liquidity trap” is robust to a
natural weakening of the perfect foresight/rational expectations hypothesis
to the alternative assumption that agents have much less information and
try instead to learn adaptively the equilibria of the system. In other words,
are either πL, or paths converging to πL, stable under adaptive learning? In
this paper we take up these issues and their ramifications. Because of the
complexity of the economy under learning we conduct the analysis using the
simplest possible framework, i.e. a flexible price endowment economy.

There have been a couple of previous studies that have analyzed liq-
uidity traps in the context of adaptive learning. Using a linearized model
(McCallum 2001b) suggests that the low inflation, low interest rate equilib-
ria are not stable under adaptive learning and thus are not very probable
outcomes. (Bullard and Cho 2002) instead view the liquidity trap as a tem-
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porary “escape path” from the usual steady state within a linearized model.
The deviation is caused by the interaction of large shocks, agents’ use of
constant gain learning rules and the policy maker’s inflation target adapting
to inflation expectations.

Our approach differs from these studies in that we examine the global
dynamics of learning within a nonlinear model. Agents are assumed to use
linear forecasts functions that provide good approximations to the dynamics
locally near any steady state. Naturally, these linear forecast functions differ
greatly between the different types of steady states. For monetary policy
we follow (Benhabib, Schmitt-Grohe, and Uribe 2001) in assuming that it is
conducted using a global nonlinear Taylor rule. However, we introduce two
major modifications. First, we assume that monetary policy has a “second
pillar” taking the form of a money supply rule that supersedes the interest
rate rule if inflation reaches a specified floor π̃.1 Second, we explicitly consider
the interaction of monetary and fiscal policies. This interaction turns out to
be crucial for the stability of the different solutions under learning and for
the design of appropriate policies to avoid a liquidity trap.

We will see that while there is the theoretical possibility of paths con-
verging to πL under learning, the liquidity trap primarily takes the form of
inflation slipping below πL and converging to the floor π̃. Appropriate spec-
ifications of monetary and fiscal policy can eliminate this threat and even
dislodge the economy from the liquidity trap if this has arisen from inappro-
priate past policies. The appropriate policies will ensure convergence of the
economy to the target inflation rate and to stable levels of public debt.

2 The Model

We conduct the analysis in a stochastic representative agent model with
perfect competition. For simplicity, we will also postulate an endowment
economy in which output is constant and thus liquidity traps are equilibria
with very low inflation or even deflation. This model was introduced in
(Evans and Honkapohja 2002) and it is closely related to (Leeper 1991) and

1Though we use the phrase “two pillars of monetary policy”, our model should not be
viewed as an attempt to formalise the monetary policy strategy of the European Central
Bank (ECB). See Chapter 3 of (European Central Bank 2001) for a description of the
monetary policy strategy of the ECB, which emphasizes both analysis based on money
and analysis of a broad set of indicators.
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(McCallum 2001a).2

Households are assumed to maximize the utility function

maxEt

{
∞∑
s=t

βs−t
[
(1− σ1)

−1c1−σ1s +A(1− σ2)
−1(ms−1π

−1
s )1−σ2

]}
.

Here cs denotes consumption in period s and ms = Ms/Ps, where Ms is
the money supply and Ps is the price level at s. Note that real money
balances enter utility as ms−1π

−1
s = (Ms−1/Ps−1)(Ps−1/Ps) = Ms−1/Ps. The

household’s flow budget constraint is

cs +ms + bs + τ s = y +ms−1π
−1
s +Rs−1π

−1
s bs−1, (1)

where bs = Bs/Ps, πs = Ps/Ps−1 is the gross inflation rate, and τ s is a real
lump-sum tax. Note that Bs is the end of period s nominal stock of bonds.
Rs−1 is the gross nominal interest rate on bonds, set at time s− 1 but paid
in the beginning of period s. The household has a constant endowment y of
consumer goods each period.

We assume that there is a constant flow of government purchases g ≥ 0.
As shown in (Evans and Honkapohja 2002), household optimality and market
clearing conditions imply the Fisher equation

R−1t = βEtπ
−1
t+1 (2)

and the equation for money market equilibrium, in period t,

Aβm−σ2
t Etπ

σ2−1
t+1 = (y − g)−σ1(1− βEtπ

−1
t+1). (3)

In addition, the equilibrium must satisfy the transversality conditions

lim
t→∞

βtmt+1 = 0 and lim
t→∞

βtbt+1 = 0. (4)

The above equations (2) and (3) are usually derived under rational expec-
tations (RE), but, as discussed below, we can also treat them as holding in
a temporary equilibrium for given subjective expectations.3 To simplify the

2For the basic model and specification of fiscal policy rules we follow Leeper, but we
use McCallum’s more general class of utility functions and also his timing in which utility
depends on beginning of period money balances.

3This assumption means that the Euler equations for household optimality are taken
to describe the behavior rules of the household. We have argued elsewhere that this is one
reasonable way to model bounded rationality. An alternative would be to use optimality
conditions over an infinite horizon as the behavioral rule, see (Sargent 1993), pp.122-125
and (Preston 2003) for the latter approach.
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analysis we assume point expectations πet+1, so that the Fisher equation (2)
and the demand for money (3) can be written as a function of the nominal
(gross) interest rate:

Rt = β−1πet+1, (5)

mt = m(Rt) ≡ (Aβ)1/σ2(y − g)σ1/σ2[(1−R−1t )(βRt)
1−σ2]−1/σ2. (6)

The specification of the model is completed by giving the government
budget constraint and policy rules. The government budget constraint, writ-
ten in real terms, is

bt +mt + τ t = g +mt−1π
−1
t +Rt−1π

−1
t bt−1. (7)

For fiscal policy we use the linear tax rule as in (Leeper 1991):

τ t = γ0 + γbt−1 + ψt + εt, (8)

where ψt is an observed exogenous random shock and we have also introduced
an unobserved shock εt. For simplicity both shocks are assumed iid with
mean zero. We will make the natural assumption that 0 ≤ γ ≤ β−1 and
introduce the definition of active and passive fiscal policy.

Definition 1 Fiscal policy is said to be “active” (AF) if β−1 − 1 > γ and
“passive” (PF) if β−1 − 1 < γ.

This follows the terminology of (Leeper 1991), and was also adopted in
(Evans and Honkapohja 2002).

The key novel feature in the model is the specification of monetary policy
in terms of a global interest rate rule

Rt − 1 = θtf(πt). (9)

Here f(π) is assumed to be a non-negative and non-decreasing function,
while θt is an exogenous, iid and positive random shock with mean 1. We
assume the existence of π∗, R∗ such that R∗ = β−1π∗ and f(π∗) = R∗ − 1.
π∗ can be viewed as the inflation target of the Central Bank. As first noted
by (Benhabib, Schmitt-Grohe, and Uribe 2001), whenever f(.) is continuous
(and differentiable) and has a steady state πH with f ′(πH) > 1, in accordance
with the Taylor principle, non-negativity of the (net) nominal interest rate
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implies the existence of a second low inflation steady state πL with f ′(πL) <
1. In the numerical analysis we will use the functional form

f(π) = (R∗ − 1)
( π

π∗

)AR∗/(R∗
−1)

,

which implies the existence of a nonstochastic steady state at πH = π∗. Note
that f ′(π∗) = AR∗, which we assume is bigger than 1.

We also assume that the interest rate rule (9) is applied only as long
as inflation remains within some specified upper and lower bounds, denoted
by π̂ and π̃, respectively. Such bounds can be imposed if the Central Bank
switches to a money supply rule if inflation becomes too low or too high. If
inflation is at the floor level πt = π̃, then using the money demand (6) we
get

Mt = Pt−1π̃m(β−1πet+1). (10)

If inflation expectations are observable, (10) can be used to ensure that in-
flation does not get below the lower bound π̃.4 For any given Pt−1 and πet+1
the floor inflation rate π̃ can be attained by expanding money supply to the
level given by (10). Incorporating this “second pillar” of monetary policy, we
obtain the policy relationship

πt = min[max(f−1((Rt − 1)/θt), π̃), π̂]. (11)

Figure 1 illustrates the interest rate rule, in the absence of the random
shock θt, together with the Fisher equation (5). When π̃ < πL, the lower
bound π̃ constitutes a new boundary steady state for inflation and real bal-
ances. This can be seen as follows. From Figure 1 we see that πet+1 = π̃
implies f−1(β−1π̃− 1) < π̃, which would lead to further reduction in π if the
constant inflation floor π̃ were not imposed.5 There are thus three steady
states in the model, provided fiscal policy is set so that the process for real
bonds bt is stationary at these points.

FIGURE 1 HERE

Near an interior steady state we can derive a linear approximation of (11),
which can be written as Rt = α0,i + αiπt + δiθt, i = L,H, with αi = f ′(πi)

4A similar argument can be applied at the upper bound π̂ (not shown in Figure 1).
5At the upper boundary π̂ we have f−1(β−1π̂ − 1) < π̂, which implies a “permissible”

reduction in inflation. Thus π̂ does not constitute a boundary steady state.
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and δi = f(πi). Locally near a steady state we thus have the linearization of
the model

πt = (αiβ)
−1πe

t+1 − α−1

i θt + ki,1 (12)

0 = bt + ϕi,1πt + ϕi,2πt−1 − (β−1 − γ)bt−1 (13)

+ψt + εt + ϕi,3θt + ϕi,4θt−1 + ki,2,

where the coefficients αi, ϕi,1, . . . , ϕi,4 and the intercepts ki,1, ki,2 are specific
to the steady state i. The formal details, including the expressions for the
coefficients ϕi,j, are given in the Appendix of (Evans and Honkapohja 2002).
We can then introduce a modified form of the terminology suggested by
(Leeper 1991).

Definition 2 Monetary policy is locally active (LAM) at steady state i =
L,H if |αiβ| > 1 and locally passive (LPM) if |αiβ| < 1.

At the boundary steady state π̃ the linear approximation (12)-(13) does
not exist, but it can be thought of as a limiting case where f ′(π̃) ≈ +∞ (i.e.
α−1 ≈ 0). By this criterion monetary policy is locally active at πH and π̃
and policy is locally passive at πL in Figure 1.

Using the linearization (12)-(13) and the definitions of active and passive
fiscal and monetary policy, we have the following results on local uniqueness
of stationary rational expectations equilibria (REE):

Proposition 3 (i) The linearization (12)-(13) has a locally unique station-
ary REE near the high steady state πH when fiscal policy is passive, i.e. PF
prevails.
(ii) The linearization (12)-(13) has a locally unique stationary REE near the
low interior steady state πL when fiscal policy is active, i.e. AF prevails.
(iii) The low boundary steady state π̃ is a locally unique stationary REE
under PF provided the support of θt is sufficiently small.

Parts (i) and (ii) are a consequence of the results proved in (Evans and
Honkapohja 2002). In that paper it is shown that the linearization yields
a locally unique stationary REE if monetary policy is (locally) active and
fiscal policy is passive, i.e. under LAM/PF, or if monetary policy is (locally)
passive and fiscal policy is active, i.e. under LPM/AF.
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Part (iii) is established as follows. For πe
t+1 close to π̃ and θt close to one

we have f−1((β−1πe
t+1 − 1)/θt) < π̃ and hence πt = π̃ for all t. Thus under

RE πe
t+1 = π̃ and the unique REE is

πt = π̃, Rt = β−1π̃

0 = bt − (β−1 − γ)bt−1 + ψt + εt + constant,

which is stationary under PF.
It can also be shown that with (LPM/PF) there is local indeterminacy of

REE, i.e. locally there are multiple stationary equilibria, and thus πL is an
indeterminate steady state. However, it can be shown that this case involves
instability under learning and is thus not of interest under our approach, see
(Evans and Honkapohja 2002).

With (LAM/AF) the system is locally explosive. In this case it is possible
that inflation and real balances remain stationary while the stock of real
bonds grows in an explosive fashion. These rational “Euler paths” satisfy all
of the conditions for an equilibrium, except for the transversality condition
on bonds. To side-step this issue we will assume that the government sets
upper and lower bounds on government debt, achieved by changing the tax
rule at these debt thresholds. Effectively, this would convert fiscal policy
to become passive at these bounds.6 For simplicity, we do not explicitly
incorporate this feature into the analysis. However, we will comment later
on cases in which these thresholds might be reached.

3 Learning: Introduction

We now formally introduce learning to the model of Section 2 in place of
the hypothesis that RE prevails in all periods. In the modeling of learn-
ing it is assumed that private agents make forecasts using a reduced form
econometric model of the relevant variables and that the parameters of this
model are estimated using past data. The forecasts are input to agent’s deci-
sion rules and in each period the economy attains a temporary equilibrium,
i.e. an equilibrium for the current period variables given the forecasts of the

6Thus, strictly speaking, the tax rules (8) should be classified as “locally passive” or
“locally active” fiscal policy. We are, of course, assuming that the bounds are set at levels
that do not constrain the steady state levels of debt implied by (8). In particular, the
upper debt threshold can be set arbitrarily high.

8



agents. The temporary equilibrium provides a data point, which in the next
period leads to re-estimation of the parameters and updating of the forecasts
and, in turn, to a new temporary equilibrium. The sequence of temporary
equilibria may generate parameter estimates that converge to a fixed point
corresponding to an REE for the economy, provided the form of the econo-
metric model that agents use for forecasts is consistent with the REE. When
the convergence takes place, we say that the REE is stable under learning.7

The literature on adaptive learning has shown that there is a close con-
nection between the possible convergence of least squares learning to an REE
and a stability condition, known as E-stability, based on a mapping from the
perceived law of motion (that private agents are estimating) to the implied
actual law of motion generating the data under these perceptions. E-stability
is defined in terms of local stability, at an REE, of a differential equation
based on this map. For a general discussion of adaptive learning and the
E-stability principle see (Evans and Honkapohja 2001), and for detailed the-
oretical analysis of the linearized model studied in this paper, see (Evans and
Honkapohja 2002).

If there are multiple REE, the nature of the perceived law of motion
used by the agents in forecasting, i.e. their econometric model, can in some
cases determine which types of REE can be outcomes of the learning process.
The simplest case is learning of stochastic steady states. In this case agents
think that the economy is near a steady state, and they try to estimate the
(constant) mean value of inflation, which they use to forecast future inflation.
Another possibility is that agents believe that the process for the endogenous
variables takes a more complex form, for example a VAR process. We next
discuss these two formulations.

3.1 Steady State Learning

Formally, the temporary equilibrium of the economy is given by the follow-
ing equations: the demand for real balances (6), the Fisher equation (5),
the interest rate rule incorporating the inflation bounds (11), and the flow
budget constraint for the government defined by (7) and (8). Given inflation
expectations, and the exogenous and predetermined variables, these equa-

7Stability under learning is often used as a selection criterion between possible REE.
In other words, an REE is “reasonable” if it is a stable outcome of a learning process just
outlined.
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tions jointly determine the endogenous variables.8 In particular, by (5), the
interest rate Rt depends on inflation expectations πe

t+1. Our next step is to
formulate how these expectations are formed. We begin by examining steady
state learning.

For the linearized system (12)-(13) there are REE near both πH and πL

in which πt is iid. These REE take the form

πt = πi − α−1i θt, Rt = β−1πi

0 = bt − (β−1 − γ)bt−1 + ψt + εt + constant,

for i = L,H. In addition there is the low inflation boundary steady state
REE πt = π̃ described in the previous section. Note that in each case the
bond process is nonexplosive if and only if fiscal policy is passive.

For steady state learning the agents are assumed to treat inflation as an iid
process with an unknown mean, which they try to estimate by least squares,
i.e. by computing the (possibly weighted) sample mean from past data.
Agents then forecast that inflation in the next period is the estimated value
of the steady state. The evolution of forecasts πf

t+1 is formally determined
by the recursive algorithm

πf
t+1 = πf

t + φt(πt−1 − πf
t ), (14)

where φt is known as the gain parameter. Two possibilities for φt are com-
monly used in the literature and we discuss them below. We will assume
that the forecasts determined by (14) are subject to additional (white noise)
expectation shocks and account is also taken of the bounds π̂ and π̃, so that
actual expectations are determined by

πe
t+1 = min(max(πf

t+1 + ηt, π̃), π̂).

In the theoretical analysis we ignore the expectation shock ηt, as it can be
shown that, if sufficiently small, such shocks do not affect the local stability
properties of the equilibria under learning.

3.1.1 Learning under Decreasing Gain

The first case we consider is that agents might be computing (possibly
weighted) averages of the past data in which case φt would be a decreasing

8See (Evans and Honkapohja 2002) for further discussion.
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sequence of positive weights such that
∑

∞

t=1 φt = ∞. Under this assumption
the dynamics of inflation and inflation expectations can be written formally
as a stochastic recursive algorithm (SRA) and, under certain conditions, in-
flation expectations will converge to a constant value π̄ with actual inflation
following the stochastic steady state process

πt = min[max(f−1(β−1π̄ − 1)/θt), π̃), π̂], Eπt = π̄. (15)

In (15) the latter requirement states that the (unconditional) mean of πt is
equal to the forecast π̄ of the agents.

Note that, if the min and max in (15) are not binding, we have Eπt =
Ef−1(β−1π̄ − 1)/θt). Moreover, if the support of the shock θt is small, the
stochastic steady states will be approximately equal to the non-stochastic
steady states that satisfy the equation π = f−1(β−1π − 1). We assume
that, corresponding to each non-stochastic steady state π′, there exists a
unique π̄ in a neighborhood of π′ satisfying (15). Note that, due to the
nonlinearities, the mean of a stochastic steady state π̄ is not in general equal
to a nonstochastic steady state. For convenience, we will nevertheless refer
to the corresponding nearby non-stochastic steady state when we discuss the
theoretical and simulation results below.

The derivation of the conditions for convergence of the learning rule (14)
under decreasing gain can be studied using standard techniques for SRAs.
In particular, convergence of adaptive learning to an REE is governed by
E-stability conditions for the REE. Moreover, provided the range of varia-
tion (support) of θt is sufficiently small, the E-stability conditions for the
corresponding nonstochastic steady state will determine the stability under
learning of the stochastic steady state process (15).9 We will derive the
relevant E-stability condition below.

3.1.2 Constant Gain Learning

Another natural formulation of learning is to assume a constant gain, i.e.
φt = φ, where φ is a small positive constant in (14).10 In this case (14) be-
comes a time-autonomous stochastic difference equation, and the parameter

9See Chapters 11 and 12 of (Evans and Honkapohja 2001) and (Evans and Honkapohja
1995) for analysis of learning of steady states in stochastic models.

10For learning of steady states constant gain is formally the same as classic adaptive ex-
pectations. This feature does not, however, hold for richer settings in which the estimated
parameters are coefficients, e.g., in a regression.

11



estimate πf
t+1 of the steady state mean no longer converges to a constant

value. Instead, for a small gain the estimate can converge to a random vari-
able such that the mean of this random variable is approximately equal to the
nonstochastic steady state. E-stability of the steady state is necessary for this
convergence to take place. See Chapter 14 of (Evans and Honkapohja 2001)
for an introduction to learning under constant gain.

E-stable steady states in the nonstochastic model thus provide guidance
to the possible convergence properties of constant gain learning. The econ-
omy often spends considerable periods of time in a neighborhood of an E-
stable steady state. However, the random fluctuations under constant gain
learning can have rich patterns of dynamics. The economy may, for example,
occasionally experience relatively sudden deviations that move the economy
far away from the neighborhood of a steady state. These are called escape
dynamics. Along such escape routes the economy moves far away from a
neighborhood of an E-stable steady state.11 In such an event the economy
may possibly settle in a neighborhood of another E-stable steady state (if a
second E-stable steady state exists) for a period of time after which it may
move back, along a new escape path, to a neighborhood of the former E-
stable equilibrium. Simulations of such escape dynamics are shown in (Evans
and Honkapohja 1993) and Chapter 14 of (Evans and Honkapohja 2001) for
an overlapping generations model with multiple E-stable steady states, by
(Kasa 2002) for a model of currency crises and by (Williams 2002b) in game
theoretic settings. We remark that this is not the only case in which escape
dynamics can occur. In some models escape routes can also exist when the
equilibrium is unique, see (Sargent 1999), (Cho, Williams, and Sargent 2002),
(Bullard and Cho 2002), (Williams 2002a) and (Cho and Kasa 2002). Later
we will examine the present model for escape dynamics.

3.2 VAR Learning

Instead of employing steady state learning, the agents may view the economy
as following a more complex stochastic process. In section 2 we saw that
locally near a steady state the model can be linearized as shown by equations
(12)-(13). Introducing the notation yt = (πt, bt)

′, vt = (θt, ψt)
′, we write the

11The terminology is due to (Sargent 1999). Theoretical analysis of escape routes is
developed in (Cho, Williams, and Sargent 2002) and (Williams 2002a).
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linearized model near steady state i in vector form as

yt = Ki +Miy
e
t+1 +Niyt−1 + Pivt +Rivt−1 + Siεt, (16)

where

Mi =

(
(αiβ)

−1 0
−ϕi,1(αiβ)

−1 0

)
, Ni =

(
0 0

−ϕi,2 β−1 − γ

)
,

Pi =

(
−α−1i 0

ϕi,1α
−1

i − ϕi,3 −1

)
, Ri =

(
0 0

−ϕi,4 0

)
.

Near a steady state i the linearized model (16) has a unique stationary REE
of the form

yt = Ai +Biyt−1 + Civt +Divt−1 + Fiεt (17)

in the two cases LAM/PF (with i = H) and LPM/AF (with i = L), see
Proposition 3 above. We remark that in the LAM/PF case the first rows of
BH and DH are zero, so that in this case the REE solution reduces to one
in which inflation is a noisy steady state. In contrast, for the LPM/AF case
both rows of BL are nonzero. See (Evans and Honkapohja 2002) for details.

To study the stability of these REE under learning, we assume that agents
think that the stochastic process for inflation has the form (17), where the
parameters Ai, Bi, Ci and Di are to be estimated from past data. We are
here assuming that the exogenous shocks vt = (θt, ψt)

′ are observable, so that
agents are estimating and updating the coefficients of a VAR with exogenous
variables vt and vt−1. For this estimation agents might use either recursive
least squares or stochastic gradient learning.12 For computational simplicity,
we used stochastic gradient algorithms in the simulations of VAR learning.
In both cases, there are also decreasing and constant gain versions of learning
and the general remarks made in connection with the same two versions of
steady state learning also apply here. In computing the expectations agents
make forecasts using the perceived law of motion (17) and, in simulations,
the actual expectations πe

t+1 take account of both the bounds on inflation
and possible expectation shocks.

The system under VAR learning can again be written as a stochastic re-
cursive algorithm and analyzed using standard techniques. As discussed
above, it can in general be shown that parameter estimates under least

12See (Evans and Honkapohja 2001) for formal details on these two algorithms.
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squares learning with decreasing gain converge to an REE if and only if
the REE is E-stable, and E-stability tends also to govern stability under sto-
chastic gradient learning.13 If constant gain is used instead, the parameter
estimates do not converge to a fixed point but instead remain random even
asymptotically. For a small gain the mean of the parameter estimates is ap-
proximately equal to the REE values, but escape dynamics can occur with
VAR learning under constant gain. We will examine this possibility below.

4 Theoretical Stability Results

4.1 Steady State Learning

The relevant E-stability condition can be obtained as follows. Suppose that
πe
t+1 = π, for some constant π, and set the shock θt equal to its mean

Eθt = 1. Then the temporary equilibrium value of πt (in the corresponding
nonstochastic model) is given by

T (π) = min[max(f−1(β−1π − 1)), π̃), π̂].

It can be shown that the local asymptotic stability of the ordinary differential
equation

dπ

du
= T (π)− π

provides the relevant E-stability criterion for the stochastic model, under
steady state learning, when the shock is small, i.e. θt has small bounded
support around its mean. Here u denotes notional time. For πH , πL and π̃
we have:

Proposition 4 Assume that π̃ < πL < πH < π̂ and that the support of θt is
sufficiently small. Under steady state learning we have:
(i) πH and π̃ are E-stable, and
(ii) πL is not E-stable.

13Stability under stochastic gradient learning can be sensitive to details of the algorithm,
and there exist models in which stability under stochastic gradient learning is not in all
cases governed by E-stability. However, our simulations of the current model appear fully
consistent with the predictions of the E-stability principle.
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Proof. Since πH and πL are interior and satisfy f ′(πH) > β−1, f ′(πL) <
β−1 we get

T ′(πH) = β−1
1

f ′(πH)
< 1 and T ′(πL) = β−1

1

f ′(πL)
> 1.

Thus πH is and πL is not E-stable. On the lower boundary ∃π̆ defined by
1 + f(π̃) = β−1π̆ such that T (π) = π̃ for π ≤ π̆, which implies that π̃ is
E-stable.

Figure 2 illustrates the mapping T (π) and the different steady states πH ,
πL and π̃. We emphasize once more the key result that E-stability properties
of the nonstochastic steady states determine E-stability and hence stability
under learning of the stochastic steady state when the range of variation of
the shock θt is small. This feature will be crucial in interpreting some of the
simulations below.

FIGURE 2 HERE

A notable feature of steady state learning in this model is that the evolu-
tion of government debt, i.e. real bonds does not influence the dynamics of
inflation. If steady state learning of inflation is convergent, then in the long
run the evolution of bonds is approximately determined by equations (7) and
(8) with mt = m(R̄), πt ≈ π̄, R̄ = β−1π̄ and bt = (β−1 − γ)bt−1 + ψt + εt+
constant. Thus the process for real bonds is stationary if fiscal policy is
passive. In the case of steady state learning and active fiscal policy, πH or
π̃ remain stable, but the bond path becomes explosive until it reaches the
bounds set on government debt.

4.2 VAR Learning

In this case agents are assumed to have a linear PLM of the form (17) and
we can consider the E-stability of the REE that are local to the steady states
and for which the dynamics are given approximately by the linearized model
(16). It is possible to adapt the results in (Evans and Honkapohja 2002),
which lead to the following proposition:

Proposition 5 Under VAR learning the linearized REE that are local to a
steady state have the following E-stability properties:
(i) The local REE associated with πH is E-stable when fiscal policy is passive.
(ii) The local REE associated with πL is E-stable (resp. E-unstable) when
fiscal policy is active (resp. passive).
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Proof. (i) Monetary policy is locally active near πH , so that by Propo-
sition 4 in (Evans and Honkapohja 2002) the REE is E-stable with PF.

(ii) Monetary policy is locally passive near πL, and the results follow from
Proposition 4 in (Evans and Honkapohja 2002).

The results of Proposition 5 indicate that the nature of fiscal policy is
crucial for the possibility of a liquidity trap at πL and provide important
conclusions about the reasonableness of the REE considered in the literature.

First, with PF the usual solution is the E-stable REE near πH . If fiscal
policy becomes active at πH , then the situation is less clear as the system
under RE is locally explosive and analysis based on linearization does not
yield a full answer. (Evans and Honkapohja 2002) study incipient tendencies
for the explosive case and suggest that, depending on monetary and fiscal
policy parameters there can be solutions that are stable under learning.14

Second, if fiscal policy is passive the solutions near πL are not stable
under learning.15 (Benhabib, Schmitt-Grohe, and Uribe 2001) assumed PF
and suggested that the indeterminacy of πL indicates the possibility of perfect
foresight paths converging to πL. Part (ii) of Proposition 5 shows that these
paths are not interesting if one adopts the learning viewpoint. However,
there exists an E-stable REE near πL if fiscal policy is active. This raises the
question of whether convergence to πL can arise from initial points near πH

when fiscal policy shifts from PF to AF regime.
Third, we remark that simulations below will indicate that the low bound-

ary stochastic steady state π̃ is stable under VAR learning under PF.

5 Numerical Analysis

In this section we will present several numerical simulations illustrating the
preceding theoretical results about convergence of learning to the different
types of equilibria. We will also examine further issues for which analytical
answers are not available. For the most part, we will present only simulations
with constant gain algorithms. For a learnable equilibrium we should then
anticipate that, for the most part, the economy fluctuates near the equilib-

14A full study of learning in this explosive case has not yet been completed.
15(Eusepi 2002) has recently studied the implications of forward-looking global Taylor

rules. Under such a rule learnable cycles and sunspots can exist even if fiscal policy is
passive. Eusepi assumes that either (i) money and consumption are complements in the
utility function or (ii) real balances affect the production function.
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rium but, as a result of specific sequences of random shocks, with occasional
escape paths that move the economy further away from the equilibrium and
possibly to a neighborhood of another equilibrium whenever a second learn-
able equilibrium exists.

We specify the following baseline numerical values for the parameters (we
will report new values only if they deviate from these):
(i) utility function and output: β = 0.95, σ1 = σ2 = 0.95, A = 0.1, y = 10;
(b) fiscal policy: g = 1.5, γ0 = 0.5, γ = β−1 − 1 + 0.15;
(c) interest rate rule: π∗ = 1.1, A = 1.2;
(d) inflation bounds: π̃ = 1, π̂ = 2π∗.
The shocks ηt and ψt are assumed to be normal with standard deviations
ση = 0.02 and σψ = 0.01. θt is assumed to be log-normal with σθ = 0.1 for
the corresponding normal variate. The mean of θt is set at one.

These parameter values are relatively unsurprising, though we have not
tried to do any calibrations to data. We remark that these values imply the
existence of a low inflation steady state at πL = 1.0477. Monetary policy
is locally active at πH = π∗ = 1.1 and it is locally passive at πL. (The
value of π∗ is chosen purely for convenient presentation of the numerical
results). Fiscal policy is passive under the baseline parameter values since
γ = β−1 − 1 + 0.15 satisfies the definition of PF, compare Definition 1 in
Section 2. We will vary fiscal policy from PF regime to AF regime or vice
versa in some simulations.

5.1 Convergence to Equilibria

In the simulation shown in Figure 3 we use the basic parameter settings
given above and we assume that agents do steady state learning with the
constant gain parameter set at φ = 1/10. The initial values for the economy
are assumed to be near the desired steady state πH . The dynamics were run
for 20000 periods. The three panels show the rate of inflation, the quantity
of bonds and expectations of inflation, respectively.

FIGURE 3 HERE

The simulations confirms the stability results for πH and π̃ above. With
constant gain learning, the economy remains near the high steady state for
much of the time but occasionally moves along an escape path to the vicinity
of the low boundary steady state π̃, which is also E-stable in the PF regime
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with steady state learning. Having stayed near π̃ for a period of time, the
economy eventually moves to the vicinity of πH along a different escape path.
The economy continues to occasionally shift between these regions.

We make some further remarks. First, simulations of learning with de-
creasing gain (not shown) indicate local stability of πH and π̃ under both
steady state and VAR learning in the PF regime. Second, under AF, simula-
tions (not shown) indicate local convergence of steady state learning inflation
to πH or π̃, with explosive Euler paths for bonds. However, under VAR learn-
ing there is divergence from both πH and π̃.

The low interior steady state πL was examined for learning in the AF
regime for fiscal policy. Propositions 4 and 5 indicate that the stationary
REE near πL is unstable for steady state learning but stable for VAR learning.
Figure 4 illustrates that latter result under the parameter setting γ = (β−1−
1)/2, σθ = 0.0001, ση = 0.0001, σψ = 0.001 and with other parameters at
their base values given above. For initial conditions we set b0 = bL + 0.01,
π0 = πL + 0.001, R0 = RL + 0.001 and m0 = ml + 0.01. (Here the subscript
L refers to the steady state value of the corresponding variable at the steady
state πL.) Learning was assumed to use a small constant gain φ = 5000−1

and the simulation was run for 20000 periods. The results of the simulation
accord with the theoretical analysis. The top panels of Figure 4 show that the
economy fluctuates near the steady state values πL = 1.0477 and b ≈ −23.16

The regression errors are relatively small, as indicated by the lower panels.

FIGURE 4 HERE

Further experiments in this case showed that stability of the stationary
REE near πL under learning is quite sensitive to assuming small shocks (note
the standard deviations used) and requires initial conditions very close to the
low interior steady state values. The experiments showed that larger constant
gain increases in the shock variability or use of initial conditions further
away from the equilibrium can each lead to divergence of learning from πL.
This suggests that, at least for the parameter values studied, convergence
to the stationary REE near πL is “very local” in some sense and that this
solution is not easily reached from initial conditions that do not lie in a small
neighborhood of this steady state.

16The steady state value for bonds is negative meaning that the government is a net
lender. It can also be checked that the comparative dynamic properties of this equilibrium
are non-intuitive.
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The fragility of the stability of the REE near πL can be contrasted to the
stability properties of the REE near πH and π̃ when PF prevails. Simulations
(not shown) indicate that the stability of these solutions is relatively robust,
i.e. it occurs also from initial conditions that are relatively far away from the
corresponding equilibrium.

5.2 Policies for Avoiding Liquidity Traps

Since the stability in some key cases depends on fiscal policy it is of interest
to examine the consequences of changes in the fiscal regime. In the first
experiment it is assumed that the economy is initially near the low boundary
equilibrium π̃ with passive fiscal policy. In this case π̃ is a locally stable
equilibrium with no inflation, and we think of the fluctuations near π̃ as a
liquidity trap of, say, the Japanese economy.

If fiscal policy is made active, i.e. is no longer geared towards keeping
the public debt under control, the equilibrium is no longer stationary. In
particular, the switch in fiscal policy leads to build up of debt (until the
upper bound on debt is reached) with no essential upward movement in
inflation. In other words, the liquidity trap cannot be cured by active fiscal
policy that is not geared towards control of public debt.

Elimination of the liquidity trap can instead be achieved by a reformu-
lation of monetary policy. The obvious remedy is to raise the minimum
permissible level of inflation π̃ above the low interior steady state πL. In
terms of Figure 2 this leads to a shift up of the horizontal portion of the
T (π) map sufficient to ensure a unique steady state at π = πH . Figure
5 illustrates the T (π) map after such a change.17 It is easily seen that in
this case πH continues to be E-stable under both the steady state and VAR
learning.

Figure 6 presents simulation results showing the dynamics after this type
of change in monetary policy.

FIGURES 5 AND 6 HERE

The three panels respectively show the rate of inflation, the quantity of bonds
and inflation expectations. This simulation assumes that the shocks and

17This policy changes the number of steady states. It is conceptually similar to the
tightening of a fiscal constraint in a monetary inflation model; see (Evans, Honkapohja,
and Marimon 2001).

19



the constant gain parameter are all small (so that escape paths are highly
unlikely): σθ = 0.0004, ση = 0.0001, σψ = 0.0001 and φ = 100−1. The run is
for 10000 periods. The economy is initially assumed to be near πL, which is
unstable since we now maintain passive fiscal policy. The economy converges
to the liquidity trap with π near π̃ = 1.00. In period 2000 the low boundary
is shifted up to π̃ = 1.05 (> πL). As seen from the figure, the economy
gradually converges to the desired equilibrium at πH .

As discussed in Section 2, this method of eliminating the liquidity trap is
achieved by an implementation of monetary policy that switches to a money
supply rule if private sector inflation expectations are too low. Operationality
of this switch requires sufficiently accurate information on private inflation
expectations.18

There are other ways to diminish the likelihood of the liquidity trap by
policy design. Evidently, the nature of the fluctuations under constant gain
learning depends on the “sizes” of the basins of attraction of the desired
steady state πH and the floor steady state π̃, as well as on the strength of
dynamic adjustments. A change in the interest rate rule that shifts down the
value of the unstable steady state πL will alter the basins of attraction and
therefore the likelihood of escape paths. Figure 7 presents the same setup
as in Figure 3 but with A = 1.35 in place of 1.2. With this value for A, the
intermediate steady state inflation is πL = 1.0234. The figure shows that
the likelihood of the escape paths from πH to π̃ is greatly reduced, since the
basin of attraction of πH is made larger by the shift in the interest rate rule.

FIGURE 7 HERE

We conclude this section by reemphasizing the important role played by
fiscal policy. A passive fiscal regime, in which taxation responds appropri-
ately to the level of public debt, has several key properties. First, it helps
to ensure convergence to the desired target inflation rate. This is clear from
part (i) of Proposition 5. Furthermore active fiscal policy leads to locally
explosive paths near πH and it can also be shown that these paths may be
unstable under learning. Second, part (ii) of Proposition 5 shows the theo-
retical risk of learning leading the economy to equilibria near πL when fiscal

18We remark that the upper bound on inflation, the implementation of which also re-
quires an analogous switch to money supply rule, is less critical than the lower bound as
the upper bound does not represent a new steady state to the economy.
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policy is active. Finally, active fiscal policy leads to explosive debt paths at
π̃ as well as at πH .

Our results provide an interesting contrast to those of (Benhabib, Schmitt-
Grohe, and Uribe 2002). They propose two possible policies, either of which
they view as sufficient to avoid the possibility of a liquidity trap: (i) a fiscal
rule that reduces tax revenue at low inflation rates, or (ii) a monetary policy
that switches to money growth rules at low interest rates in combination with
a suitable non Ricardian fiscal rule. Their results are based squarely, and rely
heavily, on the perfect foresight assumption (in a nonstochastic model). In
our approach we replace perfect foresight (or fully rational expectations) by
adaptive econometric learning rules. Although our learning dynamics allow
for the possibility of convergence to a rational stationary solution under ac-
tive (non Ricardian) fiscal policy, they appear more likely to lead instead to
explosive debt paths.19 Our results thus suggest the desirability of relying on
a “second pillar” targeting of inflation, through money supply rules, at suf-
ficiently low inflation rates, in combination with a passive (Ricardian) fiscal
policy.

6 Conclusions

Recent research by (Benhabib, Schmitt-Grohe, and Uribe 2001) and (Benhabib,
Schmitt-Grohe, and Uribe 2002) has brought to economists’ attention the
possibility of the economy sliding into a liquidity trap when monetary policy
is conducted using Taylor-type interest rate rules. Their analysis was con-
ducted under the perfect foresight assumption and we have re-examined this
issue under the assumption that agents form expectations using econometric
learning rules. One major finding is that although the interior liquidity trap
equilibrium πL can be stable under learning when fiscal policy is active, the
basin of attraction for this equilibrium appears small. A greater concern is
the economy slipping even further to inflation rates below πL, with adaptive
learning dynamics pushing the economy towards some lower boundary π̃ es-
tablished by monetary authorities. π̃ then becomes a low level inflation trap
from which it is difficult to escape.

19However, the policy combinations that we consider do differ in detail from those
(Benhabib, Schmitt-Grohe, and Uribe 2002), and a more careful analysis of their specific
policies, under learning, seems warranted.

21



Without the floor at π̃ the economy under learning would slide into cu-
mulative deflation. This floor can be interpreted as a “second pillar” of
monetary policy that gives primacy to money supply rules when inflation is
sufficiently low. The second pillar inflation rate can be achieved for any given
inflation expectations, money demand function and inherited price level by
sufficiently increasing the money supply. Active fiscal policy alone is unable
to push the economy out of the low boundary inflation trap π̃, and leads
instead to an explosive build-up of debt with little change in inflation.

The required policy is instead a switch to a more aggressive monetary
policy in which the second pillar inflation rate π̃ is increased above πL. This
leads to a cumulative increase in inflation to the desired inflation target
πH , achieved through implementation of the interest rate rule once inflation
and inflation expectations are above π̃. In fact, the policy of relying more
aggressively on the money supply component of the rule by setting a higher
π̃ > πL will also insulate the economy against liquidity traps and ensure
global convergence to the desired inflation target πH .

The results of this paper indicate the need for further research in sev-
eral directions. Within the current model framework there are a number of
open issues. In particular, are there specifications in which the interior low
inflation steady state πL has more robust stability properties under learning
so that it might plausibly emerge as an outcome of these dynamics? More
generally, our analysis has been cast in terms of a flexible price economy with
constant output. Extending the model to one with sticky prices and variable
output would be considerably more complicated, but clearly desirable, since
the main concern of liquidity traps is their association with low output and
stagnation. Such an extension is planned for the near future.
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