MARKET AND FUNDING LIQUIDITY COVAR

Markus K. Brunnermeier (w/ Lasse Pedersen, Tobias Adrian)

Represent. Agent "Euler Equation Finance"

- No (funding) friction
 - Starting with Lucas ...
 - Perfect aggregation

Financial sector is a veil

Pricing kernel = MRS of representative household

- Modeling: exotic preferences/utility functions + beliefs
- Data source: Consumption

"Institutional Finance"

- Funding frictions are at the center investors with expertise rely on funding w/o expertise
 - No aggregation
 - Market Failure

Pricing Kernel = Shadow cost of funding (liquidity)

- Modeling: institutional frictions
- Data source: Flow of funds

Funding Liquidity Constraints – Margins/haircuts determine Leverage

- Finance a long position x⁺>o at price p_t=100
 - Borrow \$90 per share
 - Margin m⁺=\$10
- Finance a short position x⁻>o
 - Borrow security, lend collateral of \$110
 - Short-sell security at \$100
 - Margin/haircut = \$10
- Funding (liquidity) constraint

$$\sum_{j} x_{t}^{j+} m_{t}^{j+} + x_{t}^{j-} m_{t}^{j-} \leq W_{t}$$

With cross-margining

$$M_t(x_t^1,\ldots,x_t^J) \leq W_t$$

Funding Constraint is everywhere

- Exchanged traded products
- Repos

- Regulatory
 - Banks: Basel accord
 - Basel I
 - Basel II: Value at Risk approach
 - Brokers/Investment banks: SEC's net capital rule
 - Internal risk models: Cross-margining from Aug 2004
 - Individual investors: Reg T

Three Flavors of Funding Liquidity

- Margin funding risk Prime broker
 - Margin has to be covered by HF's own capital
 - Margins increase at times of crisis
- Rollover risk ABCP
 Inability to roll over short-term commercial paper
- Redemption risk
 Depositors, HF-investors
 - Outflow of funds for HFs and banks
- Essentially the same! Maturity mismatch:

Long-term assets (with low market liquidity) Short-term borrowing

Overview

- Fragility
- Liquidity spirals
 - Loss spiral
 - Margin/haircut spiral delevering
 Procyclicality
- Fire sale externality
- Implications for financial regulation
 - Focus on externalities measure CoVaR
 - Countercyclical regulation
 - Incorporate funding side

Funding and Market Liquidity (with Lasse Pedersen)

Model setup – (simplified)

Model setup II

Volatility is time-varying – ARCH process

$$egin{aligned} & v_t^j &= v_{t-1}^j + \Delta v_t^j = v_{t-1} + \sigma_t^j arepsilon_t^j, & ext{where } arepsilon_t^j \sim^{iid} \mathcal{N}(0,1) \\ & \sigma_{t+1}^j &= \underline{\sigma}^j + \theta |\Delta v_t^j| \end{aligned}$$

- Speculators
 - Risk neutral, but capital constrained
 - Hold "leveraged" position financed by financiers
 - Go to their limit at t=1, i.e. x⁺ = W/m
- Financiers are uninformed cannot distinguish between price drop due to
 - Temporary liquidity shock
 - Permanent fundamental shock

Model setup: Financiers margin setting

- Margin = f(Value-at-Risk)
- A price drop leads to higher margins
- Intuition:
 - Price drop is likely due to fundamental shock
 - Large fundamental shock leads to higher future volatility (ARCH process)
 - Value at risk measure shoots up
- Alternative mechanisms
 - VaR is calculated based on past data (great moderation = great complacency)
 - 2. Adverse selection increases (Bernanke-Gertler)

debt becomes more info-sensitive

margins increase

cashflow

Model setup: Financiers margin setting

- Margin = f(Value-at-Risk)
- A price drop leads to higher margins
- Intuition:
 - Price drop is likely due to fundamental shock
 - Large fundamental shock leads to higher future volatility (ARCH process)
 - Value at risk measure shoots up
- Alternative mechanisms
 - VaR is calculated based on past data (great moderation = great complacency)
 - 2. Adverse selection increases (Bernanke-Gertler)

margins increase

Liquidity spirals

In more detail ... Speculators demand at t=1

• Speculators go to their limits: $W/(\sigma + |\Delta p|)$

Hyperbolic Star – relevant regions

Speculator demand

Adding Customers' Supply

Reducing Speculators' Wealth

Fragility – due to multiple equil.

Liquidity spirals

Overview

- Fragility
 multiple equl. (Endogeneity of systemic risk)
- Liquidity spirals
 - Loss spiral
 - Margin/haircut spiral delevering
 - Procyclicality
- Fire sale externality add period t=o
- Implications for financial regulation

Model setup – now $z_0 > 0$

Tilted' Hyperbolic Star at t=1 if x_0 =10

Main insights

1. Pricing kernel depends on future funding liquidity

$$p_0 = E_0[\underbrace{rac{\phi_1}{E_0[\phi_1]}}_{ ext{kernel}} p_1]$$
, if $\phi_0 = 1$ (unconstrained case)

$$p_0 = E_0[\phi_1]E_0[p_1] + Cov_0[rac{\phi_1}{E_0[\phi_1]}, p_1]$$

- 2. Price p_1 distribution is skewed
 - Likely small increase
 - Unlikely large drop
 - (since speculators will be constrained and have to fire-sell their assets)Hold Price
- 3. Price in t=o is depressed even when speculators are not constrained, since
 - Speculators hold money on the side-line
 - Too little in good times due to fire-sale externality

Main insights – fire-sale externality

- When levering up, institution *i* does not take into account that fire-sale depresses price of others
 - triggers liquidity spirals (loss and margin spiral)
- Precunariy externality that leads to inefficiency in incomplete market setting
- Other externalities
 - Hoarding externality
 - Runs (dynamic co-opetition)
 - Network externality (hide own commitments)

Overview

- Fragility
- Liquidity spirals
 - Loss spiral
 - Margin/haircut spiral delevering
 Procyclicality
- Fire sale externality
- Implications for financial regulation
 - Focus on externalities measure CoVaR
 - Countercyclical regulation
 - Incorporate funding side

Current financial regulation

1. Risk of each bank in isolation \implies Value at Risk

VaR

- 2. Procyclical capital requirements
- 3. Focus on asset side of the balance sheet matter
- 4. Focus on banks shadow banking system

Two challenges

- 1. Focus on externalities systemic risk contribution
 - What are the externalities?
 - How to measure contribution to systemic risk?
 - CoVaR influences
 - Who should be regulated? (AIG, ...) = functional approach
 - What is the optimal
 - capital charge (cap),
 - Pigouvian tax
 - Private insurance scheme?
- 2. Countercyclical regulation
 - How to avoid procyclicality?

+ incorporate liquidity risk – asset-liability interaction

CoVaR

- CoVaR = VaR conditional on institute *i* (index) is in distress (at it's VaR level)
- Exposure CoVaR
 - **Q1**: Which institutions are most exposed if there is a systemic crisis?
 - VaRⁱ | system in distress
- Contribution CoVaR
 - **O2:** Which institutions contribute (in a non-causal sense)
 - VaR^{system} institution *i* in distress

Cover both types	Institutions				
Risk spillovers	"individually systemic"				
Tail risk correlations	"systemic as part of a herd"				

• Non-causal, can be driven by common factor

Quantile Regressions: A Refresher

OLS Regression: min sum of squared residuals

$$\beta^{OLS} = \arg\min_{\beta} \Sigma_t \left(y_t - \alpha - \beta x_t \right)^2$$

Quantile Regression: min weighted absolute values

$$\beta^{q} = \arg\min_{\beta} \Sigma_{t} \begin{cases} q |y_{t} - \alpha - \beta x_{t}| & \text{if } (y_{t} - \alpha - \beta x_{t}) \ge 0\\ (1 - q) |y_{t} - \alpha - \beta x_{t}| & \text{if } (y_{t} - \alpha - \beta x_{t}) < 0 \end{cases}$$

Quantiles = - Value-at-Risk

- Quantile regression:
 - Quantile q of y as a linear function of x

$$\hat{y}_{q} | x = F_{y}^{-1}(q | x) = \alpha_{q} + \beta_{q}x$$

where $F^{-1}(q|x)$ is the inverse CDF conditional on x

- Hence, $F^{-1}(q|x) = q\%$ Value-at-Risk conditional on x.
 - Note out (non-traditional) sign convention!

Q2: Who "contributes" to systemic risk?

- VaR does not capture systemic risk contribution ∆ CoVaR_{contri}
- Data up to 2007/12

Overview

- Fragility
- Liquidity spirals
 - Loss spiral
 - Margin/haircut spiral delevering
- Fire sale externality
- Implications for financial regulation
 - Focus on externalities measure CoVaR
 - Addressing procyclicality
 - Step 1: time-varying CoVaR
 - Step 2: Predictive regressions
 - Accounting variables of institutions (+interdependence, crowdedness)

Procyclicality

Market variables of institutions

Time-varying CoVaR

Relate to <u>macro factors</u>

- VIX Level
- 3 month yield
- Repo 3 month Treasury
- Moody's BAA 10 year Treasury
- IoYear 3 month Treasury
- House prices (home builder index)
- (Aggregate Credit growth/spread)
- (Haircut/margins (LTC ratios))
 ... let's figure out what matters!

Obtain Panel data of CoVaR

Next step: Relate to institution specific (panel) data

interpretation "Volatility"

"Flight to Liquidity" "Credit indicator" "Business Cycle"

Predictive

(1 year lag)

PANEL A: INSTITUTIONS

PANEL B: PORTFOLIOS

	CoVaR ⁱ contri		CoVaR ⁱ _{exp}		CoVaR ⁱ contri		CoVaR ⁱ _{exp}	
	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
	FE, TE	FE	FE, TE	FE	FE, TE	FE	FE, TE	FE
VaR (lag)	0.02**	0.05***	-0.06**	0.03*	0.20***	0.14***		-0.26***
Mat-Mism(lag)	-0.30	-0.30	-1.84**	-1.79**	1.20***	0.25		0.04
Leverage (lag)	-0.02***	-0.02***	-0.01	-0.02	-0.01***	-0.04***		-0.01*
B/M (lag)	-0.27**	-0.19**	-0.08	0.71***	-0.14	0.57***		-0.53***
Size (lag)	9.94	10.61	27.43*	-15.68	-0.52	-1.34		2.52
Constant	-0.35	-0.65**	-5.04***	-3.84***	-0.55**	-0.63***		-6.13***
Observations	1657	1657	1657	1657	2486	2486		2486
R-squared	0.66	0.40	0.62	0.48	0.72	0.38		0.71

Predicting with Market Variables

		∆CoVaR_contrib			∆CoVaR_exp			
COEFFICIENT	1 Quarter	1 Year	1 Quarter	1 Year	1 Quarter	1 Year	1 Quarter	1 Year
CDS beta (lag)	-0.25***	-0.58**			-1.24***	-2.54***		
	(0.05)	(0.23)			(0.39)	(0.85)		
ΔCDS (lag)	0.05	0.06			1.39	-1.28		
	(0.17)	(0.68)			(1.10)	(2.20)		
IV_beta (lag)			-0.34***	-0.67***			-1.75***	-3.33**
			(0.11)	(0.18)			(0.30)	(1.39)
DIV (lag)			-0.05	-0.77***			0.63	-0.56
			(0.28)	(0.19)			(0.59)	(1.04)
								-
Constant	-1.17***	-1.28***	• -1.13***	-1.15***	-4.65***	-4.82***	-4.33***	4.20***
	(0.04)	(0.07)	(0.07)	(0.08)	(0.15)	(0.24)	(0.17)	(0.52)
Observations	178	148	178	148	178	148	178	148
R-squared	0.59	0.54	0.55	0.55	0.71	0.68	0.72	0.65

beta w.r.t. first principal component on changes in CDS spreads within quarter
 panel regression with FE – (no findings with FE+TE)

39

Conclusion

- Multiple equilibria (fragility)
 - Systemic risk is endogenous
- Liquidity spirals
 - Margin/haircut spiral leads to procyclicality
- Fire-sale externality
- Financial Regulation
 - Macro-prudential has to focus on externality CoVaR is one measure
 - Predict future CoVaR to overcome procyclicality due to delevering triggered by margin/haircut spiral