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1 Introduction

The relation between inflation and output fluctuations has been attracted great in-

terest in macroeconomic analysis since this interaction of these variables provides a

useful tool for policy analysis. The New Keynesian Philips Curve (NKPC), which

relates the dynamics of short run inflation to economic activity, is the building block

of many macro models with micro foundations, such as the Dynamic Stochastic Gen-

eral Equilibrium (DSGE) models. The conventional way to estimate NKPC models

is to filter, i.e. demean and/or detrend the series a priori (see Gaĺı and Gertler

(1999); Mavroeidis (2004); DeJong and Dave (2011) among others). However, the

complex time series structure of the macroeconomic series obscure econometric in-

ference based on these demeaned and detrended series. The existence of complex

low frequency movements, such as potential structural breaks and level shifts in

the observed series, require more sophisticated models, which can handle these time

variation together with the standard NKPC parameters.

The purpose of this paper is to model the low and high frequency movements

in the inflation and marginal cost series jointly by extending the standard NKPC

model by modeling the observed time series instead of the filtered series. Posterior

and predictive results for the proposed model are obtained using a simulation based

Bayesian approach. We compare the results of this extended model with those of the

standard NKPC model with demeaned and/or detrended data in order to analyze

the misspecification effects on inference and on forecasting performance. We focus

particularly on the issue of weak identification in the NKPC model with filtered and

observed time series. Apart from the low frequency movements in the data we also

include changing patterns in high frequency moments in an enlarged NKPC model,

by incorporating a stochastic volatility structure for inflation.

Conventional econometric analysis of the NKPC model is based on demeaned

and detrended data. The reason of this a priori data transformation is that the
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NKPC applies to the series in deviation from the steady state. On the one hand,

there is no consensus on the appropriate method of detrending these series, see

Gorodnichenko and Ng (2010) for a comprehensive list of such methods used in the

literature. The econometric analysis and the policy implications may be sensitive

to the particular detrending method used. On the other hand, this mechanical

removal of the low frequency movements in the data may lead to misspecification

in the models, as suggested in Canova (2012) for DSGE models. Specifically, more

complex high frequency moments in the data, such as long-run trends or regime

switching behavior, are not accounted for in such a priori analysis. The existence

of such complex low frequency moments, in particular in the inflation series, are

documented extensively in the literature (McConnell and Perez-Quiros, 2000; Stock

and Watson, 2008; Zhang et al., 2008; Bianchi, 2010). A misspecification in the model

due to such non-standard long-run behavior of the data may explain part of the weak

identification or rank reduction issues in NKPC reported e.g. in Mavroeidis (2004).

The resulting inflation forecasts may as well be affected by such misspecification.

Existing evidence suggests such complex long-run behavior in many macroeco-

nomic series too. For instance two distinct periods with differing patterns can be

observed for the raw inflation series. The period between the beginning of 1970s and

beginning of 1980s is often labeled as a high inflationary period compared to the

latter periods. The decline in the level and volatility after this period is linked to

credible monetary policy that stabilized inflationary expectations at a low level via

commitment to a nominal anchor since the early eighties, see McConnell and Perez-

Quiros (2000); Stock and Watson (2002); Ahmed et al. (2004); Stock and Watson

(2007); Cecchetti et al. (2007).

Following these concerns, we extend the NKPC model to explicitly incorporate

trends and low frequency movements observed in the series. As a result, we estimate

these long run behavior of the series along with the NKPC model parameters using
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structural time series techniques. For the inflation series we impose a specification

which can handle rare and large shifts in the level of inflation. For the series rep-

resenting economic activity, we use the labour share series as a proxy of the real

marginal cost in the economy. This series is directly linked to the theory under-

lying NKPC and it is found to be useful indicator of economic activity, see Gaĺı

and Gertler (1999); Clarida et al. (2000). For the trend of this series, we propose

a general specification which also includes the mechanical detrending techniques as

special cases.

We apply the proposed model to quarterly U.S. data over the period between

between the first quarter of 1960 and the last quarter of 2011. We show that due to

the misspecification issue in the standard NKPC model, there is a systematic bias in

parameter estimates using the filtered series; a reduction of the weak identification

issue, see Mavroeidis (2004, 2005); Kleibergen and Mavroeidis (2009, 2011), in the

enlarged NKPC model and more precise inference of the structural NKPC parame-

ters. The proposed model captures time variation in the low frequency moments of

both inflation and marginal cost data. For the inflation series, the model identifies

two distinct periods with differing inflation levels. The relatively high inflationary

period spans the period between the beginning of 1970s and beginning of 1980s. This

period is replaced rapidly by a relatively low inflation period, where annual inflation

is anchored at a level around 2%, accompanying the changing monetary policy in

the U.S.. This changing behavior of the inflation levels cannot be accurately cap-

tured by the conventional NKPC models using a priori filtered data. In terms of the

marginal cost series, the trend specification accommodates the smoothly changing

trend observed in the series, specifically after 2000.

The remainder of this paper is as follows: Section 2 illustrates the effects of

misspecified low frequency moments on inference and prediction using a canonical

AR model with long-run trends. Section 3 presents the standard NKPC model and
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identification issues in the inference of the model parameters. Section 4 presents the

extended NKPC models. Section 6 provides the application of the proposed models

and the standard NKPC model on US income and marginal cost data. Section 7

concludes.

2 Misspecified structural breaks

The purpose of this section is to illustrate potential issues from misspecified struc-

tural breaks in empirical analysis, using simulated data and a canonical model with

structural breaks. Specifically, we show that a misspecification resulting from ignor-

ing structural breaks in the data lead to an overestimation of the data persistence.

We further show that this overestimation in persistence deteriorates the forecast

performance.

For the illustrations, we consider a canonical AR(2) model with a break structure

in the long-run mean:

zt = ct + υt,

ct = ct−1 + κtη1,t, (1)

υt = φ1υt−1 + φ2υt−2 + η2,t,

for t = 1, . . . , T , where zt is the data modeled by two unobserved components: a

time-varying mean ct, and a transitionary component υt.

In equation (1), φ1 and φ2 are model parameters, κt is a binary variable which

takes the value 1 if the mean changes at time t, and 0 otherwise, where κt has a

binomial distribution with probability p(κ = 1) = p(κ) ∈ [0, 1] and η1,t and η2,t are

the residuals with (η1,t, η2,t)
′ ∼ NID

(
0,

(
σ2
1 0

0 σ2
2

))
. Note that the mean of the process

is non-stationary if ∃t such that κt = 1. Furthermore, if κt = 1 for t = 1, . . . , T , the

model in (1) is an AR(2) model with a random walk structure in the mean.
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Suppose that the model in (1) is modeled without taking the time-dependency in

the mean into account. The model can then be estimated focusing on the demeaned

data z̃t = zt −
∑T

t=1 zt/T :

z̃t = φ1z̃t−1 + φ2z̃t−2 + εt, (2)

where εt ∼ NID (0, σ2
ε ) and standard stationarity conditions φ1 + |φ2| < 1 and

|φ1| < 1 apply.

We simulate data with different structural break probabilities p(κ) = {0, 0.05, 0.1}
and different persistence parameters φ1, φ2, with T = 200 observations to illustrate

overestimation in persistence under the misspecified model. The rest of the model

parameters are set as σ2
1 = 4, σ2

2 = 1, c0 = 1, ν0 = ν−1 = 2. Note that for the simu-

lated data with p(κ) = 0, the model in (2) is correctly specified, and the posterior

results should be close to the true values.

For each simulated dataset we estimate the model in (2) under uninformative

priors:

p(φ1, φ2, σ
2
ε ) ∝





1 if σ2
ε > 0, φ1 + |φ2| < 1 and |φ1| < 1

0 otherwise
, (3)

which leads to a truncated multivariate t density for the marginal posterior of

(φ1, φ2).

Figure 1 shows the average and 95% intervals for the estimated posterior mean

of φ1 + φ2 values from M = 300 simulated dataset for each specification. First, sum

of the AR parameters are overestimated except for the correctly specified model

with p(κ) = 0. Hence when the structural breaks in the mean is not taken into

account, estimated persistence in the series is higher than the true value. Second,

when the issue of structural breaks is more severe, corresponding to relatively high
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p(κ) values, overestimation in persistence is also more severe and the estimated mean

of φ1 + φ2 is close to the boundaries of the parameter space, φ1 + φ2 = 1. Finally,

if the true parameters lie at the boundary of the parameter space φ1 + φ2 = 1, the

sum of the parameters are underestimated, even for the correctly specified model.

We conjecture that this stems from the violation of the stationarity assumption for

the model in (2).

-Insert Figure 1 about here-

We next illustrate the overestimation of persistence parameters and its effect on

the forecast error using simulated data from (1) with φ2 = 0. The misspecified model

is then given in (2) with the restriction φ2 = 0. Figure 2 shows the average and 95%

intervals for the estimated posterior mean of φ1 from M = 300 simulated dataset for

different persistence and structural break probabilities. Similar to the AR(2) model

with structural breaks, persistence is overestimated under the misspecified model.

This overestimation is more severe if the expected number of breaks are higher, with

relatively high p(κ) values. Furthermore, the size of overestimation in this AR(1)

model increases with the true value of the persistence parameter, as shown in the

right-panel of Figure 2.

-Insert Figure 2 about here-

We finally consider the effect of such overestimated persistence on the model’s

forecast performance. We simulate 200 in-sample observations and 100 out-of-sample

observations from (1) with different persistence levels and different numbers of (ex-

pected) structural breaks. In all simulations, the following are the true parameters:

φ1 = 0.1, σ2
1 = 4, σ2

2 = 1, c0 = 1, ν0 = ν−1 = 2. Notice that the misspecified model,

not accounting for structural breaks in (1) will underestimate the data if there is a

positive shock to the long-run mean, η1,t > 0, and overestimate the data in the oppo-

site case η1,t < 0. If this over and underestimation properties are simply averaged,
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the net effect of misspecification on the forecast performance cannot be spotted.

We therefore distinguish positive and negative long-run mean shocks in the forecast

sample: For each simulated data specification, two forecast samples are created such

that the shocks to the long-run mean in the forecast sample are positive and nega-

tive, respectively. The left and right panels in Figure 3 correspond to these positive

and negative jumps in the long-run mean, respectively. For the correctly specified

model with p(κ) = 0, average probability of overestimation in both cases is around

0.5, the expected value for a correctly specified model. The effect of misspecification

is visible in both cases, and this effect is more severe if the expected number of

structural breaks are higher, with high values of p(κ) or if the AR parameter φ2 is

relatively high given φ1, i.e. when the true persistence in the data is high.

-Insert Figure 3 about here-

We conclude that the misspecification of the shifts in the long-run mean will alter

the estimation and forecast results substantially. This effect is more severe if the

expected number of breaks in the long-run mean and the persistence in the data is

more severe. Generalizing from the univariate models considered in this section, we

next show that NKPC model estimates may also suffer from such misspecification

in the behavior of the inflation and marginal cost series.

Our next consideration is the effect of such misspecification on the Bayesian

inference of a multivariate model, namely the standard NKPC model. In section 3

we discuss the main issues in Bayesian estimation of the NKPC model. In section 4

we extend the standard NKPC model to allow for level changes over time.

3 Standard NKPC model

We first summarize the structural and reduced form representations of the standard

New Keynesian Philips Curve (NKPC). Furthermore, we show that the prior densi-

8



ties adapted for these models should be very carefully chosen due a highly nonlinear

transformation of parameters between the structural and reduced form representa-

tions.

The standard NKPC with a Calvo formulation is (Calvo, 1983; Gaĺı and Gertler,

1999):

pt = ψpt−1 + (1− ψ)p∗t ,

p∗t = (1− γψ)
∑∞

k=0(γψ)kEt(zt+k),
(4)

where pt and zt denote the price level and a proxy variable for real marginal cost

at time t, ψ ∈ [0, 1] is the Calvo parameter indicating the weight firms allocate to

previous price level in comparison to the expected future price level p∗t , and γ ∈ [0, 1]

is the discount rate for expected future marginal cost.

The structural form (SF) representation for the NKPC model derived from (4)

is:

πt = λzt + γE(πt+1) + ε1,t,

zt = φ1zt−1 + φ2zt−2 + ε2,t,
(5)

where (ε1,t, ε2,t)
′ ∼ NID

(
0,

(
σ2

ε1
ρ

ρ σ2
ε2

))
and the unobserved variable E(πt+1) can be

derived as a function of the past marginal cost values zt−1 and zt−2, and standard

stationary restrictions should hold for φ1, φ2.

The corresponding unrestricted reduced form (URF) representation for (5) is:

πt = α1zt−1 + α2zt−2 + εt,

zt = φ1zt−1 + φ2zt−2 + ε2,t

(6)

where (εt, ε2,t)
′ ∼ NID

(
σ2

ε ρ

ρ σ2
ε2

)
, and the restricted reduced form (RRF) represen-
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tation is obtained by introducing the following restrictions on parameters in (5):

α1 = λ(φ1+γφ2)
1−γ(φ1+γφ2)

, α2 = λφ2

1−γ(φ1+γφ2)
, (7)

Finally, the model in (5) is related to an Instrumental Variables (IV) model

with exact identification. Appendix A provides the calculation of the reduced form

representation and the relation of the NKPC model with standard IV models.

Bayesian estimation of the unrestricted reduced form model in (6) is straightfor-

ward under flat or conjugate priors. Given the posterior draws from these param-

eters, posterior draws structural form parameters in (5) can be obtained using the

transformation in (7). This nonlinear transformation, however, causes difficulties

in setting the priors in an adequate way. The determinant of the Jacobian of this

nonlinear transformation is1:

| J | = λφ2
2

(1− γ(φ1 + γφ2))
2 , (8)

where the Jacobian non-zero and finite if: γ(φ1 + γφ2) 6= 1, φ2 6= 0 and λ 6= 0.

Condition φ2 6= 0 is simply the system of equations in (6). Note that the model

can also be linked to an exactly identified instrumental variables (IV) model where

zt−2 is the instrument. Hence the instrument in this model has no explanatory

power, and the model is not identified if this condition does not hold. Even if the

model is identified, as φ2 → 0, the probability mass in the unreasonable regions of

the structural parameters increases dramatically, which is to the weak identification

problem.

Figure 4 illustrates the nonlinear transformation for the SF and RRF represen-

tations, where we get a grid of parameter values from SF representations, and plot

the corresponding RRF parameter values, and vice versa. The top panel in Figure 4

1We only consider the transformation from {λ, γ, φ1, φ2} to {α1, α2, φ1, φ2}, i.e. variance pa-
rameters in the transformed model are left as free parameters.
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shows the transformations from SF to RRF. Reduced form parameters α1 and α2

tend to infinity when persistence in inflation and marginal cost series are high, i.e.

when the structural form parameters λ and φ1 + φ2 tend to 1. The bottom panel in

Figure 4 shows the RRF to SF transformations. The corresponding SF parameters

lead to an irregular shape, for example if the instrument zt−2 has no explanatory

power with φ2 = 0 or if α2 = 0.

-Insert Figure 4 about here-

We conjecture that due to the highly nonlinear transformation of parameters

between the SF and RRF representations, a non-informative prior for the RRF may

lead to highly informative priors for the SF. If the analysis aims at inferring the

SF parameters, the results may be very sensitive to the choice of the prior for the

reduced form parameters. As an example, consider the following informative priors

for the reduced form parameters:

φ1 ∼ N(0.6, 0.1), φ2 ∼ N(−0.04, 0.1) (9)

α1 ∼ N(0.02, 0.005), α2 ∼ N(−0.025, 0.001), (10)

where the corresponding density of the SF parameters are given in Figure 5. These

rather ‘tight’ priors on reduced form parameters and the implied ‘wide’ priors on

structural form parameters as the structural form parameters, such as the Calvo

parameter, are bounded by definition.

-Insert Figure 5 about here-

We note that the NKPC analysis outlined in this section requires demeaned

and detrended inflation and marginal cost series, πt and zt, respectively. In the next

section we discuss the effect of such demeaning and detrending in detail. As outlined

in section 2, this analysis can be inaccurate since the level and trend behavior in
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the series is assumed to be constant over time. In the next section we extend the

standard NKPC model to account for possible changes in levels and trends.

4 An extended NKPC model

4.1 NKPC model with raw data

The standard practice in estimating the NKPC model is to demean and detrend

the series a priori. The specific methodology used for detrending the series can

severely bias the results, and fail to account for the structure of the time series, see

Gorodnichenko and Ng (2010); Canova (2012). To overcome this issue, we consider

the raw series, without demeaning or detrending, and combine structural time series

techniques with the structural form resulting from NKPC. Effectively, we estimate

the level and trend of the marginal cost and inflation series along with NKPC model

parameters.

For the empirical analysis, we consider US inflation and real marginal cost se-

ries over the period from 1960 first quarter until 2011 fourth quarter. Inflation is

computed as the growth rate of implicit GDP deflator and labor share in non-farm

business sector.2 The raw series of US inflation and labour share, and a prelim-

inary indication of changing levels in the series are displayed in Figure 6. This

crude analysis shows that the levels of these series change substantially over time.

Hence simply demeaning and detrending these series may deteriorate the inference

on NKPC parameters.

-Insert Figure 6 about here-

From the top panel in Figure 6, we observe two distinct periods with differing

patterns for the raw inflation series. The period between the beginning of 1970s and

2http://research.stlouisfed.org/fred2/
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beginning of 1980s can be labeled as high inflationary period compared to remaining

periods. Existing evidence show that the decline in the level and volatility is due

to credible monetary policy that stabilized inflationary expectations at a low level

via commitment to a nominal anchor since the early eighties, see McConnell and

Perez-Quiros (2000); Stock and Watson (2002); Ahmed et al. (2004); Stock and

Watson (2007); Cecchetti et al. (2007). One way to model this changing behavior

of the series to allow for regime changes in parameters to capture the change in the

structure of the series, see Cogley and Sargent (2005); Sims and Zha (2006); Kim

and Nelson (2006); Canova and Gambetti (2006), among others. We also include the

level (unconditional mean) of the inflation series in the upper panel of the Figure 6

with structural breaks in the fourth quarter of 1967 and the first quarter of 1983

in line with the existing findings.3 The figure indicates a temporary increase in the

level of inflation during 1970s, while this increase in the inflation switches back to

the earlier levels after the second break in the first quarter of 1983. We, therefore,

model the level of the inflation allowing for permanent level shifts incorporating the

changes in the level of inflation in the NKPC. Let denote the level of the inflation

in period t as cπ,t, this corresponds to the following model

cπ,t+1 = cπ,t + κtη1,t+1 (11)

where κt is a binary variable taking the value of 1 with probability pκ if there is

level shift and 0 1 − pκ if the level does not change and η1,t ∼ N(0, σ2
η1

). This

model structure allows for occasional level shifts depending on the probability pκ of

the binomial process preserving a parsimonious model structure with only a single

additional parameter. The magnitude of the level changes is determined by the

3This pattern does not change with the marginal changes in terms of the timing of the breaks,
which correspond to the period where the Federal Reserve Board reserve-targeting policies had
been replaced with the interest rate targeting policy rule. Moreover, Cecchetti et al. (2007), among
other papers, point another shift in the level of inflation around late 1960s as the start of the high
inflationary period.
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parameter ση, where occasional and large level shifts corresponds to low values of

1 − pκ together with relatively high values of ση and the opposite case corresponds

to the local level model, see Giordani et al. (2007) for a similar approach.

Second, when labor share series is analyzed in the bottom panel of Figure 6,

unlike inflation series we do not observe discrete changes during the course of time.

Instead, the labor share series exhibits a continuously changing pattern due to a

negative trend. As from the figure this trend is more prominent in the second

half of the sample period, we allow for a changing trend using a local linear trend

specification as follows

cz,t+1 = µz,t + cz,t + η2,t+1

µz,t+1 = µz,t + η3,t+1

(12)

where η2,t ∼ N(0, σ2
η2

) and η3,t ∼ N(0, σ2
η3

), see Durbin and Koopman (2001) for

details. This specification is flexible enough encompassing many types of filters

used for detrending including Hodrick-Prescott (HP) filter (Hodrick and Prescott,

1997) employed prior to estimation of the NKPC model, see Canova (2012) for a

similar specification in the more general context of DSGE models. When σ2
η3

=

0, for example, the level of the labor share follows a random walk with a drift,

µz. Additionally, when σ2
η2

= 0, a deterministic trend is obtained. On the other

hand, setting only σ2
η2

= 0 but allowing σ2
η3

to be positive results in an integrated

random walk trend which can approximate many types of nonlinear trends including

HP filter and the parameters of the HP filter can be recovered under certain re-

parametrization, see Harvey and Jaeger (1993); Harvey and Trimbur (2008); Harvey

(2011). Moreover, Delle Monache and Harvey (2011) show the robustness of the (12)

against many types of model misspecification.

Together with the level specifications of the inflation and labor share series the
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NKPC takes the following form

πt − cπ,t = λ (zt − cz,t) + γE(πt+1 − cπ,t+1 | It) + ε1,t

zt − cz,t = φ1 (zt−1 − cz,t−1) + φ2 (zt−2 − cz,t−2) + ε2,t

cπ,t+1 = cπ,t + κtη1,t+1

cz,t+1 = µz,t + cz,t + η2,t+1

µz,t+1 = µz,t + η3,t+1

, (13)

where




ε1,t

ε2,t

η1,t

η2,t

η3,t




∼ N







0

0

0

0

0




,




σ2
ε1

ρσε1σε2 0 0 0

ρσε1σε2 σ2
ε2

0 0 0

0 0 σ2
η1

0 0

0 0 0 σ2
η2

0

0 0 0 σ2
η3







Since the measurement equation is written still in demeaned and detrended form,

the reduced form of the NKPC in section 3, equation (6) still holds. In other

words, the transformation functions and the Jacobian related to the change in the

measurement remain identical except that the time varying parameters are replaced

with the corresponding constant parameters.

A further refinement in the NKPC model can be achieved allowing for time

dependency in residual variances. This extension is particularly appealing for the

inflation series, as the variance of this series seems to change over time substan-

tially, see e.g. Stock and Watson (2008) for similar model with a stochastic volatility

component. To extend the NKPC model with a stochastic volatility process in the

inflation shocks, we set the following state equation to the system

ht+1 = ht + η4,t+1, η4,t+1 ∼ NID(0, σ2
η4

), (14)

where σ2
ε1,t

= exp(ht/2).
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5 Bayesian inference

The reduced form of the NKPC model in (13) can be written in state-space form as

follows

Yt = HXt + BUt + εt εt ∼ N(0, Qt)

Xt = FXt−1 + Rtηt ηt ∼ N(0, I)
(15)

where

Yt =




πt

zt


 Xt =




cπ,t

cz,t

µz,t

cz,t−1

cz,t−2




Ut =




zt−1

zt−2


 εt =




εt

εt




H =




1 0 0 −α1 −α2

0 1 0 −φ1 −φ2


 B =




α1 α2

φ1 φ2


 Qt =




σ2
ε1,t ρσε1,tσε2

ρσε1,tσε2 σ2
ε2




F =




1 0 0 0 0

0 1 1 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0




Rt =




κtση1 0 0

0 ση2 0

0 0 ση3

0 0 0

0 0 0




ηt =




η1,t

η2,t

η3,t




Once the state-space form of the model is set as in (15), Bayesian inference can

be carried on by computing posterior distributions for the extended NKPC model.

These are obtained by combining the prior specifications together with the likelihood

functions. We specify prior distribution and the resulting simulation scheme in the

next section. The resulting posterior distributions are given in Appendix B.
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5.1 Prior specifications

The NKPC model and the extensions we propose aim to infer the unrestricted re-

duced form parameters, and sample the structural parameters of the NKPC struc-

tural parameters in return. As outlined in section 3, inference on the structural

parameters can be very sensitive to the prior choice on the reduced form parame-

ters. Specifically, tight priors on reduced form parameters can be quite uninformative

for the structural parameters, and vice versa.

We choose conjugate priors for the unrestricted reduced form parameters, which

lead to uninformative priors for the structural form parameters of the NKPC:

(φ1, φ2, α1, α2)
′ ∼ N ((0.6, −0.04, 0.02, −0.025)′, diag(0.1, 0.1, 0.005, 0.001)) ,

(16)

where diag(a) corresponds to the identity matrix with the diagonal elements replaced

by the vector a. The effect of these parameters on the structural NKPC parameters

and the corresponding Calvo parameter are provided in section 3.

We also motivate this prior choice using a prior predictive analysis. The prior pre-

dictive analysis is based on the priors in (16), together with an Inverse Wishart distri-

bution for the covariance parameters: Σ =
( σ

ε21,t
ρσ

ε21,t
σε2

ρσ
ε21,t

σε2 σ
ε22

)
∼ IW (( 0.35 0.1

0.1 2.5 )× 10, 10)

for t = 1, . . . , T , where IW (A, b) is the Inverse Wishart distribution with scale ma-

trix A and degrees of freedom b. We simulate 10, 000 parameter values from this

prior specification and simulate 10, 000 data points from the NKPC model for each

of these parameter values. If the average sample moments of these simulated data

sets, namely the ‘implied sample moments’, are close to the sample moments of the

observed data, the prior specification is said to be accurate for the data. Figure 7

shows these implied sample moments, together with the real data moments. The

implied sample moments from the prior specification we have are substantially close

to the true data moments. Hence the priors on the unrestricted reduced form pa-
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rameters follow the data pattern accurately. In the remaining of the applications,

priors for the NKPC model are hence based on (16).

-Insert Figure 7 about here-

For the extended NKPC models, the prior specification is more involved than

the standard NKPC model. Together with the prior on the structural parameters

in (16), we consider conjugate priors of the inverse Gamma form corresponding to

the following specifications:

σε1 | σε2 , ρ ∼ IG (νε1 , Φε1) ,

σε2 | ρ ∼ IG (νε2 , Φε2) ,

ρ ∼ (1− ρ2)−3/2,

σηi
∼ IG (νηi

, Φηi
) , for i = 1, . . . , 4.

(17)

Next, we specify the prior distribution for the structural break probability:

pκ | σ, θ ∼ beta(δ1, δ2), (18)

where beta(.) is the beta distribution with scale parameters δ1 and δ2. We choose

these parameters such that E(pκ) = 0.02, i.e. a priori we expect on average 4 struc-

tural breaks for a sample with 200 observations. We impose the informative prior

of this form since we want to capture structural breaks that are rare but large in

magnitude. Furthermore, we restrict the prior distributions for the URF model,

such that the corresponding structural parameters are all in the interval (−10, 10),

i.e. the conjugate priors in (16) are truncated in this region.

As discussed in section 2, we note that the prior parameters should be carefully

chosen if we aim to infer the structural NKPC parameters from the unrestricted

reduced form parameters of this extended model in (13). We discuss this issue in

detail in section 6, where we apply the extended NKPC model on US inflation and
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marginal cost data.

5.2 Posterior simulation

As the number and the location of the structural breaks are unknown the like-

lihood function is intractable. Instead, we set up an MCMC algorithm to sam-

ple from the full conditional posterior distributions. Specifically, we use Gibbs

sampling together with data augmentation (see Geman and Geman, 1984; Tanner

and Wong, 1987) to obtain posterior results. Let denote Y1:T = (Y1, Y2, . . . , YT )′,

X1:T = (X1, X2, . . . , XT )′, U1:T = (U1, U2, . . . , UT )′, σ2
ε1,1:T = (σ2

ε1,1, σ
2
ε1,2, . . . , σ

2
ε1,T )′

and θ = (φ1, φ2, α1, α2)
′. The resulting simulation scheme is as follows

1. Initialize the parameters by drawing κt using the prior in (18) and unobserved

states Xt, ht for t = 1, 2, . . . , T from standard normal distribution and condi-

tional on κt for t = 0, 1, . . . , T . At step (m) of the iteration

2. Sample θ(m) from p(θ|Y1:T , X1:T , U1:T , R1:T , Q1:T ).

3. Sample X
(m)
t from p(Xt|θ(m), Y1:T , h1:T , U1:T , R1:T , Q1:T ) for t = 1, 2, . . . , T .

4. Sample h
(m)
t from p(ht|X(m)

1:T , θ(m), Y1:T , X1:T , U1:T , R1:T , ρm−1, σ
2,(m−1)
ε2 , σ

2,(m−1)
η4 )

for t = 1, 2, . . . , T .

5. Sample κ
(m)
t from p(κ(m)|θ(m), Y1:T , h1:T , U1:T , R1:T , Q1:T ) for t = 1, 2, . . . , T .

6. Sample p
(m)
κ from p(p

(m)
κ |κ(m)

1:T ).

7. Sample σ
2,(m)
ηi from p(σ

2,(m)
ηi |X(m)

1:T , h
(m)
1:T , κ

(m)
1:T ) for i = 1, 2, 3, 4.

8. Sample ρ(m) from from p(ρ(m)|X(m)
1:T , h

(m)
1:T , Y1:T , X1:T , U1:T , θ(m), σ

2,(m−1)
ε2 ).

9. Sample σ
2,(m)
ε2 from from p(σ

2,(m)
ε2 |ρ(m), X

(m)
1:T , h

(m)
1:T , Y1:T , X1:T , U1:T , θ(m)).

10. Repeat (2)-(9) M times.
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Steps (3)-(6) are common to many models in the Bayesian state-space framework,

see for example Kim and Nelson (1999); Gerlach et al. (2000). Details of the full

posterior conditional distributions for these parameters are given in Appendix B.

6 Application to US data

In our empirical analysis, we use US inflation and real marginal cost series as outlined

in section 4. We first estimate the standard NKPC model by detrending the data

prior to estimation. Next, we consider the proposed model where we simultaneously

estimate the trends and levels in the series along with other model parameters. For

the former, we use two conventional detrending techniques, namely linear detrending

and the HP filter. For the proposed model, we first estimate the model in equation 13

by setting the structural break probabilities to 1. This model corresponds to a local

level specification for the inflation level and is denoted as ‘TVP NKPC’. Second, we

estimate the proposed model with occasional level shifts, where the shift probability

is not restricted to be 1. This model is denoted as ‘TVP-LS NKPC. Estimation

results of the standard NKPC model using HP filtered and linear filtered series

together with the NKPC model with endogenous detrending, as shown in (13), are

given in Table 1 and corresponding posterior distributions are displayed in Figure 8.

-Insert Table 1 about here-

-Insert Figure 8 about here-

First, from the graph and table we can observe the effect of weak identification

on the structural parameters. For the structural parameter γ, when we consider the

models using detrended data, the corresponding posterior distributions are bimodal.

This is due to the fact that the posterior distribution of φ2 has a mass in both

positive and negative regions, leading to bimodality of the posterior γ distribution.
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In addition to this bimodality, the posterior density of γ is spread in an extremely

wide region with most of the probability mass around the boundaries of the prior

distribution, −10 and 10, indicating the weak identification of this parameter. A

similar result holds for the posterior distribution of the Calvo parameter ψ since

the posterior density is concentrated around 0 and 1. Furthermore, although both

distributions are bimodal, posterior modes switch dramatically depending on how

the low frequency movements of the data are removed a priori: i.e. using the HP filter

or linear filter to remove the trend in the marginal cost series. This obscures inference

on structural parameters substantially in the sense that the economic interpretation

of the results rely heavily on the detrending method.

When we consider the models with endogenous detrending, however, the iden-

tification problem in the structural parameters disappears. The posterior density

of the inflation adjustment parameter γ is unimodal and the probability mass is

concentrated in a reasonable region, despite its wide support. For the model with

level shifts and inflation, shown in panel D of Figure 8, the posterior density is even

more concentrated, facilitating inference on this parameter. A similar result holds

for the Calvo parameter as well. The bimodality of posterior distribution of Calvo

parameter observed in the standard NKPC models with filtered data vanishes. The

precision of the parameter increases further when the level shifts in inflation series

are taken into account.

Inference on λ parameter is relatively less sensitive to the detrending method

compared to parameters γ and ψ. The difference between results for the models

with a priori detrending is not as pronounced, despite the apparent non-normality

of the distribution when HP filter is employed. Still, the precision improves when

the extended models are examined. In particular, posterior λ distribution has no

probability mass in the negative region unlike the previous models. Note that if

the other parameters are in the positive regions as the economic theory suggests, λ
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parameter should be positive as well.

Although the proposed methods mitigate the identification issues and improve

the inference for the NKPC structural form parameters, the posterior distribution

still supports parameter values outside reasonable regions, implying that the weak

identification issues are not completely resolved. One way to mitigate the effects

of the weak identification is to further restrict the prior distributions. Such restric-

tions are non-trivial unless economic theory is incorporated in forming the priors,

see Del Negro and Schorfheide (2008) for this class of priors. Indeed, we also resort

to economic theory still preserving a general prior structure. First, the theory un-

derlying NKPC assigns γ as a discount factor, which firms use to discount future

stream of profits. Therefore, we restrict γ to be in the interval [0, 1] as discount

factor cannot be negative and a value exceeding 1 implies that firms overvalue fu-

ture profits. Second, Calvo parameter, ψ, shows the probability that firms keep

the same price level for the next period price setting implying that this parameter

has to be restricted in the interval [0, 1]. We estimate the models with endogenous

detrending imposing these restrictions to alleviate the effects of weak identification

and to increase the precision of economic interpretation. Estimation results of the

standard NKPC model with endogenous detrending together with these restrictions,

as shown in (13), is given in Table 2 and corresponding posterior distributions are

displayed in Figure 9.

-Insert Table 2 about here-

-Insert Figure 9 about here-

Table 2 and Figure 9 show that, compared to the previous results in Table 1

and Figure 8, precision of the structural parameters are improved dramatically.

This implies that the restrictions we impose facilitate inference of the structural

parameters.
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Posterior mean of the γ parameter is slightly lower than the values reported in

the literature, which indicate values around 0.9 see Gaĺı et al. (2001); Nason and

Smith (2008). Notice that parameter γ is the parameter which relates inflation to

expected future inflation. This implies that higher inflation persistence is reflected

in higher values of γ. The relatively lower values of γ around 0.7 relates to our

discussion in section 2, where we show that misspecified low frequency moments in

the data may yield to estimated persistence levels which are higher than the true

value. Since both proposed models account for changes in low frequency movements

using structural time series models, the estimated persistence of inflation is lower

which corresponds to lower values of γ. When we incorporate structural breaks in

the level of inflation explicitly, as in equation (13), the decrease in the estimated γ

parameter is more pronounced. This shows the importance of incorporating level

shifts in inflation in the NKPC model.

The effect of modeling trends and levels in the series endogenously is also seen in

the posterior distribution of λ and ψ. Posterior mean of λ is slightly higher than the

values reported in the literature indicating values around 0.3 see Gaĺı et al. (2001);

Nason and Smith (2008). According to our results the sensitivity of inflation to

real marginal cost is even more pronounced with a higher precision. This sensitivity

increases further when we incorporate structural breaks explicitly, as shown in the

second column of Table 2. Our results on the price stickiness parameter ψ, with a

posterior mean of 0.82 in Table 2, are in line with the findings in the literature, with

values around 0.85 (Gaĺı et al., 2001). This implies that, on average, 82% of the

firms do not adjust their price level.

Apart from the NKPC model parameters, the time series structure of the inflation

and marginal cost series are also of interest. Since we explicitly model unobserved

levels of inflation and marginal cost series, estimates of these parameters are also

obtained along with other model parameters. We display the evolution of these
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estimated levels over time in Figure 10. Panel A and B of the figure shows the

estimates for the TVP NKPC model and the TVP-LS NKPC model, respectively.

-Insert Figure 10 about here-

The top figures in both panels in Figure 10 show the estimated inflation levels

over the period from the second quarter of 1960 to the last quarter of 2011. In

both models, there is a clear time variation in inflation levels. Estimated levels from

the TVP NKPC model indicate an increasing inflation level during 1970s and the

beginning of 1980s. This period is documented as a high inflationary period, see

Cecchetti et al. (2007); Harvey (2011), which is nicely captured by the time varying

structure of the model. When we impose occasional breaks using the TVP-LS NKPC

model the estimates of the time varying inflation level become much smoother, as

shown in the bottom panel. The inflation periods are captured more precisely under

this model structure in the sense that the model locates two distinct periods with

high and low inflation levels. The high inflationary period covers the period between

late 1960s and early 1980s. After this period, however, the inflation level is almost

anchored around the value 0.5, corresponding to the annual inflation rate around

2% (Cecchetti et al., 2007; Giannone et al., 2008). From our results, it seems that

changing the monetary policy to a nominal target anchors the long-run inflation

expectations, i.e. time-varying inflation levels in our setting.

The middle and bottom figures in both panels of Figure 10 show the estimated

level and trend of the marginal cost series. Similar to the inflation series, the level

of the marginal cost series is also changing substantially over time. While marginal

cost levels fluctuate around a constant level until the end of 1990s, this pattern

seems to change after 2000. After this time marginal cost level tends to decrease.

This is also seen in the bottom figures in panels A and B of Figure 10. The slope of

the marginal cost trend in these figures increase in absolute value over time with a

negative sign causing a downward slope in the marginal cost level.
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(Results of the Extended NKPC model with stochastic volatility to be added)

(Results of the forecasting exercise to be added)

7 Conclusion

The NKPC model constitutes an integral part of macroeconomic models used for

policy analysis. These models are mostly estimated after demeaning and/or detrend-

ing the series. This mechanical removal of the low frequency movements in the data,

however, may lead to misspecification plaguing inference and causing issues such as

weak identification of the model parameters. Potential structural breaks and level

shifts in the observed series require more complex models, which can handle these

time variation together with the standard NKPC parameters. We propose such a

model where we infer the low and high frequency movements in the inflation and

marginal cost series jointly. This is achieved by modeling the levels and trends of the

series explicitly in the NKPC model and estimating these along with other model

parameters simultaneously.

The proposed model captures time variation in the low frequency moments of

both inflation and marginal cost data. Incorporating such time variation in the model

improves the precision of estimated model parameters and mitigate the issue of weak

identification in the standard NKPC model. Furthermore, modeling level changes

explicitly decreases estimated persistence in inflation substantially compared to those

obtained by estimating the NKPC model using a priori demeaned and detrended

series. In terms of the low frequency moments in the series, estimated inflation

levels identify two distinct periods with high and low inflation. This corresponds

to the high inflationary period during the 1970s and the beginning of 1980s. The

period starting with 1980s is characterized by low inflation levels corresponding to

an annual inflation level around 2%. Similarly, estimated marginal cost levels are

subject to fluctuations with a clear downward trend after 2000.
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The framework proposed in this paper can be extended in a number of ways.

In terms of the econometric methodology, inference can be based on the structural

parameters directly. Such a methodology leads to highly irregular and intractable

posterior distributions, requiring complex simulation methods. In terms of the eco-

nomic content, several extensions of the NKPC model, such as the hybrid Phillips

curve, can be incorporated in our framework.
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Appendix A Reduced Form and Instrumental Vari-

ables representations of the NKPC

model

The structural form (SF) representation for the NKPC model is:

πt = λzt + γE(πt+1) + ε1,t, (A.1)

zt = φ1zt−1 + φ2zt−2 + ε2,t, (A.2)

where (ε1,t, ε2,t)
′ ∼ NID

(
0,

(
σ2

ε1
ρ

ρ σ2
ε2

))
.

Note that the future inflation expectation in (A.1) is unobserved, hence is ob-

tained by iterating (A.1):

E(πt+1) = λE(zt+1) + γE(πt+2), (A.3)

where E(.) denotes the expectation given information at time t.

Inserting (A.2) and (A.3) in (A.1) yields:

πt = λzt + λ

∞∑

k=1

γkE(zt+k) + ε1,t, (A.4)

= λ

∞∑

k=0

γkE(zt+k) + ε1,t, (A.5)

where we use the equality zt = E(zt).

Inserting (A.2) and (A.3) in (A.5), and rearranging the results, we have:

πt =φ1λ

∞∑

k=0

γkE(zt+k−1) + φ2λ

∞∑

k=0

γkE(zt+k−2) + ε1,t, (A.6)

=(φ1 + φ2γ)λzt−1 + φ2λzt−2 + (φ1 + φ2γ)λγ

∞∑

k=0

γkE(zt+k) + ε1,t, (A.7)
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We replace the expectation term in (A.7) by (A.5):

λ

∞∑

k=0

γkE(zt+k) =πt − ε1,t, (A.8)

The restricted (and unrestricted) reduced form for the NKPC model is hence:

πt =
(φ1 + φ2γ)λ

1− (φ1 + φ2γ)γ︸ ︷︷ ︸
zt−1+

φ2λ

1− (φ1 + φ2γ)γ︸ ︷︷ ︸
zt−2 + ε1,t

α1 α2

(A.9)

zt = φ1zt−1 + φ2zt−2 + ε2,t, (A.10)

where (ε1,t, ε2,t)
′ ∼ NID

(
0,

(
σ2

ε1
ρ

ρ σ2
ε2

))
.

It is also straightforward to show that the NKPC model relates to an exactly

identified Instrumental Variables (IV) model. Inserting (A.3) in (A.4) we get:

πt =(1 + (φ1 + φ2γ)γ)λzt + φ2λγzt−1 + (φ1 + φ2γ)λγ2

∞∑

k=0

γkE(zt+k+1) + ε1,t,

(A.11)

We replace the expectation term in (A.11) by (A.4):

λγ

∞∑

k=0

γkE(zt+k+1) =πt − λzt − ε1,t, (A.12)

Hence the NKPC model is identical to an exactly identified IV model:

πt =
λ

1− (φ1 + φ2γ)γ︸ ︷︷ ︸
zt+

φ2λγ

1− (φ1 + φ2γ)γ︸ ︷︷ ︸
zt−1 + ε1,t.

αiv
1 αiv

2

(A.13)

zt = φ1zt−1 + φ2zt−2 + ε2,t, (A.14)

where parameters αiv
1 , αiv

2 are IV model’s the structural form parameters, and infer-
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ence on these parameters is not possible under flat priors, due to exact identification

(Zellner et al., 1988).
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Appendix B Bayesian inference of the extended

NKPC model

In this appendix, we derive the posterior distributions that we use in the sampling

scheme described in Section 5.2. Let us recall the system in the state-space form

Yt = HXt + BUt + εt εt ∼ N(0, Qt)

Xt = FXt−1 + Rtηt ηt ∼ N(0, I)
(B.15)

B.1 Sampling of θ

Conditional on the states cµ,t, cz,t and ht for t = 0, 2, . . . , T , redefining the variables

such that

Zt = (yt − cµ,t, zt − cz,t) for t = 2, · · · , T

Dt = (zt−1 − cz,t−1, zt−2 − cz,t−2) for t = 2, · · · , T,
(B.16)

the measurement equation in (B.15) can be rewritten as

Zt = BDt + εt and εt ∼ N(0, Qt). (B.17)

In compact form the model becomes

Z = BD + U, (B.18)

where Z = (z1, z2, · · · , zT ), D = (D1, D2, · · · , DT ) and U = (ε1, ε2, · · · , εT ). Using

the fact that vec(AB) = (B′⊗I)vec(A), where
⊗

stands for the Kronecker product,

the following univariate model can be written

vec(Z) = (D′ ⊗ I4) ∗ θ + vec(U)

z = (D′ ⊗ I4) ∗ θ + u

where Cov(u) = Ω = diag(Q1, Q2, · · · , QT ),

(B.19)

30



Using the multivariate normal prior N(µ
θ
, Σθ) in (16) the posterior distribution is

Gaussian, θ|z ∼ N(µθ, Σθ), with the following parameters

Σθ =
(
Σ−1

θ + (D′ ⊗ I4)
′Ω−1(D′ ⊗ I4)

)−1

µθ = Σθ

(
Σ−1

θ µ
θ
+ (D′ ⊗ I4)

′Ω−1(D′ ⊗ I4)θOLS

)

where θOLS = ((D′ ⊗ I4)
′Ω−1(D′ ⊗ I4))

−1(D′ ⊗ I4)
′Ω−1z.

(B.20)

B.2 Sampling of states, Xt

Conditional on the remaining model parameters, drawing X0:T can be implemented

using standard Bayesian inference. This constitutes running the Kalman filter first

and running a simulation smoother using the filtered values for drawing smoothed

states as in Carter and Kohn (1994) and Frühwirth-Schnatter (1994). In the first

step, start the recursion for t = 1, . . . , T

Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ + R′

tRt

ηt|t−1 = yt −HXt|t−1 −BUt

ζt|t−1 = HPt|t−1H
′ + Qt

Kt = Pt|t−1H
′ζ ′t|t−1

Xt|t = Xt|t−1 + Ktηt|t−1

Pt|t = Pt|t−1 −KtH
′ζ ′t|t−1,

(B.21)

and store Xt|t and Pt|t. The last filtered state fT |T and its covariance matrix PT |T

correspond to the smoothed estimates of the mean and the covariance matrix of

the factors for period T . Having stored all the filtered values, simulation smoother

involves the following backward recursions for t = T − 1, . . . , 1
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η∗t+1|t = Xt+1 − FXt|t

ζ∗t+1|t = FPt|tF ′ + R′
t+1Rt+1

Xt|t,Xt+1 = Xt|t + Pt|tF ′ζ∗−1
t+1|tη

∗
t+1|t

Pt|t,Pt+1 = Pt|t − Pt|tF ′ζ∗−1
t+1|tFPt|t.

(B.22)

Intuitively, the simulation smoother updates the states using the same principle as in

the Kalman filter, where at each step filtered values are updated using the smoothed

values obtained from backward recursion. For updating the initial states, using the

state equation X0|t,X1 = F−1(f1) and P0|t,P1 = F−1(P1 + R′
1R1)F

′−1 can be written

for the first observation. Given the mean Xt|t,Xt+1 and the covariance matrix Pt|t,Pt+1 ,

the states can be sampled from Xt ∼ N(Xt|t,Xt+1 , Pt|t,Pt+1) for t = 0, ..., T .

B.3 Sampling of inflation volatilities, ht

Conditional on the remaining model parameters, drawing h0:T can be implemented

using standard Bayesian inference as in the case of Xt. One important difference,

however, stems from the logarithmic transformation of the variance in (14). As

the transformation concerns the error structure, the square of which follows a χ2

distribution, the system is not Gaussian but logarithm of χ2 distribution. Noticing

the properties of logarithm of χ2 distribution Kim et al. (1998) and Omori et al.

(2007) approximate this distribution using mixture of Gaussian distributions. Hence,

conditional on these mixture components the system remains Gaussian allowing for

standard inference as in section B.2. We do not explain the procedure in detail but

refer to Omori et al. (2007) for details.

B.4 Sampling of structural break parameters, κt

Sampling of structural break parameters, κt, can be implemented by computing the

posterior for the binary outcomes, i.e. the posterior values in case of structural
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break in period t and the posterior value of the case of no structural breaks. How-

ever, evaluating this posterior requires one sweep, which is of order O(T ). As this

evaluation should be implemented for each period t the resulting procedure would

be of order O(T 2). When the number of sample size is large this would result in

an infeasible scheme. One way to by pass this problem and to obtain an algorithm

of order O(T ) is to condition on the estimated states, Xt but this may cause the

chain to break down completely with the increasing correlation between the struc-

tural break parameters and the states. Fortunately, Gerlach et al. (2000) propose

an efficient algorithm for sampling structural break parameters, κt, conditional on

the observed data, which is still of order O(T ). We also implement this algorithm

for estimation of the structural breaks and refer to Gerlach et al. (2000); Giordani

and Kohn (2008) for details.

B.5 Sampling of structural break probability, pκ

Conditional on κ1:T , the remaining model parameters do not provide additional

information for the sampling of the structural break probability. Therefore, the

combined with the prior distribution in (18) the resulting posterior distribution

becomes a beta distribution with the following parameters, beta(δ1 + k, δ2 + T − k),

where k is the number of structural breaks with κt = 1 and T is the sample size.

B.6 Sampling of state error variances, σ2
η

Using standard results from a linear regression model with a conjugate prior for the

variance in (17), it follows that the conditional posterior distribution of σ2
ηi

, with

i = 1, 2, 3, 4 is an inverted χ2 distribution with scale parameter Φηi
+

∑T
t=1 η2

i,t and

with T + νηi
degrees of freedom for i = 2, 3, 4. For i = 1 the parameters of the

inverted χ2 distribution becomes Φη1 +
∑T

t=1 κtη
2
1,t and k + νη1 .
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B.7 Sampling of marginal cost volatility and correlation

To sample the variance of marginal cost and correlation we decompose the multi-

variate normal distribution of εt into the conditional distribution of ε2,t given ε1,t

and the marginal distribution of ε1,t, as in Çakmaklı et al. (2011). This results in

T∏
t=1

f(εt) =
T∏

t=1

1

σε1,t

φ

(
ε1,t

σε1,t

)
1

σε2,t

√
(1− ρ2)

φ

(
ε2,t − ρε1,t

σε2,t(1− ρ2)

)
, (B.23)

Hence, together with prior for the variance in (17), variance of the marginal cost

series can be sampled using (B.23) by setting up a Metropolis-Hasting step (Metropo-

lis et al., 1953; Hastings, 1970) using an inverted χ2 candidate density with scale

parameter
∑T

t=1 ε2
2,t and with T degrees of freedom.

To sample ρ from its conditional posterior distribution we can again use (B.23).

Conditional on the remaining parameters the posterior becomes

(1− ρ2)−
3
2

T∏
t=1

(
1√

(1− ρ2)
φ

(
ε2,t − ρε1,t

σε2,t(1− ρ2)

))
. (B.24)

We can easily implement the griddy Gibbs sampler approach of Ritter and Tanner

(1992). Given that ρ ∈ (−1, 1) we can setup a grid in this interval based on the

precision we desire about the value of ρ.
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Gaĺı, J., Gertler, M., 1999. Inflation dynamics: A structural econometric analysis.

Journal of monetary Economics 44 (2), 195–222.
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Tables and Figures

Table 1: Estimation results of NKPC models

HP NKPC LT NKPC TVP NKPC TVP-LS NKPC

γ -4.226 (7.335) 6.973 (4.179) 2.817 (3.484) 2.588 (3.105)
λ 0.035 (0.047) 0.045 (0.037) 0.125 (0.003) 0.124 (0.004)
ψ 0.778 (0.377) 0.183 (0.211) 0.432 (0.043) 0.459 (0.045)

Note: The table presents estimation results of structural parameters from differ-
ent types of NKPC models. The models are applied to quarterly inflation and
real marginal cost series for the sample period over first quarter 1960 and fourth
quarter 2011. ‘HP NKPC’ is the model where the NKPC model is estimated using
detrended series using HP filter. ‘LT NKPC’ is the model where the NKPC model
is estimated using detrended series using linear filter. ‘TVP NKPC’ is the model
where the NKPC model is estimated using original series using the model in (13)
where the level of the inflation is modeled using local level model by setting the
break probabilities to 1. ‘TVP-LS NKPC’ is the model where the NKPC model
is estimated using original series using the model in (13) where the level of the
inflation is modeled using local level model together with level shifts as in (13). γ
is the coefficient of the next period inflation expectation and λ is the coefficient
of real marginal cost. ψ is the Calvo parameter determining the degree of price
stickiness. Posterior results are based on 20,000 simulations of which the first
10,000 are discarded as burn-in sample. The convergence of the MCMC sampler
is checked using statistical and visual inspection and in all model specifications
convergence is assured.
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Table 2: Estimation results of NKPC models with endogenous detrending using
further restrictions

TVP NKPC TVP-LS NKPC

γ 0.716 (0.049) 0.709 (0.051)
λ 0.088 (0.000) 0.090 (0.000)
ψ 0.817 (0.003) 0.816 (0.003)

Note: The table presents estimation results of structural parameters from
different types of NKPC models. The models are applied to quarterly inflation
and real marginal cost series for the sample period over first quarter 1960 and
fourth quarter 2011. ‘TVP NKPC’ is the model where the NKPC model is
estimated using original series using the model in (13) where the level of the
inflation is modeled using local level model by setting the break probabilities
to 1. ‘TVP-LS NKPC’ is the model where the NKPC model is estimated
using original series using the model in (13) where the level of the inflation is
modeled using local level model together with level shifts as in (13). γ is the
coefficient of the next period inflation expectation and λ is the coefficient of
real marginal cost. ψ is the Calvo parameter determining the degree of price
stickiness. Posterior results are based on 20,000 simulations of which the
first 10,000 are discarded as burn-in sample. The convergence of the MCMC
sampler is checked using statistical and visual inspection and in all model
specifications convergence is assured.
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Figure 1: Overestimation illustration for a misspecified AR(2) model with structural
breaks in the mean in the long-run mean
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Note: The figure presents overestimation probability for simulated data with different persistence
levels and different (expected) numbers of structural breaks in the mean. The data are simulated
from the AR(2) model with structural breaks in (1). We report average and 95% intervals for
estimated posterior mean of φ1 + φ2 based on 300 simulation replications for each parameter
setting. The rest of the model parameters are set as σ2

1 = 4, σ2
2 = 1, c0 = 1, ν0 = ν−1 = 2.
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Figure 2: Overestimation illustration for a misspecified AR(1) model with structural
breaks in the long-run mean
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Note: The figure presents overestimation probability for simulated data with different persistence
levels and different (expected) numbers of structural breaks in the mean. The data are simulated
from the AR(1) model with structural breaks in (1) with φ2 = 0. We report average and 95%
intervals for estimated posterior mean of φ1 based on 300 simulation replications for each parameter
setting. The rest of the model parameters are set as σ2

1 = 4, σ2
2 = 1, c0 = 1, ν0 = ν−1 = 2.
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Figure 3: Forecast performance illustration for a misspecified AR(2) model with
structural breaks in the long-run mean
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Note: The figure presents overestimation probability for simulated data with different persistence
levels and different (expected) numbers of structural breaks in the mean. The data are simulated
from the AR(2) model with structural breaks in (1). The rest of the model parameters are set as
φ1 = 0.1, σ2

1 = 4, σ2
2 = 1, c0 = 1, ν0 = ν−1 = 2. The results are based on 300 simulation replications

for each parameter setting. The left and right panels show the overestimation probability in the
forecast sample, for observations with positive and negative shocks, respectively.
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Figure 4: Illustration of the nonlinear parameter transformation from structural
form to reduced form parameters (top panel) and reduced form to structural form
parameters (bottom panel)
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Note: The top panel presents the implied unrestricted reduced form parameters in (6) given struc-
tural form parameters in (5). The top panel presents implied structural form parameters in (5)
given unrestricted reduced form parameters in (6). Parameter transformations are obtained using
the RRF restrictions in (7).
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Figure 5: Illustration of implied priors on structural form parameters)
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Note: The figure presents implied structural form parameters given unrestricted reduced form
priors in (16). γ is the coefficient of the next period inflation expectation and λ is the coefficient
of real marginal cost. Calvo parameter, ψ, determines the degree of price stickiness.
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Figure 6: Inflation and labor share series over first quarter 1960 and fourth quarter
2011
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Figure 7: Prior predictive analysis: Implied and true sample moments from the
priors on NKPC URF parameters
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Note: The figure presents implied data moments given the prior specifications. ‘E(inf)’ and ‘E(mc)’
denote the implied expectations of inflation and marginal cost series. ‘var(inf)’ and ‘var(mc)’ denote
the implied variances of the inflation marginal cost series. The vertical lines in all figures are the
true data moments. The prior predictive analysis is based on the URF priors in (16) and an Inverse

Wishart prior for the covariance parameters: Σ =
( σ

ε21,t
ρσ

ε21,t
σε2

ρσ
ε21,t

σε2 σ
ε22

)
∼ IW (( 0.35 0.1

0.1 2.5 )× 10, 10) for
t = 1, . . . , T . The implied sample moments based on 10, 000 simulations from this prior distribution,
and 10, 000 data simulations from the NKPC model and each prior simulation.
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Figure 8: Posterior distributions of structural parameters estimated using NKPC
models.
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Panel B: LT NKPC
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Panel C: TVP NKPC
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Panel D: TVP-LS NKPC
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Note: The figure presents posterior distribution of structural parameters from different types of NKPC models. The
models are applied to quarterly inflation and real marginal cost series for the sample period over first quarter 1960
and fourth quarter 2011. ‘HP NKPC’ is the model where the NKPC model is estimated using detrended series using
HP filter. ‘LT NKPC’ is the model where the NKPC model is estimated using detrended series using linear filter.
‘TVP NKPC’ is the model where the NKPC model is estimated using original series using the model in (13) where
the level of the inflation is modeled using local level model by setting the break probabilities to 1. ‘TVP-LS NKPC’
is the model where the NKPC model is estimated using original series using the model in (13) where the level of
the inflation is modeled using local level model together with level shifts as in (13). γ is the coefficient of the next
period inflation expectation and λ is the coefficient of real marginal cost. ψ is the Calvo parameter determining the
degree of price stickiness. Posterior results are based on 20,000 simulations of which the first 10,000 are discarded
as burn-in sample. The convergence of the MCMC sampler is checked using statistical and visual inspection and in
all model specifications convergence is assured.
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Figure 9: Posterior distributions of structural parameters estimated using NKPC
models. γ λ ψ

Panel A: TVP NKPC
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Panel B: TVP-LS NKPC
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Note: The figure presents posterior distribution of structural parameters from different types of NKPC models. The
models are applied to quarterly inflation and real marginal cost series for the sample period over first quarter 1960
and fourth quarter 2011. ‘TVP NKPC’ is the model where the NKPC model is estimated using original series using
the model in (13) where the level of the inflation is modeled using local level model by setting the break probabilities
to 1. ‘TVP-LS NKPC’ is the model where the NKPC model is estimated using original series using the model in
(13) where the level of the inflation is modeled using local level model together with level shifts as in (13). γ is
the coefficient of the next period inflation expectation and λ is the coefficient of real marginal cost. ψ is the Calvo
parameter determining the degree of price stickiness. Posterior results are based on 20,000 simulations of which the
first 10,000 are discarded as burn-in sample. The convergence of the MCMC sampler is checked using statistical and
visual inspection and in all model specifications convergence is assured.
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Figure 10: Posterior means of time varying parameters in NKPC models.
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Note: The figure presents posterior means of time varying parameters (states) in NKPC models.
The top figures in both panels are the evolution of the inflation level over time. The middle figures
are the evolution of the marginal cost level over time. The bottom figures show the time-varying
slope of the linear trend in the marginal cost series. See Table 1 for abbreviations.
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