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1 Introduction

The structure of Dynamic Stochastic General Equilibrium (DSGE) models implies that

the optimal decision rules typically have a singular format. This occurs because the

number of endogenous variables generally exceeds the number of exogenous shocks. A

stereotypical example is a basic RBC structure: since the model generates implications

for capital, consumption, output, hours, real wages and the real interest rate, and only

one shock drives the economy, both the short run dynamics and the long run properties

of the endogenous variables are driven by a one dimensional exogenous process. Thus,

the covariance matrix of the data produced by the model is singular and likelihood

based estimation methods (both of classical or Bayesian inclinations) inapplicable.

The singularity problem can be mitigated if some of the endogenous variables are

non-observables; for example, we rarely have data on the capital stock and, occasion-

ally, data on hours is also unavailable. Non-observability of some endogenous variables

reduces the extent of singularity problem since the number of variables potentially us-

able to construct the likelihood function is smaller. In other cases, the data may be

of poor quality and one may be justi�ed in adding measurement errors to some equa-

tions. The introduction of measurement error helps to complete the probability space

of the model thus lessening the singularity problem - the number of shocks driving a

given number of observable variables is now larger. In general, however, neither non-

observability of some endogenous variables nor the addition of justi�ed measurement

error is su¢ cient to completely eliminate the singularity problem. Thus, having more

endogenous variables than shocks is an inherent feature of DSGE setups. While singu-

larity is not troublesome for certain limited information estimation approaches, such

as impulse response matching, it creates important headaches to researchers interested

in estimating the structural parameters by full information likelihood methods.

Two approaches are generally followed in this situation. The �rst involves enriching

the model with additional shocks so as to have as many exogenous shocks as endogenous

variables (see e.g. Smets and Wouters, 2007). In many cases, however, shocks with

dubious structural interpretation are used with the only purpose to avoid singularity

and this complicates inference when they turn out to be important, say, to explain

output or in�ation �uctuations. The second is to transform the decision rules, solving

out certain variables from the optimality conditions, until the number of endogenous
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variables is the same as the number of shocks. This approach is also problematic since

the convenient state space structure of the decision rules is lost through this dimen-

sionality reduction, the likelihood becomes an even more complicated function of the

structural parameters and can not necessarily be computed with standard Kalman

�lter recursions. The alternative approach of tossing out certain equations character-

izing the decision rules is also unsatisfactory since from a system with k endogenous

variables and m < k shocks, one can form many non-singular systems with only m

endogenous variables and, apart from computational convenience, solid principles to

choose the combination of variables used in estimation are lacking.

Guerron Quintana (2010) has estimated a standard singular DSGE model, adding

enough measurement errors to avoid singularity and using di¤erent observable vari-

ables, and showed that inference about important structural parameters may be whim-

sical. To decide which combination of variables should be used in estimation he suggests

to use economic hindsight and an out-of-sample MSE criteria. Economic hindsight may

be dangerous, since prior falsi�cation becomes impossible. On the other hand, a MSE

criteria is not ideal as variable selection procedure since biases (which we would like

to avoid in estimation) and variance reduction (which are a much less of a problem in

DSGE estimation) are equally weighted.

This paper proposes two complementary and perhaps more relevant criteria to

choose the vector of variables to be used in the estimation of the parameters of a singular

DSGE model. Since Canova and Sala (2009) have shown that DSGE models feature

important identi�cation problems that are typically exacerbated when a subset of the

variables or of the shocks is used in estimation, our �rst criteria selects the variables

used in likelihood based estimation keeping parameter identi�cation in mind. We use

two measures to evaluate the local identi�cation properties of di¤erent combinations

of observable variables. First, following Komunjer and Ng (2011), we examine the

rank of the derivative of spectral density matrix of the vector of observables with

respect to the parameters. These authors have shown that the stationary solution of

a DSGE model has a ARMA representation and therefore a spectral density. Thus,

the matrix of derivatives of the spectral density matrix with respect to the structural

parameters can be linked to the matrix of derivatives of the ABCD representation of the

state space. By examining the ABCD representations corresponding to di¤erent sets

of observables one can measure local "identi�cation distance" from some benchmark.
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Given the ideal rank needed to achieve full identi�cation of a parameter vector, the

selected vector of minimizes the discrepancy between the ideal and the actual rank of

the spectral matrix. We show how such an approach can be tailored to the question of

selecting the restriction needed to make structural parameters identi�ed and, given that

a subset of parameters is typically calibrated, what additional restrictions e¢ ciently

allow identi�cation of the remaining structural parameters.

The Komunjer and Ng approach is silent about the more subtle issues of weak and

partial identi�cation. To deal with these problems, we complement the rank analysis

evaluating the di¤erence in local curvature of the convoluted likelihood function of

the singular system and of a number of non-singular alternatives. The combination of

variables we select is the one making the curvature of the convoluted likelihood in the

dimensions of interest as close as possible to the curvature of the convoluted likelihood

of the singular system.

The second criteria employs the informational content of the densities of the singular

and the non-singular system and selects the variables to be used in estimation to make

the information loss minimal. We follow recent advances by Bierens (2007) to construct

the density of singular and non-singular systems and compare the informational content

of di¤erent vectors of observables, taking as given the structural parameters. Since the

measure of informational distance we construct depends on nuisance parameters (the

variance of the structural shocks and of the convolution errors), we take as our criterion

function to be optimized the average ratio of densities, where averages are constructed

integrating out nuisance parameters.

We apply the methods to select the vector of variables in a singular version of

the model of Smets and Wouters (2007) (henceforth SW model). We retain the full

structure of nominal and real frictions but we allow only four structural shocks - a

technology, an investment speci�c, a monetary, a �scal shock - to drive the economy.

Since the model features seven observable endogenous variables, the framework can be

used to study the identi�cation and information properties of various combination of

the endogenous variables.

Although monetary policy plays an important role in the economy, parameter iden-

ti�cation and variable informativeness are optimized using only real variables in es-

timation and including output, consumption and investment seems always the best.

These variables help to identify the intertemporal and the intratemporal links present
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in the economy and thus are useful to correctly measure income and substitution e¤ects

in the model. Interestingly, using interest rate and in�ation jointly in the estimation

makes identi�cation worse and the loss of information due to variable reduction larger.

Moreover, when one takes the curvature of the likelihood in the dimensions of interest

into consideration, it seems preferable to include the nominal interest rate, rather than

the in�ation rate, among the vector of observables.

We show that the ordering of various combinations is broadly maintained when

parameter restrictions are added to the unrestricted model. We also show that, at

least in terms of likelihood curvature, there are important trade-o¤ when deciding to

use hours or labor productivity among the observables. Finally, we demonstrate that

changes in the setup of the experiment do not alter the main important conclusions of

the exercise.

The paper is organized as follows. The next section describes the methodologies

used to select the combinations of variables. Section 3 applies the approaches to a

singular version of the Smets and Wouter (2007) model. Section 4 analyzes robustness

issues. Section 5 concludes providing some practical advice for applied researchers.

2 The selection procedures

The log-linearized decision rules of a DSGE model have the state space format

xt = A(�)xt�1 +B(�)et (1)

yt = C(�)xt�1 +D(�)et (2)

et � N(0;�(�))

where xt is nx�1 of endogenous states, yt is ny�1 vector of endogenous controls, et is
ne � 1 vector of exogenous shocks and, typically ne < ny. Here A(�); B(�); C(�); D(�)

are matrices function of the structural parameters �. Assuming left invertibility, one

can solve out the endogenous states and obtain a MA representation for the vector of

observable controls:

yt =
�
C(�) (I �A(�)L)�1B(�)L+D(�)

�
et (3)

where L is the lag operator. Thus, the time series representation of the log-linearized

solution for yt is a singular MA(1) since D(�)ete0tD(�)0 has rank ne < ny.
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From (3) one can generate a number of non-singular structures, using a subset

j of endogenous controls yjt � yt; and making sure the dimension of the vector of

observable variables and of the shocks coincides. Given (3), we can construct J =�
ny
ne

�
=

ny !
(ny�ne)!ne! non-singular models, di¤ering in at least one observable variable.

Let the MA representation for the non-singular model j = 1; : : : ; J be

yjt =
�
Cj(�) (I �A(�)L)�1B(�)L+Dj(�)

�
et

where Cj(�) and Dj(�) are obtained selecting the rows corresponding to yjt. The non-

singular model j has also a MA(1) representation, but now Dj(�)ete
0
tDj(�)

0 has rank

ne = ny.

To study the identi�cation and informational content of various yjt vectors, we

examine the properties of the spectral density of yjt and the ratio of convoluted

likelihoods of yjt and of yt.

Komunjer and Ng (2011) derived necessary and su¢ cient conditions that guarantees

local identi�cation of the parameters of a log-linearized solution of a DSGE model.

Their approach requires computing of the rank of the matrix of the derivatives of A(�),

B(�), Cj(�), Dj(�) and �(�) with respect to the parameters and the derivatives of

their linear transformations, T and U , that deliver the same spectral density. Under

regularity conditions, they show that two systems are observationally equivalent if there

exist two triples (�0; Inx ; Ine) and (�1; T; U) such that A(�1) = TA(�0)T
�1, B(�1) =

TB(�0)U , Cj(�1) = Cj(�0)T
�1, Dj(�1) = Dj(�0)U , �(�1) = U�1�(�0)U�1; with T

and U being full rank matrices 1

For each combination of observables yjt , we de�ne the mapping

�j(�; T; U) =
�
vec(TA(�)T�1); vec(TB(�)U); vec(Cj(�)T

�1); vec(Dj(�)U); vech(U
�1�(�)U�1)

�0
and study the rank of the matrix of the derivatives of �j(�; T; U) with respect to �, T

and U evaluated at (�0; Inx ; Ine), i.e. for j = 1; :::; J we compute the rank of

�j(�0) � �j(�0; Inx ; Ine) =
�
@�j(�0; Inx ; Ine)

@�
;
@�j(�0; Inx ; Ine)

@T
;
@�j(�0; Inx ; Ine)

@U

�
� (�j;�(�0); �j;T (�0); �j;U (�0))

1We use slightly di¤erent de�nitions than Komunjer and Ng (2011). They de�ne a system singular if the
number of observables is larger or equal to the number of shocks, i.e. ne � ny. Here a system is singular if
ne < ny and non-singular if ne = ny.
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�j;�(�0) de�nes the local mapping between � and the tuple �(�) = [A(�); B(�); Cj(�); Dj(�);�(�)].

When rank(�j;�(�0)) = n�, the mapping is locally invertible. The second block con-

tains the partial derivatives with respect to T : when rank(�j;T (�0)) = n2x, the only

permissible transformation is the identity. The last block corresponds to the derivatives

with respect to U : when rank(�j;U (�0)) = n2e the spectral factorization uniquely deter-

mines the duple (Hj(L; �);�(�)), whereHj(L; �) =
�
Dj(�) + (I �A(�)L)�1Cj(�)L�1

�
.

A necessary and su¢ cient condition for local identi�cation at �0 is that

rank(�j(�0)) = n� + n
2
x + n

2
e (4)

Thus, given a �0, we compute the rank of �j(�0) for each yjt and compare it with

n�+n
2
x+n

2
e; the theoretical rank needed to achieve identi�cation of all the parameters.

The set of variables which minimizes the discrepancy (n� + n2x + n
2
e � rank(�j(�0))) is

the one selected for full information estimation of the parameters.

The rank comparison we perform will hopefully single out combinations of endoge-

nous variables with �good�and �bad� identi�cation content. However, the analysis

will not be able to rank combination of observables keeping in mind weak and partial

identi�cation problems, which often plague likelihood based estimation of DSGE mod-

els (see e.g. Ahn and Schorfheide, 2007 or Canova and Sala, 2009). For this reason we

complement the analysis by comparing measures of the elasticity of the convoluted like-

lihood function with respect to the parameters in the singular and in the non-singular

systems - see next paragraph on how to construct the convoluted likelihood. We seek

for the combination of variables which makes the curvature of the convoluted likelihood

around a pivot point in the singular and non-singular systems "close". We considered

two di¤erent distance criteria: in the �rst, absolute elasticity deviations are summed

over the parameters of interest. In the second, a weighted sum of the square deviations

is considered, where the weights are function of the sharpness of the likelihood of the

singular system at �0.

The other statistic we employ to select the variables to be used in estimation mea-

sures the relative informational content of the original singular system and of a number

of non-singular counterparts. To measure the informational content of di¤erent non-

singular systems, we follow Bierens (2007) and convolute yjt and of yt with a ny � 1
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random i.i.d. vector. Thus the vector of observables is now

Zt = yt + ut (5)

Wjt = Syjt + ut (6)

where ut � N(0;�u) and S is a matrix of zeros, except for some elements on the main

diagonal, which are equal to 1. S insures that Zt and Wjt have the dimension ny. For

each non-singular structure j, we construct

pjt (�; e
t�1; ut) =

L(Wjtj�; et�1; ut)
L(Ztj�; et�1; ut)

(7)

where L(mj�; y1t) is the likelihood of m=Zt;Wjt, given the parameters �, the his-

tory of the structural shock up to t-1, et�1; and the convolution error, ut. (7) can

be easily computed, if we assume that et are normally distributed, since the �rst

and second conditional moments of Zt and Wjt are �w;t�1 � Et�1Wt = SCj(�)(I �
A(�) L)�1B(�)et�1, �wj � Vt�1Wt = SDj(�)�(�)Dj(�)

0S0 + �u, �z;t�1 � Et�1Zt =

C(�)(I �A(�) L)�1B(�)et�1 and �z = Vt�1Zt = D(�)�(�)D(�)0 +�u.

Bierens imposes under mild conditions that make the matrix ��1wj � �
�1
z negative

de�nite for each j, and pjt well de�ned and �nite, for the worst possible selection of yt.

Since these conditions do not necessarily hold our framework, we integrate out of (7),

both the et�1 and the ut; and choose the combination of observables j that minimize

the average information ratio pjt (�), i.e.

inf
j
pjt (�) =

Z
et�1

Z
ut

pjt (�; e
t�1
t ; ut)de

t�1dut (8)

Given �, pjt (�) identi�es the combination of variables that produces minimum amount

of information loss when moving from a singular to a non-singular structure, once we

eliminate the in�uence due to the history of structural shocks and the convolution

errors. Thus, among all the possible combinations of endogenous variables, we select

the vector in which the loss of information caused by variable reduction is minimal.

3 An application

In this section we apply our procedures to the singular version of the benchmark DSGE

model of Smets and Wouters (2007). This model is selected for the exercise we run
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because its widespread use in academics, central banks and policy institutions, and

because it is frequently adopted to study cyclical dynamics of developed economies

and their sources of variations.

We retain all the nominal and real frictions originally present in the model, but

we make a number of simpli�cations to the structure which have no consequences

on the conclusions we reach by reduce the computational burden of the experiment.

First, we assume that the exogenous shocks are stationary. Since we are working with

simulated data, such a simpli�cation involves no loss of generality. The sensitivity of

our conclusions to the inclusion of trends in the data is discussed in section 4. Second,

we assume that all the shocks have an autoregressive representation of order one. Third,

we compute the solution of the model around the steady state (rather than the �exible

price equilibrium).

The model typically features a large number of shocks and this makes the num-

ber of observable variables and the number of exogenous disturbances equal. Several

researchers (for example, Chari, Kehoe and McGrattan (2009) or Sala, Soderstrom,

Trigari (2010)) have noticed than some of them have dubious economic interpretations

- rather than being structural they are likely to capture potentially misspeci�ed aspects

of the model. Here, relative to the SW model, we turn o¤ the price markup, the wage

markup and the preference shock which are the disturbances more likely to capture

these misspeci�cations and we consider a model driven by technology, investment spe-

ci�c, government and monetary policy shocks, i.e. (at; it; gt; �mt ). The basic vector of

observable variables coincides with the SW choice of measurable quantities, that is, we

have output, consumption, investment, wages, in�ation, interest rate and hours worked

(yt; ct; it; wt; �; rt; ht).

The log-linearized equations of the model are summarized in table 1 (To be added).

To implement the procedures we need to select the � vector. Table 1 presents our

choices: basically, these are the posterior mean of the estimates reported by SW. It is

important to stress that any selection would do it and the statistics of interest can be

computed, for example, conditioning on prior mean values. Since there are parameters

which are auxiliary, e.g. those describing the dynamics of the exogenous processes,

and others have economic interpretations, e.g. price indexation or the inverse of Frish

elasticity, we focus on a subset of the latter ones when computing elasticity measures.

To construct the convoluted likelihood we need to choose �u; the variance of the
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convoluted error. We set �u = � � I, where the scaling factor � is the maximum of the

diagonal elements of �(�), thus making sure that ut and the innovations in the model

et have similar scale. In the sensitivity analysis section we describe what happen when

a di¤erent � is used. When constructing the ratio pjt (�) we simulate 500 samples, where

the history et�1t and the convolution error ut are random, and average the resulting

pjt (�; e
t�1
t ; ut) over the simulated samples.

We also need to select a sample size for the likelihood computation. We set T = 150;

so as to have a data set comparable to those available in empirical work. In the

sensitivity analysis section we discuss what happens to our ranking if the sample size

is large, T = 1500:

We also need to set the size of the step needed to compute the numerical derivatives

of the objective function with respect to the parameters - this de�nes the radius of

the neighborhood around which we measure parameter identi�ability. In the baseline

exercises we set g=0.01. When computing the rank of the spectral density, we also

need to select the �tolerance level�(see Komunjer and Ng (2011)). This tolerance level

is important in de�ning identi�ability of the parameters. As suggested by the authors,

we set it equal to the step of the numerical derivatives, q=g= 0.01. We examine the

sensitivity of the results with respect to the choice of g and q in section 4.

3.1 The results of the rank analysis

The model features 29 parameters, 12 predetermined states and four structural shocks.

Thus the Komunjer and Ng�s condition for identi�cation of all structural parameters

is that the rank of �(�0) is 189.

We start considering the unrestricted speci�cation and all possible combinations of

observables, and ask whether there exists four dimensional vectors of observables that

ensure full identi�ability and, if not, what combination gets �closest�to meet the rank

condition. The number of combinations of four observables out of a pool of seven is

35, i.e.
�
7
4

�
= 7!

4!(7�4)! = 35.

The �rst columns of table 2 presents a subset of the 35 possible combinations

of observables and the second column the rank of the matrix of derivatives, �j(�0).

Combinations are presented according to the rank of the matrix of derivatives, from

large to small. To facilitate the examination, we divide the table into two parts:
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combinations with large rank, i.e. rank(�j) � 185, and combinations with low rank:
rank(�j) < 185. Clearly, no combination guarantees full parameter identi�cation.

This is a well known result (see e.g. Iskrev, 2009, or Komunjer and Ng, 2011) and our

analysis con�rm this fact. Interestingly, the combination containing the real variables,

(y; c; i; w), has the largest rank, 186. Moreover, among the 15 combinations with largest

rank, investment appears in 13 of them. Thus, the dynamics of investment are well

identi�ed and this variable contains useful information for the structural parameter.

Conversely, real wages appears more often in low rank combinations than in large

rank ones suggesting that this variable has relatively low identi�cation power. For

consumption, output or hours worked, the conclusions are much less clear cut. Turning

to nominal variables, notice that among the large rank combinations interest rate

appears more often than in�ation (7 vs. 4), suggesting a mild preference for interest

rates over in�ation, as far as parameter identi�cation is concerned. More striking is the

result that including both in�ation and interest rate in the vector of observables makes

parameter identi�cation poor; indeed, all combinations featuring these two variables

are in the low rank region and four have the lowest rank, i.e. 183.

The third column of table 2 repeats the exercise calibrating some of the parameters.

It is well known that certain parameters cannot be identi�ed from the dynamics of the

model (e.g. average government expenditure to output ratio) and other are implicitly

selected by statistical agencies (e.g. the depreciation rate of capital). For this reason

we have repeated the rank calculation exercise �xing the depreciation rate, � = 0:025,

the good markets and labor marker Kimball aggregators, "p = "w = 10, elasticity of

substitution labor, �w = 1:5 and government consumption output share c=g = 0:18,

as in SW (2007). Even with these �ve restrictions, the remaining 24 parameters of

the model fail to be identi�ed for any combination of the observable variables. While

these �ve restrictions are necessary to make the mapping from the deep parameters

to the reduced form parameters invertible, i.e. rank(��(�0)) = n� = 29, they are

not su¢ cient to guarantee local identi�cation of the structural parameters. In general,

while the ordering obtained in the unrestricted case is generally preserved, di¤erences

combinations of variables have now more similar spectral ranks.

Finally, we examine whether there are parameters restrictions that allow some non-

singular system to identify the remaining vector of parameters. We proceed in two

steps. First, we consider adding one parameter restriction to the �ve restrictions used



3 AN APPLICATION 12

in column 3. We report in column 4 of table 2, the parameter restriction that generates

identi�cation for each combination of observables we consider. A black space means

that there are no parameter restrictions able to generate full parameter identi�cation

for that combination. Second, we consider whether �any�set of parameter restrictions

generate full identi�cation, that is, we search for an �e¢ cient�set of restrictions, where

by e¢ cient we mean a combination of four observables that generates identi�cation with

a minimum number of restrictions. The �fth column of table 2 reports the parameters

restrictions that achieve identi�cation for each combination of observables.

From column 4 one can observe that, for some combinations, the extra restriction

is not enough to achieve full parameter identi�cation. In addition, the combinations

of variables which were best in the unrestricted case are still the combinations with

the largest rank in this case. Thus, when the SW restrictions are used and an extra

restriction is added, large rank combination generate identi�cation, while for low rank

combinations one extra restriction is insu¢ cient. Interestingly, for most combinations,

the parameter that has to be �xed to achieve identi�cation is elasticity of capital

utilization adjustment costs. Column 5 indicates that at least four restrictions are

need to identify the vector of structural parameters of the SW model and that the

goods and labor market aggregator, "p and "w, cannot be estimated either individually

or jointly for any combination of observables. In general, the largest (unrestricted) rank

combinations are more likely to produce identi�cation with a tailored use of parameter

restrictions.

3.2 The results of the elasticity analysis

As mentioned, the rank analysis is unsuited to detect weak and partial identi�cation

problem that often plague estimation of the structural parameters of the DSGE model.

To address investigate issue we compute the curvature of the convoluted likelihood

function of the singular and non-singular systems and examine whether there are com-

binations of observables which have good rank properties and also avoid �atness and

ridges in the likelihood function.

Table 3 presents the four best combinations minimizing the �elasticity�distance de-

scribed in the previous section. We focus attention on six parameters, which are often

the object of discussion among macroeconomists: the habit persistence, the inverse of

the Frish elasticity of labor supply, the price stickiness and the price indexation para-
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meters, the in�ation and output coe¢ cients in the Taylor rule. As it is clear comparing

table 2 and table 3, maximizing the rank of the spectral density does not necessarily

make the curvature of the convoluted likelihood in the singular and non-singular sys-

tem close. The vector of variables which is best according to the �elasticity�criteria

is consumption, investment, hours and the nominal interest rate, but combinations

including only real variables have objective functions which are close. As shown in �g-

ure 1, the presence of the nominal interest rate helps to identify the habit persistence

and the price stickiness parameters; excluding the nominal rate and hours in favor of

output and the real wage (the second best combination) helps to better identify the

price indexation parameter at the cost of making the identi�ability of the Frish elastic-

ity and of the two Taylor coe¢ cients worse. Note that, even the best combination of

variables makes the curvature of likelihood quite �at as far as the in�ation coe¢ cient

in the Taylor rule is concerned. Thus, while there does not exist a combination which

simultaneously avoid weak identi�cation problems in all six parameters, di¤erent com-

binations of variables may reduce weak identi�cation problems in di¤erent parameters.

Hence, depending on the focus of the investigation, researchers may be justi�ed in

using di¤erent vectors of the observables to estimate the structural parameters within

the class of "good" curvature combinations.

It is worth also mentioning that while there are no theoretical reasons to prefer

the use of any two variables among output, hours and labor productivity, and the

ordering the best models is una¤ected, there are important weak identi�cation trade-

o¤s in selecting a group of variables or the other. For example, comparing �gures 1

and 2, one can see that the simultaneous use of output and labor productivity, in place

of output and hours in the vector of observables can help to reduce the �atness of

the likelihood function in the dimensions represented by the in�ation and the output

coe¢ cients in the Taylor rule, at the cost of worsening the identi�cation properties of

the habit persistence and the price stickiness parameters.

3.3 The results of the information analysis

Table 5 gives the best combinations of 4 observables according to the information

statistic (8). As in table 3, we also provide the value of the average objective function

for that combination relative to the best. Since the average log of the likelihood ratio

statistic is negative for all parameter combinations, the maximum value is the smallest
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in absolute value, and the ratio is smaller or equal to 1.

The table suggests that an econometrician interested in estimating the structural

parameters of this model by maximum likelihood should de�nitely use output, con-

sumption and investment as observables - they appear in all four top combinations.

The fourth observable seems to be either hours or real wages, while combinations which

include interest rates or in�ation, while among the top four, fare quite poorly in terms

of relative informativeness. In general, the performance of alternative combinations

deteriorates substantially as we move down in the ordering, suggesting that the pt(�)

measure can sharply distinguish various options.

Interesting, the identi�cation and the informational analysis broadly coincide in

the ordering of vectors of observables: the top combination obtained with the rank

analysis (y; c; i; w) fares second in the information analysis and either second or third

in the elasticity analysis. Moreover, three of the four top combinations in table 5 are

among the top combinations according to the rank analysis.

To estimate the structural parameters of this model it is therefore necessary to

include at least three real variables and output, consumption and investment seem

the best for this purpose. The fourth variable varies according to the criteria used.

Nevertheless, it is a fact that, despite the monetary nature of this model, jointly in-

cluding in�ation and the nominal rate among the observables make things worse. We

can think of two reasons for this outcome. First, because the model features a Taylor

rule for monetary policy, in�ation and the nominal rate tend to comove quite a lot.

Second, since the parameters of the Phillips curve are di¢ cult to identify no matter

what combination is used, the use of real variables allows us to pin down fairly well the

intertemporal and intratemporal links of the model which crucially determine income

and substitution e¤ects.

4 Robustness

We have examined whether the essence of the conclusions change when we alter the

nuisance parameters present in each of the procedures. In this section we present

results obtained for a subset of these exercises. The basic conclusions we have derived

earlier hold also in this alternative setups.
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Six Observables We have examined what happens if six (rather than four) shocks

drive the economy. Thus, we have added price markup and wage markup shocks to

the list of shocks of the model and repeat the analysis maintaining a maximum of

seven observable variables. Tables (5, (6),(7) report the results obtained with the three

approaches.

It is still true that output, consumption and investment must be present among the

observables when estimating the structural parameters of the model. Adding hours,

in�ation and the real wage seems the best option, as this combination is at the top

of the ordering according to the information analysis, and is among the top ones both

with rank and the elasticity analyses. Notice that, with six shocks, the rank analysis

becomes less informative (six of the seven combinations are equivalent according to this

criteria) and the relative di¤erences in the �elasticity� function for top combinations

decrease. The pt(�) statistics instead is still quite sharp in distinguishing the best

vector of variables from the others.

Increasing the sample size The sample size used in the exercises is similar to

the one typically employed in empirical studies. However, in the elasticity and the

information analyses, sample uncertainty may matter for the conclusions. For this

reason we have repeated the exercise using T=1500. The results are reported in the

second panel of table (3) and in the third panel of table (5).

Sampling variations seems to be a minor issue. The ordering of the �rst four top

combinations in the information analysis is the same when T=150 and T=1500: the

averaging approach we use to construct pt(�) helps in this respect. There are some

switches in the ordering obtained with the elasticity analysis, but the top combinations

with the smaller T are still the best with T=1500.

Changing the variance of the convolution error The variance of the convo-

lution error is important as it contaminates the information present in the density of the

data. In the baseline exercises, we have chosen it to be of the same order of magnitude

as the variance of the structural shocks. This is a conservative choice and adds consid-

erable noise to the likelihood function. In the third panel of table (3) and in the four

panel of table (5) we report the top four combinations obtained with four observables

when the variance of the convolution error is arbitrarily set to �u = 0:01 � I.
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There are no changes in the top four combinations when the pt(�) statistics is

used. This is expected since convolution error is averaged out. This is not the case

for the elasticity analysis - we have conditioned here on a particular realization of ut.

Nevertheless, even with this criteria, the vector which was best in the baseline scenario

is still the preferred one in the alternative we consider.

Changing the step in the numerical derivatives In computing numerical

derivatives in both the rank and elasticity analysis we had to select the step g; which

de�nes the radious of the neighborhood of the parameter vector over which identi�-

cation is measured. Since the choice is arbitrary, we have repeated the exercise using

g = 0:001 - which implies much smaller radius. Choosing a smaller g has minor e¤ects

on the elasticity analysis (see fourth panel of table (3)) but a¤ects the conclusions

of the rank analysis: now all the combinations have similar rank and either they fail

to achieve identi�cation (the case of the unrestricted model) or achieve identi�cation

(the case of restricted model). Thus, it seems that in a very small neighborhood of

the chosen parameter vector, the parameter vector is identi�able (once restrictions are

imposed). However, since this is not the case as we make the neighbourhood slightly

larger, weak identi�cation seems a feature of this model.

Quadratic information distance Rather than measuring informativeness of an

observable vector via the pjt (�) statistics, we have also considered, as an alternative,

the following quadratic measure of distance:

Qj(�; e
t�1; ut) =

TX
t=1

(Zt �Wjt)
0��1q (Zt �Wjt) (9)

where �q = �yj + �y + 2�u, which is the sum of the conditional covariance matrices

of Zt and Wjt. While this choice is somewhat arbitrary, it is a useful metric to check

to what extent our results depend on the exact measure of information used in the

exercises. We are looking for the combination of variables minimizing Qj(�; et�1; ut),

integrating out both the history of the shocks and the convolution error.

When four observables are used (see table (5), the top four combinations obtained

with the pjt (�) and the Qj(�) statistics are the same. The ordering of the two best

combinations is reversed with the Qj(�) statistics but di¤erences in the relative infor-

mativeness of the two vectors is small according to both statistics. When six observables
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are used (see table (7), the same conclusion holds. However, the di¤erence between

the two best vectors, which was large under the pjt (�) measure, is substantially reduced

with the Qj(�) measure.

Other exercises We have also examined what happens when we change the tol-

erance level in the rank analysis and found only minor di¤erences with the baseline

scenario. We have also considered the case when the neutral shock has a unit root.

Having a process with one unit root reduces the number of structural parameters to

be estimated, but adding trend information should be irrelevant for both rank and

information analysis, so long as the trend is correctly speci�ed, since the trend has no

information for parameters other than the variance of the neutral technology shock.

Indeed, we con�rm that the ordering of the best combinations is independent of the

presence of trends in the data.

5 Conclusions and suggestions for empirical prac-
tice

This paper proposes methods to select the observables to be used in the estimation of

the structural parameters when one feel uncomfortable in having a model driven by

a large number of potentially non-structural shocks or does not have good reasons to

add measurement errors to the equations and insists in working with a singular DSGE

model. The methods we suggest measure the identi�cation and the information content

of various vectors of observables, are easy to implement, and seem able to distinguish

"good" from "bad" combinations of observable variables. Interestingly, and despite

the fact that the statistics we consider are derived from di¤erent principles, the best

combinations of variables these methods deliver are pretty much the same.

Although monetary policy plays an important role in the DSGE model we con-

sider, parameter identi�cation and variable informativeness are optimized using only

real variables in estimation and including output, consumption and investment seems

the best. These variables help to identify the intertemporal and the intratemporal links

in the model and thus are useful to get the right income and substitution e¤ects. Inter-

estingly, using interest rate and in�ation jointly in the estimation make identi�cation

worse and the loss of information larger. When one takes the curvature of the likeli-
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hood in the dimensions of interest into consideration, we �nd it preferable to include

the nominal interest rate rather than the in�ation rate in the list of observables.

We show that the ordering of various combinations is broadly maintained when

parameter restrictions are added, and this is true both when these restrictions are

chosen following the conventional wisdom or when they are selected to optimize some

e¢ ciency criteria. We show that, at least in terms of likelihood curvature there are

important trade-o¤when deciding to use hours or labor productivity among the observ-

ables. Finally, we demonstrate that our conclusions are broadly invariant to changes

in the setup of the experiment.

While our conclusions are sharp, an econometrician working in a real world appli-

cation should also naturally consider whether the measurement of a certain variables is

reliable or not. Our study only asks what set of observables is preferable on theoretical

grounds. In practice, the analysis we have performed can be undertaken even when

some measurement errors are preliminary added to the model.

One way of interpreting our exercises is in terms of prior predictive analysis (see

Faust and Gupta, 2011). In this perspective, prior to the estimation of the structural

parameters of the model, one wants to examine which features of the model is well

identi�ed and what is the information content of di¤erent variables. Seen through

these lenses, the analysis we perform here complements those of Canova and Paustian

(2011) and of Mueller (2010).
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Figure 1: One dimensional convoluted likelihood of the DGP and of the optimal

combination.
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Figure 2: One dimensional convoluted likelihood of the DGP and of the optimal

combination using labor productivity.
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� Description Value
� depreciation rate 0.025
"p good markets kimball aggregator 10
"w labor markets kimball aggregator 10
�w elasticity of substitution labor 1.5
cg gov�t consumption output share 0.18
� time discount factor 0.998
�p 1 plus the share of �xed cost in production 1.61
 elasticity capital utilization adjustment costs 5.74
� capital share 0.19
h habit in consumption 0.71
�! wage stickiness 0.73
�p price stickiness 0.65
i! wage indexation 0.59
ip price indexation 0.47
�n elasticity of labor supply 1.92
�c intertemporal elasticity of substitution 1.39
' st. st. elasticity of capital adjustment costs 0.54
�� monetary policy response to � 2.04
�R monetary policy autoregressive coe¤. 0.81
�y monetary policy response to y 0.08
��y monetary policy response to y growth 0.22
�a technology autoregressive coe¤. 0.95
�g gov spending autoregressive coe¤. 0.97
�i investment autoregressive coe¤. 0.71
�ga cross coe¢ cient tech-gov 0.52
�a sd technology 0.45
�g sd government spending 0.53
�i sd investment 0.45
�r sd monetary policy 0.24

Table 1: Parameters description and values used.
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Unrestricted Restricted Resticted and E¢ cient Restrictions
Rank(�) Rank(�) Restriction on Four parameters �xed, "p, "w and

y; c; i; w 186 188  (�w;  ), (�p;  ), ( ; �!), ( ; �p), ( ; �n), ( ; �c), ( ; ��), ( ; �y)
y; c; i; � 185 188  ( ; �p), ( ; �!), ( ; �p), ( ; �n)
y; c; r; h 185 188  ( ; �p), ( ; i!), ( ; ��), ( ; �y), (�p; �c), (i!; �c), (�c; ��), (�c; �y)
y; i; w; r 185 188  (�w;  ), ( ; �!), ( ; �y)
c; i; w; h 185 188  ; �c; �i (�w;  ), ( ; �!), ( ; �y)
c; i; �; h 185 188  (�w;  ), (cg;  ), ( ; �!), ( ; �c)
c; i; r; h 185 188 �!; �p; i! (�w;  ), (cg;  ), ( ; �n), ( ; �!), ( ; �c)
y; c; i; r 185 187 (�w;  ), (cg;  ), ( ; �!), ( ; �c)
y; c; i; h 185 187 (�w;  ), (cg;  ), ( ; �!), ( ; �c)
i; w; r; h 185 188  (�w;  ), (cg;  ), ( ; �!), ( ; �c)
y; i; w; h 185 188  
y; i; �; h 185 188  
y; i; r; h 185 188  ; �i
y; c; w; r 185 188  
y; i; w; � 185 188  y; i; �; r

y; i; �; r 184 188  
i; w; �; h 184 188  
i; �; r; h 184 188  
c;w; r; h 184 188  
y; c; w; � 184 187
y; c; w; h 184 187 (�p; �c), (cg;  ), (�p;  ), (cg; �c), (�p; �c), ( ; �p)
y; c; �; r 184 187
y; c; �; h 184 187 (�p;  ), (cg;  )
y; w; �; r 184 187 (cg; �!), (�p;  ), (�p; �!), ( ; ��y)
y; w; �; h 184 187
y; w; r; h 184 187
y; �; r; h 184 187
c; i; w; � 184 187
c; i; w; r 184 188
c; �; r; h 184 187
c; w; �; r 183 187
c; w; �; h 183 187
i; w; �; r 183 187
w; �; r; h 183 187
c; i; �; r 183 186
Required 189 189

Table 2: Rank conditions for combinations of observables in the unrestricted SW model
(columns 2) and in the restricted SW model (column 3), where �ve parameters are �xed
� = 0:025, "p = "w = 10, �w = 1:5 and c=g = 0:18. The fourth columns reports the extra
parameter restriction needed to achieve identi�cation; a blank space means that there are no
parameters able to guarantee identi�cation. The last column reports the e¢ cient restrictions,
("p; "w; �; �), that generates identi�cation.
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Order Cumulative Weighted Ratio
Deviation Square

Basic
1 (c; i; r; h) (c; i; r; h) 1.00
2 (y:c; i; w) (c; i; w; h) 1.65
3 (c; i; w; h) (y; c; i; w) 1.91
4 (y; c; r; h) (y; c; r; h) 2.12

T=1500
1 (c; i; r; h) (c; i; r; h) 1.00
2 (y:c; i; w) (c; i; w; h) 1.64
3 (y; c; r; h) (y; c; i; w) 1.65
4 (c; i; w; h) (y; c; r; h) 2.15

g=0.001
1 (c; i; r; h) (c; i; r; h) 1.00
2 (y:c; i; w) (c; i; w; h) 1.61
3 (c; i; w; h) (y; c; i; w) 1.91
4 (y; c; r; h) (y; c; r; h) 2.09

�u = 0:01 � I
1 (c; i; r; h) (c; i; r; h) 1.00
2 (c; i; w; h) (c; i; w; h) 1.14
3 (y; c; r; h) (y; c; r; h) 1.65
4 (y; c; i; w) (y; i; �; r) 3.11

Table 3: Ranking of four top combinations of variables using elasticity distance. Unrestricted SW model.

The �rst column uses as objective function the sum of absolute deviation of the likelihood curvature of the

parameters, the second the weighed sum of square deviations of the likelihood curvature of the parameters.

The third the value of the objective function relative to the best combination. The �rst panel reports

the baseline results, the second increasing the sample size, the third, changing the step size in computing

derivatives, the fourth the magnitude of the convolution error.

Order Basic Quadratic Distance T=1500 �u = 0:01 � I
Combination Relative Combination Relative Combination Relative Combination Relative

Information Information Information Information
1 (y; c; i; h) 1 (y; c; i; w) 1 (y; c; i; h) 1 (y; c; i; h) 1
2 (y; c; i; w) 0.89 (y; c; i; h) 0.89 (y; c; i; w) 0.87 (y; c; i; w) 0.86
3 (y; c; i; r) 0.52 (y; c; i; r) 0.6 (y; c; i; r) 0.51 (y; c; i; r) 0.51
4 (y; c; i; �) 0.5 (y; c; i; �) 0.59 (y; c; i; �) 0.5 (y; c; i; �) 0.5

Table 4: Ranking based on the p(�) statistic. The �rst two column present the results for the basic setup,
the next six columns the results obtained altering some nuisance parameters. Relative information is the

ratio of the p(�) statistic relative to the best combination.
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Unrestricted Restricted
Combinations Rank Rank

��T ��U � ��T ��U �
(y; c; i; w; �; r) 227 67 263 229 69 265
(y; c; i; w; �; h) 227 67 263 229 69 265
(y; c; i; w; h; r) 227 67 263 229 69 265
(y; c; i; h; �; r) 227 67 263 229 69 265
(y; c; h; w; �; r) 227 67 262 229 69 264
(y; h; i; w; �; r) 227 67 263 229 69 265
(h; c; i; w; �; r) 227 67 263 229 69 265
Required 229 69 265 229 69 265

Table 5: Rank conditions for combinations of variables in the unrestricted SW model (columns
2-5) and in the restricted SW model (columns 6-9), where �ve parameters are �xed � = 0:025,
"p = "w = 10, �w = 1:5 and c=g = 0:18. SW model with 6 shocks.
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Order Cumulative Weighted Ratio
Deviation Square

Basic
1 (c; i; w; �; r; h) (c; i; w; �; r; h) 1.00
2 (y; c; w; �; r; h) (y; c; w; �; r; h) 1.27
3 (y; c; i; w; �; h) (y; i; w; �; r; h) 1.38
4 (y; i; w; �; r; h) (y; c; i; w; �; h) 1.52

T=1500
1 (y; c; w; �; r; h) (c; i; w; �; r; h) 1.00
2 (c; i; w; �; r; h) (y; c; w; �; r; h) 1.10
3 (y; c; i; w; �; h) (y; i; w; �; r; h) 1.18
4 (y; i; w; �; r; h) (y; c; i; w; �; h) 1.40

g=0.001
1 (c; i; w; �; r; h) (c; i; w; �; r; h) 1.00
2 (y; c; w; �; r; h) (y; c; w; �; r; h) 1.45
3 (y; c; i; w; �; h) (y; i; w; �; r; h) 1.60
4 (y; i; w; �; r; h) (y; c; i; w; �; h) 1.71

�u = 0:01 � I
1 (y; c; i; w; �; r) (y; c; i; w; �; r) 1.00
2 (y; c; w; �; r; h) (y; c; w; �; r; h) 1.12
3 (c; i; w; �; r; h) (c; i; w; �; r; h) 1.21
4 (y; c; i; w; �; r) (y; c; i; w; �; r) 1.34

Table 6: Ranking of four top combinations of variables using elasticity distance. Unrestricted SW model,

six shock system. The �rst column uses as objective function the sum of absolute deviation of the likelihood

curvature of the parameters, the second the weighed sum of square deviations of the likelihood curvature of

the parameters. The third the value of the objective function relative to the best combination. The �rst

panel reports the baseline results, the second increasing the sample size, the third, changing the step size in

computing derivatives, the fourth changng the magnitude of the convolution error.

Order Basic Quadratic Objective
Combination Relative info Combination Relative info

1 (y; c; i; h; w; �) 1 (y; c; i; w; r; h) 1
2 (y; c; i; w; r; h) 0.4 (y; c; i; h; w; �) 0.82
3 (y; c; i; r; �; h) 0.04 (y; c; i; r; �; h) 0.13
4 (y; c; i; �; w; r) 0.02 (y; c; i; �; w; r) 0.02

Table 7: Ranking according ot the p(�) statistic, 6 observables.The �rst two column present
the results for the basic setup, the next two columns the results obtained altering some
nuisance parameters. Relative information is the ratio of the p(�) statistic relative to the
best combination.


