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Abstract

We estimate a DSGE model where rare large shocks can occur, by replac-

ing the commonly used Gaussian assumption with a Student-t distribution.

We show that the latter is strongly favored by the data in the context of the

Smets and Wouters (2007) model, even when we allow for low frequency varia-

tion in the shocks’ volatility. To assess the quantitative impact of rare shocks

on the business cycle we perform a counterfactual experiment where we show

that, absent “rare shocks”, all recessions would have been of roughly the same

magnitude. Further, we show that inference about low frequency changes in

volatility – and in particular, inference about the magnitude of Great Modera-

tion – is different once we allow for fat tails. Finally, we show that the evidence

of fat tails is just as strong when we exclude the recent financial crisis from our

sample.
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1 Introduction

Great Recessions do not happen every decade – which is why they are dubbed

“Great” in the first place. To the extent that DSGE models rely on shocks in order to

generate macroeconomic fluctuations, they may need to account for the occurrence of

rare large shocks. This cannot be done using the Gaussian distribution, which is the

standard assumption in the DSGE literature. We estimate a linearized DSGE model

assuming that shocks are generated from a Student-t distribution, which is designed

to capture fat tails. The number of degrees of freedom in the Student-t distribution,

which determines the likelihood of observing rare large shocks and which we allow

to vary across shocks, is estimated from the data. We show that estimating DSGE

models with Student-t distributed shocks is a fairly straightforward extension of

current methods (described, for instance, in An and Schorfheide (2007)). In fact,

the Gibbs sampler is a simple extension of Geweke (1993)’s Gibbs sampler for a

linear model to the DSGE framework.1

In light of the evidence provided by several recent papers in the DSGE literature

(Justiniano and Primiceri (2008), Fernández-Villaverde and Rubio-Ramı́rez (2007),

Liu et al. (2011), among others), we allow for low frequency changes in the volatility

of the shocks in our assessment of the importance of fat tails in DSGE models. We

do so because ignoring low frequency movements in volatility may bias the results

toward finding evidence in favor of fat tails, as we discuss below. Specifically, we

follow the approach in Justiniano and Primiceri (2008), who postulate a random

walk as the law of motion of the volatilities.

We apply our methodology to the Smets and Wouters (2007) model (henceforth,

SW), estimated on the same seven macroeconomic time series used in SW. Our

baseline data set starts in 1964Q4 and ends in 2011Q1, but we also consider a sub-

1The paper is closely related to Chib and Ramamurthy (2011) who in independent and contem-

poraneous work also propose a similar approach to the one developed here for estimating DSGE

models with student-t distributed shocks. Differently from Chib and Ramamurthy (2011), we also

introduce time-varying volatilities following the approach in Justiniano and Primiceri (2008). As

discussed below, this is important to obtain a proper assessment of the importance of fat tails.
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sample ending in 2004Q4 to analyze the extent to which our findings depend on the

inclusion of the Great Recession in our sample. We use the SW model both because

it is a prototypical medium-scale DSGE model, and because its empirical success

has been widely documented.2 Models that fit the data poorly will necessarily have

large shocks. We therefore chose a DSGE model that is at the frontier in terms of

empirical performance to assess the extent to which macro variables have fat tails.

The motivation for our work arises from evidence like the one displayed in Fig-

ure 1. The top panel of Figure 1 shows the time series of the smoothed “discount

rate” shocks (in absolute value) from the SW model estimated under Gaussianity.

The shocks are normalized, that is, they are expressed in standard deviations units.

The solid line is the median, and the dashed lines are the posterior 90% bands. The

Figure shows that the size of the shock is between 3.5 and 4 standard deviations in

a few occasions, one of which is the recent recession. The probability of observing

such large shocks under Gaussianity is very low.3

Simply staring at standardized smoothed shocks may not necessarily be the best

approach for determining the importance of fat tails, however. First, these shocks

are obtained under the counterfactual assumption of Gaussianity. Second, this ap-

proach does not provide any quantitative estimate of the fatness of the tails. Third,

it is important to disentangle the relative contribution of fat tails from that of (slow

moving) time-varying volatility. The bottom panel of Figure 1, which shows the evo-

lution of the smoothed monetary policy shocks estimated under Gaussianity (again,

normalized, and in absolute value), provides a case in point: The clustering of large

shocks in the late 70s and 80s is quite evident. In general, studying the importance

of fat tails only from looking at the kurtosis in the unconditional distribution of

2 The forecasting performance of the SW model was found to be competitive in terms of accuracy

relative to private forecasters and reduced form models not only during the Great Moderation period

(see Smets and Wouters (2007) and Edge and Gürkaynak (2010)), but also including data for the

Great Recession (Del Negro and Schorfheide (2012)).
3 Aside from this DSGE model-based evidence, there is work showing that that the unconditional

distribution of macro variables is not Gaussian (see Christiano (2007) for pre-Great Recession

evidence, and Ascari et al. (2012) for more recent work).
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either macro variables directly (as in Ascari et al. (2012)) or shocks can be mislead-

ing, because the evidence against Gaussianity can be due to low frequency changes

in volatility. Conversely, the presence of large shocks may potentially distort the

assessment of low frequency movements in volatility. Imagine estimating a model

with only slow moving time variation in volatility, but no fat tails, in presence of

shocks that fit the pattern shown in the top panel of Figure 1. As the stochastic

volatility will try to fit the squared residuals, such model will produce a time se-

ries of volatilities peaking around 1980, and then again during the Great Recession.

Put it differently, very large shocks may be interpreted as permanent changes in

volatility, when they may be simply rare realizations from a process with a time

invariant distribution. For instance, the extent to which the Great Recession can

be interpreted as a permanent rise in macroeconomic volatility depends on whether

we allow for rare large shocks.

Finally, we expect that the evidence provided in this paper will be further moti-

vation for the study of non linear models. This is for two reasons. First, since shocks

have fat tails, linearity may be a poor approximation. Second, non-linearities may

explain away the fat tails: what we capture as large rare shocks are Gaussian shocks

whose effect is amplified through a non-linear propagation mechanism. Assessing

whether this is the case will be an important line of research. In fact, the extent

to which non linearities can alleviate the need for fat tailed shocks in order to ex-

plain business cycles can possibly become a metric for evaluating the usefulness of

introducing non linearities.

We provide strong evidence that the Gaussianity assumption in DSGE models

is counterfactual, even after allowing for low frequency changes in the volatility of

shocks. Such evidence may be surprising considering that our sample only consists of

macro variables. First, we compare the fit of different specifications using Bayesian

marginal likelihoods. We find that if we were to consider only fat tails or stochastic

volatility, but not both, the fit of the model is highest, and by far, when we choose

the former. Most importantly, if we allow for Student-t in addition to stochastic

volatility, the fit improves considerably.
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We consider different prior means for the degrees of freedom of the Student-t

distribution, capturing different views on the extent to which shocks have fat tails,

as well as different degrees of tightness for those priors. We find that whenever

the priors on the degrees of freedom are informative, the marginal likelihood always

favors the lowest prior mean (fatter tails). When the priors are less informative, the

marginal likelihoods tend to be very similar across models, not surprisingly. Less

informative priors tend to perform better than more informative ones, highlighting

the heterogeneity across shocks in terms of the properties of the distribution.

The posterior estimates of the degrees of freedom for the degrees of freedom

of the Student-t distribution for some shocks change quite dramatically when we

allow for time varying volatility, as previewed earlier, while for other shocks these

estimates barely change. The posterior estimates are not very sensitive to the prior

mean, however, indicating that the likelihood is quite informative. We can cluster

the shocks in the model into three broad categories. Shocks to productivity, to the

households discount rate, the marginal efficiency of investment, and to the wage

markup all have very low posterior means for the degrees of freedom, even in the

case with stochastic volatility. Shocks to government expenditures and to price

markups have posterior means for the degrees of freedom that are somewhat high,

whether or not we allow for stochastic volatility. Finally, the degrees of freedom for

monetary policy shocks are estimated to be extremely low degrees of freedom in the

case with constant volatility (95th percentile lower than 4) but when we allow for

stochastic volatility then the posterior distribution shifts substantially toward much

higher values, with a posterior mean above 15 in the best fitting specification. These

results suggest that for some shocks fat tails is indeed the correct way to model the

underlying stochastic process and stochastic volatility does not play a significant

role, while for other types of shock the reverse is true.

Whenever we exclude the Great Recession from the sample the results are nearly

identical, both in terms of marginal likelihood comparisons and posterior estimates

of the degrees of freedom across shocks. This suggests that the evidence in favor

of rare large shocks is not confined to the Great Recession. In order to evaluate
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the importance of accounting for fat tails in the study of the business cycle, we

consider a counterfactual experiment in which we shut down the fat tails, so that we

recreate the counterfactual path of the economy in the sample absent “rare shocks”.

We show that in this case all recessions in the sample would then have roughly the

same magnitudes, as the Great Recession would have been “just” a run-of-the-mill

recession.

Finally, we show that allowing for fat tails will change the inference about slow

moving stochastic volatility. We reevaluate the evidence in favor of the Great Mod-

eration hypothesis discussed for example in Justiniano and Primiceri (2008). We

find that when we consider Student-t shocks the reduction in the volatility of out-

put and other variables is still substantial, but the magnitude is quite a bit smaller.

Likewise, we show that the evidence in favor of a permanent increase in volatility

following the Great Recession is much weaker when we consider the possibility that

shocks have a Student-t distribution.

It is important to point out a number of caveats regarding our analysis. For

one, in the current draft we allow for excess Kurtosis but not for skewness. The

shocks plots in in Figure 1 make it plain that most large shocks occur during re-

cessions. We plan to address this issue in future drafts. A recent paper by Müller

(2011) describes some of the dangers associated with departures from Gaussianity

when the alternative shock distribution is also misspecified. Second, we allow for

permanent (random walk) and i.i.d (Student-t distribution) changes in the variance

of the shocks. These assumptions are convenient, but also extreme. We will consider

relaxing these assumptions (and yet maintain identification) in future drafts.

The next section discusses Bayesian inference. The section first describes the

procedure used to estimate a DSGE model with Student-t distributed shocks, and

then combines Student-t distributed shocks with time-variation in volatilities. Sec-

tion 3 describes the model, as well as our set of observables. Section 4 describes the

results.
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2 Bayesian Inference

The first part of the section describes the estimation of a DSGE model with both

Student-t distributed shocks and time-varying volatilities. The Gibbs sampler com-

bines the algorithm proposed by Geweke (1993)’s for a linear model with Student-t

distributed shocks (see also Geweke (1994), and Geweke (2005) for a textbook ex-

position) with the approach for sampling the parameters of DSGE models with

time-varying volatilities discussed in Justiniano and Primiceri (2008). Section A.2

discusses the computation of the marginal likelihood.

The model consists of the standard measurement and transition equations:

yt = Z(θ)st, (1)

st+1 = T (θ)st +R(θ)εt, (2)

for t = 1, .., T , where yt, st, and εt are n× 1, k× 1, and q̄× 1 vector of observables,

states, and shocks, respectively. Call p(θ) the prior on the vector of DSGE model

parameters θ. We assume that:

εq,t = σq,th̃
−1/2
q,t ηq,t, all q, t, (3)

where

ηq,t ∼ N (0, 1), i.i.d. across q, t, (4)

λqh̃q,t ∼ χ2(λq), i.i.d. across q, t. (5)

For the prior on the parameters λq we assume a gamma distributions with parame-

ters λ/ν and ν:

p(λq|λ, ν) =
(λ/ν)−ν

Γ(ν)
λ ν−1
q exp(−ν λq

λ
), i.i.d. across q. (6)

where λ is the mean and ν is the number of degrees of freedom (Geweke (2005)

assumes a Gamma with one degree of freedom).

Define

σ̃q,t = log (σq,t/σq) , (7)
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where the parameters σ1:q̄ (the non-time varying component of the shock variances)

are included in the vector of DSGE parameters θ. We assume that the σ̃q,t follows

an autoregressive process:

σ̃q,t = ρqσ̃q,t−1 + ζq,t, ζq,t ∼ N (0, ω2
q ), i.i.d. across q, t. (8)

The prior distribution for ω2
q is an inverse gamma IG(νω/2, νωω

2/2), that is:

p(ω2
q |νω, ω2) =

(
νωω

2/2
) νω

2

Γ(νω/2)
(ω2
q )
− νω

2
−1exp

[
−νωω

2

2ω2
q

]
, i.i.d. across q. (9)

We consider two types of priors for ρq:

p(ρq|ω2
q ) =


1 SV-UR

N (ρ̄, ω2
q v̄ρ)I(ρq), i.i.d. across q, I(ρq) =

 1 if |ρq| < 1

0 otherwise,
SV-S

(10)

In the SV-UR case σ̃q,t follows a random walk as in Justiniano and Primiceri (2008),

while in the SV-S it follows a stationary process as in Fernández-Villaverde and

Rubio-Ramı́rez (2007). In both cases the σq,t process is very persistent: in the SV-

UR case the persistence is wired into the assumed law of motion for σ̃q,t, while in

the SV-AR case it is enforced by choosing the hyperparameters ρ̄ and σ̄ρ in such a

way that the prior for ρq puts most mass on high values of ρq. As a consequence,

σq,t and h̃q,t play very different roles in (3): σq,t allows for slow-moving trends in

volatility, while h̃q,t allows for large shocks. Finally, to close the model we make the

following distributional assumptions on the initial conditions σ̃q,0, q = 1, .., q̄:

p(σ̃q,0|ρq, ω2
q ) =

 0 SV-UR

N (0, ω2
q/(1− ρ2

q)), i.i.d. across q SV-S
(11)

where the restriction under the SV-UR case is needed to obtain identification. In the

stationary case we have assumed that σ̃q,0 is drawn from the ergodic distribution.



This Version: August 6, 2012 8

2.1 The Gibbs-Sampler

The joint distribution of data and unobservables (parameters and latent variables)

is given by:

p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(λ1:q̄)p(ρ1:q̄|ω2

1:q̄)p(ω
2
1:q̄)p(θ), (12)

where p(y1:T |s1:T , θ) and p(s1:T |ε1:T , θ) come from the measurement and transition

equation, respectively, p(ε1:T |h̃1:T , σ̃1:T , θ) obtains from (3) and (4):

p(ε1:T |h̃1:T , σ̃1:T , θ) ∝
q̄∏
q=1

(
T∏
t=1

h̃
−1/2
q,t σq,t

)
exp

[
−

T∑
t=1

h̃q,tε
2
q,t/2σ

2
q,t

]
, (13)

p(h̃1:T |λ1:q̄) obtains from (5)

p(h̃1:T |λ1:q̄) =

q̄∏
q=1

T∏
t=1

(
2λq/2Γ(λq/2)

)−1
λ
λq/2
q h̃

(λq−2)/2
q,t exp(−λqh̃q,t/2), (14)

p(σ̃1:T |ω2
1:q̄) obtains from expression (8) and (11):

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄) ∝

q̄∏
q=1

(ω2
q )
−(T−1)/2exp

[
−

T∑
t=2

(σ̃q,t − ρqσ̃q,t−1)2/2ω2
q

]
p(σ̃q,1|ρq, ω2

q ),

(15)

where

p(σ̃q,1|ρq, ω2
q ) ∝


(ω2
q )
−1/2exp

(
− σ̃2

q,1

2ω2
q

)
, SV-UR

(ω2
q (1− ρ2

q))
−1/2exp

(
− σ̃2

q,1

2ω2
q (1−ρ2

q)

)
. SV-S

(16)

Finally, p(λ1:q̄) =
∏q̄
q=1 p(λq|λ), p(ω2

1:q̄) =
∏q̄
q=1 p(ω

2
q |ν, ω2).

The sampler consists of six blocks.

(1) Draw from p(θ, s1:T , ε1:T |h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished

in two steps:
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(1.1) Draw from the marginal p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ), where

p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T )

∝
[∫

p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ) · d(s1:T , ε1:T )
]
p(θ)

= p(y1:T |h̃1:T , σ̃1:T , θ)p(θ)

(17)

where

p(y1:T |h̃1:T , σ̃1:T , θ) =

∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)·d(s1:T , ε1:T )

is computed using the Kalman filter with (1) as the measurement equation

and (2) as transition equation, with

εt|h̃1:T , σ̃1:T ∼ N (0,∆t), (18)

where ∆t is a q̄× q̄ diagonal matrices with σ2
q,t · h̃−1

q,t on the diagonal. The

draw is obtained from a Metropolis-Hastings step.

(1.2) Draw from the conditional p(s1:T , ε1:T |θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ).

This is accomplished using the simulation smoother of Durbin and Koop-

man (2002).

(2) Draw from p(h̃1:T |θ, s1:T , ε1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished

by drawing from

p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄) ∝
q̄∏
q=1

T∏
t=1

h̃
(λq−1)/2
q,t exp(−

[
λq + ε2

q,t/σ
2
q,t

]
h̃q,t/2),

which implies [
λq + ε2

q,t/σ
2
q,t

]
h̃q,t|θ, ε1:T , σ̃1:T , λq ∼ χ2(λq + 1).

(3) Draw from p(λ1:q̄|h̃1:T , θ, s1:T , ε1:T , ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished by

drawing from

p(h̃1:T |λ1:q̄)p(λ1:q̄) ∝
∏q̄
q=1 ((λ/ν)ν Γ(ν))−1 [2λq/2Γ(λq/2)]−Tλ

Tλq/2+ν−1
q(∏T

t=1 h̃
(λq−2)/2
q,t

)
exp

[
−
(
ν
λ + 1

2

∑T
t=1 h̃q,t

)
λq

]
.

This is a non-standard distribution, hence the draw is obtained from a Metropolis-

Hastings step.
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(4) Draw from p(σ̃1:T |θ, s1:T , ε1:T , h̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished

by drawing from

p(ε1:T |h̃1:T , σ̃1:T , θ)p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)

using the algorithm developed by Kim et al. (1998), which we briefly describe

in appendix A.3.

(5) Draw from p(ω2
1:q̄, ρ1:q̄|σ̃1:T , θ, s1:T , ε1:T , h̃1:T , λ1:q̄, y1:T ) using

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(ω

2
1:q̄)p(ρ1:q̄|ω2

1:q̄) ∝
q̄∏
q=1

(ω2
q )
− ν+T−1

2
−1exp

[
−
νω2 +

∑T
t=2(σ̃q,t − ρqσ̃q,t−1)2

2ω2
q

]
p(σ̃q,1|ρq, ω2

q )p(ρq|ω2
q ),

(19)

where p(σ̃q,1|ρq, ω2
q ) is given by equation (16). In the SV-UR case ρq is fixed

to 1, and we can draw ω2
q from:

ω2
q |σ̃1:T , · · · ∼ IG

(
ν + T

2
,
1

2

(
νω2 +

T∑
t=2

(σ̃q,t − σ̃q,t−1)2 + σ̃2
q,1

))
, i.i.d. across q.

In the SV-S case the joint posterior of ρq, ω
2
q is non-standard because of the like-

lihood of the first observation p(σ̃1|ρq, ω2
q ). We therefore use the Metropolis-

Hastings step proposed by Chib and Greenberg (1994). Specifically, we use as

proposal density the standard Normal-Inverted Gamma distribution, that is,

ω2
q |σ̃1:T , . . . ∼ IG

(
ν+T−1

2 , 1
2

(
νω2 +

∑T
t=2 σ̃

2
q,t + v̄−1

ρ ρ̄2 − V̂ −1
q ρ̂2

q

))
,

ρq|ω2
q , σ̃1:T , . . . ∼ N

(
ρ̂q, ω

2
q V̂q

)
, i.i.d. across q,

where ρ̂q = V̂q

(
v̄−1
ρ ρ̄+

∑T
t=2 σ̃q,tσ̃q,t−1

)
, V̂q = (v̄−1

ρ +
∑T

t=2 σ̃
2
q,t−1)−1. We

then accept/reject this draw using the proposal density and the acceptance

ratio
p(σ̃1,ρ

(∗)
q ,ω

2 (∗)
q )I(ρ

(∗)
q )

p(σ̃1,ρ
(j−1)
q ,ω

2 (j−1)
q )I(ρ

(j−1)
q )

, with (ρ(j−1), ω
2 (j−1)
q ) and (ρ(∗), ω

2 (∗)
q ) being

the draw at the (j − 1)th iteration and the proposed draw, respectively.

3 The DSGE Model

The model considered is the one used in Smets and Wouters (2007), which is based

on earlier work by Christiano et al. (2005) and Smets and Wouters (2003). It is
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a medium-scale DSGE model, which augments the standard neoclassical stochastic

growth model by nominal price and wage rigidities as well as habit formation in

consumption and investment adjustment costs.

3.1 The Smets-Wouters Model

We begin by briefly describing the log-linearized equilibrium conditions of the Smets

and Wouters (2007) model. We deviate from Smets and Wouters (2007) in that we

detrend the non-stationary model variables by a stochastic rather than a deter-

ministic trend. This approach makes it possible to express almost all equilibrium

conditions in a way that encompasses both the trend-stationary total factor produc-

tivity process in Smets and Wouters (2007), as well as the case where technology

follows a unit root process. We refer to the model presented in this section as SW

model. Let z̃t be the linearly detrended log productivity process which follows the

autoregressive law of motion

z̃t = ρz z̃t−1 + σzεz,t. (20)

We detrend all non stationary variables by Zt = eγt+
1

1−α z̃t , where γ is the steady

state growth rate of the economy. The growth rate of Zt in deviations from γ,

denoted by zt, follows the process:

zt = ln(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t. (21)

All variables in the subsequent equations are expressed in log deviations from

their non-stochastic steady state. Steady state values are denoted by ∗-subscripts

and steady state formulas are provided in a Technical Appendix (available upon

request). The consumption Euler equation takes the form:

ct = − (1− he−γ)

σc(1 + he−γ)
(Rt − IEt[πt+1] + bt) +

he−γ

(1 + he−γ)
(ct−1 − zt)

+
1

(1 + he−γ)
IEt [ct+1 + zt+1] +

(σc − 1)

σc(1 + he−γ)

w∗L∗
c∗

(Lt − IEt[Lt+1]) , (22)

where ct is consumption, Lt is labor supply, Rt is the nominal interest rate, and πt is

inflation. The exogenous process bt drives a wedge between the intertemporal ratio
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of the marginal utility of consumption and the riskless real return Rt − IEt[πt+1],

and follows an AR(1) process with parameters ρb and σb. The parameters σc and

h capture the relative degree of risk aversion and the degree of habit persistence

in the utility function, respectively. The next condition follows from the optimality

condition for the capital producers, and expresses the relationship between the value

of capital in terms of consumption qkt and the level of investment it measured in terms

of consumption goods:

qkt = S′′e2γ(1 + βe(1−σc)γ)
(
it −

1

1 + βe(1−σc)γ
(it−1 − zt)

− βe(1−σc)γ

1 + βe(1−σc)γ
IEt [it+1 + zt+1]− µt

)
, (23)

which is affected by both investment adjustment cost (S′′ is the second derivative of

the adjustment cost function) and by µt, an exogenous process called “marginal ef-

ficiency of investment” that affects the rate of transformation between consumption

and installed capital (see Greenwood et al. (1998)). The latter, called k̄t, indeed

evolves as

k̄t =

(
1− i∗

k̄∗

)(
k̄t−1 − zt

)
+
i∗
k̄∗
it +

i∗
k̄∗
S
′′
e2γ(1 + βe(1−σc)γ)µt, (24)

where i∗/k̄∗ is the steady state ratio of investment to capital. µt follows an AR(1)

process with parameters ρµ and σµ. The parameter β captures the intertemporal

discount rate in the utility function of the households. The arbitrage condition

between the return to capital and the riskless rate is:

rk∗
rk∗ + (1− δ)

IEt[r
k
t+1] +

1− δ
rk∗ + (1− δ)

IEt[q
k
t+1]− qkt = Rt + bt − IEt[πt+1], (25)

where rkt is the rental rate of capital, rk∗ its steady state value, and δ the depreciation

rate. Capital is subject to variable capacity utilization ut. The relationship between

k̄t and the amount of capital effectively rented out to firms kt is

kt = ut − zt + k̄t−1. (26)

The optimality condition determining the rate of utilization is given by

1− ψ
ψ

rkt = ut, (27)
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where ψ captures the utilization costs in terms of foregone consumption. From the

optimality conditions of goods producers it follows that all firms have the same

capital-labor ratio:

kt = wt − rkt + Lt. (28)

Real marginal costs for firms are given by

mct = wt + αLt − αkt, (29)

where α is the income share of capital (after paying markups and fixed costs) in the

production function.

All of the equations so far maintain the same form whether technology has a

unit root or is trend stationary. A few small differences arise for the following two

equilibrium conditions. The production function is:

yt = Φp (αkt + (1− α)Lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t, (30)

under trend stationarity. The last term (Φp − 1) 1
1−α z̃t drops out if technology has

a stochastic trend, because in this case one has to assume that the fixed costs are

proportional to the trend. Similarly, the resource constraint is:

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut − I{ρz < 1} 1

1− α
z̃t, . (31)

The term − 1
1−α z̃t disappears if technology follows a unit root process. Government

spending gt is assumed to follow the exogenous process:

gt = ρggt−1 + σgεg,t + ηgzσzεz,t.

Finally, the price and wage Phillips curves are, respectively:

πt =
(1− ζpβe(1−σc)γ)(1− ζp)

(1 + ιpβe(1−σc)γ)ζp((Φp − 1)εp + 1)
mct

+
ιp

1 + ιpβe(1−σc)γ
πt−1 +

βe(1−σc)γ

1 + ιpβe(1−σc)γ
IEt[πt+1] + λf,t, (32)
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and

wt =
(1− ζwβe(1−σc)γ)(1− ζw)

(1 + βe(1−σc)γ)ζw((λw − 1)εw + 1)

(
wht − wt

)
− 1 + ιwβe

(1−σc)γ

1 + βe(1−σc)γ
πt +

1

1 + βe(1−σc)γ
(wt−1 − zt − ιwπt−1)

+
βe(1−σc)γ

1 + βe(1−σc)γ
IEt [wt+1 + zt+1 + πt+1] + λw,t, (33)

where ζp, ιp, and εp are the Calvo parameter, the degree of indexation, and the

curvature parameters in the Kimball aggregator for prices, and ζw, ιw, and εw are the

corresponding parameters for wages. The variable wht corresponds to the household’s

marginal rate of substitution between consumption and labor, and is given by:

wht =
1

1− he−γ
(
ct − he−γct−1 + he−γzt

)
+ νlLt, (34)

where νl characterizes the curvature of the disutility of labor (and would equal the

inverse of the Frisch elasticity in absence of wage rigidities). The mark-ups λf,t and

λw,t follow exogenous ARMA(1,1) processes

λf,t = ρλfλf,t−1 + σλf ελf ,t + ηλfσλf ελf ,t−1, and

λw,t = ρλwλw,t−1 + σλwελw,t + ηλwσλwελw,t−1,

respectively. Last, the monetary authority follows a generalized feedback rule::4

Rt = ρRRt−1 + (1− ρR)
(
ψ1(πt − π∗t ) + ψ2(yt − yft )

)
(35)

+ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+ rmt ,

where the flexible price/wage output yft obtains from solving the version of the

model without nominal rigidities (that is, Equations (22) through (31) and (34)),

and the residual rmt follows an AR(1) process with parameters ρrm and σrm . This

rule differs from the one in SW in that it has a time-varying inflation target, which

evolves according to:

π∗t = ρπ∗π
∗
t−1 + σπ∗επ∗,t, (36)

4We follow the specification in Del Negro and Eusepi (2011), while Aruoba and Schorfheide

(2010) assume that the inflation target also affects the intercept in the feedback rule.
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where 0 < ρπ∗ < 1 and επ∗,t is an iid shock. We follow Erceg and Levin (2003)

and model π∗t as following a stationary process, although our prior for ρπ∗ will force

this process to be highly persistent. We make this change as we include long-run

inflation expectations to the set of observables.

3.2 Observation equation, data, and priors

We use the method in Sims (2002) to solve the log-linear approximation of the

DSGE model. We collect all the DSGE model parameters in the vector θ, stack the

structural shocks in the vector εt, and derive a state-space representation for our

vector of observables yt, which is composed of the transition equation:

st = T (θ)st−1 +R(θ)εt, (37)

which summarizes the evolution of the states st, and of the measurement equations:

yt = Z(θ)st +D(θ), (38)

which maps the states onto the vector of observables yt, where D(θ) represents the

vector of steady state values for these observables. Specifically, the SW model is

estimated based on seven quarterly macroeconomic time series. The measurement

equations for real output, consumption, investment, and real wage growth, hours,

inflation, interest rates and long-run inflation expectations are given by:

Output growth = γ + 100 (yt − yt−1 + zt)

Consumption growth = γ + 100 (ct − ct−1 + zt)

Investment growth = γ + 100 (it − it−1 + zt)

Real Wage growth = γ + 100 (wt − wt−1 + zt)

Hours = l̄ + 100lt

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

, (39)

where all variables are measured in percent, π∗ and R∗ measure the steady state level

of net inflation and short term nominal interest rates, respectively and l̄ captures

the mean of hours (this variable is measured as an index).
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Appendix A.1 provides further details on the data. In our benchmark specifi-

cation we use data from 1964Q4 to 2011Q1. In Section 4.4 we consider a shorter

sample in which end the sample in 2004Q4, so that we exclude the great recession.

Table 1 shows the priors for the DSGE model parameters. These are based on

the priors used in Smets and Wouters (2007). Table 2 presents the posterior mean

for the standard parameters of the DSGE model for the different specifications with

Gaussian shocks, Student-t distributed shocks, stochastic volatility, and both.

4 Results

4.1 Evidence against Gaussianity

In the introduction we showed evidence of rare large shocks and time varying volatil-

ity based on historical shocks extracted from standard gaussian estimation. In this

section we provide quantitative evidence in favor of fat-tailed shocks, allowing for the

possibility of low-frequency fluctuations in volatility. First, we assess the improve-

ment in fit obtained by allowing for Student-t distributed shocks. Table 3 shows the

log marginal likelihood for models with different assumptions on the shocks distri-

bution of the shocks. We consider four different combinations: i) Gaussian shocks

with constant volatility (baseline), ii) time-varying volatility (SV henceforth), iii)

Student-t distributed shocks (St-t henceforth) but constant volatility, and iv) both

Student-t shocks and time-variation in volatility. We consider specifications with dif-

ferent prior means for the degrees of freedom λ of the Student-t distribution (with

λq = ∞ being the gaussian case). The three priors capture three different views

of the world on the importance of fat tails. The first prior, with λ̄ = 15, captures

the view that the world is not quite Gaussian, but not too far from Gaussianity

either. The second prior (λ̄ = 9) embodies the idea that the world is quite far from

Gaussian, yet not too extreme. The last prior (λ̄ = 6) stands for a model with quite

heavy tails. The following table provides a quantitative feel for what these different

means (λ̄) imply in terms of the model’s ability to generate fat tailed shocks. Specif-
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ically, the table shows the number of shocks larger (in abs. value) than x standard

deviations per 200 periods, which is the size of our sample.

λ, x: 3 4 5

∞ .54 .012 1e−4

15 1.79 .23 .03

9 2.99 .62 .15

6 4.80 1.42 .49

In the middle panel of Table 3 we consider the three different priors with four degree

of freedom in the Gamma distribution. These priors are relatively informative and

the difference in the views of the world hence quite stark. In the lower panel we

consider the same three prior means but now with only one degrees of freedom.

These priors are quite flat, and hence the difference among them in not as stark.

The table shows that the data strongly favor Student-t distributed shocks. The

fit also increases when we consider stochastic volatility instead of constant volatility.

If we were to consider only Student-t distributed shocks or stochastic volatility, but

not both, the data seems to prefer the former, as the marginal likelihood increases

by 150 log points in this case, compared to an increase of 67 log points for the latter.

But the fit is best when we consider both of these features, indicating that both low

frequency changes in volatility and fat tails are features of the data. Importantly,

whenever the prior on the degrees of freedom of the Student-t distribution is (rela-

tively) tight, the fit increases the lower the prior mean for the degrees of freedom.

Whenever the prior is loose, the difference in fit across priors naturally shrinks, and

all three priors perform approximately the same, although the λ̄ = 15 prior performs

slightly better than the others. Importantly, as we show below, with a loose prior

the posterior estimates for the degrees is approximately the same (and very low for

some shocks), regardless of the prior.

Marginal likelihoods are difficult to compute, especially for these models (see the

appendix). Therefore we also show the posterior distribution of λ obtained under the

(almost) flat prior. Specifically, Table 4 shows the posterior mean and the posterior

90% bands for the degrees of freedom for each shock in the specifications with and
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without stochastic volatility. In the case without stochastic volatility component

the posterior means are mostly below or relatively close to 6, with the exception of

the price markup. Furthermore, the posterior 90% bands around the median are all

fairly tight, with the 95th percentile well below 15 (again with the exception of the

price markup, and only in the case with prior mean of 9 or 15). Once we introduce

stochastic volatility, the posterior means for some of the shocks increase considerably.

This finding points to the fact that for a proper assessment of the importance of

fat tails we need to allow for low-frequency time variation in volatility. In fact, for

some of the shocks, the stochastic volatility explains the data fairly well without the

need for fat tails. However, for several of the shocks the posterior means are still

fairly low and with tight bands, confirming that adding stochastic volatility is not

enough to fully explain the data, and fat tails still play an important role. Note that

the location of the prior (λ̄ equal to 6, 9, or 15) matters little for the shocks with

a low posterior mean, confirming that the choice of the prior mean is not crucial to

determine the posterior with respect to this.

It is interesting to notice that the shocks with the lowest posterior degrees of

freedom are those affecting the discount rate (b), TFP productivity (z), the marginal

efficiency of investment (µ) and wage markup (λw). The shock related to monetary

policy (deviations from the systematic response to the economy, rm) exhibit a poste-

rior distribution for the degrees of freedom concentrated in very low levels when we

do not allow for stochastic volatility, but once we allow for stochastic volatility the

posterior shifts to values well above the prior mean. This suggests that the shocks

related to monetary policy exhibit a pattern that is better explained by stochastic

volatility, consistent with a period in the late 70s and early 80s in which shocks

related to monetary policy were especially volatile.

Figure 2 shows the smoothed shocks and the “tamed” version of these shocks

(that is, the counterfactual shocks after shutting down the Student-t component –

see below) for both the discount rate and policy shocks for the estimation without

stochastic volatility. On the left plots we consider the absolute value of the shock

histories, much like in Figure 1, while on the right side we consider the absolute
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value of the shocks once we shut down the Student-t component. Consistent with

the above analysis, the right side plots look much more consistent with a Gaussian

distribution than those on the left side, confirming the role of fat tails. However,

notice that for the policy shock there is still a cluster of higher variance innovations

in the late 70s and early 80s, suggestive that stochastic volatility has an important

role in this type of shocks.

4.2 Do Fat Tails Matter for the Macroeconomy?

We have shown that quite a few important shocks in the SW model have fat tails

– their estimated degrees of freedom are low. But what does this mean in terms

of business cycle fluctuations? This section tries to provide a quantitative answer

to this question. We do so by performing a counterfactual experiment. Recall that

from equation (3)

εq,t = σq,th̃
−1/2
q,t ηq,t.

We compute the posterior distribution of εq,t (the smoothed shocks) and h̃q,t. Next,

we purge εq,t from the Student-t component, that is, we compute

ε̃q,t = σq,tηq,t,

and compute counterfactual histories had the shocks been ε̃q,t instead of εq,t. All

these counterfactuals are computed for the best fitting model – that with stochastic

volatility and, for the Student-t, a prior for λ centered at 6 with one degree of

freedom.

The left panels of Figure 3 shows these counterfactual histories for output, con-

sumption growth, and hours (solid black lines are the actual data). The right panel

uses actual and counterfactual histories to compute a rolling window standard de-

viation, where each window contains the prior 20 quarters as well as the following

20 quarters, for a total of 41 quarters. These rolling window standard deviations

are commonly used measured of time-variation in the volatility of the series. The
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difference between actual and counterfactual standard deviations measures the ex-

tent to which the change in volatility is accounted for by rare shocks.5 For all plots

the pink solid lines are the median counterfactual paths while the pink dashed lines

represent the 90% bands.

The left panels show that rare shocks seem to account for a non negligible part

of the fluctuation variables. For output growth, the Student-t component accounted

for about half of the contraction in output growth in the “great recession”. If the

fat tail component were absent the “Great Recession” would be no worse than the

average recession in the sample. Another example is that in the sharp contraction

in output growth in 1980, about 1.5 percentage points was accounted the Student-t

component of the shocks. In general, without rare shocks all recession would be of

roughly the same magnitude. Since the fat tails accounted for a significant part of

the large fluctuations in output, the rolling window standard deviation shown in the

top right panel shows that the Student-t component explains a non-negligible part

of changes in the realized volatility in the data. One can interpret this evidence as

saying that the 70s and early 80s were more volatile than the Great Moderation

period partly because rare shocks took place. For example at the peak of the

volatility in 1978, the data standard deviation is about 1.25, but once we shut

down the Student-t component it drops to 1.05, which is a reduction of about 16%

in volatility.

If we turn to the evolution of consumption growth (middle panels) then it is even

more clear that a substantial part of peaks and troughs (especially the latter ones)

have a strong contribution from rare but large shocks. In the “Great Recession”

the contraction in consumption growth would be a more modest 1.5% contraction,

rather than the nearly 2.5% contraction observed. And the same can be said about

the contractions in 1975 and 1980. Given this it is not surprising that the Student-t

component accounts for about 26% of the peak volatility in the late 1970s.

Finally, in the lower panel we have the same experiments for hours worked (in

5The distribution of h̃q,t is non-time varying. However, since large shocks occur rarely, they may

account for changes in the rolling window volatility.
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logs). In the “Great Recession” the Student-t component accounted for about 2

percentage points decline in hours worked.

4.3 Student-t shocks and inference about time-variation in volatil-

ity

From the marginal likelihood analysis it is clear that the stochastic volatility has a

role in explaining the data. Relative to the simple constant volatility and gaussian

shocks it improves fit by as much as 67 log points, consistent with the work of

Justiniano and Primiceri (2008). Once we add fat tails to the model the additional

improvement due to stochastic volatility is much smaller, but is nevertheless in there.

We now discuss the extent to which accounting for fat tails makes us reevaluate the

role of stochastic volatility in explaining the data and in particular the volatility in

the data.

Figure 4 shows the stochastic volatility component for the discount rate and

policy shocks. On the left panel we show these for the estimation with stochastic

volatility and gaussian shocks, while on the right panels we consider both stochastic

volatility and Student-t shocks. The black lines correspond to the absolute value

of the shocks, as in Figure 1, and the red lines correspond to the evolution of the

stochastic volatility component, σqσq,t. Solid lines correspond to the median and

dot/dashed lines to the 90% bands around the median.

For the discount rate shock, once we account for the fat tails, the stochastic

volatility component captures only the slow moving trend in the volatility of the

shock path. For the policy shock, in the lower panels, there is hardly any difference

in the stochastic volatility component. In this case it seems to capture most of

the movement in the shock volatility — consistent with the fact that the estimated

degrees of freedom of the Student-t component for this shock is much higher once

we allow for stochastic volatility (shown in Table 4).

With stochastic volatility, the model-implied volatility can change over time (see

Figure 5 of Justiniano and Primiceri (2008)). Figure 5 shows the model-implied
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volatility of output and consumption growth, as measured by the unconditional

standard deviation of the series computed keeping the estimated σq,t constant for

each t. In the top panel, the black lines show this volatility for the estimation with

both stochastic volatility and Student-t components, while the red line shows this

measure for the estimation with stochastic volatility but gaussian shocks. Solid line

is the posterior median and the dashed lines correspond to the 90% bands around

the median.

For both variables shown the model-implied volatility is mostly lower when we

do not account for fat tails, but it is not simply a parallel shift, affecting all periods

in the same way. The difference seems to be more substantial in the periods with low

volatility, than in the periods with high volatility. Indeed, in the case of consumption

growth the unconditional volatility path is very similar for the two estimations in the

first part of the sample up to 1981. For hours worked (not shown in the figure) we

find a smaller difference across estimations, but there is nevertheless a non-negligible

change in the model-implied volatility.

We now ask whether the evidence concerning the “great moderation” is influ-

enced by the presence of Student-t shocks. The middle panel of Figure 5 shows the

posterior histogram of the ratio of the volatility in 1981 relative to the volatility in

1994 for the three variables. It is clear that most of the probability mass is above

one, confirming the high probability of a fall in volatility between 1981 and 1994.

However, the posterior distribution for this ratio in the estimation with Student-t

shocks for output growth is shifted to the left relative to the case with gaussian

shocks (indeed the median is 1.7 in the former, compared to 2.5 in the latter). This

same pattern is also evident for the consumption growth, shown in the the right

part of the middle panel.

As a result of the “great recession” there has been an increase in volatility

in many macroeconomic variables since 2008. This seems to be confirmed by the

increase in the unconditional volatility of output and consumption growth in the

top panel of Figure 5. The question then is how much is it due to rare large shocks

or to a permanent increase in volatility. The bottom panel of the figure shows the
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posterior histogram of the ratio of volatility in 2011 over the volatility in 2005.

Both estimations with and without Student-t shocks have most mass above one.

However, notice that the histogram is more concentrated around one in the case

with Student-t shocks. Indeed, the probability of the ratio being below one shifts

from 4.6% to 12% in the case of output, and from 8.2% to 21% in the case of

consumption growth. This confirms that an important part of the recent increase in

volatility for these variables is due to rare shocks, as oppose to a persistent change

in volatility, although one cannot exclude that possibility.

4.4 Sub-Sample Excluding the Great Recession

The previous sections described how much the Student-t component is important

to account for the business cycle properties of the data. One thing that stands out

is that recent increase in volatility is partially explained by rare large shocks. One

could then raise the possibility that maybe the data prefers a specification with

Student-t component only because of the later part of the sample, associated with

the “great recession”. In order to clarify this, we also estimate the model for the sub-

sample ending in the fourth quarter of 2004 (the same sample used in Justiniano and

Primiceri (2008)). Table 5 shows the marginal likelihood for all the specifications

considered above but estimated on the shorter sub-sample.

The results that we extract from this table are aligned with our results for the full

sample. Namely, adding a Student-t component improves the fit, whether we also

consider stochastic volatility or not. If we were to have only Student-t or stochastic

volatility, but not both, the data strongly favors the Student-t specification (the

marginal likelihood is higher by 72 log-points). Interestingly, the lower the prior

mean for the degrees of freedom the higher the marginal likelihood is. Importantly,

this is true regardless of how tight the prior is or whether we also include a stochastic

volatility component. This last part is slightly different from the full sample, for

which the best fitting specification includes a prior mean of 15 for the degrees of

freedom, as opposed to 6 in the smaller sub-sample. This means that, if anything,

the shorter sample contains stronger evidence in support of rare but large shocks.
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These results are not surprising given our previous discussion of the counter-

factual analysis shown in Figure 3. The contribution of the Student-t component

to explain the path of the series shown or their volatility is visible throughout the

sample. The “great recession” is just one instance of the evidence in favor rare large

shocks, while there are several such instances in the 1970s, and so our inference

about whether we should include the Student-t component is not much dependent

on this last part of the sample. Consistent with the above, the posterior distribu-

tions of the degrees of freedom for the different shocks for the shorter sample (not

shown) are in line with the ones for the full sample, shown in Table 4.

5 Conclusions

To be written
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A Appendix

A.1 Data

The data set is obtained from Haver Analytics (Haver mnemonics are in italics).

We compile observations for the variables that appear in the measurement equa-

tion (39). Real GDP (GDPC), the GDP price deflator (GDPDEF), nominal personal

consumption expenditures (PCEC), and nominal fixed private investment (FPI) are

constructed at a quarterly frequency by the Bureau of Economic Analysis (BEA),

and are included in the National Income and Product Accounts (NIPA).

Average weekly hours of production and nonsupervisory employees for total pri-

vate industries (PRS85006023), civilian employment (CE16OV), and civilian nonin-

stitutional population (LNSINDEX) are produced by the Bureau of Labor Statistics

(BLS) at the monthly frequency. The first of these series is obtained from the Estab-

lishment Survey, and the remaining from the Household Survey. Both surveys are

released in the BLS Employment Situation Summary (ESS). Since our models are

estimated on quarterly data, we take averages of the monthly data. Compensation

per hour for the nonfarm business sector (PRS85006103) is obtained from the Labor

Productivity and Costs (LPC) release, and produced by the BLS at the quarterly

frequency.

The long-run inflation forecasts are obtained from the Blue Chip Economic In-

dicators survey and the Survey of Professional Forecasters (SPF) available from the

FRB Philadelphia. Long-run inflation expectations (average CPI inflation over the

next 10 years) are available from 1991:Q4 onwards. Prior to 1991:Q4, we use the

10-year expectations data from the Blue Chip survey to construct a long time series

that begins in 1979:Q4. Since the Blue Chip survey reports long-run inflation ex-

pectations only twice a year, we treat these expectations in the remaining quarters

as missing observations and adjust the measurement equation of the Kalman filter

accordingly.

Last, the federal funds rate is obtained from the Federal Reserve Board’s H.15
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release at the business day frequency, and is not revised. We take quarterly averages

of the annualized daily data.

All data are transformed following Smets and Wouters (2007). Specifically:

Output growth = LN((GDPC)/LNSINDEX) ∗ 100

Consumption growth = LN((PCEC/GDPDEF )/LNSINDEX) ∗ 100

Investment growth = LN((FPI/GDPDEF )/LNSINDEX) ∗ 100

Real Wage growth = LN(PRS85006103/GDPDEF ) ∗ 100

Hours = LN((PRS85006023 ∗ CE16OV/100)/LNSINDEX) ∗ 100

Inflation = LN(GDPDEF/GDPDEF (−1)) ∗ 100

FFR = FEDERAL FUNDS RATE/4

Long-run inflation expectations πO,40
t are therefore measured as

πO,40
t = (10-YEAR AVERAGE CPI INFLATION FORECAST− 0.50)/4.

where .50 is the average difference between CPI and GDP annualized inflation, and

where we divide by 4 since the data are expressed in quarterly terms.

A.2 Marginal likelihood

The marginal likelihood is the marginal probability of the observed data, and is

computed as the integral of (12) with respect to the unobserved parameters and

latent variables:

p(y1:T ) =
∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)

p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω

2
1:q̄)p(θ)

d(s1:T , ε1:T , h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, θ),

=
∫
p(y1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2

1:q̄)

p(λ1:q̄)p(ω
2
1:q̄)p(θ)d(h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄, θ)

(40)

where the quantity

p(y1:T |h̃1:T , σ̃1:T , θ) =
∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)

p(ε1:T |h̃1:T , σ̃1:T , θ) · d(s1:T , ε1:T )
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is computed at step 1a of the Gibb-sampler described above.

We obtain the marginal likelihood using Geweke (1999)’s modified harmonic

mean method. If f(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄) is any distribution with support con-

tained in the support of the posterior density such that∫
f(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄) · d(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄) = 1,

it follows from the definition of the posterior density that:

1
p(y1:T ) =

∫ f(θ,h̃1:T ,σ̃1:T ,λ1:q̄ ,ρ1:q̄ ,ω2
1:q̄)

p(y1:T |h̃1:T ,σ̃1:T ,θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)

p(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄|y1:T ) · d(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω

2
1:q̄)

We follow Justiniano and Primiceri (2008) in choosing

f(θ, h̃1:T ) = f(θ) · p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω

2
1:q̄), (41)

where f(θ) is a truncate multivariate distribution as proposed by Geweke (1999).

Hence we approximate the marginal likelihood as:

p̂(y1:T ) =

 1

nsim

nsim∑
j=1

f(θj)

p(y1:T |h̃j1:T , σ̃
j
1:T , θ

j)p(θj)

−1

(42)

where θj , h̃j1:T , and σ̃j1:T are draws from the posterior distribution, and nsim is the

total number of draws. We are aware of the problems with (41), namely that it does

not ensure that the random variable

f(θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄)

p(y1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)p(σ̃1:T |ω2
1:q̄)p(λ1:q̄)p(ω2

1:q̄)p(θ)

has finite variance. Nonetheless, like Justiniano and Primiceri (2008) we found that

this method delivers very similar results across different chains.

A.3 Drawing the stochastic volatilities

We draw the stochastic volatilities using the procedure in Kim et al. (1998), which

we briefly describe. Taking squares and then logs of (3) one obtains:

ε∗q,t = 2σ̃q,t + η∗q,t (43)
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where

ε∗q,t = log(σ−2
q h̃q,tε

2
q,t + c), (44)

c = .001 being an offset constant, and η∗q,t = log(η2
q,t). If η∗q,t were normally dis-

tributed, σq,1:T could be drawn using standard methods for state-space systems.

In fact, η∗q,t is distributed as a log(χ2
1). Kim et al. (1998) address this problem

by approximating the log(χ2
1) with a mixture of normals, that is, expressing the

distribution of η∗q,t as:

p(η∗q,t) =
K∑
k=1

π∗kN (m∗k − 1.2704, ν∗ 2
k ) (45)

The parameters that optimize this approximation, namely {π∗k,m∗k, ν∗k}Kk=1 and K,

are given in Kim et al. (1998). Note that these parameters are independent of the

specific application. The mixture of normals can be equivalently expressed as:

η∗q,t|ςq,t = k ∼ N (m∗k − 1.2704, ν∗ 2
k ), P r(si,t = k) = π∗k. (46)

Hence step (4) of the Gibbs sampler actually consists in two steps:

(4.1) Draw from p(ς1:T |σ̃1:T , ε1:T , h̃1:T , s1:Tλ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ) using (45) for each q.

Specifically:

Pr{ςq,t = k|σ̃1:T , ε1:T , h̃1:T . . . } ∝ π∗kν−1
k exp

[
− 1

2ν∗ 2
k

(η∗q,t −m∗k + 1.2704)2

]
.

(47)

where from (43) η∗q,t = ε∗q,t − 2σ̃q,t.

(4.2) Draw from p(σ̃1:T |ς1:T , ε1:T , h̃1:T , s1:Tλ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ) using Durbin and Koop-

man (2002), where (43) is the measurement equation and (8) is the transition

equation.

Note that in principle we should make it explicit that we condition on ς1:T in the

other steps of the Gibbs sampler as well. In practice, all other conditional distribu-

tions do not depend on ς1:T , hence we omit the term for simplicity.
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Table 1: Priors for the Medium-Scale Model

Density Mean St. Dev. Density Mean St. Dev.

Policy Parameters

ψ1 Normal 1.50 0.25 ρR Beta 0.75 0.10

ψ2 Normal 0.12 0.05 ρrm Beta 0.50 0.20

ψ3 Normal 0.12 0.05 σrm InvG 0.10 2.00

Nominal Rigidities Parameters

ζp Beta 0.50 0.10 ζw Beta 0.50 0.10

Other “Endogenous Propagation and Steady State” Parameters

α Normal 0.30 0.05 π∗ Gamma 0.75 0.40

Φ Normal 1.25 0.12 γ Normal 0.40 0.10

h Beta 0.70 0.10 S′′ Normal 4.00 1.50

νl Normal 2.00 0.75 σc Normal 1.50 0.37

ιp Beta 0.50 0.15 ιw Beta 0.50 0.15

r∗ Gamma 0.25 0.10 ψ Beta 0.50 0.15

ρs, σs, and ηs

ρz Beta 0.50 0.20 σz InvG 0.10 2.00

ρb Beta 0.50 0.20 σb InvG 0.10 2.00

ρλf Beta 0.50 0.20 σλf InvG 0.10 2.00

ρλw Beta 0.50 0.20 σλw InvG 0.10 2.00

ρµ Beta 0.50 0.20 σµ InvG 0.10 2.00

ρg Beta 0.50 0.20 σg InvG 0.10 2.00

ηλf Beta 0.50 0.20 ηλw Beta 0.50 0.20

ηgz Beta 0.50 0.20

Notes: Note that β = (1/(1 + r∗/100)). The following parameters are fixed in Smets and Wouters (2007):

δ = 0.025, g∗ = 0.18, λw = 1.50, εw = 10.0, and εp = 10. The columns “Mean” and “St. Dev.” list the

means and the standard deviations for Beta, Gamma, and Normal distributions, and the values s and ν

for the Inverse Gamma (InvG) distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The effective prior is

truncated at the boundary of the determinacy region. The prior for l̄ is N (−45, 52).
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Table 2: Posterior Means of the DSGE Model Parameters

Baseline SV St-t St-t+SV

α 0.150 0.149 0.132 0.123

α 0.150 0.149 0.132 0.145

ζp 0.728 0.771 0.779 0.722

ιp 0.311 0.366 0.318 0.354

Φ 1.582 1.587 1.546 1.551

S′′ 4.623 5.588 5.164 4.272

h 0.605 0.603 0.540 0.533

ψ 0.719 0.690 0.833 0.830

νl 2.070 2.435 2.366 2.413

ζw 0.800 0.824 0.830 0.762

ιw 0.542 0.503 0.571 0.539

β 0.209 0.209 0.183 0.173

ψ1 1.965 1.899 1.989 2.107

ψ2 0.082 0.100 0.088 0.079

ψ3 0.244 0.201 0.205 0.199

π∗ 0.945 1.014 1.007 0.904

σc 1.272 1.294 1.293 1.226

ρ 0.834 0.868 0.859 0.846

γ 0.308 0.337 0.340 0.327

l̄ -45.437 -44.488 -44.858 -43.753

ρg 0.978 0.983 0.991 0.982

ρb 0.752 0.800 0.828 0.780

ρµ 0.767 0.797 0.812 0.892

ρz 0.994 0.990 0.977 0.969

ρλf 0.804 0.796 0.831 0.824

ρλw 0.976 0.949 0.885 0.926

ρrm 0.152 0.216 0.210 0.219

σg 2.888 2.379 0.190 0.054

σb 0.125 0.080 0.074 0.052

σµ 0.422 0.317 0.226 0.058

σz 0.492 0.354 0.504 0.235

σλf 0.164 0.138 0.074 0.054

σλw 0.280 0.210 0.100 0.052

σrm 0.228 0.126 0.059 0.044

ηgz 0.793 0.783 0.765 0.796

ηλf 0.683 0.698 0.723 0.696

ηλw 0.939 0.900 0.813 0.825

Notes: We use a prior mean of 6 degrees of freedom for the Student-t distributed component when there is

no stochastic volatility, and a prior mean of 15 degrees of freedom when we also include stochastic volatility.

The stochastic volatility component assumes a prior mean for the size of the shocks to volatility of (0.01)2.



This Version: August 6, 2012 34

Table 3: Marginal Likelihoods

Without Stochastic Volatility With Stochastic Volatility

Gaussian shocks

-1117.8 -1050.9

Student-t distributed shocks, prior with 4 degrees of freedom

λ = 15 -1004.1 -983.1

λ = 9 -985.9 -969.0

λ = 6 -974.6 -965.5

Student-t distributed shocks, prior with 1 degree of freedom

λ = 15 -982.9 -962.9

λ = 9 -972.7 -964.3

λ = 6 -968.0 -963.7

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student-t distribution.
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Table 4: Posterior of the Student’s t Degrees of Freedom

Without Stochastic Volatility With Stochastic Volatility

λ = 15 λ = 9 λ = 6 λ = 15 λ = 9 λ = 6

g 8.0 6.7 6.1 16.7 13.7 11.6
(2.4,14.0) (2.4,11.2) (2.4,9.7) (3.8,30.9) (4.1,24.1) (3.9,19.4)

b 4.1 4.0 3.9 6.4 6.2 5.7
(2.1,6.0) (2.1,5.8) (2.2,5.6) (2.3,10.7) (2.3,10.0) (2.4,9.0)

µ 7.4 6.6 6.1 8.3 7.3 6.5
(2.4,12.6) (2.4,10.8) (2.4,10.0) (2.5,14.7) (2.5,12.5) (2.5,10.6)

z 4.2 4.0 3.9 4.6 4.3 4.0
(1.8,6.4) (1.8,6.0) (1.9,5.9) (1.7,7.6) (1.8,6.7) (1.8,6.1)

λf 10.8 9.0 7.7 19.5 15.2 12.6
(2.8,20.1) (2.8,15.4) (2.8,12.7) (4.7,35.3) (4.6,26.2) (4.4,20.9)

λw 7.4 6.8 6.3 6.1 5.8 5.4
(2.6,12.3) (2.6,11.1) (2.5,10.0) (2.7,9.5) (2.6,8.9) (2.6,8.3)

rm 2.8 2.7 2.7 17.1 13.5 11.1
(1.6,3.9) (1.6,3.8) (1.6,3.7) (4.0,31.7) (3.9,23.7) (3.6,18.6)

Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter.
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Table 5: Marginal Likelihoods, Sample Ending in 2004Q4

Constant Volatility Stochastic Volatility

Gaussian shocks

-962.8 -926.7

Student-t distributed shocks, prior with 4 degrees of freedom

λ = 15 -878.4 -847.9

λ = 9 -866.8 -842.2

λ = 6 -853.9 -835.0

Student-t distributed shocks, prior with 1 degree of freedom

λ = 15 -860.3 -841.1

λ = 9 -858.6 -837.8

λ = 6 -854.6 -830.7

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student-t distribution.
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Figure 1: Smoothed Shocks under Gaussianity (Absolute Value, Standardized)
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Notes: The solid line is the median, and the dashed lines are the posterior 90% bands. The vertical shaded

regions identify NBER recession dates.
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Figure 2: Shocks and “Tamed” Shocks (Absolute Value, Standardized)
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lines are the posterior 90% bands. Shocks are expressed in units of the standard deviation σq . The vertical

shaded regions identify NBER recession dates.
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Figure 3: Counterfactual evolution of output, consumption and hours worked when

the Student-t distributed component is turned off, estimation with Student-t dis-

tributed shocks and stochastic volatility.
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Figure 4: Shocks (absolute values) and smoothed stochastic volatility component,

σqσq,t
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lines are the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the

stochastic volatility component.
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Figure 5: Time-Variation in the unconditional variance of output and consumption;

models estimated with and without the Student-t distributed component.
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Notes: Black line in the top panel is the unconditional variance in the estimation with both stochastic

volatility and Student-t components, while the red line is the unconditional variance in the estimation

with stochastic volatility component only. On the middle panel the black bars correspond to the posterior

histogram of the ratio of volatility in 1981 over the variance in 1994 for the estimation with both stochastic

volatility and Student-t components, while the red bars are for the estimation with with stochastic volatility

component only. The lower panel replicates the same analysis as in the middle panel but for the ratio of

volatility in 2011 over the variance in 2005.
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