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Abstract

We develop a model of banking industry dynamics to study the relation between
commercial bank market structure, risk taking, bank failure, and capital/liquidity re-
quirements. We assume Cournot competition where dominant banks can interact with
many small competitive fringe banks. A nontrivial size distribution of banks arises out
of endogenous entry and exit. The paper extends our previous work by letting banks
accumulate securities like treasury bills and to undertake short-term borrowing when
there are cash flow shortfalls. This allows us to quantify how capital requirements affect
lending and analyze the effects of size-dependent capital regulation. Further, it allows
us to study whether the impact of Fed policy on lending behavior is stronger for banks
with less liquid balance sheets (where liquidity is measured by the ratio of securities to
loans plus securities). We find that a 33% rise in capital requirements leads to a small
rise in loan interest rates but over a 50% drop in bank exit rates and taxes/gdp used to
pay for deposit insurance. Moreover, the increase in interest rates results in a higher
default frequency (more than double) as well as lower GDP (a reduction of about 1%).

1 Introduction

Capital and liquidity requirements are intended to ensure that banks are not making invest-
ments that increase the risk of failure and that they have enough capital to sustain operating

∗The authors wish to thank Gianni DeNicolo and Skander Van Den Heuvel, as well as seminar participants
at the Board of Governors, University of Maryland, and the Conference on Money and Markets at the
University of Toronto for helpful comments.
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losses while still honoring withdrawals. In this paper we develop a structural model of bank-
ing industry dynamics to attempt to quantify the relation between commercial bank market
structure, risk taking, bank failure, and capital/liquidity requirements.

While we endogenized market structure in an earlier paper (Corbae and D’Erasmo [9]), we
limited the asset side of the bank balance sheet to loans and the liabilities side to deposits.
While these are clearly the largest components of each side of the balance sheet of U.S.
banks, this simplification does not admit ways for banks to insure themselves at a cost
through holdings of securities like T-bills and borrowings in the interbank market. In this
paper, we extend the portfolio of bank assets from the prior paper to include securities like
treasury bills and to undertake short-term borrowing when there are cash flow shortfalls.
Further we assume that banks are randomly matched with with a quantity of deposits and
that that this process follows a markov process which is independently distributed across
banks. Thus, we add liquidity shocks to the model of the first paper.

At the end of the period, banks can choose to exit if their net charter value is less than
what they would obtain after repaying deposits and their net securities. The exit value takes
into account that there is limited liability. To keep the state space reasonable in our original
environment, banks were not allowed to hold net securities and the exit decision depended
only on ex-post profits and the cost of issuing equity. In this extension, banks can use a
positive stock of net securities as a buffer and borrow (whenever possible) to avoid being
liquidated or issuing “expensive” equity. Thus, the extension allows us to consider banks
undertaking precautionary savings in the face of idiosyncratic shocks as in Huggett [16], but
with a strategic twist. Further it allows us to study questions like those posed in Kashyap
and Stein [17]; whether the impact of Fed policy on lending behavior is stronger for banks
with less liquid balance sheets (where liquidity is measured by the ratio of net securities
to loans plus net securities). A benefit of our structural framework is that we can conduct
policy counterfactuals. For instance, we can assess the quantitative impact on borrower
default frequencies and bank failure of a rise in capital requirements like that proposed in
Basel III. Capital and liquidity requirements ensure that banking institutions are not making
investments that increase the risk of default and that banks have enough capital to sustain
operating losses while still honoring withdrawals.

The computation of this model is a nontrivial task. In an environment with aggregate
shocks, all equilibrium objects, such as value functions and prices, are a function of the
distribution of banks. The distribution of banks is an infinite dimensional object and it
is computationally infeasible to include it as a state variable. Thus, we solve the model
using an extension of the algorithm proposed by Krusell and Smith [18] or Farias et. al. [13]
adapted to this environment. This entails approximating the distribution of banks by a finite
number of moments. We use the mean asset and deposit levels of fringe banks joint with
the asset level of the big bank since the dominant bank is an important player in the loan
market. Furthermore, when making loan decisions, the big bank needs to take into account
how changes in its behavior affects the total loan supply of fringe banks. This reaction
function also depends on the industry distribution. For the same reasons as stated above,
in the reaction function we approximate the behavior of the fringe segment of the market
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with the dynamic decision rules (including entry and exit) of the “average” fringe bank, i.e.
a fringe bank that holds the mean asset and deposit levels.1

Some related literature follows. Van Den Heuvel [22] was one of the first quantitative
general equilibrium models to study the welfare impact of capital requirements with perfect
competition. Constant returns and perfect competition implies that there is an indeterminate
distribution of bank sizes in his paper so he does not examine the differential effect on big and
small banks. More recent quantitative general equilibrium papers by Gertler and Kiyotaki
[14] and Cociuba et. al. [7] consider the effects of credit policies and macro prudential
policies on financial intermediation and risk taking incentives with an indeterminate size
distribution. In a paper more closely related to ours, DeNicolo et. al. [8] study the bank
decision problem in a more general model than ours. On the other hand, since they study
only a decision problem, they do not consider the impact of such policies on interest rates
on loans, the equilibrium bank size distribution, etc.

The paper is organized as follows. While we have documented a large number of banking
facts that are relevant to the current paper in our previous work [9], Section 2 documents
a new set of banking data facts relevant to this paper. Section 3 lays out a simple model
environment to study bank risk taking and loan market competition. Section 4 describes a
markov perfect equilibrium of that environment. Section 5 discusses how the preference and
technology parameters are chosen and section 6 provides results for the simple model. Section
7 conducts two counterfactuals: (i) one experiment assesses the effects of an increase in bank
capital requirements on business failures and banking stability; and (ii) another experiment
assesses the differences in predictions from a model which assumes perfect competition.
Section 8 concludes and lists a set of extensions to the simple model which we are currently
pursuing.

2 Banking Data Facts

In our previous paper [9], we documented the following facts for the U.S. using data from
the Consolidated Report of Condition and Income (known as Call Reports) that insured
banks submit to the Federal Reserve each quarter.2. Entry is procyclical and exit by failure
is countercyclical (correlation with detrended GDP equal to 0.62 and −0.25, respectively).
Almost all entry and exit is by small banks. Loans and deposits are procyclical (correlation
with detrended GDP equal to 0.58 and 0.10, respectively). Bank concentration has been
rising; the top 4 banks have 35% of the loan market share. There is evidence of imperfect
competition: the net interest margin is 4.6%; markups exceed 70%; the Lerner Index exceeds
35%; the Rosse-Panzar H statistic (a measure of the sensitivity of interest rates to changes in

1An appendix to this paper states the algorithm we use to compute an approximate markov perfect
industry equilibrium.

2The number of institutions and its evolution over time can be found at
http://www2.fdic.gov/hsob/SelectRpt.asp?EntryTyp=10
. Balance Sheet and Income Statements items can be found at https://cdr.ffiec.gov/public/.
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costs) is significantly lower than the perfect competition number of 100% (specifically, H =
52). Loan Returns, margins, markups, delinquency rates and charge-offs are countercyclical.3

Since we are interested in the effects of capital and liquidity requirements on bank behav-
ior and loan rates, we also document differences in capital holdings across banks of different
sizes. Prior to 1980, no formal uniform capital requirements were in place. In 1981, the Fed-
eral Reserve Board and the Office of the Comptroller of the Currency announced a minimum
total capital ratio (equity plus loan-loss reserves to total assets) of 6 percent for community
banks and 5 percent for larger regional institutions. In 1985, a unified minimum capital
requirement was set at 5.5% for all banks (see International Lending Supervision Act of
1983).

In 1988, central bank governors of the Group of Ten (G10) adopted the Basel Capital
Accord (Basel I) which imposed binding capital requirements in the U.S. in 1992. One of
the innovations in Basel I was the introduction of risk-weighted capital ratios. Assets are
risk-weighted based on their perceived credit risk. For example, commercial loans carry a
100 percent risk weight while securities carry a zero weight. Basel I categorizes bank capital
into Tier 1 (core) capital and Tier 2 capital.4 Tier 1 capital is composed of common and
preferred equity shares (a subset of total bank equity). Tier 2 capital includes subordinated
debt and hybrid capital instruments such as mandatory convertible debt. Total capital is
calculated by summing Tier 1 capital and Tier 2 capital. Each individual bank, each Bank
Holding Company (BHC), and each bank within a BHC is subject to three basic capital
requirements: (i) Tier 1 Capital to Total Assets must be above 4% (if greater than 5% banks
are considered well capitalized); (ii) Tier 1 Capital to Risk-Weighted Assets must exceed
4% (if greater than 6% banks are considered well capitalized); and (iii) Total Capital to
Risk-Weighted Assets must be larger than 8% (if greater than 10% banks are considered
well capitalized).

Figure 1 presents the evolution of detrended total capital (total equity) and Tier 1 capital
ratios over time against detrended GDP. Both capital series correspond to the asset weighted
average.

3The countercyclicality of margins and markups is important. Building a model consistent with this is
a novel part of our previous paper [9]. The endogenous mechanism in our papers works as follows. During
a downturn, there is exit by small and medium size banks. This generates less competition among existing
banks which raises the interest rate on loans. But since loan demand is inversely related to the interest
rate, the ensuing increase in interest rates (barring government intervention) lowers loan demand even more
thereby amplifying the downturn. In this way our model is the first to use imperfect competition to produce
endogenous loan amplification in the banking sector.

4See Section 2.1 of DSC Risk Management Manual of Examination Policies (FDIC) for the complete
description of U.S. bank capital regulation.
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Figure 1: Bank Capital and Business Cycles
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and Income. GDP (det) refers to detrended real log-GDP. The trend is extracted using the H-P

filter with parameter 6.25.

The correlation of detrended log total capital ratio and detrended log Tier 1 capital with
detrended log real GDP is -0.37 and -0.21 for top 1% and bottom 99% banks respectively.
The correlation of risk-weighted ratios are -0.75 and -0.12. The fact that the correlation for
small banks is less countercyclical than for large banks is suggestive that small banks try to
accumulate capital during good times to build a buffer against bank failure in bad times.

Since we are interested in bank capital ratios by bank size, Figure 2 presents the evolution
of Total Capital Ratio and Tier 1 Capital Ratio for Top 1% and Bottom 99% banks when
sorted by assets.
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Figure 2: Bank Capital by Size
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filter with parameter 6.25.

We note that the Total Capital Ratio has a slight upward trend even when separated by
bank size. For most periods in the case of Total Capital and for all periods in case of Tier
1 capital, capital ratios are lower for large banking institutions than those for small banks.
The fact that capital ratios are above what regulation defines as well capitalized is suggestive
of a precautionary motive.

Finally, we present the balance sheet of commercial banks (as a fraction of total assets)
by bank size in years 1990 and 2010.
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Fraction Total Assets (%) 1990 2010

Bottom 99% Top 1% Bottom 99% Top 1%

Cash 7.25 10.98 7.95 7.66
Securities 18.84 13.30 18.37 15.79
Loans 49.28 53.20 55.08 41.06

Deposits 69.70 62.75 64.37 56.02
Fed Funds and Repos 4.17 7.54 1.30 1.20
Equity Capital 6.20 4.66 9.94 10.66

Note: Data corresponds to commercial banks in the US. Source: Consolidated Report of Condition

and Income.

We note that loans and deposits represent the largest asset and liability category for both
bank sizes. Securities is the second largest asset component and it is larger for small banks
than for big banks. Consistent with what we presented in Figure 2, equity to asset ratios
are larger for small banks in the early sample and the relation changes for the latest year in
our sample.

3 Environment

Our dynamic banking industry model is based upon the static framework of Allen and Gale
[2] and Boyd and DeNicolo [6]. In those models, there is an exogenous number of banks
that are Cournot competitors either in the loan and/or deposit market.5 We endogenize the
number of banks by considering dynamic entry and exit decisions and apply a version of the
Markov Perfect equilibrium concept in Ericson and Pakes [12] augmented with a competitive
fringe as in Gowrishankaran and Holmes [15].

Specifically, time is infinite. Each period, a mass N of one period lived ex-ante identical
borrowers and a mass Ξ of one period lived ex-ante identical households (who are potential
depositors) are born.

3.1 Borrowers

Borrowers demand bank loans in order to fund a project. The project requires one unit of
investment at the beginning of period t and returns at the end of the period:

{
1 + zt+1Rt with prob p(Rt, zt+1)
1− λ with prob [1− p(Rt, zt+1)]

(1)

in the successful and unsuccessful states respectively. Borrower gross returns are given by
1 + zt+1Rt in the successful state and by 1 − λ in the unsuccessful state. The success of a

5Martinez-Miera and Repullo [19] also consider a dynamic model, but do not endogenize the number of
banks.
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borrower’s project, which occurs with probability p(Rt, zt+1), is independent across borrowers
but depends on the borrower’s choice of technology Rt ≥ 0 and an aggregate technology
shock at the end of the period zt+1 (the dating convention we use is that a variable which is
chosen/realized at the end of the period is dated t + 1).

The aggregate technology shock is denoted zt ∈ {zb, zg} with zb < zg (i.e. good and bad
shocks). This shock evolves as a Markov process F (z′, z) = prob(zt+1 = z′|zt = z).

At the beginning of the period when the borrower makes his choice of Rt, zt+1 has not
been realized. As for the likelihood of success or failure, a borrower who chooses to run a
project with higher returns has more risk of failure and there is less failure in good times.
Specifically, p(Rt, zt+1) is assumed to be decreasing in Rt and p(Rt, zg) > p(Rt, zb). While
borrowers are ex-ante identical, they are ex-post heterogeneous owing to the realizations of
the shocks to the return on their project. We envision borrowers either as firms choosing a
technology which might not succeed or households choosing a house that might appreciate
or depreciate.

There is limited liability on the part of the borrower. If rLt is the interest rate on bank
loans that borrowers face, the borrower receives max{zt+1Rt − rLt , 0} in the successful state
and 0 in the failure state. Specifically, in the unsuccessful state he receives 1−λ which must
be relinquished to the lender. Table 1 summarizes the risk-return tradeoff that the borrower
faces if the industry state is ζ .

Table 1: Borrower’s Problem

Borrower chooses R Receive Pay Probability
− +

Success 1 + z′ 1 + rL(ζ, z) p (R, z′)
Failure 1− λ 1− λ 1− p (R, z′)

Borrowers have an outside option (reservation utility) ωt ∈ [ω, ω] drawn at the beginning
of the period from distribution function Ω(ωt).

3.2 Depositors

Households are endowed with 1 unit of the good and have strictly concave preferences denoted
u(Ct). Households have access to a risk free storage technology yielding 1 + r with r ≥ 0 at
the end of the period. They can also choose to supply their endowment to a bank or to an
individual borrower. If the household deposits its endowment with a bank, they receive rDt
whether the bank succeeds or fails since we assume deposit insurance. If they match with a
borrower, they are subject to the random process in (1). At the end of the period they pay
lump sum taxes τt+1 which are used to cover deposit insurance for failing banks.
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3.3 Banks

We assume there are two types of banks θ ∈ {b, f} for “big” and small “fringe” respectively.
For simplicity, we assume there can be at most one big bank. If active, the big bank is a
Stackelberg leader each period choosing a level of loans before fringe banks make their choice
of loan supply. Consistent with the assumption of Cournot competition, the dominant bank
understands that its choice of loan supply will influence interest rates. Fringe banks take
the interest rate as given when choosing loan supply.

At the beginning of each period banks are matched with a random number of depositors.
Specifically, in period t, bank i of type θ chooses how many deposits dθi,t to accept up to a
capacity constraint δt, i.e. d

θ
i,t ≤ δt where δt ∈ {δ1, . . . , δn} ⊆ R+. The capacity constraint

evolves according to a Markov process given by Gθ(δt+1, δt).
We denote loans made by bank i of type θ to borrowers at the beginning of period t by

ℓθi,t. Bank i can also choose to hold securities aθi,t+1 ∈ R+. We think of securities as associated
with T-bills plus loans to other banks. We assume net securities have return equal to rat . If
the bank begins with ãθi,t net securities, the bank’s feasibility constraint at the beginning of
the period is given by:

ãθi,t + dθi,t ≥ ℓθi,t + aθi,t+1. (2)

In Corbae and D’Erasmo [9] we document differences in bank cost structure across size.
We assume that banks pay proportional non-interest expenses (net non-interest income) that
differ across banks of different sizes, which we denote cθi . Further, as in the data we assume
a fixed cost κθi .

Let πθi,t+1 denote the end-of-period profits (i.e. after the realization of zt+1) of bank i of
type θ as a function of its loans ℓθi,t, deposits d

θ
i,t and securities aθi,t+1 given by

πθi,t+1 =
{
p(Rt, zt+1)(1+r

L
t )+(1−p(R, zt+1))(1−λ)

}
ℓθi,t+r

a
t a

θ
i,t+1−(1+rDt )d

θ
i,t−

{
κθi+c

θ
i ℓ
θ
i,t

}
.

(3)
The first two terms represent the gross return the bank receives from successful and unsuc-
cessful loan projects respectively, the third term represents returns on securities, the fourth
represents interest expenses (payments on deposits), and the fifth represents non-interest
expenses.

After loan, deposit, and asset decisions have been made at the beginning of the period,
we can define bank equity capital eθi,t as

eθi,t ≡ aθi,t+1 + ℓθi,t︸ ︷︷ ︸
assets

− dθi,t︸︷︷︸
liabilities

. (4)

If banks face a capital requirement, they are forced to maintain a level of equity that is
at least a fraction ϕθ of risk weighted assets (with weight w on the risk free asset). Thus,
banks face the following constraint

eθi,t ≥ ϕθ(ℓθi,t + waθi,t+1) ⇒ ℓθi,t(1− ϕθ) + aθi,t+1(1− wϕθ)− dθi,t ≥ 0. (5)
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If w is small, as called for in the BIS Basel Accord, then it is easier to satisfy the capital
requirement the higher is aθi,t+1 and the lower is ϕθ. Securities relax the capital requirement
constraint but also affect the feasibility condition of a bank. This creates room for a pre-
cautionary motive for net securities and the possibility that banks hold capital equity above
the level required by the regulatory authority (i.e. eθi,t > ϕθ(ℓθi,t + waθi,t+1)).

Another policy proposal is associated with bank liquidity requirements. Basel III [4]
proposed that the liquidity coverage ratio, which is the stock of high-quality liquid assets
(which include government securities) divided by total net cash outflows over the next 30
calendar days, should exceed 100%. In the context of a model period being one year, this
would amount to a critical value of 1/12 or roughly 8%.6 For the model, we assume

γθdθi,t ≤ aθi,t+1 (6)

where γθ denotes the (possibly) size dependent liquidity requirement.
Following the realization of zt+1, bank i of type θ can either borrow short term to finance

cash flow deficiencies or store its cash/lend short term until next period. Specifically, denote
short term borrowings by Bθ

i,t+1 > 0 and short term loans/cash storage by Bθ
i,t+1 < 0. The

net rate at which banks borrow or lend is denoted rBt (Bi,t+1). For instance, if the bank
chooses to hold cash over to the next period, then rBt (Bi,t+1) = 0.

Bank borrowing must be repaid at the beginning of the next period, before any other
actions are taken. We assume that borrowing is subject to a collateral constraint:7

Bθ
i,t+1 ≤

aθi,t+1

(1 + rBt ).
(7)

Repurchase agreements are an example of collateralized short term borrowing, while federal
funds borrowing is unsecured. This implies that beginning-of-next-period cash and securities
holdings are given by

ãθi,t+1 = aθi,t+1 − (1 + rBt ) · B
θ
i,t+1 ≥ 0. (8)

Bank dividends at the end of the period are

Dθ
i,t+1 = πθi,t+1 +Bθ

i,t+1 ≥ 0 (9)

which are constrained to be positive since we assume that new equity financing is pro-
hibitively expensive. A bank with positive cash flow πθt+1 > 0 which chooses to pay that
cash flow as dividends, chooses Bθ

i,t+1 = 0 otherwise it can lend or store cash Bθ
i,t+1 < 0

thereby raising beginning-of-next period’s assets. A bank with negative cash flow πθt+1 < 0
can borrow Bθ

i,t+1 > 0 against assets to avoid exit but beginning-of-next-period assets will
fall.

6This is also close to the figure for reserve requirements which is bank size dependent, anywhere from
zero to 10%. Since reserves now pay interest, bank liquidity requirements are similar in nature to current
reserve requirement policy in our model.

7Along with limited liability, the collateral constraint can arise as a consequence of a commitment problem
as in Gertler and Kiyotaki [14].
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There is limited liability on the part of banks. This imposes a lower bound equal to zero
in the case that the bank exits. In the context of our model, limited liability implies that
upon exit, the bank gets:

max

{
ξ
[
{p(Rt, zt+1)(1 + rLt ) + (1− p(R, zt+1))(1− λ)− cθi }ℓ

θ
i,t (10)

+(1 + rat )a
θ
i,t+1

]
− dθi,t(1 + rDt )− κθ, 0

}

where ξ ∈ [0, 1] measures liquidation costs in the event of exit.
The fact that aθi,t+1 ∈ R+, the capital requirement constraint (5), the collateral constraint

(7), and limited limited liability (10) combine to imply that there exists a value of net
securities a such that if ãθi,t < a the only feasible option for the bank is to exit.8 Thus, in
order to avoid exit due to what amounts to an empty constraint set, any bank must hold (at
least) a small amount of net securities.

Entry costs for the creation of the dominant bank are denoted by Υb ≥ Υf ≥ 0. Every
period a large number of potential entrants make the decision of whether or not to enter the
market. The value of initial deposits δ is drawn from probability distribution Gθ,e(δ).

The industry state is defined as follows. Let µt(ã, δ) denote the distribution over matched
deposits δ and net assets ã for fringe banks after entry and exit decisions are made. We define
the variable â to be equal to the asset level of the big bank ãbi,t if the big bank is active and

equal to ∅ if it is not. Similarly, define the variable δ̂ to be equal to the level of matched
deposits of the big bank δ if it is active and equal to ∅ if it is not. The aggregate industry
state is then denoted by ζt = {ât, δ̂t, µt}.

3.4 Information

There is asymmetric information on the part of borrowers and lenders. Only borrowers
know the riskiness of the project they choose (Rt) and their outside option (ωt). All other
information (e.g. project success or failure) is observable.

3.5 Timing

At the beginning of period t,

8To see this, for simplicity, consider the case where ãθi,t = 0. Then, given that there is no positive value

of loans that satisfies the capital requirement constraint and that in general ra ≥ rD, the bank will choose
aθi,t+1 = dθi,t. The continuation value of profits are πθ

i,t+1 = rat a
θ
i,t+1 − (1 + rDt )dθi,t − κθ < 0 as long as

κθ ≥ dθi,t(r
a
t − rDt − 1). But κθ ≥ dθi,t(r

a
t − rDt − 1) holds since (rat − rDt − 1) < 1 for reasonable parameter

values. The bank could cover the negative profits with borrowings, that is using Bθ
i,t+1 = (1+rDt −rat )d

θ
i,t+κθ,

but since Bθ
i,t+1(1 + rBt ) ≤ aθi,t+1 = dθi,t has to hold, this option is not feasible. Thus, continuing is not a

feasible option when assets are below a certain low threshold.
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1. Liquidity shocks δt are realized.

2. Given the beginning of period state (ζt, zt), borrowers draw ωt.

3. The dominant bank chooses how many loans to extend, how many deposits to accept
given depositors choices, and how many assets to hold (ℓbi,t, d

b
i,t, a

b
i,t+1).

4. Each fringe bank observes the total loan supply of dominant banks (ℓbi,t) and all other
fringe banks (that jointly determine the loan interest rate rLt ) and simultaneously
decide how many loans to extend, deposits to accept, and how many assets to hold
(ℓfi,t, d

f
i,t, a

f
i,t+1). Borrowers choose whether or not to undertake a project, and if so a

level of technology Rt.

5. Aggregate return shocks zt+1 are realized, as well as idiosyncratic project success
shocks.

6. Banks choose whether to borrow short term (Bθ
i,t+1) and dividend policy. Exit and

entry decisions are made in that order.

7. Households pay taxes τt+1 to fund deposit insurance and consume.

4 Industry Equilibrium

Since we will use recursive methods to define an equilibrium, let any variable nt be denoted
n and nt+1 be denoted n′.

4.1 Borrower Decision Making

Starting in state z, borrowers take the loan interest rate rL as given and choose whether to
demand a loan and if so, what technology R to operate. Specifically, if a borrower chooses
to participate, then given limited liability his problem is to solve:

v(rL, z) = max
R

Ez′|z

[
p(R, z′)

(
z′R − rL

) ]
. (11)

Let R(rL, z) denote the borrower’s decision rule that solves (11). We assume that the
necessary and sufficient conditions for this problem to be well behaved are satisfied. The
borrower chooses to demand a loan if

v(rL, z) ≥ ω. (12)

In an interior solution, the first order condition is given by

Ez′|z
{
p(R, z′)z′︸ ︷︷ ︸

(+)

+
∂p(R, z′)

∂R︸ ︷︷ ︸
(−)

[
z′R− rL

] }
= 0 (13)
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The first term is the benefit of choosing a higher return project while the second term is the
cost associated with the increased risk of failure.

To understand how bank lending rates influence the borrower’s choice of risky projects,
one can totally differentiate (13) with respect to rL and re-arrange to yield

dR∗

drL
=

Ez′|z

[
∂p(R∗,z′)
∂R∗

]

Ez′|z

{
∂2p(R∗,z′)

(∂R∗)2
[z′R∗ − rL] + 2∂p(R

∗,z′)
∂R∗

z′
} > 0 (14)

where R∗ = R(rL, z). Since both the numerator and the denominator are strictly negative
(the denominator is negative by virtue of the sufficient conditions), a higher borrowing rate
implies the borrower takes on more risk. Boyd and De Nicolo [6] call dR∗

drL
> 0 in (14) the

“risk shifting effect”. Risk neutrality and limited liability are important for this result.
An application of the envelope theorem implies

∂v(rL, z)

∂rL
= −Ez′|z[p(R, z

′)] < 0. (15)

Thus, participating borrowers are worse off the higher are borrowing rates. This has impli-
cations for the demand for loans determined by the participation constraint. In particular,
since the demand for loans is given by

Ld(rL, z) = N ·

∫ ω

ω

1{ω≤v(rL,z)}dΩ(ω), (16)

then (15) implies ∂Ld(rL,z)
∂rL

< 0.

4.2 Depositor Decision Making

If rD = r, then a household would be indifferent between matching with a bank and using
the autarkic storage technology so we can assign such households to a bank. If it is to match
directly with a borrower, the depositor must compete with banks for the borrower. Hence,
in successful states, the household cannot expect to receive more than the bank lending rate
rL but of course could choose to make a take-it-or-leave-it offer of their unit of a good for a
return r̂ < rL and hence entice a borrower to match with them rather than a bank. Given
state contingent taxes τ(ζ, z, z′), the household matches with a bank if possible and strictly
decides to remain in autarky otherwise provided

U ≡ Ez′|z [u(1 + r − τ(ζ, z, z′))] >

max
r̂<rL

Ez′|z

[
p(R̂, z′)u(1 + r̂ − τ(ζ, z, z′))

+(1− p(R̂, z′))u (1− λ− τ(ζ, z, z′))

]
≡ UE . (17)
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Condition (17) makes clear the reason for a bank in our environment. By matching with
a large number of borrowers, the bank can diversify the risk of project failure and this is
valuable to risk averse households. It is the loan side uncertainty counterpart of a bank in
Diamond and Dybvig [10].

If this condition is satisfied, then the total supply of deposits is given by

Ds = db(ã, δ, z, ζ) +

∫
df(ã, δ, z, ζ)µ(dã, dδ) ≤ H (18)

4.3 Incumbent Bank Decision Making

After being matched with δ deposits, an incumbent bank i of type θ chooses loans ℓθi , deposits
dθi , and asset holdings aθ

′

i in order to maximize expected discounted dividends/cash flows.
We assume Cournot competition in the loan market. Following the realization of z′, banks
can choose to borrow or store B

′θ
i and whether to exit xi(θ).

Let σ−i denote the industry state dependent balance sheet, exit, and entry strategies of
all other banks. Given the Cournot assumption, the big bank takes into account that it
affects the loan interest rate and its loan supply affects the total supply of loans by fringe
banks. Differentiating the bank profit function πθi defined in (3) with respect to ℓθi we obtain

dπθi
dℓθi

=
[
prL − (1− p)λ− r − cθ︸ ︷︷ ︸

(+) or (−)

]
+ ℓθi

[
p︸︷︷︸
(+)

+
∂p

∂R

∂R

∂rL
(rL + λ)

︸ ︷︷ ︸
(−)

] drL
dℓθi︸︷︷︸
(−)

. (19)

The first bracket represents the marginal change in profits from extending an extra unit of
loans. The second bracket corresponds to the marginal change in profits due to a bank’s
influence on the interest rate it faces. This term will reflect the bank’s market power; for
dominant banks drL

dℓbi
< 0 while for fringe banks drL,j

dℓ
f
i

= 0.

Let the total supply of loans by fringe banks as a function of the aggregate state and the
amount of loans that the big bank makes ℓb be given by

Lf (ζ, ℓb) =

∫
ℓfi (ã, δ, ζ, ℓ

b)µ(dã, dδ). (20)

The loan supply of fringe banks is a function of ℓb because fringe banks move after the big
bank.

The value of a big bank at the beginning of the period but after overnight borrowing has
been paid is:

V b(ã, δ, z, ζ) = max
ℓ≥0,d∈[0,δ],a′≥γbd

βEz′|zW
b(ℓ, d, a′, δ, ζ, z′) (21)

s.t.

ã + d ≥ a′ + ℓ (22)

ℓ(1− ϕb) + a′(1− wϕb)− d ≥ 0 (23)

ℓ+ Lf (ζ, ℓ) = Ld(rL, z) (24)
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where W b(ℓ, d, a′, ζ, z′) is the value of the bank at the end of the period for given loans
ℓ, deposits d, net securities a′, and realized shocks. Equation (24) is the market clearing
condition which is included since the dominant bank must take into account its impact on
prices. Changes in ℓ affect the equilibrium interest rate through its direct effect on the
aggregate loan supply (first term) but also through the effect on the loan supply of fringe
banks (second term). For any given ζ , Lf (ζ, ℓ) can be thought of as a “reaction function”
of fringe banks to the loan supply decision of the dominant bank.

The end-of-period function (that determines if the bank continues or exits and its future
net securities position) is given by

W b(ℓ, d, a′, δ, ζ, z′) = max
x∈{0,1}

{
W b,x=0(ℓ, d, a′, δ, ζ, z′),W b,x=1(ℓ, d, a′, δ, ζ, z′)

}
(25)

where

W b,x=0(ℓ, d, a′, δ, ζ, z′) = max
B′≤ a′

(1+rB)

{
πb(ℓ, d, a′, ζ, z′) +B′ + Eb

δ′|δV
b(ã, δ′, z′, ζ ′)

}
(26)

s.t.

ã = a′ − (1 + rB)B′ ≥ 0 (27)

πb(ℓ, d, a′, ζ, z′) +B′ ≥ 0 (28)

ζ ′ = H(z, z′, ζ). (29)

where Eb
δ′|δ is the conditional expectation of future liquidity shocks for a big bank (i.e. based

on the transition function Gb(δ′, δ)). If the non-negativity of dividends constraint (28) is
violated, we set W b,x=0(ℓ, d, a′, ζ, δ, z′) = −∞ since we assume that banks have access to
external funds only through B. In this case a bank that cannot borrow enough to stay afloat
will exit. Equation (29) corresponds to the evolution of the aggregate state.

The value of exit is

W b,x=1(ℓ, d, a′, δ, ζ, z′) = max{0, ξ(π(ℓ, d, a′, ζ, z′) + a′)− (1− ξ)d(1 + r̄)}. (30)

The lower bound on the exit value is associated with limited liability.
The solution to problem (21)-(30) provides big bank decision rules ℓb(ã, δ, z, ζ), ab

′

(ã, δ, z, ζ),
db(ã, δ, z, ζ), Bb′(ℓ, d, a′, δ, z′, ζ), xb(ℓ, d, a′, δ, ζ, z′) as well as value functions.

Next we turn to the fringe bank problem. The fringe bank takes as given the aggregate
loan supply (and thus the interest rate). The value of a fringe bank at the beginning of the
period but after any borrowings or dividends have been paid is:

V f(ã, δ, z, ζ) = max
ℓ≥0,d∈[0,δ],a′≥γfd

βEz′|zW
f(ℓ, d, a′, δ, ζ, z′), (31)

s.t.

ã + d ≥ a′ + ℓ (32)

ℓ(1− ϕf) + a′(1− wϕf)− d ≥ 0 (33)

ℓb(ζ) + Lf (ζ, ℓb(ζ)) = Ld(rL, z) (34)
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where W f(ℓ, d, a′, ζ, δ, z′) is the value of the bank at the end of the period for given loans
ℓ, deposits d, net securities a′, and realized shocks. Even though fringe banks take the
loan interest rate as given, that rate is determined by the solution to equation (34) which
incorporates the loan decision rule of the big bank. The solution to this problem provides
ℓf(a, δ, z, ζ),df(a, δ, z, ζ) and a

′f (a, δ, z, ζ).
The end of period function is given by

W f(ℓ, d, a′, δ, ζ, z′) = max
x∈{0,1}

{
W f,x=0(ℓ, d, a′, δ, ζ, z′),W f,x=1(ℓ, d, a′, δ, ζ, z′)

}
(35)

where

W f,x=0(ℓ, d, a′, δ, ζ, z′) = max
B′≤ a′

(1+rB)

{
πf(ℓ, d, a′, ζ, z′) +B′ + Ef

δ′|δV
f (ã, δ′, z′, ζ ′)

}
(36)

s.t.

ã = a′ − (1 + rB)B′ ≥ 0, (37)

πf(ℓ, d, a′, ζ, z′) +B′ ≥ 0, (38)

ζ ′ = H(z, z′, ζ). (39)

As in the dominant bank case, if the non-negativity of dividends constraint (38) is vi-
olated, we set W f,x=0(ℓ, d, a′, ζ, δ, z′) = −∞ since we assume that banks have access to
external funds only through B′. In this case a bank that cannot borrow enough to stay
afloat will exit. The value of exit is

W f,x=1(ℓ, d, a′, δ, ζ, z′) = max{0, ξ(πf(ℓ, d, a, ζ, z′) + a′)− (1− ξ)d(1 + r̄)}. (40)

At the end of every period after the realization of z′ and exit occurs, there is a large
number of potential entrants of type θ. In order to enter, they have to pay the entry cost
Υθ and decide on their initial level of securities a′ (equal to initial bank equity capital since
there are no other liabilities). The value of entry net of entry costs for banks of type θ is
given by

V θ,e(z, ζ, z′) ≡ max
a′

{
−a′ + Eθ

δ′V
θ(a′, δ′, z′, H(z, ζ, z′))

}
−Υθ. (41)

The solution to (41) defines the initial equity distribution of banks. Note that the new
industry distribution is given by ζ ′ = H(z, ζ, z′). Potential entrants will decide to enter
if V θ,e(z, ζ, z′) ≥ 0. The total number of entrants will be determined endogenously in
equilibrium.

We denote by Ef the mass of fringe entrants. Recall that, for simplicity, we assumed
that there is at most one big active bank. Thus, the number of big bank entrants Eb equals
zero when there is an incumbent big bank and it is at most one when there is no active big
bank in the market. In general, free entry implies that

V θ,e(z, ζ, z′)× Eθ = 0. (42)

That is, in equilibrium, the value of entry is zero, the number of entrants is zero, or both.
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4.4 Evolution of the Cross-Sectional Bank Size Distribution

The distribution of fringe banks evolves according to

µ′(a′, δ′) =

∫ ∑

δ

(1− xf (·))I{a′=ãf (·))}G
f(δ′, δ)dµ(a, δ) + Ef

∑

δ

I{a′=af,e(·))}G
f,e(δ). (43)

Equation (43) makes clear how the law of motion for the distribution of banks is affected by
entry and exit decisions.

4.5 Funding Deposit Insurance

Across all states (ζ, z, z′), taxes must cover deposit insurance in the event of bank failure.
Let post-liquidation net transfers be given by

∆θ = (1 + rD)dθ − ξ
[
{p(1 + rL) + (1− p)(1− λ)− cθ}ℓθ + aθ

′

(1 + ra)
]

where ξ ≤ 1 is the post liquidation value of the bank’s assets and cash flow. Then aggregate
taxes are given by

τ(z, ζ, z′) · Ξ =

∫ ∑

δ

xf max{0,∆f}dµ(a, δ) + xbmax{0,∆b}. (44)

4.6 Definition of Equilibrium

Given government policy parameters (ra, rB, ϕθ, w, γθ), a pure strategy Markov Perfect In-
dustry Equilibrium (MPIE) is a set of functions {v(rL, z), R(rL, z)} describing borrower
behavior, a set of functions {V θ

i , ℓ
θ
i , d

θ
i , a

θ′

i , B
θ′

i , x
θ
i , χ

θ
i } describing bank behavior, a loan in-

terest rate rL(ζ, z), a deposit interest rate rD = r, an industry state ζ, a function describing
the number of entrants Eθ(z, ζ, z′), and a tax function τ(z, ζ, z′) such that:

1. Given a loan interest rate rL, v(rL, z) and R(rL, z) are consistent with borrower opti-
mization (11) and (12).

2. At rD = r, the household deposit participation constraint (17) is satisfied.

3. Given the loan demand function, {V θ, ℓθ, dθ, aθ
′

i , B
θ′

i , x
θ, χθ} are consistent with bank

optimization (21)-(40).

4. The entry asset decision rules are consistent with bank optimization (41) and the free
entry condition is satisfied (42).

5. The law of motion for the industry state (29) induces a sequence of cross-sectional
distributions which are consistent with entry, exit, and asset decision rules in (43).
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6. The interest rate rL(ζ, z) is such that the loan market clears. That is,

Ld(rL, z) = ℓb(ζ) + Lf (ζ, ℓb(ζ))

where aggregate loan demand Ld(rL, z) given by (16).

7. Across all states (z, ζ, z′), taxes cover deposit insurance transfers in (44).

5 Calibration

At this stage, we have not finished calibrating parameters. Some parameters will be borrowed
from the calibration of our model in Corbae and D’Erasmo [9]. As in that paper, a model
period is set to be one year.

We begin with the parametrization of the four stochastic processes: F (z′, z), Gθ(δ′, δ),
p(R, z′), and Ω(ω). To calibrate the stochastic process for aggregate technology shocks
F (z′, z), we use the NBER recession dates and create a recession indicator. More specifically,
for a given year, the recession indicator takes a value equal to one if two or more quarters
in that year were dated as part of a recession. The correlation of this indicator with HP
filtered GDP equals -0.87. Then, we identify years where the indicator equals one with our
periods of z = zb and construct a transition matrix. In particular, the maximum likelihood
estimate of Fkj, the (j, k)th element of the aggregate state transition matrix, is the ratio of
the number of times the economy switched from state j to state k to the number of times
the economy was observed to be in state j. We normalize the value of zg = 1 and choose zb
to match the variance of detrended GDP.

We identify “big” banks with the top 1% banks (when sorted by loans) and the fringe
banks with the bottom 99% of the bank loan distribution. As in Pakes and McGuire [20] we
restrict the number of big banks by setting the entry cost to a prohibitively high number if
the number of incumbents after entry and exit exceeds a given number. In our application,
we choose one (i.e. there will be at most one big dominant bank).

We make the following assumptions when parameterizing the stochastic deposit matching
process. We assume that the support of δ for big banks is large enough that the constraint
never binds, so we do not need to estimate a process for it. On the other hand, the law
of motion for the deposit matching technology for fringe banks is parameterized using our
panel of commercial banks in the U.S. In particular, we estimate the following autoregressive
process for log-deposits in bank i in period t

log(δit) = (1− ρd)k0 + ρd log(δit−1) + k1t+ k2t
2 + k3,t + ai + uit (45)

where t denotes a time trend, k3,t are year fixed effects, ai are bank fixed effects and uit is
iid and distributed N(0, σ2

u).
9 Since this is a dynamic model we use the method proposed by

9Note that since the problem of the fringe bank is linear, the solution to our problem implies that the
capacity constraint binds in almost all cases and we can approximate the constraint using information on
deposits.
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Arellano and Bond [3]. To keep the state space workable, we apply the method proposed by
Tauchen [21] to obtain a finite state Markov representation Gf(δ′, δ) to the autoregressive
process in (45). To apply Tauchen’s method, we use the estimated values of ρd = 0.4735
and σu = 0.66 from (45). Since we work with a normalization in the model (i.e. zg = 1),
the mean k0 in (45) is not directly relevant. Instead we choose to calibrate the mean of the
finite state markov process, denoted µd, to match the observed deposit market share of the
fringe sector.

We parameterize the stochastic process for the borrower’s project as follows. For each
borrower, let y = αz′ + (1 − α)εe − bRψ where εe is drawn from N(µε, σ

2
ε). The borrower’s

idiosyncratic project uncertainty is iid across agents. We define success to be the event that
y > 0, so in states with higher z or higher εe success is more likely. Then

p(R, z′) = 1− Pr(y ≤ 0|R, z′)

= 1− Pr

(
εe ≤

−αz′ + bRψ

(1− α)

)

= Φ

(
αz′ − bRψ

(1− α)

)
(46)

where Φ(x) is a normal cumulative distribution function with mean µε and variance σ2
ε .

The stochastic process for borrower outside options, Ω(ω), simply corresponds to the
uniform distribution [ω, ω] where ω = 0.

We calibrate r̄ = rD using data from banks’ balance sheets. We target the average cost of
funds computed as the ratio of interest expense on funds (deposits and federal funds) over to-
tal deposits and federal funds for commercial banks in the US from 1976 to 2008.10 Similarly,
we calibrate ra to the ratio of interest income from securities over the total securities.

Depositor preferences are given by u(x) = x1−σ

1−σ
with σ = 2, a standard value in the macro

literature. At this level of risk aversion the depositor participation constraint is satisfied.
The mass of borrowers is normalized to 1.

We estimate the marginal cost of producing a loan cθ and the fixed cost κθ using our
panel of U.S. commercial banks following the empirical literature on banking (see for example
Berger et. al. [5]).11 The value of cθ is derived from the estimated marginal Net Non-interest
Expenses that, in place, are defined to be Marginal Non-interest Expenses minus Marginal
Non-interest Income. Marginal Non-interest Income is estimated as the ratio of total non-
interest income over assets. Marginal Non-interest Expenses is derived from the following

10Source: FDIC, Call and Thrift Financial Reports, Balance Sheet and Income Statement
(http://www2.fdic.gov/hsob/SelectRpt.asp?EntryTyp=10). The nominal interest rate is converted to a real
interest rate by using the CPI.

11The cost structure estimated is also used to compute our measure of Markups and the Lerner Index.
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trans-log cost function:

log(Tit) = ai + k1 log(w
1
it) + h1 log(ℓit) + k2 log(yit) + k3 log(w

1
it)

2 (47)

+h2[log(ℓit)]
2 + k4[log(yit)]

2 + h3 log(ℓit) log(yit) + h4 log(ℓit) log(w
1
it)

+k5 log(yit) log(w
1
it) + k6 log(xit) +

∑

j=1,2

k7,jt
j + k8,t + ǫit

where Tit is total non-interest expense minus expenses on premises and fixed assets, w1
it

corresponds to input prices (labor), ℓit corresponds to real loans (one of the two bank j’s
output), yit represents securities and other assets (the second bank output measured by
real assets minus loans minus fixed assets minus cash), xit is equity (a fixed netput), the t
regressor refers to a time trend and k8,t refer to time fixed effects. We estimate this equation
by panel fixed effects with robust standard errors clustered by bank. Marginal non-interest
expenses is then computed as:

∂Tit
∂ℓit

=
Tit
ℓit

[
h1 + 2h2 log(ℓit) + h3 log(yit) + h4 log(w

1
it)
]

(48)

Finally, the fixed cost κθ is estimated as the total cost on expenses of premises and fixed
assets. We present the estimates of κθ scaled by total loans at the bank level. Table 2 shows
the estimated parameters.

Table 2: Bank’s Cost Structure

Moment (%) Non-Int Inc. Non-Int Exp. Net Exp. (cθ) Fixed Cost (κθ/ℓθ)
Top 1 % Banks (%) 2.32† 3.94† 1.62† 0.72†

Bottom 99 % Banks (%) 0.89 2.48 1.60 0.99

Note: † Denotes statistically significant difference with Bottom 99% value. Data corresponds to

commercial banks in the US. Source: FDIC, Call and Thrift Financial Reports. Net expense is

calculated as Non-Interest Expense minus Non-Interest Income. Fixed cost κθ scaled by loans.

In our benchmark parametrization, we use values associated with current regulation.
Thus we set the minimum level of bank equity risk-weighted capital ratio for both type of
banks to 6%. That is, ϕb = ϕf = 0.06 and w = 0.

We are left with fifteen parameters to estimate: {α, b, µε, σε, ψ, µd, λ, ω, β, ξ, r
B, κb, κf ,Υf ,Υb}.

We will estimate the parameters of the model by Simulated Method of Moments. Since we
are interested in the standard errors of the parameters the number of moments needs to be
larger than the number of parameters. Except for one data moment, we use the data for
commercial banks described in Section 2 and in our companion paper. The extra moment -
the average real equity return (12.94%) as reported by Diebold and Yilmaz [11] - is added
to shed light on the borrower’s return R∗. The set of targets from commercial bank data
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includes the average default frequency (2.15%), the average entry rate (1.60%), average loan
return (5.17%), average charge-off rate (0.79%), the loan market share of Bottom 99% banks
(37.9%), the deposit market share of the Bottom 99% (35.56%), the capital ratio of the
Bottom 99% banks (11.37%), the capital ratio of the Top 1% banks (7.5%), the securities
to asset ratio of the bottom 99% banks (20.75%), the securities to asset ratio of the top 1%
banks (13.41%), fixed cost to loan ratio of the top 1% banks (0.72%) and the fixed cost to
loan ratio of the bottom 99% (0.99%),the average loan markup (102.73%), the ratio of profit
rates of Top 1% banks to Bottom 99% banks (63.79%).

We use the following definitions to connect the model to some of the variables we pre-
sented in the data section. In particular,

• Default frequency: 1− p(R∗, z′).

• Borrower return: p(R∗, z′)(z′R∗).

• Bank Entry Rate: Ef/
∫
µ(a, δ)

• Loan return: p(R∗, z′)rL.

• Loan Market Share Bottom 99%: Lf (ζ, ℓb(ζ))/
(
ℓb(ζ) + Lf(ζ, ℓb(ζ))

)

• Loan Charge-off rate (1− p(R∗, z′)λ.

• Deposit Market Share Bottom 99%:

∫
ã,δ
df(ã, δ, z, ζ)dµ(ã, δ)

∫
ã,δ
df (ã, δ, z, ζ)dµ(ã, δ) + db(ã, δ, z, ζ)

• Capital Ratio Bottom 99%:
∫
ã,δ
[ef (ã, δ, z, ζ)/ℓf(ã, δ, z, ζ)]dµ(ã, δ)/

∫
ã,δ
dµ(ã, δ)

• Capital Ratio Top 1%: eb(ã, δ, z, ζ)/ℓb(ã, δ, z, ζ)

• Securities to Asset Ratio Bottom 99%:
∫

ã,δ

[ãf (ã, δ, z, ζ)/(ℓf(ã, δ, z, ζ) + ãf (ã, δ, z, ζ))]dµ(ã, δ)/

∫

ã,δ

dµ(ã, δ)

• Securities to Asset Ratio Top 1%: ãb(ã, δ, z, ζ)/(ℓb(ã, δ, z, ζ) + ãb(ã, δ, z, ζ))

• Profit Rate:
πℓi(θ)(·)

ℓi(θ)
.

Table 3 shows the calibrated parameters.
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Table 3: Model Parameters

Parameter Value Targeted Moment
Mass of Borrowers B 1 Normalization
Mass of Households Ξ B Assumption
Depositors’ Preferences σ 2 Participation Const.
Aggregate Shock in Good State zg 1.0 Normalization
Aggregate Shock in Bad State zb 0.975 Std. Dev. GDP
Transition Probability F (zg, zg) 0.86 NBER data
Transition Probability F (zb, zb) 0.43 NBER data
Autocorrelation Deposits ρd 0.47 Call Reports
Std. Dev. Error Dep. σu 0.66 Call Reports
Dep Int. Rate (%) r 0.86 Interest Expense
Sec. Return (%) ra 1.2 Return Securities
Net Exp. Top 1% (%) cb 1.62 Net Expenses Top 1%
Net Exp. Bottom 99% (%) cf 1.60 Net Expenses Bottom 99%
Capital Req. Top 1% (%) (ϕb, w) (6.0,0) Regulation
Capital Req. Bottom 99% (%) (ϕf , w) (6.0,0) Regulation
Liquidity Req. (%) γb = γf 0.0 Regulation
Weight Aggregate Shock α 0.88 Default frequency
Success Probability Parameter b 3.77 Borrower return
Mean Entrep. Dist. µε -0.85 Bank entry rate
Volatility Entrep. Dist. σε 0.10 Loan return
Success Probability Parameter ψ 0.78 Loan mkt share bottom 99%
Loss Rate λ 0.21 Charge off rate
Max. Reservation Value ω 0.25 Avg. Loan Markup
Discount Factor β 0.95 Deposit mkt share bottom 99%
Mean Deposits µd 0.04 Capital ratio bottom 99%
Asset Recovery Rate at exit ξ 0.70 Capital ratio top 1%
Cost over night funds (%) rB 1.0 Sec. to asset ratio bottom 99%
Fixed Cost Top 1% (%) κb 0.001 Fixed cost to loan ratio top 1%
Fixed Cost Bottom 99% (%) κf 0.001 Fixed cost to loan ratio bottom 1%
Entry Cost Bottom 99% Υf 0.01 Sec. to asset ratio top 1%
Entry Cost Top 1% Υb 0.05 Ratio profit rate top 1% to bottom 99%

The finite state Markov representation Gf(δ′, δ) obtained using the method proposed by
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Tauchen [21] and the estimated values of µd, ρd and σu is:

Gf(δ′, δ) =




0.26 0.43 0.25 0.05 0.00
0.12 0.36 0.37 0.12 0.01
0.04 0.24 0.43 0.24 0.04
0.01 0.12 0.37 0.36 0.12
0.00 0.05 0.25 0.43 0.26



,

and the corresponding grid is δ ∈ {0.009, 0.019, 0.040, 0.085, 0.179}. The distribution Ge,f(δ)
is derived as the stationary distribution associated with Gf (δ′, δ).

Table 4 provides the moments generated by the model for the above parameter values
relative to the data. In general, the model does a decent job in matching the targeted
moments. It is important to note that we are using an over-identified model.

Table 4: Model and Data Moments

Moment (%) Model Data
Default Frequency 1− p(R∗, z′, s′) 2.65 2.15
Borrower Return p(R∗, z′, s′)(z′R∗) 12.71 12.94
Entry Rate 1.17 1.60
Exit Rate† 1.17 1.65
Loan Return p(R∗, z′, s′)rL 6.34 5.17
Net Interest Margin† 5.45 5.08
Charge-Off Rate (1− p(R∗, z′, s′))λ 0.55 0.79
Loan Market Share Bottom 99% 0.41 37.90
Deposit Market Share Bottom 99% 0.27 35.56
Capital Ratio (risk-weighted) Top 1% 15.61 7.50
Capital Ratio (risk-weighted) 99% 38.54 11.37
Securities to Asset Ratio Top 1% 13.46 15.79
Securities to Asset Ratio Bottom 99% 23.91 20.74
Avg. Loan Markup 98.94 102.73
Ratio profit rate top 1% to bottom 99% 89.98 63.79

Note: † Not a moment targeted in the calibration.

6 Results

For the parameter values in Table 3, we find an equilibrium where the dominant bank does not
exit (along the equilibrium path). On the other hand, exit occurs along the equilibrium path
by fringe banks with small to median deposit holdings and low asset levels (i.e. δ ≤ δM = 0.04
and ã ≤ 0.026) as well as fringe banks with bigger than median deposit holdings but even
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smaller asset levels (i.e. δ > δM and ã ≤ 0.013) if the economy heads into bad times (i.e.
z = zg and z′ = zb).

12 On the equilibrium path, fringe banks that survive the arrival of a
bad aggregate shock accumulate securities in order to avoid exit.

6.1 Equilibrium Decision Rules

To understand the equilibrium, we first describe borrower decisions. Figure 3 shows the
borrower’s optimal choice of project riskiness R∗(rL, z) and the inverse demand function
associated with Ld(rL, z). The figure shows that the borrower’s optimal project R is an
increasing function of the loan interest rate rL. This is what Boyd and DeNicolo [6] call
the “risk shifting” effect; that is, higher interest rates lead borrowers to choose more risky
projects. Moreover, given that the value of the borrower is decreasing in rL, aggregate
loan demand is a decreasing function of rL. The figure also illustrates that loan demand is
pro-cyclical; that is, for a given interest rate, loan demand is higher in state zg than zb.

Figure 3: Borrower Project and Inverse Loan Demand
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Next we turn to characterizing bank decision rules. Note that while these are equilibrium
functions not every state is necessarily on-the-equilibrium path. It is best to work backwards
and start with the exit decision rule. Except for the case where ãbi,t < a, we find the big bank
does not exit (so we do not picture it). The big bank does not exit in equilibrium since we
do not find the big bank accumulating few enough assets to warrant exit. The fringe banks
do, however, exit as can be seen in Figure 4. Panel (i) graphs the smallest δL and largest

12We also find that fringe banks with low asset levels (ã ≤ 0.013) exit if the economy stays in a recession
(i.e. z = zb and z′ = zb) but this is off-the-equilibrium path behavior.
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δH fringe bank exit rules starting in the recession state zb. With low assets, both types exit
when the economy stays in a recession (off-the-equilibrium path). Panel (ii) shows that both
small and large fringe banks exit when the economy transits from a boom to a recession if
they have low assets. Notably, larger fringe banks are less likely than smaller ones to exit
(i.e. their exit asset threshold is lower).

Figure 4: Fringe Banks Exit Rule (for different values δ)
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Banks try to start the next period with sufficient assets to avoid exit (since exit means
it loses its charter value). In Figure 5 we plot beginning-of-next period’s asset choices by
the big bank and the median fringe bank (what we called ãθi,t+1 in (8)). Note that the big
bank augments future net assets at low current levels in all states except when the economy
enters a recession from a boom. The latter arises because the big bank chooses to borrow
in that state. The figure also shows that the median fringe bank is less likely to save at
very low asset levels than a big bank and less likely to borrow than a big bank going into
a recession at low asset levels. The figure also shows that in recessions the median fringe
bank has a much more variable asset accumulation decision than the big bank (saving more
in good times and less in bad times).
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Figure 5: Big Bank and Median Fringe Bank Future Securities Rule ãθ
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Figure 6 plots beginning-of-next period’s asset choices by the smallest and largest fringe
bank types. The figure shows that the smallest fringe bank is more cautious than the largest
fringe bank (which actually borrows going into a recession similar to the dominant bank).

Figure 6: Fringe Banks Future Securities Rule ãθ (for different values δ)
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Panel (ii): atilda decision fringe δ
L
 and δ

H
 banks at z

g

 

 

af(δ
L
,z

g
,z′

b
)

af(δ
L
,z

g
,z′

g
)

af(δ
H

,z
g
,z′

b
)

af(δ
H

,z
g
,z′

g
)

45o

26



The big and median fringe bank borrowing decision rules are illustrated in Figure 7. The
only bank which borrows (i.e. Bθ′ > 0) to cover any deficient cash flows (i.e. when πb < 0)
is the big bank at low asset levels when the economy transits from the good state to the
bad state in Panel (ii). In all other cases, banks transfer positive cash flows to next period
assets (i.e. Bθ′ < 0). However it is clear that the median fringe bank chooses to store its
cash and/or lend short term much more than the big bank (particularly when coming out
of a recession).

Figure 7: Big Bank and Median Fringe Bank Borrowing Rule Bθ
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Figure (8) shows the borrowing decision rules for the smallest and largest fringe banks.
As evident, both sizes of fringe bank store about the same amounts, except that the largest
fringe stores significantly less as the economy enters a recession.
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Figure 8: Fringe Banks Borrowing Rule Bθ (for different values δ)
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The big and median fringe bank dividend decision rules are illustrated in Figure 9. While
dividends are constrained to be non-negative in (9), strictly positive payouts arise only if the
bank has sufficiently high assets. Note that there are bigger payouts as the economy enters
good times. The figure shows that a median fringe bank with sufficient assets follows a much
more variable dividend policy than the big bank starting in a recession. Panel (ii) shows the
dividend policy is procyclical when starting in a boom, but panel (i) exhibits countercyclical
behavior when starting from a recession. Much of dividend policy can be understood in
terms of differences in short term saving/borrowing between big and small banks.
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Figure 9: Big Bank and Median Fringe Bank Dividend Rule Dθ
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Figure (10) suggests that the biggest fringe banks are more likely to make dividend
payouts than the smallest fringe banks.

Figure 10: Fringe Banks Dividend Rule Dθ (for different values δ)
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Panel (ii): Dividend rule fringe δ
L
 and δ

H
 banks at z

g

 

 

Df(δ
L
,z

g
,z′

b
)

Df(δ
L
,z

g
,z′

g
)

Df(δ
H

,z
g
,z′

b
)

Df(δ
H

,z
g
,z′

g
)

The beginning-of-period equity ratio eθ

ℓθ
is illustrated in Figure 11. Recall from (4) that
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at the beginning of the period, equity is given by eθ = aθ
′

+ ℓθ − dθ and that capital
requirements with w = 0 are given by eθ ≥ ϕθℓθ in (5). The figure also plots the capital
requirement ϕθ = 0.06. As evident, the capital requirement is nonbinding for all asset levels.
Equity ratios for big banks are higher in booms than recessions when the bank has few assets
but at higher asset levels ratios become higher in recessions relative to booms (though this
latter case is an off-the-equilibrium path action). Thus, in equilibrium big banks exhibit a
mild degree of precautionary savings in good times at low asset levels. The figure also shows
that at low asset levels, the fringe bank has a significantly higher ratio than the big bank.
At high asset levels (which are off-the-equilibrium path) the relative positions change.

Figure 11: Big Bank and Median Fringe Bank Equity Ratios e/ℓ = (a′ + ℓ− d)/ℓ

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

securities (ã)
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Figure (12) shows that small fringe banks have much higher equity ratios than large
fringe banks across all asset levels. In particular, the figure provides evidence of the same
type of ranking of capital ratios across big and small fringe banks as evidenced between the
median fringe and dominant bank.
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Figure 12: Fringe Banks Equity Ratios e/ℓ = (a′ + ℓ− d)/ℓ (for different values δ)
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The beginning-of-period loan decision rules for dominant and median fringe banks are
illustrated in the top panel of Figure 13. If the dominant bank has sufficient assets, the
figure shows that it extends more loans in good than bad times. However at low asset levels,
it extends less loans in good than bad times because there is a greater chance of loan losses
associated with a downturn. The same is true for its deposit decision. The figure also shows
the effects of the capacity constraint on fringe banks. In particular, since the matching
function is independent of aggregate state and asset holdings, so are deposit holdings in
Panel (ii). Panel (i) shows that fringe banks which have more assets can make more loans
(linearly). Since there is a simple ranking of loans and deposits among fringe banks, we do
not graph that case.
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Figure 13: Big Bank and Median Fringe Bank Loan and Deposit Decision Rules ℓθ and dθ
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Figure (14) graphs the value function for a potential entrant over the fraction of incum-
bents M . What is important is that it is decreasing in the mass of incumbents; that is, the
benefit of entering is smaller the larger the mass of incumbents. Further, there is higher
value in good times than bad times.

Figure 14: Value Fringe Bank Potential Entrant
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Figure 15 graphs the long run average distribution of bank assets for the three different
“liquidity” constrained small banks as well as the dominant bank. Recall that there is no
invariant distribution since there is aggregate uncertainty. In this figure, we show the average
distribution that arises along the equilibrium path. More specifically, each period the model
generates a distribution of fringe banks µt(a, δ). This figure presents the average of fifty
simulated panels of µ̄(a, δ) =

∑T

t=1 µt(a, δ)/T , where T = 2000 is the number of simulated
periods.13 The values presented for the big bank correspond to the fraction of time that
the big bank spends along the equilibrium path in each asset level (i.e. the histogram of
securities). It is evident from the figure that the distribution of security holdings of the big
bank is lower than that of the fringe banks.14

Figure 15: Avg. Distribution of Fringe and Big Banks
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6.2 Business Cycle Correlations

We now move on to moments that the model was not calibrated to match, so that these
results can be considered a simple test of the model. Table 5 provides the correlation between
key aggregate variables with GDP.15 We observe that, as in the data, the model generates

13We discard the first 500 periods of the simulation to avoid dependence on initial conditions.
14In future simulations of this model we intend to use a finer grid which should generate more differences

in the location of the fringe bank distributions.
15We use the following dating convention in calculating correlations. Since some variables depend on z and

ζ (e.g. loan interest rates rL(z, ζ)) and some other variables depend on z, ζ, and z′, (e.g. default frequency
1−p(R(rL(z, ζ)), z′)), Table 5 displays corr(GDP (z, ζ, z′), x(z, ζ)) and corr(GDP (z, ζ, z′), y(z, ζ, z′)) where
x(z, ζ) is any variable x that depends on (z, ζ) and y(z, ζ, z′) is any variable y that depends on (z, ζ, z′).
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countercylical loan interest rates, exit rates, default frequencies, loan returns, charge-off
rates, price-cost margins, markups and capital ratios across bank sizes. Moreover, the model
generates procyclical entry rates as well as aggregate loans and deposits.

Table 5: Model and Data Business Cycle Correlations

Variable Correlated with GDP Model Data
Loan Interest Rate rL -0.82 -0.18
Exit Rate -0.62 -0.25
Entry Rate 0.53 0.62
Loan Supply 0.83 0.58
Deposits 0.81 0.11
Default Frequency -0.62 -0.08
Loan Return -0.05 -0.49
Charge Off Rate -0.62 -0.18
Price Cost Margin Rate -0.05 -0.47
Markup -0.83 -0.19
Capital Ratio Top 1% (risk-weighted) -0.79 -0.75
Capital Ratio Bottom 99% (risk-weighted) -0.48 -0.12

Figure 16 plots a simulation of capital ratios for big and fringe banks across a 100 period
sample realization of business cycle shocks. It is clear from this figure that equity ratios are
countercyclical. Periods when banks extend more loans (and thus equity ratios are lower)
result in higher GDP. Consistent with the data, in the model, the correlation between fringe
banks and GDP is lower than that of big banks. In periods where the aggregate shock stays
at zg, GDP grows and fringe banks accumulate securities and the capital ratio tracks the
evolution of GDP.
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Figure 16: Capital Ratios over the Business Cycle
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Figure 17 presents the evolution of the mass of fringe banks as well as entry and exit
rates over the business cycle. When the economy enters into a recession, a fraction of fringe
banks exit. If, as in periods 35 to 40, fringe bank’s equity ratios are not high enough, the
fraction of banks exiting is larger. The reduction in the number of banks is compensated by
entry of new banks. However, in some instances entry is gradual and the level of competition
is not restored immediately.

Figure 17: Competition over the Business Cycle
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7 Counterfactuals

7.1 Higher Capital Requirements

Here we ask the question “How much does a 33% increase in capital requirements affect
bank exit and outcomes?” As Table 6 makes clear, increasing capital requirements has the
intended effect of reducing exit rates by 57%. However, the increase in capital requirements
(everything else equal) reduces the continuation value of the bank. In equilibrium, this results
in a reduction in the average mass of incumbent fringe banks (-13.21%). A lower mass of
fringe banks (and consequently a lower level of competition) implies a higher loan interest
rate (+2.15%) and a default frequency that is more than double that of the benchmark.

Table 6: Capital Regulation Counterfactual

Benchmark Higher Cap. Req.
Moment (ϕ = 6%) (ϕ = 8%) Change (%)
Default Frequency (%) 1.10 2.73 148.80
Exit Rate (%) 1.17 0.50 -57.57
Loan Interest Rate (%) 6.50 6.64 2.15
Borrower Project (%) 12.71 12.72 0.05
Loan Market Share Bottom 99% (%) 40.63 37.02 -8.87
Deposit Market Share Bottom 99% (%) 27.28 27.36 0.27
Capital Ratio Top 1% (%) 15.61 20.06 28.51
Capital Ratio Bottom 99 % (%) 38.54 40.18 4.26
Probability Exit Big Bank (%) 0.00 0.00 0.00
Measure Banks Bottom 99 % 1.30 1.13 -13.21
GDP 0.27 0.26 -2.29
Loan Supply 0.24 0.23 -2.27
Taxes/GDP (%) 0.04 0.02 -65.89

One of the benefits of higher capital requirements is the decrease in the exit rate which
results in lower taxes (over GDP) to cover deposit insurance (a reduction of 65%). However,
the cost of higher capital requirements is a drop in the aggregate loan supply and GDP of
about 2%.

One novelty of our model is that the level of competition is endogenous. We observe that
the reduction in the mass of fringe banks is compensated in part by larger average loans
from this sector. This is reflected by a small decrease in the loan market share of the fringe
sector (-8%) compared to the reduction in the measure of banks (-13.21%). Banks holding
a higher level of securities are able to increase their supply of loans. Capital ratios for both
types of banks increase (28 and 4 percent for big and fringe banks respectively). The larger
increase in the capital ratio for big banks results in a larger increase in the number of loans

36



offered per period by big banks. Figure 18 presents a comparison of the equity ratios for big
banks and large fringe banks (i.e. those with δH) in the benchmark economy (bench.) and
in the model with higher capital requirements (high c.r.).

Figure 18: Higher Capital Requirements and Equity Ratios for Big and Fringe Banks
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In the benchmark economy, fringe banks with δH are close to the capital requirement
constraint at low securities levels (ãf = 0.013). Figure 18 shows that, at this level of
securities, the higher capital requirement induces these fringe banks to increase their equity
ratio. This figure also shows that equity ratios for big banks increase in the economy with
higher capital requirements. The higher capital ratios presented in Table 6 are the result
of not only these changes in decision rules but also the combination of a precautionary
motive and an income effect. With a higher capital requirement, banks accumulate more
assets to avoid an increase in the probability of facing a binding constraint. Moreover, the
change in loan market concentration results in higher interest rates and markups, inducing
incumbent banks to accumulate more securities. As a result, the distribution of assets shifts
to the right and since capital ratios are increasing in securities, incumbent banks end up
with higher capital ratios on the equilibrium path.

7.2 Higher Liquidity Requirements

To be added.

7.3 A perfectly competitive environment

To be added.
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8 Concluding Remarks

As far as we know this is the first set of papers to endogenize the bank size distribution
and use our quantitative structural model to study the consequences of macro-prudential
regulation on interest rates in the loan market and bank solvency/exit.
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9 Computational Appendix

We solve the model using an extension of the algorithm proposed by Krusell and Smith [18] or
Farias et. al. [13] adapted to this environment. This entails approximating the distribution
of banks ζ = {â, δ̂, µ(ã, δ)} by a finite number of moments. The moments we use are the
mean asset A and deposit δ level of fringe banks as well as the mass of fringe banksM , along
with the asset level of the dominant bank. To keep the state space simple, we also assume
that δ is the unconditional mean of the G(δ′, δ) process (after checking whether it was a good
assumption). Unlike the competitive framework in Krusell and Smith, when making loan
decisions, the dominant bank needs to take into account how changes in its behavior affects
the total loan supply of fringe banks. This reaction function also depends on the industry
distribution. While Farias et. al. also have a reaction function, they base theirs only on the
average firm’s static profit function. For the same reasons as stated above, in the reaction
function we approximate the behavior of the fringe segment of the market with the dynamic
decision rules (which unlike Farias et. al. includes exit) of the “average” fringe bank, i.e. a
fringe bank that holds the mean asset and deposit levels.
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More specifically, in the decision problem of the dominant bank, instead of the state
vector being given by V b(ã, δ, z, ζ) and W b(ℓ, d, a′, ζ, δ, z′), recognizing that we are approxi-
mating the fringe part of ζ by A and M , we use V b(ã, z, A,M) and W b(π, a′, z, z′, ã, A,M),
respectively. We do not include δ since it is never binding for the big bank. Further,
it is sufficient to know π rather than (ℓ, d) economizing on one state variable. Instead
of the law of motion for the distribution ζ ′ = H(z, z′, ζ) in (29) we approximate the
fringe part by Ā′ = HA(z, z′, ab, Ā,M) and M ′ = HM(z, z′, ab, Ā,M). Finally, we ap-
proximate the equation defining the “reaction function” ℓ + Lf(ζ, ℓ) = Ld(rL, z) in (24)
by ℓ + Lf(z, ab, A,M, ℓ) = Ld(rL, z) with

Lf (z, ab, Ā,M, ℓ) = ℓf (z, ab, Ā,M, ℓ)×M. (49)

The mass of fringe banks depends on entry and exit decisions, which is why our “reaction
function” must consider dynamic decisions unlike that in Farias, et. al.

A similar set of changes to the state vector need to be made to the problem of fringe
banks (except that the deposit capacity constraints almost always bind so we must keep
that state variable). In particular, V f(ã, δ, z, ζ) is replaced by V f(ã, δ, z, ab, Ā,M) and
W f(ℓ, d, a′, ζ, δ, z′) is replaced by W f(π, a′, δ, z, z′, ab, Ā,M). As before, the law of motion
for the distribution ζ ′ = H(z, z′, ζ) in (29) is approximated by Ā′ = HA(z, z′, ab, Ā,M),
M ′ = HM(z, z′, ab, Ā,M), and ab

′

= ab
′

(ab, z, Ā, z′). Finally, the reaction function in equa-
tion (24) uses the decision rule that solves the big bank loan choice problem; in particular
Ld(rL, z) = ℓb(ab, a, Ā,M) + Lf (z, ab, Ā,M, ℓb(ab, a, Ā,M)).

In order for the dominant bank to know how the fringe banks will react to its decisions,
it must know how fringe banks will behave when it takes off-the-equilibrium path actions.
To that end, we must introduce an auxiliary problem for the fringe banks where they choose
optimally across any possible action of the big bank ℓ. The statement of the auxiliary
problem is the same as for the fringe bank above except that the equation defining the
reaction function in equation (24) is given by Ld(rL, z) = ℓ+ Lf(z, ab, Ā,M, ℓ).

The algorithm is given by:

1. Guess aggregate functions. That is, guess {hai }
5
i=0 and {hmi }

5
i=0 to get

log(A
′
) = ha0 + ha1 log(z) + ha2 log(a

b) + ha3 log(A) + ha4 log(M) + ha5 log(z
′), (50)

log(M ′) = hm0 + hm1 log(z) + hm2 log(ab) + hm3 log(A) + ha4 log(M) + ha5 log(z
′).(51)

Make an initial guess of ℓf(Ā, z, ab,M, ℓ; δ̄) (i.e. the solution to the auxiliary problem)
that determines the reaction function

Lf (z, ab, Ā, ℓ) = ℓf(Ā, z, ab, ℓ)×M. (52)

2. Solve the dominant bank problem to obtain the big bank value function and decision
rules: V b, ℓb, ab

′

, db, Bb′ and xb.

3. Solve the problem of fringe banks to obtain the fringe bank value function and
decision rules: V f , ℓf , af

′

, df , Bf ′ and xf .

41



4. Using the solution to the fringe bank problem V f , solve the auxiliary problem to
obtain ℓf (Ā, z, ab,M, ℓ; δ̄).

5. Solve the entry problem of the fringe bank and big bank to obtain entry decision
rules.

6. Simulation

(a) Guess distribution of fringe banks over ã and δ, µ0(a, δ). Compute Ā0 =
∑

i,j aiµ0(ai, δj)
and and M0 =

∑
i,j µ0(ai, δj).

(b) Guess initial ab.

(c) Simulate a path of {zt}
T
t=0.

(d) Using decision rules for big banks obtain ℓbt , d
b
t , a

b
t+1, B

b
t+1 and ãbt .

(e) Solve for value of Mt+1 such that the free entry condition for fringe banks is
satisfied with equality.

(f) Find µt+1(a, δ) using decision rules for fringe banks. That is.

µt+1(ã, δ
′) =

∑

i,j

(1− xf (ai, δj , zt, a
b
t , At,Mt, zt+1))I{ãf (ai,δj ,zt,abt ,At,Mt,zt+1)=ã}

G(δ′, δ)µ(ai, δj)

+G(δ′, δ)Et
∑

δ

I{a′=af,e(·))}G
f,e(δ)

Compute Āt+1 =
∑

i,j aiµt+1(ai, δj).

(g) Continue for T periods and collect {abt , Āt,Mt}
T
t=1.

(h) Estimate equations (50) and (51) to obtain new aggregate functions.

(i) If the new aggregate functions are close enough to those used to solve the bank
problems and along the equilibrium path the distance between the solution to the
auxiliary problem (ℓf(Āt, zt, a

b
t ,Mt, ℓ

b
t ; δ̄)) and the average loan of fringe banks

(
∑

i,j ℓ
f
t µt(ai, δj)/Mt) are close enough you are done. If not, return to 2.

Table 7 presents the aggregate functions in the benchmark economy.
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Table 7: Equilibrium Aggregate Functions

Function log(Ā′) log(M ′)
cons. -0.753 0.012
log(z) -1.225 -0.108
log(ab) -0.040 -0.002
log(Ā) -0.824 0.001
log(M) -0.202 0.580
log(z′) 3.439 0.276
R2 0.981 0.930
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