discussion of Cogley, Sargent and Surico

The Return of the Gibson Paradox

Lawrence Christiano
February 17, 2012
Conference in honor of Warren Weber

Summary

- The Gibson Paradox has returned
 - Gibson Paradox: negative or zero long-run relationship between the interest rate and rate of inflation.
 - It has returned in the sense that the relationship was positive 1965-1985 and flipped negative or zero after 1995.
- Result documented in two ways:
 - Estimated time-varying VAR.
 - DSGE models estimated over the two periods.
- Use DSGE model to uncover economic reason for the return of the Gibson paradox.
 - Change in monetary policy and in a parameter governing the private economy.

What 'Long Run' Does Not Mean Here

• It does *not* mean....

- 'steady state'.
- A negative relationship between R and π in steady state would be truly hard to explain.
 - I am not aware of interesting theories with the property $\pi \uparrow$, $R \downarrow$.

The Concept of 'Long Run' Here

- Lucas ('Two Illustrations of Quantity Theory', AER, 1980) low-frequency idea
 - First, smooth data for β close to, but less than unity:

$$\pi_t(\beta) = \frac{1-\beta}{1+\beta} \sum_{k=-\infty}^{\infty} \beta^{|k|} \pi_{t+k}, \ R_t(\beta) = \frac{1-\beta}{1+\beta} \sum_{k=-\infty}^{\infty} \beta^{|k|} R_{t+k}$$

Second, perform regression

$$R_t(\beta) = a\pi_t(\beta) + \varepsilon_t$$

- In practice, authors exploit connection between a and features of the spectrum of (R_t, π_t) at frequency zero (Whiteman (1984)).
- The return of the Gibson paradox: a flipped from positive in early post-war, to negative more recently.

Long run relationship between R and π (with 68% posterior probability intervals)

At the same time, there has been a decline in inflation persistence

US Annual Inflation

Reduced Form 'Explanation'

Suppose nominal rate

$$R_t = R^{\text{real}} + E_t \pi_{t+1}$$

• If π is a random walk, then

$$R_t = R^{\text{real}} + \pi_t \rightarrow corr(R_t, \pi_t) = 1$$

• If π is iid, then

$$R_t = R^{\text{real}} + \text{constant} \rightarrow corr(\text{constant}, \pi_t) = 0$$

- This story leaves details unspecified:
 - Real rate held constant.
 - What are the economics behind the changes that have occurred?

Remarks

- Long-standing theme in time series analysis:
 - Long run relationships are hard to pin down in the data.
- With a specific statistical model, long-run relationships may appear easy to pin down.
 - Lag length and other restrictions set up a link between high frequency component of the data (easy to estimate) and low frequency component of the data.

identified from high-frequency, first order autocorrelation in data

$$y_t = \widehat{\rho}$$
 $y_{t-1} + \varepsilon_t$

zero-frequency spectral density

$$\widehat{S(0)} = \frac{\sigma_{\varepsilon}^2}{(1-\rho)^2}$$

 Difficulty of pinning down long-run relationships is manifested in a lack of robustness...not necessarily in large prob. intervals.

Robustness of Inference About a

- Would like to see robustness of Gibson Paradox finding to:
 - Including more variables in the VAR analysis.
 - Including more lags in the VAR (say lags = 4 rather than 2).

Concern:

- When I apply Lucas' inefficient (but, presumably, robust) procedure, fail to find Gibson Paradox.
- When I estimate a different DSGE model, fail to find Gibson Paradox.

Appying Lucas' Procedure

DSGE-based Estimate of a

 In the paper, C-S-S estimate a simple NK model without capital over 1995-2007 period:

The C-S-S model estimated over the earlier period has positive a, the two models have the same steady state (R_t, π_t) .

- At posterior mode, a=-0.278 (-1.4,1.2)
- I estimated a version of the Christiano-Eichenbaum-Evans (2005) model with 8 shocks and using 8 time series, 1985Q1-2010Q2.
 - At posterior mode, a=1.15

Conclusion

- The C-S-S paper suggests that interesting changes in the low frequency relationship between inflation and the interest rate have occurred.
- They provide an interesting economic interpretation of why the changes happened.
- This work is in the best tradition of using equilibrium models to interpret data.
- Still, would like to see a defense of robustness.