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Introduction

• Previous work suggested a decline in inflation persistence (e.g.
Cogley, Sargent, and Primiceri 2010)

• If so, Barksy’s (JME 1987) analysis says we should anticipate a
return of Gibson’s paradox.

• We show that Gibson’s paradox has returned, and we use a
new-Keynesian model to explain why.



Gibson’s paradox

• Prior to WWI, nominal interest rates were highly correlated with the
price level but uncorrelated with inflation.

• Keynes (1930) called it Gibson’s paradox in honor of A.H. Gibson
(1923), whom Keynes said first detected the pattern.

• Keynes and Gibson interpreted this as contradicting the Fisher
equation, as did later authors.



Gibson’s paradox (con’t.)

• Friedman and Schwartz (1982): “The relation holds over neither
World War I nor World War II. It is dubious whether it holds for the
post-World War II period, particularly since the middle 1960s. For
the period our data cover, it holds clearly and unambiguously only
for the period from 1880 to 1914, and less clearly for the interwar
period.”

• Barsky (1987) corroborates Friedman and Schwartz’s findings and
shows that Gibson’s paradox vanished by the early 1970s.

• Barksy also demonstrates that the paradox is closely linked to
inflation persistence, appearing when inflation is weakly persistent
and disappearing when it is strongly persistent.



Characterizing Gibson’s paradox, 1

• We characterize the Gibson paradox in terms of low-frequency
comovements between inflation and nominal interest within a
finite-dimensional vector autoregression.

• Let {yt , zt} be a mean-zero covariance-stationary random process.

• For us, yt is an interest rate, Rt and zt is an inflation rate, πt .



Characterizing Gibson’s paradox, 2

• We consider the infinite-order least-squares projection of yt onto
past, present, and future values of zt ,

yt =

∞
∑

j=−∞

hjzt−j + ǫt , (1)

where ǫt satisfies the orthogonality conditions

E ǫtzt−j = 0 ∀j .

• We study the sum of distributed-lag coefficients,

h̃(0) =

∞
∑

j=−∞

hj . (2)



Lucas-Whiteman characterization

• The Gibson paradox is an apparent failure of Fisher equation.

• Lucas (1980) characterized the Fisher equation by plotting moving
averages of an interest rate against a moving average of an inflation
rate: he took their lying on a 45 degree line to vindicate Fisher.

• Whiteman (1984) showed h̃(0) ≈ 1 means that Lucas’s graphs of
moving averages of interest rate plotted against moving average of
inflation lie on 45 degree line.

• We use h̃(0) ≈ 0 to characterize the Gibson paradox.



Gibson’s paradox in frequency domain

• Let Sy (ω) and Sz(ω) be spectral densities of y and z , and let Syz(ω)
be the cross-spectrum.

• The Fourier transform of {hj} can be expressed as

h̃(ω) =
∞
∑

j=−∞

hje
−iωj =

Syz(ω)

Sz(ω)
. (3)

• The sum of distributed-lag coefficients is

h̃(0) =

∞
∑

j=−∞

hj =
Syz (0)

Sz (0)
. (4)

• We use this formula because the spectral density matrix is easy to
calculate for VARs and DSGE models.



Interpreting h̃(0)

• h̃(0) is the coefficient in a regression of zero-frequency component
of R on zero-frequency components of π.

• The Gibson paradox emerges when h̃(0) is zero or negative and
vanishes when h̃(0) is 1.

• No paradox: A coefficient of 1 means that a persistent increase in π
is associated with a persistent increase in R of the same amount, in
accordance with the Fisher relation.

• A paradox emerges when π isn’t persistent.

• E.g., suppose π is white noise, so that expected inflation is constant.
• All variation in π is unexpected, hence noise for the Fisher relation.
• Noise in the regressor biases its coefficient toward zero.



Smoothness prior

• Vacuity of restriction for infinite dimensional VAR.

• Cross-frequency and cross-equation restrictions.

• Smoothness of h̃(ω) across frequencies ω ∈ [−π, π] is implied by
finite dimensional VAR.



Inflation persistence

• Following Barsky (1987), we also want to keep our eye on inflation
persistence.

• We measure inflation persistence by its first-order autocorrelation,
FACFπ .

• Similar results emerge using the normalized spectrum at frequency
zero.



Empirical evidence on the return of Gibson’s paradox

• We estimate a time-varying VAR a la Cogley and Sargent (2005)
and Primiceri (2005)

• Data: inflation, nominal interest, output growth, and money growth
for 1968.Q1-2007.Q4.

• Earlier data are used as a training sample for eliciting a prior.

• To ignore effects of the financial crisis, the sample ends at 2007.Q4.



VAR with drifts

Yt = B0,t + B1,tYt−1 + ...+ Bp,tYt−p + ǫt

≡ X
′

t θt + ǫt .

• Drifting coefficients:
θt = θt−1 + ηt ,

where ηt ∼ N(0,Q) (plus reflecting barriers).

• Drifting volatilities:
Innovations ǫt are normally distributed with mean zero and a
time-varying covariance matrix Ωt that obeys

Var(ǫt) ≡ Ωt = A−1
t Ht(A

−1
t )′ (5)



VAR, cont’d

Time-varying matrices Ht and At :

Ht ≡









h1,t 0 0 0
0 h2,t 0 0
0 0 h3,t 0
0 0 0 h4,t









, At ≡









1 0 0 0
α21,t 1 0 0
α31,t α32,t 1 0
α41,t α42,t α43,t 1









with hi ,t being geometric random walks:

ln hi ,t = ln hi ,t−1 + νi ,t



VAR, cont’d

αt = αt−1 + τt

where αt ≡ [α21,t , α31,t , .., α43,t ]
′. [u′t , η

′
t , τ

′
t , ν

′
t ]
′ is distributed as









ut
ηt
τt
νt









∼ N (0,V ) , V=









I4 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 Z









and

Z=









σ2
1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4









,

where ut is such that ǫt ≡ A−1
t H

1
2
t ut .



Empirical evidence (con’t.)

• We describe the evolution of low-frequency comovements between
inflation and nominal interest by constructing a local-to-date t
approximation of the sum of projection coefficients,

h̃Rπ,t|T (0) =
SRπ,t|T (0)

Sπ,t|T (0)
, (6)

using smoothed estimates of the time-varying VAR conditioned on
the full sample.

• We also construct a local-to-date t approximation to the first-order
autocorrelation for inflation FACFπ implied by the VAR.
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Empirical evidence (con’t.)

• No Gibson paradox is evident in the 1970s or 1980s, when the sum
of lag coefficients is near or above 1.

• A Gibson paradox reappears after 1995, when hRπ,t|T (0) falls to the
neighborhood of 0.

• Indeed, for the year 2000, the preponderance of probability mass lies
below 0.

• Consistent with Barsky (1987), the paradox emerges when inflation
is weakly persistent and vanishes when it is strongly persistent.



A structural interpretation

Game plan

• Estimate a new Keynesian model for two subperiods,
1968.Q1-1983.Q4 and 1995.Q1-2007.Q4

• Verify that it approximates h̃R,π(0) and FACFπ for the periods
before 1980 and after 1995.

• Conduct a number of structural counterfactuals to identify what
caused the return of Gibson’s paradox



A new Keynesian model

Inspired by Rotemberg (1982) and Ireland (2004)

πt = β (1− απ)Etπt+1 + βαππt−1 + κxt −
1

τ
et

xt = (1− αx)Etxt+1 + αxxt−1 − σ(Rt − Etπt+1)
+σ (1− ξ) (1− ρa) at

∆mt = πt + zt +
1

σγ
∆xt −

1

γ
∆Rt +

1

γ
(∆χt −∆at)

ỹt = xt + ξat

∆ỹt = ỹt − ỹt−1 + zt

et = ρeet−1 + εet , with εet ∼ N(0, σ2
e )

at = ρaat−1 + εat , with εat ∼ N(0, σ2
a)

χt = ρχχt−1 + εχt , with εχt ∼ N(0, σ2
χ
)

∆ ln (Zt) ≡ zt = εzt , with εzt ∼ N(0, σ2
z )



A new Keynesian model (con’t.)

• Variables (expressed as log deviations from steady-state values)
πt = inflation
Rt = nominal interest rate
∆mt = money growth
xt = output gap
ỹt = detrended output
∆ỹt = output growth

• Shocks
et = markup
at = aggregate demand (preference)
χt = money demand
Zt = technology



A new Keynesian model (con’t.)

• Parameters
β = discount factor
απ = indexation of prices to past inflation
αx = habit formation
κ = slope of the Phillips curve
σ = elasticity of intertemporal substitution
τ = cost of adjusting prices
ξ = inverse elasticity of labor supply
γ = inverse interest elasticity of money demand



A new Keynesian model (con’t.)

Monetary policy

• A monetary-aggregate rule for 1968.Q1-1983.Q4

∆mt = ρm∆mt−1+(1− ρm) (φππt + φxxt)+εmt, εmt ∼ N(0, σ2
m)

• An interest-rate rule for 1995.Q1-2007.Q4

Rt = ρrRt−1 + (1− ρr ) (ψππt + ψxxt) + εRt , εrt ∼ N(0, σ2
R)



Prior predictive analysis

• Priors for the two subsamples will be shown momentarily.

• Although priors for structural parameters and shocks are the same
across subsamples, priors on policy coefficients differ because the
policy instruments differ.

• This alters the implied priors for h̃R,π(0) and FACFπ.

• We therefore want to demonstrate that

• The model is capable of matching h̃R,π(0) and FACFπ for some

parameters in the support of the respective priors.
• The priors do not hardwire our findings.



Prior predictive analysis (con’t.)
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prior

Centered 90 percent credible sets

• h̃R,π(0): (0.13,0.96) and (-0.62,1.6)

• FACFπ : (0.67,0.97) and (0.51,0.96)



Prior and posterior densities - 1968Q1-1983Q4

Prior Posterior

description coefficient density domain mean [5th ; 95th ] mean [5th ; 95th ]

discount factor β beta [0,1] 0.99 [0.981 ; 0.997] 0.989 [0.980 ; 0.997]
NKPC backward-looking component απ beta [0,1] 0.5 [0.171 ; 0.826] 0.864 [0.765 ; 0.972]

NKPC slope κ gamma R
+ 0.15 [0.104 ; 0.202] 0.108 [0.070 ; 0.141]

price adjustment cost τ gamma R
+ 3 [1.560 ; 4.811] 2.706 [1.427 ; 3.987]

IS curve backward-looking component αx beta [0,1] 0.5 [0.171 ; 0.826] 0.390 [0.335 ; 0.446]

elasticity of intertemporal substitution σ gamma R
+ 0.15 [0.104 ; 0.202] 0.100 [0.069 ; 0.131]

inverse of labour supply elasticity ξ gamma R
+ 3 [1.560 ; 4.811] 2.123 [1.282 ; 2.923]

interest elasticity of money demand γ gamma R
+ 3 [1.560 ; 4.811] 2.705 [2.124 ; 3.248]

money growth response to inflation φπ normal R 0.5 [0.335 ; 0.665] 0.466 [0.305 ; 0.625]
money growth response to output gap φx normal R -.5 [-.665 ; -.335] -.566 [-.721 ; -.398]
money growth smoothing ρm beta [0,1] 0.5 [0.171 ; 0.826] 0.598 [0.478 ; 0.752]

persistence of mark up shock ρe beta [0,1] 0.5 [0.171 ; 0.826] 0.136 [0.021 ; 0.246]
persistence of demand shock ρa beta [0,1] 0.5 [0.171 ; 0.826] 0.926 [0.872 ; 0.983]
persistence money demand shock ρχ beta [0,1] 0.5 [0.171 ; 0.826] 0.656 [0.396 ; 0.910]

standard deviation of mark up shock σe inv. gamma R
+ 0.01 [0.004 ; 0.022] .0098 [.0050 ; .0146]

standard deviation of demand shock σa inv. gamma R
+ 0.01 [0.004 ; 0.022] .0045 [.0030 ; .0060]

standard deviation of money demand shock σχ inv. gamma R
+ 0.01 [0.004 ; 0.022] .0062 [.0032 ; .0093]

standard deviation of technology shock σz inv. gamma R
+ 0.01 [0.004 ; 0.022] .0063 [.0047 ; .0078]

standard deviation of policy shock σm inv. gamma R
+ 0.01 [0.004 ; 0.022] .0082 [.0069 ; .0095]

long-run link inflation-nominal interest rate implied h̃R,π (0) R 0.664 [0.134 ; 0.960] 0.788 [0.621 ; 0.924]

inflation persistence implied FACFπ R 0.867 [0.667 ; 0.973] 0.947 [0.911 ; 0.975]

Note: Based on 1,000,000 posterior draws using the Metropolis-Hastings algorithm.



The first subsample (con’t.)
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Figure: The scatter plots depict distributions of the features h̃R,π(0) and
FACFπ swept out by sampling from the joint posterior distribution of the
response coefficients of money growth to inflation and the output gap. All
other parameters are fixed at the posterior mean.



Factors contributing to high inflation persistence during

the first subsample

• A high degree of intrinsic inflation persistence, απ = 0.86

• A positive policy response of money growth to inflation, φπ = 0.47

• A negative policy response of money growth to output, φx = -0.57,
combined with a preponderance of markup shocks. These move
output and inflation in opposite directions.



Prior and posterior densities - 1995Q1-2007Q4

Prior Posterior

description coefficient density domain mean [5th ; 95th ] mean [5th ; 95th ]

discount factor β beta [0,1] 0.99 [0.981 ; 0.997] 0.990 [0.982 ; 0.998]
NKPC backward-looking component απ beta [0,1] 0.5 [0.171 ; 0.826] 0.133 [0.022 ; 0.236]

NKPC slope κ gamma R
+ 0.15 [0.104 ; 0.202] 0.138 [0.092 ; 0.185]

price adjustment cost τ gamma R
+ 3 [1.560 ; 4.811] 4.009 [2.538 ; 5.472]

IS curve backward-looking component αx beta [0,1] 0.5 [0.171 ; 0.826] 0.179 [0.068 ; 0.286]

elasticity of intertemporal substitution σ gamma R
+ 0.15 [0.104 ; 0.202] 0.112 [0.073 ; 0.151]

inverse of labour supply elasticity ξ gamma R
+ 3 [1.560 ; 4.811] 0.972 [0.526 ; 1.393]

interest elasticity of money demand γ gamma R
+ 3 [1.560 ; 4.811] 2.344 [1.658 ; 3.033]

interest rate response to inflation ψπ truncated normal R 1.5 [1.010 ; 1.990] 1.653 [1.276 ; 2.040]
interest rate response to output gap ψx normal R .125 [0.000 ; 0.250] 0.117 [0.012 ; 0.222]
interest rate smoothing ρr beta [0,1] 0.5 [0.171 ; 0.826] 0.838 [0.787 ; 0.888]

persistence of mark up shock ρe beta [0,1] 0.5 [0.171 ; 0.826] 0.474 [0.234 ; 0.705]
persistence of demand shock ρa beta [0,1] 0.5 [0.171 ; 0.826] 0.921 [0.868 ; 0.979]
persistence money demand shock ρχ beta [0,1] 0.5 [0.171 ; 0.826] 0.638 [0.342 ; 0.951]

standard deviation of mark up shock σe inv. gamma R
+ 0.01 [0.004 ; 0.022] .0050 [.0031 ; .0067]

standard deviation of demand shock σa inv. gamma R
+ 0.01 [0.004 ; 0.022] .0044 [.0027 ; .0061]

standard deviation of money demand shock σχ inv. gamma R
+ 0.01 [0.004 ; 0.022] .0052 [.0030 ; .0072]

standard deviation of technology shock σz inv. gamma R
+ 0.01 [0.004 ; 0.022] .0042 [.0034 ; .0050]

standard deviation of policy shock σm inv. gamma R
+ 0.01 [0.004 ; 0.022] .0021 [.0017 ; .0025]

long-run link inflation-nominal interest rate implied h̃R,π (0) R 0.760 [-0.623 ; 1.623] -0.278 [-1.386 ; 1.160]

inflation persistence implied FACFπ R 0.792 [0.509 ; 0.960] 0.585 [0.415 ; 0.732]

Note: Based on 1,000,000 posterior draws using the Metropolis-Hastings algorithm.



The second subsample (con’t.)
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Figure: The scatter plots depict distributions of the features h̃R,π(0) and
FACFπ swept out by sampling from the joint posterior distribution of the
response coefficients of the interest rate to inflation and the output gap. All
other parameters are fixed at the posterior mean.



Posteriors for h̃R ,π(0) and FACFπ
Densities for h̃R,π(0) and FACFπ both move to the left in the later
subsample.
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Differences between the two subsamples

In the second subsample,

• Most of the shocks are less volatile, and hard-to-manage markup
shocks account for a smaller proportion of output variation.

• There is less intrinsic inflation persistence, with απ falling from 0.86
to 0.13.

• The monetary-policy rule satisfies the Taylor principle and engages
in a high degree of interest smoothing.



Counterfactuals

Outline

• Good-luck hypothesis: Swap the shock processes in the two
subsamples.

• Good-policy hypothesis: Swap the monetary-policy rules in the two
subsamples.

• Examine changes in private-sector parameters other than those
governing the shocks.



The good-luck hypothesis

Great Inflation Post-1995

h̃R,π(0) FACFπ h̃R,π(0) FACFπ

Baseline Model 0.79 0.94 -0.51 0.55
Swap shock variances 0.83 0.93 -1.31 0.63

• Replacing the shock variances in the baseline model with those from
the other subsample is unsuccessful.

• A Gibson paradox remains absent in the first subsample and still
reappears in the second.

• It follows that the Gibson paradox can’t be explained by altered
shock variances.



The good-policy hypothesis

Great Inflation Post-1995

h̃R,π(0) FACFπ h̃R,π(0) FACFπ

Baseline Model 0.79 0.94 -0.51 0.55
Swap policies 0.05 0.92 0.24 0.63

• Replacing the policy rule in the baseline model with that of the
other subsample is partially but not entirely successful.

• Under the post-1995 monetary policy, a Gibson paradox would have
emerged in the first subsample, but inflation would have been too
persistent.

• Under the 1970s monetary policy, the Gibson regression coefficient
h̃(0) and inflation autocorrelation would both have been higher in
the second subsample.

• It follows that there is more to the story than just a change in
monetary policy, at least if we interpret things narrowly.



Changes in NKPC parameters

Great Inflation Post-1995

h̃R,π(0) FACFπ h̃R,π(0) FACFπ

Baseline Model 0.79 0.94 -0.51 0.55
Swap NKPCs 0.38 0.74 1.01 0.89

• Replacing NKPC parameters in the baseline model with those from
the other subsample is also partially successful.

• The Gibson regression coefficient h̃(0) would have been lower in the
1970s and inflation less persistent with the post-1995 NKPC.

• A Gibson paradox would not have reappeared after 1995 and inflation
would have been more persistent with the NKPC of the 1970s.

• The key change is the decline in απ from 0.86 to 0.13, which
reduces the degree of intrinsic inflation persistence.



A failure of invariance?

• Why did NKPC parameters change?

• Hard to say, because the model treats them as primitives.

• One respectable interpretation, however, is that they changed
because of the change in policy.

• In particular, the significant decline in estimates of απ after the
Volcker disinflation might be taken as prima facie evidence that it is
not structural in the sense of Lucas (1976).

• If that is so, then both NKPC and policy coefficients must be
swapped in order properly to assess the effects of a change in
monetary policy.



NKPC plus Policy

Great Inflation Post-1995

h̃R,π(0) FACFπ h̃R,π(0) FACFπ

Baseline Model 0.79 0.94 -0.51 0.55
Swap NKPC + Policies -0.67 0.68 0.81 0.94

• Swapping both NKPC and policy parameters completes our
accounting.

• A Gibson paradox would have emerged in the 1970s and inflation
would have been less persistent under the post-1995 monetary policy
and NKPC.

• A Gibson paradox would not have reappeared after 1995 and
inflation would have been more persistent under the 1970s monetary
policy and NKPC.



Conclusion

• Our counterfactuals point to a change in monetary policy – broadly
interpreted – as being the main reason for the return of Gibson’s
paradox.

• To make this work, we must invoke an unmodeled nonlinearity
linking NKPC parameters to parameters of the monetary policy rule.

• Although plausible, we are uncomfortable about manipulating the
model in this way, for those parameters are usually presumed to be
structural.

• As such, they are critical for determining the properties of inflation,
both directly and through their influence on monetary policy.

• To the extent that these key parameters fail to be invariant, we
worry about the model’s reliability for predicting the consequences of
policies unseen in the samples used for estimation.


