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Outline of the talk

1 Summary of some seemingly anomalous results that arise in
evaluation of possibly misspecified and unidentified linear asset pricing
models estimated by maximum likelihood or optimal one-step GMM

2 Empirical evidence for some popular asset pricing models
3 Simulation results for parameter and specification tests,
goodness-of-fit measures

4 Theory
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General remarks and objectives

Two observations consistently emerge in the empirical analysis of
asset pricing models

1 Asset pricing models appear to be misspecified
2 Asset returns are very noisy and only weakly correlated with the much
less volatile macroeconomic (non-traded) factors.
Some sample correlations: cgdur (0.05), labor (0.04), cg ·cay (0.01)

The goal of this research agenda is to assess the effect of these
empirical regularities on the evaluation of the asset pricing models
and, in particular, on

The fit of the model computed as the squared correlation of the actual
and the model-implied expected returns
The behavior of the test for correct model specification
The behavior of parameter tests (tests of a zero risk premium or if the
risk factor is priced or not)

The stochastic discount factor (SDF) and beta pricing representations
of the model are estimated by optimal/invariant (maximum likelihood
or continuously-updated GMM) methods
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Pre-analysis (prior) beliefs/intuition

When irrelevant/useless factors (factors that are uncorrelated with
asset returns and do not contribute to the pricing ability of the model)
are used to explain the cross-sectional variation in asset returns:

1 The fit of the model should be poor
2 The test for correct specification should detect model misspecification
with high probability

3 The test of statistical significance should detect with high probability
that the factors are not priced

4 The inference on the other (useful) factors should not be affected (in a
fundamental way) by the presence of useless factors

The intuition for the last two points comes from the regression
analysis where the inclusion of irrelevant factors only inflates the
variance of the parameter estimates but leaves the asymptotic
inference (consistency and asymptotic normality) unchanged
We show that all of the above conjectures are wrong and the
inference in the presence of useless factors is completely spurious!
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Post-analysis (posterior) summary of results

Our analysis reaches some striking conclusions.
In particular, when useless factors are present and T → ∞:

1 The model exhibits perfect fit (R2 → 1)!
2 The model is deemed to be correctly specified (using the LR and OIR
tests) with high probability even when the degree of misspecification is
arbitrarily large (i.e., the power of the specification tests is equal to
their size)

3 The risk factors, that are useless, are deemed to be priced with
probability approaching one

4 The risk factors, that are useful and priced, are likely to be deemed
unpriced

In summary, an arbitrarily bad model with factors that are
independent of asset returns is concluded to be a correctly specified
model with a spectacular fit and priced risk factors.

These surprising results bear some similarities to the spurious
regression results for nonstationary time series
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Some empirical evidence

The test asset returns are monthly gross returns on the
value-weighted 25 Fama-French size and book-to-market ranked
portfolios from February 1959 until December 2012.

Four asset pricing models:

1 Static CAPM: excess market return (vw) as a risk factor
2 Fama-French (1993) three-factor model: vw , smb and hml as risk
factors

3 Jagannathan-Wang (1996) C-LAB model: vw , growth rate of per
capita labor income (labor) and the lagged default premium (prem)

4 Lettau-Ludvigson (2001) CC-CAY: real per capita consumption growth
(cg), the lagged consumption-aggregate wealth ratio (cay) and an
interaction term between these two factors (cg · cay)

The beta and SDF representations of these models are estimated by
ML and CU-GMM, respectively.
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Realized vs. fitted returns (ML)
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Realized vs. fitted returns (CU-GMM)
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Empirical evidence

Preliminary evidence on model identification and specification

Rank and HJ-Distance Tests

CAPM FF3 C-LAB CC-CAY

Rank
(p-value)

136.16
(0.0000)

87.69
(0.0000)

23.26
(0.3873)

10.78
(0.9778)

HJD
(p-value)

0.32
(0.0000)

0.28
(0.0024)

0.32
(0.0000)

0.33
(0.0005)

Notes: The null of the rank test is that is that the covariance matrix of
the returns and the factors is of reduced rank. The null of the HJD test is
that the model is correctly specified.
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Empirical evidence

ML (beta representation)

CAPM FF3 C-LAB CC-CAY

LR
(p-value)

64.35
(0.0000)

47.29
(0.0009)

22.69
(0.3605)

11.48
(0.9527)

tvw −3.24 −3.43 −1.34
tsmb 2.08
thml 2.33
tlabor 2.81
tprem 4.21
tcg −0.90
tcay 0.76
tcg ·cay 3.45
R2 0.1346 0.7677 0.9994 0.9997
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Empirical evidence

CU-GMM (SDF framework)

CAPM FF3 C-LAB CC-CAY

OIR
(p-value)

64.58
(0.0000)

45.10
(0.0017)

20.58
(0.4848)

10.57
(0.9705)

tvw 4.29 3.92 −0.93
tsmb −4.22
thml −2.01
tlabor 4.26
tprem 2.81
tcg 1.46
tcay 0.85
tcg ·cay −3.19
R2 0.1999 0.7847 0.9595 0.9952
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Simulation design

Three linear models: (1) with a useful factor only, (2) with an
irrelevant (useless) factor only and (3) with both factors

The models can be correctly specified or misspecified
The returns and the useful factor are drawn from a multivariate
normal distribution with a covariance matrix set equal to the
estimated covariance matrix from the 1959:2—2012:12 sample of
monthly gross returns on the 25 Fama-French portfolios and the
value-weighted market excess return.

for misspecified models, the means of the simulated returns are set
equal to the means of the actual returns
for correctly specified models, the means of the returns are set such
that the asset pricing model restrictions are satisfied (i.e., the pricing
errors are zero)
the mean of the simulated useful factor is calibrated to the mean of the
market excess return

The useless factor is generated as a standard normal random variable
which is uncorrelated with the returns and the useful factor
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Simulation evidence (CU-GMM)

Rejection rates of specification test and t-tests of statistical significance

t1 t2 OIR

10% 5% 1% 10% 5% 1% 10% 5% 1%

(1) 0.953 0.936 0.889 1.00 1.00 0.999
(3) 0.171 0.096 0.024 1.00 1.00 1.00 0.085 0.040 0.007

Notes: (1) denotes the model with a useful factor only and (3) denotes
the model with one useful and one irrelevant (useless) factors. The model
is misspecified with a degree of misspecification calibrated to the CAPM
estimated from actual data. The sample size is T = 600 and the number
of Monte Carlo replications is 100,000.
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Additional simulation results: Specification tests

Rejection Rates of Specification Tests

J Test (CU-GMM) LR Test (ML)

T 10% 5% 1% 10% 5% 1%

Correctly Specified Model (Useful Factor)

200 0.214 0.131 0.040 0.149 0.081 0.019
600 0.135 0.072 0.017 0.113 0.059 0.013
3600 0.105 0.054 0.011 0.103 0.052 0.011

Misspecified Model (Useful Factor)

200 0.900 0.831 0.635 0.866 0.781 0.557
600 1.000 1.000 0.999 1.000 1.000 0.998
3600 1.000 1.000 1.000 1.000 1.000 1.000

Gospodinov, Kan, and Robotti (2013) Spurious Fit in Unidentified Models October 11, 2013 14 / 31



Additional simulation results: Specification tests

Rejection Rates of Specification Tests

J Test (CU-GMM) LR Test (ML)

T 10% 5% 1% 10% 5% 1%

Correctly Specified Model (Irrelevant Factor)

200 0.030 0.011 0.001 0.014 0.004 0.000
600 0.010 0.003 0.000 0.007 0.002 0.000
3600 0.006 0.001 0.000 0.005 0.001 0.000

Misspecified Model (Irrelevant Factor)

200 0.130 0.063 0.011 0.105 0.050 0.008
600 0.113 0.057 0.011 0.105 0.052 0.011
3600 0.103 0.052 0.010 0.103 0.052 0.010
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Additional simulation results: R2

Empirical Distribution of the R2 coeffi cient (CU-GMM)

T mean 1% 5% 10% 50% 90% 95% 99%

Misspecified Model (Useful Factor)

200 0.298 0.000 0.003 0.012 0.251 0.669 0.755 0.871
600 0.214 0.000 0.003 0.011 0.176 0.481 0.563 0.692
3600 0.172 0.012 0.041 0.062 0.164 0.293 0.332 0.404

Misspecified Model (Irrelevant Factor)

200 0.900 0.342 0.658 0.770 0.944 0.983 0.988 0.993
600 0.989 0.929 0.966 0.976 0.993 0.998 0.998 0.999
3600 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000
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Additional simulation results: R2

Empirical Distribution of the R2 coeffi cient (ML)

T mean 1% 5% 10% 50% 90% 95% 99%

Misspecified Model (Useful Factor)

200 0.231 0.000 0.002 0.006 0.161 0.577 0.674 0.806
600 0.178 0.000 0.002 0.006 0.130 0.429 0.514 0.651
3600 0.143 0.006 0.026 0.043 0.133 0.256 0.294 0.367

Misspecified Model (Irrelevant Factor)

200 0.940 0.150 0.703 0.852 0.988 1.000 1.000 1.000
600 0.996 0.961 0.985 0.991 0.999 1.000 1.000 1.000
3600 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
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Additional simulation results: t-tests

Rejection Rates of t-tests (CU-GMM)

H0 : λ = λ∗ H0 : λ = 0
T 10% 5% 1% 10% 5% 1%

Correctly Specified (Useful Factor)

200 0.319 0.238 0.123 0.449 0.362 0.217
600 0.153 0.089 0.025 0.533 0.423 0.230
3600 0.109 0.056 0.012 0.987 0.973 0.904

Misspecified (Useful Factor)

200 0.632 0.565 0.442 0.849 0.814 0.732
600 0.459 0.377 0.245 0.953 0.936 0.889
3600 0.368 0.284 0.159 1.000 1.000 1.000
Note: λ∗ is the (pseudo-) true value of the parameter
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Additional simulation results: t-tests

Rejection Rates of t-tests (CU-GMM)
H0 : λ = 0

T 10% 5% 1%

Correctly Specified (Irrelevant Factor)

200 0.850 0.818 0.749
600 0.813 0.774 0.691
3600 0.800 0.758 0.668

Misspecified (Irrelevant Factor)

200 0.997 0.996 0.994
600 1.000 1.000 1.000
3600 1.000 1.000 1.000
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Simulation evidence (CU-GMM)

Rejection rates of specification test and t-tests of statistical significance

H0 : λ1 = 0 H0 : λ2 = 0 J Test

10% 5% 1% 10% 5% 1% 10% 5% 1%

(1) 0.953 0.936 0.889 1.00 1.00 0.999
(3) 0.171 0.096 0.024 1.00 1.00 1.00 0.085 0.040 0.007

Notes: (1) denotes the model with a useful factor only and (3) denotes
the model with one useful and one irrelevant (useless) factors.
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SDF approach

Let

mt be an admissible SDF at time t
Rt be the payoffs (returns) of N assets at time t
q 6= 0N be a vector of costs (q = 1N in case of gross returns)

SDF approach to asset pricing (fundamental pricing equation)

E [Rtmt ] = q

Asset prices are obtained by “discounting” future payoffs by mt so that
the expected present value of the payoffs is equal to their costs
Unifying approach to pricing stocks, bonds, and derivative products
Equivalent to a no-arbitrage principle, provided that mt > 0
Conditioning information can also be incorporated

Asset pricing models parameterize a candidate SDF y as a function of
the data and parameters λ

nonlinear CCAPM: λ0
u ′(ct )
u ′(ct−1)

or λ0

(
ct
ct−1

)−λ1
(CRRA)

linear models: λ0 + λ′1ft , where ft are risk factors
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SDF approach

Let
yt (λ) = f̃ ′t λ

be a proposed stochastic discount factor (SDF), where ft is a
(K-1)-vector of systematic risk factors, f̃t = [1, f ′t ]

′ and λ = [λ0, λ′1]
′

Also, let et (λ) = Rt f̃ ′t λ− q denote the pricing errors of the model

when the asset pricing model holds,
E [et (λ)] = E [Rt f̃ ′t ]λ− q = Dλ− q = 0N

The continuously-updated GMM estimator of λ is defined as

λ̂ = argminλē(λ)
′Ŵe (λ)

−1 ē(λ),

ē(λ)= 1
T ∑T

t=1 et (λ) and Ŵe (λ)= 1
T ∑T

t=1(et (λ)-ē(λ))(et (λ)-ē(λ))
′

The over-identifying restriction test of the asset pricing model is

J (λ) = T min
λ
ē(λ)′Ŵe (λ)

−1 ē(λ)

and J (λ̂) d→ χ2N−K when the asset pricing model holds.
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ē(λ)′Ŵe (λ)

−1 ē(λ)
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−1 ē(λ)

and J (λ̂) d→ χ2N−K when the asset pricing model holds.

Gospodinov, Kan, and Robotti (2013) Spurious Fit in Unidentified Models October 11, 2013 22 / 31



CU-GMM: Specification test

Let Pq be an N × (N − 1) orthonormal matrix whose columns are
orthogonal to q such that PqP ′q = IN − q(q′q)−1q′ and P ′qq = 0N−1

Since Dλ = q holds if and only if P ′qDλ = 0N−1, one can use the test

CD(λ) = T minλ(P
′
qD̂λ)′[(λ′ ⊗ P ′q)V̂d (λ⊗ Pq)]−1(P ′qD̂λ),

where V̂d is the variance matrix of D̂, to test if rank(P ′qD) = K − 1
Theorem. Let J (λ̂) and CD(λ̃) be the tests of H0 : Dλ = q and
H0 : rank(P ′qD) = K − 1, where λ̂ and λ̃ denote their corresponding
minimizers. Then, λ̂ = c∗λ̃ and J (λ̂) = CD(λ̃)
Corollary. Suppose that the model contains an irrelevant factor so
that rank(D) = K − 1 and Dλ− q 6= 0N (i.e., the model is
misspecified). Let α denote the significance level of the test and cα

be the 100(1− α)-th percentile of χ2N−K . Then,

limT→∞ Pr{J (λ̂) > cα} = α

Similar results for LR and canonical correlation rank tests
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Additional results: Misspecification-robust standard errors

The CU-GMM estimator can be defined equivalently (see Newey and
Smith, 2004) as the solution to the following saddle point problem:

λ̂ = arg min
λ∈Λ

max
η∈Ψ(λ)

1
T

T

∑
t=1

ρ
(
η′et (λ)

)
,

where ρ (v) = − 12v2 − v and η is an N × 1 vector of Lagrange
multipliers associated with the moment conditions E [et (λ)] = 0N

Note that η characterizes the degree of model misspecification with
η∗(λ) = 0N for correctly specified models and ‖η∗(λ)‖ > 0 for
misspecified models
Then, under some regularity conditions,

√
T (λ̂− λ∗)

d→ N(0K ,E [lt l
′
t ]),

where lt = (C − B ′W (λ∗)−1B)−1ct
[
D ′tη∗ − B ′W (λ∗)−1et (λ∗)

]
,

Dt = Rt f̃ ′t , ct = 1+ η′∗et (λ∗), C = E [D
′
tη∗η

′
∗Dt ] and

B = E [ctRt f̃ ′t ] + E [et (λ∗)η
′
∗Dt ]
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Additional results: Misspecification-robust standard errors

Empirical size and power of t-tests: misspecified model (useful factor)

Size: H0 : λ = λ∗ Power: H0 : λ = 0

T 10% 5% 1% 10% 5% 1%

Panel A: tc

200 0.632 0.565 0.442 0.849 0.814 0.732
600 0.459 0.377 0.245 0.953 0.936 0.889
3600 0.368 0.284 0.159 1.000 1.000 1.000

Panel B: tm
200 0.158 0.088 0.021 0.399 0.281 0.113
600 0.103 0.050 0.010 0.741 0.628 0.377
3600 0.099 0.049 0.009 1.000 1.000 0.999
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Additional results: Misspecification-robust standard errors

Empirical size and power of t-tests: misspecified model (irrelevant factor)

Size: H0 : λ = 0

T 10% 5% 1%

Panel A: tc

200 0.997 0.996 0.994
600 1.000 1.000 1.000
3600 1.000 1.000 1.000

Panel B: tm
200 0.135 0.070 0.014
600 0.082 0.038 0.007
3600 0.095 0.046 0.009
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Beta pricing model

It is often desirable to estimate and evaluate the asset pricing model
in the beta pricing setup

Let µ = E [Rt ], µf = E [ft ] and Vf = Var[ft ], and assume

Rt − µ = β(ft − µf ) + εt , t = 1, . . . ,T ,

where β = [β1, ..., βK−1] is an N × (K − 1) matrix and
εt ∼ iid(0N ,Σ)
The beta pricing model suggests that

µ = 1Nγ0 + βγ1

Two main reasons why the beta pricing setup is often preferred in
empirical asset pricing

1 the parameters γ1 have a direct interpretation of risk premium
parameters

2 the beta representation allows for conveniently measuring and plotting
the goodness-of-fit as model’s expected returns versus realized returns
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Beta pricing model (CU-GMM)

The mapping between the SDF and beta pricing model parameters is
given by

γ0 =
1

λ0 + µ′f λ1
,γ1 =

−Vf λ1
λ0 + µ′f λ1

,

where Vf is the covariance matrix of ft .

By augmenting ē(λ) in the SDF representation with additional
(just-identified) moment conditions for µf , Vf and β, the CU-GMM
estimate of the augmented parameter vector θ = [λ0, λ′1, β′1, ...,
β′K−1, µ′f , vech(Vf )]′ becomes numerically identical to the CU-GMM
estimate of [γ0, γ′1, β′1, ..., β′K−1, µ′f , vech(Vf )]′ in the beta pricing
model

However, the estimation of θ can be performed in a sequential
manner which offers substantial computational advantages

The following theorem presents a general result for this sequential
estimation
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Beta pricing model (CU-GMM)

Theorem. Let θ = (θ′1, θ′2)
′, where θ1 is K1 × 1 and θ2 is K2 × 1,

and

E [gt (θ)] =
[

E [g1t (θ1)]
E [g2t (θ1, θ2)]

]
=

[
0N1
0N2

]
,

where g1t (θ1) is N1 × 1 and g2t (θ) is N2 × 1, with N1 > K1 and
N2 = K2. Define the estimators

θ̃1 = argminθ1 ḡ1(θ1)
′Ŵ11(θ1)

−1ḡ1(θ1),

θ̂ ≡
[

θ̂1
θ̂2

]
= argminθ ḡ(θ)

′Ŵ (θ)−1ḡ(θ).

Then, θ̃1 = θ̂1, and J (θ̃1) = J (θ̂).

The theorem establishes that for the CU-GMM, adding a new set of
just-identified moment conditions to the original system does not
alter the estimates of the original parameters as well as the test for
overidentifying restrictions
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Beta pricing model (CU-GMM)

This implies that we can discard the subset of moment conditions
that are exactly identified and only perform the estimation and the
over-identifying restriction test on the remaining smaller set of
moment conditions.

Then, we can solve for θ̂2 = [β̂
′
1, ..., β̂

′
K−1, µ̂′f , vech(V̂f )]′ after

θ̃1 = [λ0, λ′1]
′ is obtained from the smaller system. In our linear

setup, θ̂2 has a closed-form solution
The estimates of γ are obtained as

γ̂0 =
1

λ̂0 + µ̂′f λ̂1
, γ̂1 =

−V̂f λ̂1

λ̂0 + µ̂′f λ̂1
,

and the expected returns as

µ̃ = 1N γ̂0 + β̂γ̂1

Finally we show that R2 = [Corr(µ̃, µ̂)]2 converges, as T → ∞, to 1.
The results for the ML estimator are similar

Gospodinov, Kan, and Robotti (2013) Spurious Fit in Unidentified Models October 11, 2013 30 / 31



Beta pricing model (CU-GMM)

This implies that we can discard the subset of moment conditions
that are exactly identified and only perform the estimation and the
over-identifying restriction test on the remaining smaller set of
moment conditions.
Then, we can solve for θ̂2 = [β̂

′
1, ..., β̂

′
K−1, µ̂′f , vech(V̂f )]′ after

θ̃1 = [λ0, λ′1]
′ is obtained from the smaller system. In our linear

setup, θ̂2 has a closed-form solution

The estimates of γ are obtained as

γ̂0 =
1

λ̂0 + µ̂′f λ̂1
, γ̂1 =

−V̂f λ̂1

λ̂0 + µ̂′f λ̂1
,

and the expected returns as

µ̃ = 1N γ̂0 + β̂γ̂1

Finally we show that R2 = [Corr(µ̃, µ̂)]2 converges, as T → ∞, to 1.
The results for the ML estimator are similar

Gospodinov, Kan, and Robotti (2013) Spurious Fit in Unidentified Models October 11, 2013 30 / 31



Beta pricing model (CU-GMM)

This implies that we can discard the subset of moment conditions
that are exactly identified and only perform the estimation and the
over-identifying restriction test on the remaining smaller set of
moment conditions.
Then, we can solve for θ̂2 = [β̂

′
1, ..., β̂

′
K−1, µ̂′f , vech(V̂f )]′ after

θ̃1 = [λ0, λ′1]
′ is obtained from the smaller system. In our linear

setup, θ̂2 has a closed-form solution
The estimates of γ are obtained as

γ̂0 =
1

λ̂0 + µ̂′f λ̂1
, γ̂1 =

−V̂f λ̂1

λ̂0 + µ̂′f λ̂1
,

and the expected returns as

µ̃ = 1N γ̂0 + β̂γ̂1

Finally we show that R2 = [Corr(µ̃, µ̂)]2 converges, as T → ∞, to 1.
The results for the ML estimator are similar

Gospodinov, Kan, and Robotti (2013) Spurious Fit in Unidentified Models October 11, 2013 30 / 31



Beta pricing model (CU-GMM)

This implies that we can discard the subset of moment conditions
that are exactly identified and only perform the estimation and the
over-identifying restriction test on the remaining smaller set of
moment conditions.
Then, we can solve for θ̂2 = [β̂

′
1, ..., β̂

′
K−1, µ̂′f , vech(V̂f )]′ after

θ̃1 = [λ0, λ′1]
′ is obtained from the smaller system. In our linear

setup, θ̂2 has a closed-form solution
The estimates of γ are obtained as

γ̂0 =
1

λ̂0 + µ̂′f λ̂1
, γ̂1 =

−V̂f λ̂1

λ̂0 + µ̂′f λ̂1
,

and the expected returns as

µ̃ = 1N γ̂0 + β̂γ̂1

Finally we show that R2 = [Corr(µ̃, µ̂)]2 converges, as T → ∞, to 1.

The results for the ML estimator are similar

Gospodinov, Kan, and Robotti (2013) Spurious Fit in Unidentified Models October 11, 2013 30 / 31



Beta pricing model (CU-GMM)

This implies that we can discard the subset of moment conditions
that are exactly identified and only perform the estimation and the
over-identifying restriction test on the remaining smaller set of
moment conditions.
Then, we can solve for θ̂2 = [β̂

′
1, ..., β̂

′
K−1, µ̂′f , vech(V̂f )]′ after

θ̃1 = [λ0, λ′1]
′ is obtained from the smaller system. In our linear

setup, θ̂2 has a closed-form solution
The estimates of γ are obtained as

γ̂0 =
1

λ̂0 + µ̂′f λ̂1
, γ̂1 =

−V̂f λ̂1

λ̂0 + µ̂′f λ̂1
,

and the expected returns as

µ̃ = 1N γ̂0 + β̂γ̂1

Finally we show that R2 = [Corr(µ̃, µ̂)]2 converges, as T → ∞, to 1.
The results for the ML estimator are similar

Gospodinov, Kan, and Robotti (2013) Spurious Fit in Unidentified Models October 11, 2013 30 / 31



Concluding remarks

We show that the results from many popular empirical asset pricing
models may be spurious

The spurious results in these models (almost perfect fit and strong
evidence of non-zero risk premium) arise from the combined effect of
identification failure and model misspecification
It is important to stress that this is not an isolated problem limited to
a particular sample (data frequency), test assets and asset pricing
models which suggests that the statistical evidence on the pricing
ability of many macro factors and their usefulness in explaining the
cross-section of asset returns should be interpreted with caution
Some warning signs about this problem (for example, the outcome of
a rank test) are often ignored by applied researchers
While non-invariant estimators (HJ-distance non-optimal GMM,
OLS/GLS two-pass regression) also suffer from similar problems, the
invariant estimators (CU-GMM, ML) turn out to be much more
sensitive to model misspecification and lack of identification
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