Bank Pay Caps, Bank Risk, and Macroprudential Regulation

John Thanassoulis¹

Warwick Business School, University of Warwick²

November 2013

¹https://sites.google.com/site/thanassoulis/

²Oxford-Man Institute, University of Oxford, Associate Member and Nuffield College, University of Oxford, Associate Member.

John Thanassoulis (WBS)

Macroprudential Pay Caps

- Remuneration of Bankers is the focus of significant regulatory attention in the UK, EU, US and globally.
 - 1-to-1 EU bonus caps;
 - FSB "Principles for Sound Compensation Practices."
 - Adoption in Basel III of the Capital Conservation Buffer.
- Concern has focused on both the risk-taking incentives and the size of the aggregate pay bill.

- Remuneration of Bankers is the focus of significant regulatory attention in the UK, EU, US and globally.
 - 1-to-1 EU bonus caps;
 - FSB "Principles for Sound Compensation Practices."
 - Adoption in Basel III of the Capital Conservation Buffer.
- Concern has focused on both the risk-taking incentives and the size of the aggregate pay bill.
- The pay bill is sometimes in excess of 80% of total shareholder equity, and often in excess of 30% of shareholder equity. (Thanassoulis 2012).

I propose and study effect of a cap on total pay in proportion to assets.

- Variable cap lowers salary costs directly; and
- Cap stops negative externality in labour market so lowering market pay.
- So cap lowers bank costs and hence improves bank resilience.

I propose and study effect of a cap on total pay in proportion to assets.

- Variable cap lowers salary costs directly; and
- Cap stops negative externality in labour market so lowering market pay.
- So cap lowers bank costs and hence improves bank resilience.
 - Achieved whilst increasing bank values.
 - Achieved without reduced lending from a Tier 1 increase.

I propose and study effect of a cap on total pay in proportion to assets.

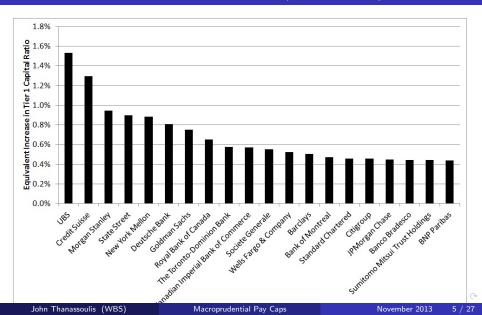
- Variable cap lowers salary costs directly; and
- Cap stops negative externality in labour market so lowering market pay.
- So cap lowers bank costs and hence improves bank resilience.
 - Achieved whilst increasing bank values.
 - Achieved without reduced lending from a Tier 1 increase.
- Encourages diversification by reducing need to focus on limited asset classes.
- A tool for Macroprudential Regulation to encourage retail banking.

Relevance Of Remuneration To Financial Stability

- Remuneration costs typically double amount spent on dividends and share buybacks.
 - And in the financial crisis the latter were thought to be sufficient to inhibit lending.
 - Thanassoulis (2012), Acharya, Gujral and Shin (2009).

Relevance Of Remuneration To Financial Stability

- Remuneration costs typically double amount spent on dividends and share buybacks.
 - And in the financial crisis the latter were thought to be sufficient to inhibit lending.
 - Thanassoulis (2012), Acharya, Gujral and Shin (2009).
- Consider exogenous reduction to aggregate pay bill.
- Express as a proportion of Risk Weighted Assets i.e. equivalent Tier 1 increase:


Relevance Of Remuneration To Financial Stability

- Remuneration costs typically double amount spent on dividends and share buybacks.
 - And in the financial crisis the latter were thought to be sufficient to inhibit lending.
 - Thanassoulis (2012), Acharya, Gujral and Shin (2009).
- Consider exogenous reduction to aggregate pay bill.
- Express as a proportion of Risk Weighted Assets i.e. equivalent Tier 1 increase:

Reduction in aggregate bank re-	5%	10%	15%	20%	25%	30%
muneration						
Average equivalent increase in	9	19	28	37	47	56
Tier 1 levels (basis points)						

Remuneration: A Targeted Intervention

Gain in Tier 1 from 20% Reduction in Remuneration (20 Most Affected)

Related Literature

Objective of paper is to investigate the consequences of a regulatory pay cap on bank risk, bank value and bank asset allocation decisions.

- Uses Thanassoulis (2012) banking framework. Adds multiple asset class allocation, macroprudential regulation, and cap on total pay and not bonus alone.
- Competitive labour market: Gabaix and Landier (2008), Edmans, Gabaix and Landier (2009), Thanassoulis (2012).

Related Literature

Objective of paper is to investigate the consequences of a regulatory pay cap on bank risk, bank value and bank asset allocation decisions.

- Uses Thanassoulis (2012) banking framework. Adds multiple asset class allocation, macroprudential regulation, and cap on total pay and not bonus alone.
- Competitive labour market: Gabaix and Landier (2008), Edmans, Gabaix and Landier (2009), Thanassoulis (2012).
- Limited empirical literature on bankers' pay and bank risk: Cheng, Hong and Schienkman (2010), Fahlenbrach and Stulz (2011).

Related Literature

Objective of paper is to investigate the consequences of a regulatory pay cap on bank risk, bank value and bank asset allocation decisions.

- Uses Thanassoulis (2012) banking framework. Adds multiple asset class allocation, macroprudential regulation, and cap on total pay and not bonus alone.
- Competitive labour market: Gabaix and Landier (2008), Edmans, Gabaix and Landier (2009), Thanassoulis (2012).
- Limited empirical literature on bankers' pay and bank risk: Cheng, Hong and Schienkman (2010), Fahlenbrach and Stulz (2011).
- Complementary to studies of bank competition and individual risk taking:
 - *Fraud:* Foster and Young (2010); *Myopia:* Thanassoulis (2013a); *Bonus:* Raith (2003); *Screening:* Benabou and Tirole (2013); *Churning:* Acharya, Pagano and Volpin (2013).

The Model

- *N* banks with assets in a given class $S_1 > S_2 > \cdots > S_N$ who maximize expected value.
 - Bank incurs extra costs if assets shrink to less than $\eta \cdot S$ (where $\eta < 1$)
 - Forced asset sales to reimburse creditors; or
 - Increased costs of capital.
 - Extra costs from such 'default event' proportional to assets: λS .
 - Functional form convenient. Key is costs incurred if assets shrink sufficiently.

The Model

- *N* banks with assets in a given class $S_1 > S_2 > \cdots > S_N$ who maximize expected value.
 - Bank incurs extra costs if assets shrink to less than $\eta \cdot S$ (where $\eta < 1$)
 - Forced asset sales to reimburse creditors; or
 - Increased costs of capital.
 - Extra costs from such 'default event' proportional to assets: λS .
 - Functional form convenient. Key is costs incurred if assets shrink sufficiently.
- *N* bankers who expect to grow assets by factor $\alpha_1 > \cdots > \alpha_N > 1$.
 - e.g. banker *i* at bank *j* then expected bank *j* assets at end: $\alpha_i S_j$.
 - Distribution of realized growth factor $F_n(\cdot)$, supported on $[0, \infty]$. [Limited liability].
 - Outside option of 0. Risk neutral.
 - Bankers might actually be risk loving (cf. medical evidence & Thanassoulis (2012)).

- The density f_n is a proportional scaling of some standard (mean = 1) distribution f such that $f_n(x) = (1/\alpha_n) f(x/\alpha_n)$.
- Banks risk neutral, so distribution of realized assets only relevant if default event triggered.
 - In empirical calibration a low probability event.
 - Tail probabilities can be approximated using *Extreme Value Theory* [cf. Gabaix and Landier 2008, Thanassoulis 2012]

$$F_n(v) = G \cdot (v/\alpha_n)^{\gamma}$$

• Restrict to $\gamma \geq 1$ with G a positive constant so density bdd near zero.

Banks In Competition To Hire Bankers

- Banks bid against each other to hire one banker in a competitive auction.
 - Banks only pay in bonuses. Bid rate q applying to realized asset levels.
 - Pay individual specific. Better banker offered better package.
 - Banks here would prefer bonuses to wages risk sharing. Thanassoulis (2012).
 - Also modelling robust to incentivisation issues.

Banks In Competition To Hire Bankers

- Banks bid against each other to hire one banker in a competitive auction.
 - Banks only pay in bonuses. Bid rate q applying to realized asset levels.
 - Pay individual specific. Better banker offered better package.
 - Banks here would prefer bonuses to wages risk sharing. Thanassoulis (2012).
 - Also modelling robust to incentivisation issues.
- **2** Bankers hired convert assets into $aS_n(1-q)$. (*a* is realized growth).
 - If realized bank value $< \eta S_n$ then default event.

Banks In Competition To Hire Bankers

- Banks bid against each other to hire one banker in a competitive auction.
 - Banks only pay in bonuses. Bid rate q applying to realized asset levels.
 - Pay individual specific. Better banker offered better package.
 - Banks here would prefer bonuses to wages risk sharing. Thanassoulis (2012).
 - Also modelling robust to incentivisation issues.
- **2** Bankers hired convert assets into $aS_n(1-q)$. (*a* is realized growth).
 - If realized bank value $< \eta S_n$ then default event.

Table : Proportion of Remuneration Received As Bonus

	2008		2009		
Tot. compensation	% base salary	% bonus	% base salary	% bonus	
£500K to £1mn	19%	81%	24%	76%	
$> \pounds 1$ mn	9%	91%	11%	89%	

John Thanassoulis (WBS)

• Hence the probability of default is

$$F\left(\frac{\eta}{1-q}\right) = G \cdot \left[\frac{\eta}{\alpha \left(1-q\right)}\right]^{\gamma}$$

• Hence the probability of default is

$$F\left(\frac{\eta}{1-q}\right) = G \cdot \left[\frac{\eta}{\alpha \left(1-q\right)}\right]^{\gamma}$$

• Expected bank value is

$$\alpha \left(1-q\right) S - \lambda SG \cdot \left[rac{\eta}{\alpha \left(1-q
ight)}
ight]^{\gamma}$$

• A cap on remuneration in proportion to assets equivalent to a cap on bonus rate, *q*.

- Isk profile of bank decided by Board and not the banker.
 - Board determine risk profile given target RoE. Use corporate governance levers to realize:
 - Value at Risk controls; asset allocation; hedging decisions.
 - This study assumes these levers are sufficient.

- Isk profile of bank decided by Board and not the banker.
 - Board determine risk profile given target RoE. Use corporate governance levers to realize:
 - Value at Risk controls; asset allocation; hedging decisions.
 - This study assumes these levers are sufficient.
 - If not then payment levels and bonus rates related to risk profile of institution.
 - Tail risk, F_n a function of either q or total dollar remuneration.
 - Ambiguous effect. Large bank can offer a lower bonus rate which, with poor risk control lowers institution risk.
 - But large banks will pay more in dollar terms, potentially raising risk of institution.
 - Externalities we describe will remain: marginal bidder increases fragility of employing bank.

- Isk profile of bank decided by Board and not the banker.
 - Board determine risk profile given target RoE. Use corporate governance levers to realize:
 - Value at Risk controls; asset allocation; hedging decisions.
 - This study assumes these levers are sufficient.
 - If not then payment levels and bonus rates related to risk profile of institution.
 - Tail risk, F_n a function of either q or total dollar remuneration.
 - Ambiguous effect. Large bank can offer a lower bonus rate which, with poor risk control lowers institution risk.
 - But large banks will pay more in dollar terms, potentially raising risk of institution.
 - Externalities we describe will remain: marginal bidder increases fragility of employing bank.
 - The intervention of a cap in pay lowers bonus rates and pay levels.
 - If bank can't control tail risk then intervention mitigates adverse effects of poor risk control.
 - Lower incentive to excessive risk, fraud, myopia, and churn.

- 2. Bank incurs remuneration payment even if assets shrink enough for default event.
 - Might seem more realistic that a banker who shrunk assets she was managing would not get a bonus, and in fact would be fired.
 - So might conclude that remuneration payments do not add to bank fragility.

- 2. Bank incurs remuneration payment even if assets shrink enough for default event.
 - Might seem more realistic that a banker who shrunk assets she was managing would not get a bonus, and in fact would be fired.
 - So might conclude that remuneration payments do not add to bank fragility.
 - Consider banker running 100 of assets, makes a 20% loss and is fired
 ... then new manager delivers 10% growth and so is paid with bonus.
 - But assets have been reduced by 12%.
 - Payments made even if failure not tolerated in banking.

- 2. Bank incurs remuneration payment even if assets shrink enough for default event.
 - Might seem more realistic that a banker who shrunk assets she was managing would not get a bonus, and in fact would be fired.
 - So might conclude that remuneration payments do not add to bank fragility.
 - Consider banker running 100 of assets, makes a 20% loss and is fired ... then new manager delivers 10% growth and so is paid with bonus.
 - But assets have been reduced by 12%.
 - Payments made even if failure not tolerated in banking.
 - Reduction in asset level may be due to bad luck (as in this model) and wider economic forces, rather than poor skill.
 - Would expect bankers to argue so.
 - Thanassoulis (2012) documents large pay even with negative RoE.

- 2. Bank incurs remuneration payment even if assets shrink enough for default event.
 - Might seem more realistic that a banker who shrunk assets she was managing would not get a bonus, and in fact would be fired.
 - So might conclude that remuneration payments do not add to bank fragility.
 - Consider banker running 100 of assets, makes a 20% loss and is fired
 ... then new manager delivers 10% growth and so is paid with bonus.
 - But assets have been reduced by 12%.
 - Payments made even if failure not tolerated in banking.
 - Reduction in asset level may be due to bad luck (as in this model) and wider economic forces, rather than poor skill.
 - Would expect bankers to argue so.
 - Thanassoulis (2012) documents large pay even with negative RoE.
 - Unless bank formally enters bankruptcy, remuneration contracts must be honoured.
 - Bank may also honour implicit rather than explicit commitments to pay as otherwise all employees alter expectations of pay.

No Intervention Benchmark

• Market rate of pay set by the marginal bidder for a banker.

Lemma

Bank of rank n will hire banker of same rank n. Positive assortative matching.

- Greater skill applied to a larger pot of assets; and delivers larger reduction in expected costs of default.
- Hence a larger bank would be willing (if forced) to outbid a smaller bank for a better banker.
- By induction positive assortative matching.

No Intervention Benchmark

• Market rate of pay set by the marginal bidder for a banker.

Lemma

Bank of rank n will hire banker of same rank n. Positive assortative matching.

- Greater skill applied to a larger pot of assets; and delivers larger reduction in expected costs of default.
- Hence a larger bank would be willing (if forced) to outbid a smaller bank for a better banker.
- By induction positive assortative matching.
- Robust to some banks being more attractive:
 - Suppose bank specific differences raise utility of bank i by a factor of $1+\tau_i.$
 - So if bonus q banker's expected utility is $(1 + \tau_i) q \alpha S_i$.
 - As if banker runs utility weighted assets of $\Sigma_i = (1 + \tau_i) S_i$.
 - Reorder banks according to $\{\Sigma_i\}$: results of the paper remain.

Proposition

Banker rank i employed by bank i with expected payment of $q_i \cdot \alpha_i S_i$ with:

bonus rate,
$$q_i = \sum_{j=i+1}^N \frac{S_j}{S_i} \frac{(lpha_{j-1} - lpha_j)}{lpha_i}$$

• By induction: the price of labour is determined by the marginal bidder.

Proposition

Banker rank i employed by bank i with expected payment of $q_i \cdot \alpha_i S_i$ with:

bonus rate,
$$q_i = \sum_{j=i+1}^N rac{S_j}{S_i} rac{(lpha_{j-1} - lpha_j)}{lpha_i}$$

- By induction: the price of labour is determined by the marginal bidder.
- The marginal bidder for banker of rank *i* is bank rank *i* + 1. This bid must be matched.
- The amount bank i + 1 is willing to bid depends on still smaller banks.

Proposition

Banker rank i employed by bank i with expected payment of $q_i \cdot \alpha_i S_i$ with:

bonus rate,
$$q_i = \sum_{j=i+1}^N rac{S_j}{S_i} rac{(lpha_{j-1} - lpha_j)}{lpha_i}$$

- By induction: the price of labour is determined by the marginal bidder.
- The marginal bidder for banker of rank *i* is bank rank *i* + 1. This bid must be matched.
- The amount bank i + 1 is willing to bid depends on still smaller banks.
- Market works like a pyramid.
- Delivers equilibrium rate of pay.

Effect of Pay Cap In Proportion To Assets

- Consider cap in pay of at most proportion χ of assets.
- Study assumes good risk control desired bank risk profile unchanged. Analysis of new market equilibrium yields:

Effect of Pay Cap In Proportion To Assets

- Consider cap in pay of at most proportion χ of assets.
- Study assumes good risk control desired bank risk profile unchanged. Analysis of new market equilibrium yields:

Proposition

Mandatory pay cap on total remuneration equal to proportion χ of assets:

- Lowers bank risk and raises bank values for all except the smallest banks.
- The lower the remuneration cap, the greater the positive impact: higher bank values and lower bank risk.
- Equilibrium allocation of bankers to banks is not affected, preserving allocative efficiency.

Pay Cap Corrects Labour Market Externality

- Banks compete to hire scarce talent. Marginal bidder sets market rate.
- By bidding to hire a banker unsuccessfully, poaching banks drive up market rate.
- Bidding is a pecuniary externality: banker gains, employing bank loses.

- Banks compete to hire scarce talent. Marginal bidder sets market rate.
- By bidding to hire a banker unsuccessfully, poaching banks drive up market rate.
- Bidding is a pecuniary externality: banker gains, employing bank loses.
- But also increase to employing bank's fragility to stress:
 - Larger costs and so greater probability of default event and associated costs.
- Lowers bank value a negative externality.

- Cap impacts marginal bidder more than employing bank.
 - Banker wants to run more money assets. So bank with smaller assets had to offer larger bonus rate to compensate for smaller size/less attractive place to work.
- Cap forces marginal bidder to bid less hard.
- Hence employing bank's value is raised.
 - Same banker, hired for less.
 - Bank more robust to bad asset realisations.

- Cap impacts marginal bidder more than employing bank.
 - Banker wants to run more money assets. So bank with smaller assets had to offer larger bonus rate to compensate for smaller size/less attractive place to work.
- Cap forces marginal bidder to bid less hard.
- Hence employing bank's value is raised.
 - Same banker, hired for less.
 - Bank more robust to bad asset realisations.
- And now willing to pay less to poach even better bankers (as more value from equilibrium banker).

- Cap impacts marginal bidder more than employing bank.
 - Banker wants to run more money assets. So bank with smaller assets had to offer larger bonus rate to compensate for smaller size/less attractive place to work.
- Cap forces marginal bidder to bid less hard.
- Hence employing bank's value is raised.
 - Same banker, hired for less.
 - Bank more robust to bad asset realisations.
- And now willing to pay less to poach even better bankers (as more value from equilibrium banker).
- Reduction in externality propagates through market. Lowers market rates of pay.
- Macroprudential: no single bank can do this alone.

- Cap impacts marginal bidder more than employing bank.
 - Banker wants to run more money assets. So bank with smaller assets had to offer larger bonus rate to compensate for smaller size/less attractive place to work.
- Cap forces marginal bidder to bid less hard.
- Hence employing bank's value is raised.
 - Same banker, hired for less.
 - Bank more robust to bad asset realisations.
- And now willing to pay less to poach even better bankers (as more value from equilibrium banker).
- Reduction in externality propagates through market. Lowers market rates of pay.
- Macroprudential: no single bank can do this alone.
- Potential concern of departure of workers from finance (Philippon and Reshef (2012)) pay premium of 50% to 250%; long way before a serious concern.

Assets Valued on a Risk Weighted Basis

- Consider how a banker would seek to distort value maximising bank risk profile to maximise money for remuneration.
- Use Pyle-Hart-Jaffee approach of bank as a portfolio manager.

Assets Valued on a Risk Weighted Basis

- Consider how a banker would seek to distort value maximising bank risk profile to maximise money for remuneration.
- Use Pyle-Hart-Jaffee approach of bank as a portfolio manager.
 - Bank has securities with returns $\{\tilde{r}_j\}$. If invest $\{x_j\}$ dollars then next period's assets will be $\tilde{S} = \sum_i x_i \tilde{r}_j$
 - Returns jointly normally distributed, expected returns $\underline{\rho}$ and variance-covariance matrix **V**.
 - Bank has utility $U(\mu, \sigma^2)$. Implies optimal allocation proportional to $\mathbf{V}^{-1}\rho$.

Assets Valued on a Risk Weighted Basis

- Consider how a banker would seek to distort value maximising bank risk profile to maximise money for remuneration.
- Use Pyle-Hart-Jaffee approach of bank as a portfolio manager.
 - Bank has securities with returns $\{\tilde{r}_j\}$. If invest $\{x_j\}$ dollars then next period's assets will be $\tilde{S} = \sum_i x_i \tilde{r}_j$
 - Returns jointly normally distributed, expected returns $\underline{\rho}$ and variance-covariance matrix **V**.
 - Bank has utility $U(\mu, \sigma^2)$. Implies optimal allocation proportional to $\mathbf{V}^{-1}\rho$.
- Suppose pay cap applies to weighted sum of security values $\langle \beta, \underline{x} \rangle$
- Banker's problem:

$$\max_{\{x_1,\ldots,x_m\}} \chi \cdot \left\langle \underline{\beta}, \underline{x} \right\rangle \text{ subject to } R = U\left(\left\langle \underline{x}, \underline{\rho} \right\rangle, \left\langle \underline{x}, \mathbf{V} \underline{x} \right\rangle\right)$$

The ratio of allocations to individual securities is unaffected by a pay cap if the cap weights securities proportionally to their expected returns ($\underline{\beta}$ parallel to the vector of expected returns ρ).

The ratio of allocations to individual securities is unaffected by a pay cap if the cap weights securities proportionally to their expected returns ($\underline{\beta}$ parallel to the vector of expected returns ρ).

- Banker will be tempted to alter the investment profile he targets if doing so allows more to be paid under the cap whilst preserving returns net of risk.
- Not possible if weights proportional to expected returns of the assets.
 - Implies (CAPM) weights proportional to asset's systematic risk.
- Parallels optimal risk weights in capital adequacy regulation (Rochet (1992)).
 - Basel risk weights a convenient (but not perfect) approximation.

- The financial sector has undergone sustained consolidation and merger activity dating back to before the 1990s.
 - Accompanied by large increases in balance sheets.
 - BIS (2001), Morrison and Wilhelm (2008).
- This model captures one reason: desire to grow balance sheet to allow more talented managers to be hired.

Lemma

Absent any pay cap, bank mergers are profitable.

Lemma

Absent any pay cap, bank mergers are profitable.

- Bank mergers reorder ranking so competitive bidding of all banks changed.
 - Direction of change ambiguous:
 - Big banks leap-frogged by merger must hire less well.
 - Smaller banks can now target better bankers.
- Merger allows skills of a more talented banker to be deployed on a larger balance sheet.
- And pay commanded by banker hired by merged bank does not grow in proportion to bank size
 - It depends on size of smaller bidding banks.

Lemma

Absent any pay cap, bank mergers are profitable.

- Bank mergers reorder ranking so competitive bidding of all banks changed.
 - Direction of change ambiguous:
 - Big banks leap-frogged by merger must hire less well.
 - Smaller banks can now target better bankers.
- Merger allows skills of a more talented banker to be deployed on a larger balance sheet.
- And pay commanded by banker hired by merged bank does not grow in proportion to bank size
 - It depends on size of smaller bidding banks.
- Bonus caps have ambiguous effects can lower incentive to merge.
 - Consider merger to monopoly: Ex post unaffected by cap, ex ante cap raises value of larger bank.

Asset Allocation Responses To Pay Cap

- Even absent regulation, banker wants to run more assets and so grow pay.
- So banks will raise asset allocations to areas where they wish to hire the best bankers.

Model Extension To Multiple Assets

Asset Allocation Responses To Pay Cap

- Even absent regulation, banker wants to run more assets and so grow pay.
- So banks will raise asset allocations to areas where they wish to hire the best bankers.

Model Extension To Multiple Assets

- Two symmetric banks, balance sheet size T.
- Two available asset classes and bankers $\alpha > \beta$.
 - Interesting case of neither bank so big it can get both α bankers.

Asset Allocation Responses To Pay Cap

- Even absent regulation, banker wants to run more assets and so grow pay.
- So banks will raise asset allocations to areas where they wish to hire the best bankers.

Model Extension To Multiple Assets

- Two symmetric banks, balance sheet size T.
- Two available asset classes and bankers $\alpha > \beta$.
 - Interesting case of neither bank so big it can get both α bankers.
- Banks gain value $c \cdot S(T S)$ from diversification.
 - Captures: Volatility reduction good for employee stock holders/ investors not fully diversified;
 - Decreasing returns to scale.

As the cap on remuneration becomes stricter (the maximum bonus rate χ declines), banks re-balance their asset allocation in the direction of making their exposure more diversified and less asymmetric.

As the cap on remuneration becomes stricter (the maximum bonus rate χ declines), banks re-balance their asset allocation in the direction of making their exposure more diversified and less asymmetric.

- To understand suppose cap is gradually removed:
 - Cap affected marginal bidder most so now bank employing α -banker subject to more intense bidding.
 - Bank responds by re-allocating assets to keep *α*-banker allowing pay to increase without increase in default risk.

Pay Regulation For Macroprudential Objectives

- Cap on remuneration need not apply to all business lines: e.g. wholesale/retail banking.
- Cap might also apply to banks and not hedge funds.
- So pay regulation can be used to re-target banks' activities.

Model Extension To Asymmetrically Applied Regulation

Pay Regulation For Macroprudential Objectives

- Cap on remuneration need not apply to all business lines: e.g. wholesale/retail banking.
- Cap might also apply to banks and not hedge funds.
- So pay regulation can be used to re-target banks' activities.

Model Extension To Asymmetrically Applied Regulation

- Bank with total assets T_b can invest S_b wholesale and $T_b S_b$ retail.
 - Bank gains value $c \cdot S_b (T_b S_b)$ from diversification.
- Bank's pay on wholesale (only) regulated.

Pay Regulation For Macroprudential Objectives

- Cap on remuneration need not apply to all business lines: e.g. wholesale/retail banking.
- Cap might also apply to banks and not hedge funds.
- So pay regulation can be used to re-target banks' activities.

Model Extension To Asymmetrically Applied Regulation

- Bank with total assets T_b can invest S_b wholesale and $T_b S_b$ retail.
 - Bank gains value $c \cdot S_b (T_b S_b)$ from diversification.
- Bank's pay on wholesale (only) regulated.
- Hedge fund S_h in wholesale market unregulated pay.
- β -banker for retail banking, and $\alpha > \beta$ bankers for wholesale.
- Absent regulation, bank would get best α -banker:

$$S_h < T_b/2$$

If the bank is subject to a sufficiently stringent cap on remuneration for the wholesale banking book then the bank will re-allocate more assets to retail banking and reduce the size of the wholesale banking book.

If the bank is subject to a sufficiently stringent cap on remuneration for the wholesale banking book then the bank will re-allocate more assets to retail banking and reduce the size of the wholesale banking book.

- Bank can secure bankers for wholesale but regulation prevents them getting best ones.
- So returns available from wholesale banking fall slightly.
- Bank chooses to divert some funds to retail banking and secure greater diversification benefits.

If the bank is subject to a sufficiently stringent cap on remuneration for the wholesale banking book then the bank will re-allocate more assets to retail banking and reduce the size of the wholesale banking book.

- Bank can secure bankers for wholesale but regulation prevents them getting best ones.
- So returns available from wholesale banking fall slightly.
- Bank chooses to divert some funds to retail banking and secure greater diversification benefits.
- By adjusting cap through the cycle, the regulator can manipulate the assets used for retail banking.
- Microprudential intervention applied generally delivers macroprudential goal.

- Variable cap in proportion to Risk Weighted Assets lowers bank risk and raises bank values.
- Impacts marginal bidder most and so lowers market rates of pay.
- Targeted intervention: A 20% reduction in the remuneration bill would equate to extra Tier 1 of 150 basis points for most affected banks.
- Cap encourages institutions to diversify more and so adds further to robustness.
- Cap forms a Macroprudential tool.

Conclusion

- Cap applied at easier to implement bank level will likely be implemented by senior management as a top down rule.
 - Numbers of employees involved make micro-managing deviations from a general rule impractical

	20% of employees in 2009
UBS	13,047
Credit Suisse	9,520
Morgan Stanley	12,278
Deutsche Bank	15,411
Goldman Sachs	6,500
Citigroup	53,060

Table : Numbers of Employees Targeted By Intervention On Top 20% Of Earners