Pulling up the Tarnished Anchor: The End of Silver as a Global Unit of Account Workshop on Monetary and Financial History,

Federal Reserve Bank of Atlanta/Emory University

Ricardo Fernholz¹ Kris James Mitchener² Marc Weidenmier³

¹Claremont McKenna College

²University of Warwick, NBER, & CAGE ³Claremont McKenna College & NBER

June 27, 2013

直下 イヨト イヨト

When Do Global Monetary Systems End?

- Sometimes the answer is clear
 - ► US closes the gold window in 1971, ending Bretton Woods
 - England embargoes gold exports and imposes exchange controls in 1914, ending classical gold standard
- In other cases, such as the demise of bimetallism, answer is less clear
 - Individual countries (even systemically important ones) can change formal rules (i.e. laws) that bind them to system, but this does not imply that the metal(s) ceases to serve as an anchor (unit of account and numeraire) for prices *globally*

くほと くほと くほと

The Demise of Silver as a Global Unit of Account

- In 19th century, silver often used in conjunction with gold to fix exchange rates
 - Under bimetallism, both metals served as numeraires
 - Other goods priced relative to the mint par ratio of gold to silver
- Most countries move from bimetallism and silver standards to gold over the latter half of the 19th century
 - Eichengreen (1996), Meissner (2005)

3

Motivation

Previous Literature

- Was bimetallism a viable system?
 - Velde and Weber (2000)
- Focus on changes in longstanding global mint ratio of 15.5 silver ounces to one gold ounce
 - Standard story postulates that Germany's decision to demonetize silver led many countries to drop silver and switch over to gold (Friedman and Schwartz 1963, Gallarotti 1994)

Previous Literature

- Focus on changes in longstanding global mint ratio of 15.5 silver ounces to one gold ounce
 - Flandreau (1996), however, argues that France, being the largest bimetallic country in the world, was the marginal player in the bimetallic system that kept the silver ratio at 15.5:1
 - France's 1873 decision to limit the coinage of silver violated bimetallism, and led to the eventual rise of the international gold standard and to a floating silver-gold price ratio
 - Meissner (2013) builds on Flandreau (1996), arguing it would not have been sustainable after 1875 while Morys (2007) suggests an even earlier demise—the 1860s
- Silver's usage nevertheless persisted after "demise" of bimetallism

(人間) トイヨト イヨト

Our Question

- Since move away from silver was gradual, we are able to examine how its declining role as a global unit of account affected its role as a price anchor
- For an individual country, once legal backing of money with silver ended (either de jure or de facto), prices were free to fluctuate relative to that metal
 - No longer a numeraire

Our Question

- Commodity prices, however, were largely set in competitive, global markets, suggesting that correlations between precious metals and commodity prices could persist even after legal backing ends for a single country
- On the other hand, eventual widespread end to free coinage of silver at some point likely ended silver's role as a price anchor
- As that took place, were commodity prices cast adrift or did widespread gold standard adoption stabilize price movements?

A Dynamic Bimetallic Monetary Model

- Multiple goods in a dynamic, general equilibrium model
 - Model nests both bimetallic and monometallic monetary systems
 - Allows for easy comparison of different monetary systems
- Model calibrated using historical data on global commodity prices
 - Can the model match key features of the data?
 - What does the transition away from silver look like?
 - What distinguishes bimetallic and monometallic systems?

Price Dynamics

- Silver ceased functioning as a global price anchor in the mid-1890s
 - High correlation between price of silver and price of agricultural commodities through the mid-1890s, but not so thereafter
 - Nearly two decades after many key countries abandoned bimetallism
- Model matches different patterns in data before and after mid-1890s
 - Lower correlation between silver and commodity prices after mid-1890s
 - Lower volatility of commodity prices after mid-1890s
- Model provides simple, clear intuition behind these changes

医静脉 医原体 医原体

Commodity Prices 1870-1913

Fernholz, Mitchener, and Weidenmier

June 27, 2013

Outline

Introduction

- Motivation
- Preview of Results

2 A Dynamic Bimetallic Monetary Model

3 Simulations

4 Conclusion

< 🗗 🕨

3

Key Elements of the Model

- 1. Four goods in the economy
 - Silver, gold, agricultural commodity, metallic commodity
 - Non-monetary demand for gold and silver
- 2. Constant-elasticity-of-substitution (CES) utility function
 - General and tractable: Rotemberg (1987), Flandreau (1996)
- 3. Cash-in-advance constraint
 - Goods must be purchased with monetary gold or silver
 - Positive relationship between money and nominal output

・ 戸 ト ・ ヨ ト ・ ヨ ト

Setup

• Overlapping generations of agents maximize utility over consumption:

$$u(Y_{ct}, Y_{at}, Y_{st}, Y_{gt}) = \left(\mu_c^{\frac{1}{\theta}} Y_{ct}^{\frac{\theta-1}{\theta}} + \mu_a^{\frac{1}{\theta}} Y_{at}^{\frac{\theta-1}{\theta}} + \mu_s^{\frac{1}{\theta}} Y_{st}^{\frac{\theta-1}{\theta}} + (1 - \mu_c - \mu_a - \mu_s)^{\frac{1}{\theta}} Y_{gt}^{\frac{\theta-1}{\theta}} \right)^{\frac{\theta}{\theta-1}}$$

- ► *Y_{ct}*, *Y_{at}*, *Y_{st}*, *Y_{gt}* : Consumption of each good (non-monetary)
- μ_c, μ_a, μ_s : Shares of each good in total consumption
- θ : Elasticity of substitution between goods
- Model is simple and tractable, and can be extended and generalized
 - Monopolistic competition: Rotemberg (1987)
 - Intertemporal considerations, monetary uncertainty: Svensson (1985)

Setup

• Overlapping generations of agents maximize utility over consumption:

$$u(Y_{ct}, Y_{at}, Y_{st}, Y_{gt}) = \left(\mu_c^{\frac{1}{\theta}} Y_{ct}^{\frac{\theta-1}{\theta}} + \mu_a^{\frac{1}{\theta}} Y_{at}^{\frac{\theta-1}{\theta}} + \mu_s^{\frac{1}{\theta}} Y_{st}^{\frac{\theta-1}{\theta}} + (1 - \mu_c - \mu_a - \mu_s)^{\frac{1}{\theta}} Y_{gt}^{\frac{\theta-1}{\theta}} \right)^{\frac{\theta}{\theta-1}}$$

- ► *Y_{ct}*, *Y_{at}*, *Y_{st}*, *Y_{gt}* : Consumption of each good (non-monetary)
- μ_c, μ_a, μ_s : Shares of each good in total consumption
- θ : Elasticity of substitution between goods
- Model is simple and tractable, and can be extended and generalized
 - Monopolistic competition: Rotemberg (1987)
 - Intertemporal considerations, monetary uncertainty: Svensson (1985)

Cash-in-Advance Economy

Agents hold monetary gold, silver in order to purchase goods consumed:

$$M_{gt} + M_{st}p_{st} \ge Y_{ct}p_{ct} + Y_{at}p_{at} + Y_{st}p_{st} + Y_{gt}$$

 M_{gt}, M_{st} : Quantities of monetary gold and silver

 p_{st}, p_{at}, p_{ct} : Prices of silver and agricultural and metallic commodities

What is the ratio of monetary silver to monetary gold?

$$\alpha M_{gt} = M_{st}$$

 $\alpha > 0$: Bimetallic monetary system

 $\alpha = 0$: Monometallic, gold-based monetary system

イロト 不得 とくほ とくほう 二日

Cash-in-Advance Economy

Agents hold monetary gold, silver in order to purchase goods consumed:

$$M_{gt} + M_{st}p_{st} \ge Y_{ct}p_{ct} + Y_{at}p_{at} + Y_{st}p_{st} + Y_{gt}$$

 M_{gt}, M_{st} : Quantities of monetary gold and silver

 p_{st}, p_{at}, p_{ct} : Prices of silver and agricultural and metallic commodities

What is the ratio of monetary silver to monetary gold?

$$\alpha M_{gt} = M_{st}$$

 $\alpha > {\rm 0}$: Bimetallic monetary system

 $\alpha = \mathbf{0}$: Monometallic, gold-based monetary system

Money and Prices

- Cash-in-advance constraint is standard in monetary models
- In equilibrium, this constraint binds:

$$M_{gt} + M_{st}p_{st} = Y_{ct}p_{ct} + Y_{at}p_{at} + Y_{st}p_{st} + Y_{gt}$$

- Assuming bimetallic monetary system, what happens if *p_{st}* increases?
 - ▶ Increase in p_{st} leads to increase in money supply $M_{gt} + M_{st}p_{st}$
 - Increase in money supply leads to increase in nominal output
 - Increase in nominal output means prices of other goods also increase
- Many alternative specifications of model, but always same intuition

3

イロト イポト イヨト イヨト

Money and Prices

- Cash-in-advance constraint is standard in monetary models
- In equilibrium, this constraint binds:

$$M_{gt} + M_{st}p_{st} = Y_{ct}p_{ct} + Y_{at}p_{at} + Y_{st}p_{st} + Y_{gt}$$

- Assuming bimetallic monetary system, what happens if p_{st} increases?
 - Increase in p_{st} leads to increase in money supply $M_{gt} + M_{st}p_{st}$
 - Increase in money supply leads to increase in nominal output
 - Increase in nominal output means prices of other goods also increase
- Many alternative specifications of model, but always same intuition

Supply Dynamics

In order to close the model, it is necessary to specify the dynamics for the supply of each good:

$$\log S_t = \bar{S} + \rho_S \log S_{t-1} + \tilde{s}_t$$
$$\log G_t = \bar{G} + \rho_G \log G_{t-1} + \tilde{g}_t$$
$$\log A_t = \bar{A} + \rho_A \log A_{t-1} + \tilde{a}_t$$
$$\log C_t = \bar{C} + \rho_C \log C_{t-1} + \tilde{c}_t,$$

 S_t, G_t, A_t, C_t : Total supply of each good in period t $\overline{S}, \overline{G}, \overline{A}, \overline{C}, \rho_S, \rho_G, \rho_A, \rho_G$: Constants that characterize time series $\widetilde{s}_t, \widetilde{g}_t, \widetilde{a}_t, \widetilde{c}_t$: Normally distributed shocks (i.i.d.)

Equilibrium

- Two things happen in equilibrium:
 - Markets clear, so supply equals demand for each good
 - Cash-in-advance constraint binds, so income equals spending
- This implies that in equilibrium:

$$Y_{ct} = \frac{\mu_c}{p_{ct}^{\theta}} \left(Y_{ct} p_{ct}^{\theta} + Y_{at} p_{at}^{\theta} + Y_{st} p_{st}^{\theta} + Y_{gt} \right)$$
$$M_{gt} + M_{st} p_{st} = Y_{ct} p_{ct} + Y_{at} p_{at} + Y_{st} p_{st} + Y_{gt}$$

 Demand for each good depends on price and nominal income (note that there are similar expressions for agricultural commodity and silver)

Outline

Introduction

- Motivation
- Preview of Results

2 A Dynamic Bimetallic Monetary Model

3 Simulations

4 Conclusion

< 4 → <

æ

Model Calibration: Structural Parameters

- Elasticity of substitution between goods: $\boldsymbol{\theta}$
 - Low substitutability, $\theta = 0.5$
 - Similar results for $\theta = 1$
- Shares of each good in total consumption: μ_c, μ_a, μ_s
 - Choose $\mu_c = \mu_a = 0.4$ and $\mu_s = 0.1$
 - Similar results for alternative share values
- Ratio of monetary silver to monetary gold: α
 - Consider several different values of $\alpha > 0$
 - Compare with $\alpha = 0$ (monometallic, gold-based monetary system)

200

- 3

Model Calibration: Time-Series Parameters

• Supply of each good follows logarithmic AR-1 process:

$$\log S_t = \bar{S} + \rho_S \log S_{t-1} + \tilde{s}_t$$
$$\log G_t = \bar{G} + \rho_G \log G_{t-1} + \tilde{g}_t$$
$$\log A_t = \bar{A} + \rho_A \log A_{t-1} + \tilde{a}_t$$
$$\log C_t = \bar{C} + \rho_C \log C_{t-1} + \tilde{c}_t,$$

• Choose parameters so simulations with $\alpha = 0$ match 1897-1913 data

- Monometallic, gold-based monetary system
- Compare results of simulations with $\alpha > 0$ with 1870-1896 data
 - Silver as a price anchor?

Results

Good	Value of α	Standard Deviation (%)	Autocorrelation
Silver	0	0.136	0.938
Silver	0.25	0.266	0.946
Silver	0.5	0.241	0.944
Silver	0.75	0.234	0.941
Silver	1.0	0.234	0.941
Silver	1.5	0.227	0.941
Silver	2.0	0.225	0.945
Metallic Commodity	0	0.214	0.965
Metallic Commodity	0.25	0.330	0.968
Metallic Commodity	0.5	0.313	0.970
Metallic Commodity	0.75	0.312	0.969
Metallic Commodity	1.0	0.320	0.968
Metallic Commodity	1.5	0.312	0.970
Metallic Commodity	2.0	0.280	0.967
Agricultural Commodity	0	0.211	0.922
Agricultural Commodity	0.25	0.390	0.925
Agricultural Commodity	0.5	0.363	0.924
Agricultural Commodity	0.75	0.353	0.918
Agricultural Commodity	1.0	0.349	0.918
Agricultural Commodity	1.5	0.353	0.926
Agricultural Commodity	2.0	0.355	0.925

Figure: Results from 1,000 simulations.

Fernholz, Mitchener, and Weidenmier

э.

・ロト ・聞ト ・ヨト ・ヨト

Results

Value of α		Silver	Metallic Commodity
0	Metallic Commodity	0.317	1.000
0	Agricultural Commodity	-0.184	-0.047
0.25	Metallic Commodity	0.785	1.000
0.25	Agricultural Commodity	0.900	0.571
0.5	Metallic Commodity	0.786	1.000
0.5	Agricultural Commodity	0.883	0.546
0.75	Metallic Commodity	0.767	1.000
0.75	Agricultural Commodity	0.881	0.543
1.0	Metallic Commodity	0.772	1.000
1.0	Agricultural Commodity	0.877	0.524
1.5	Metallic Commodity	0.757	1.000
1.5	Agricultural Commodity	0.882	0.535
2.0	Metallic Commodity	0.709	1.000
2.0	Agricultural Commodity	0.886	0.480

Figure: Results from 1,000 simulations.

Fernholz, Mitchener, and Weidenmier

Data

Good	Time Period	Standard Deviation (%)	Autocorrelation
Silver	1870-1896	0.224	0.990
Silver	1897 - 1913	0.086	0.961
Copper	1870-1896	0.311	0.987
Copper	1897-1913	0.188	0.946
Tin	1870-1896	0.350	0.975
Tin	1897-1913	0.290	0.980
Cotton	1870-1896	0.347	0.972
Cotton	1897-1913	0.254	0.969
Corn	1870-1896	0.278	0.909
Corn	1897-1913	0.276	0.954
Wheat	1870-1896	0.232	0.916
Wheat	1897-1913	0.190	0.895

Figure: Data for 1870-1913.

Fernholz, Mitchener, and Weidenmier

Pulling up the Tarnished Anchor

・ロト ・聞ト ・ヨト ・ヨト

S & C

э.

Data

	Silver	Copper	Tin	Cotton	Corn
Copper	0.833	1.000			
Tin	0.662	0.755	1.000		
Cotton	0.864	0.865	0.819	1.000	
Corn	0.419	0.170	0.272	0.317	1.000
Wheat	0.749	0.715	0.457	0.600	0.321

Table 2: Data correlations 1870-1896.

	Silver	Copper	Tin	Cotton	Corn
Copper	0.726	1.000			
Tin	0.168	0.329	1.000		
Cotton	-0.177	-0.081	0.631	1.000	
Corn	-0.379	-0.185	0.560	0.547	1.000
Wheat	-0.327	-0.348	0.249	0.412	0.510

Table 3: Data correlations 1897-1913.

э.

イロン イヨン イヨン イヨン

Commodity Prices 1870-1913

Fernholz, Mitchener, and Weidenmier

June 27, 2013

The Model and the Data

- Simulations show that model matches key characteristics of the data
- Silver as price anchor vs. unambiguously monometallic system
 - Key distinction is correlation between silver and commodity prices
- Simple intuition
 - If price of silver increases, then the quantity of money also increases
 - If quantity of money increases, then the price level also increases

Future Directions

- Expand, sharpen the parameterization
 - Use trade based on gold (silver) or country-specific information on use of metals as money to have a time-varying alpha
- What is the best cutoff between high-correlation/high-volatility and low-correlation/low-volatility periods?

Conclusion

The End

Thank You

Fernholz, Mitchener, and Weidenmier

Pulling up the Tarnished Anchor

June 27, 2013

2

<ロ> (日) (日) (日) (日) (日)