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ABSTRACT 

Conditional value at risk (CoVaR) and marginal expected shortfall (MES) have been proposed as 

measures of systemic risk. Some argue these statistics should be used to impose a “systemic risk tax” on 

financial institutions. These recommendations are premature because CoVaR and MES are ad hoc 

measures that: (1) eschew statistical inference; (2) confound systemic and systematic risk; and, (3) poorly 

measure asymptotic tail dependence in stock returns.  We introduce a null hypothesis to separate systemic 

from systematic risk and construct hypothesis tests. These tests are applied to daily stock returns data for 

over 3500 firms during 2006-2007. CoVaR (MES) tests identify almost 500 (1000) firms as systemically 

important. Both tests identify many more real-side firms than financial firms, and they often disagree 

about which firms are systemic. Analysis of hypotheses tests’ performance for nested alternative 

distributions finds: (1) skewness in returns can cause false test rejections; (2) even when asymptotic tail 

dependence is very strong, CoVaR and MES may not detect systemic risk. Our overall conclusion is that 

CoVaR and MES statistics are unreliable measures of systemic risk.   
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Taking the risk out of systemic risk measurement 

I. Introduction 

A number of economists have proposed using specific measures of stock return tail dependence 

as indicators for the “systemic risk” created by large financial institutions.2  In this paper, we 

focus on two proposed systemic risk measures: conditional value at risk (CoVaR) and marginal 

expected shortfall (MES).  Proponents of these measures have argued that CoVaR and MES 

statistics should be used as a basis to tax large complex financial institutions to penalize them for 

the systemic risk that they create [Acharya, Engle and Richardson (2012), Acharya, Pedersen, 

Philippon and Richardson (2010)] or to indirectly tax these institutions by requiring enhanced 

regulatory capital and liquidity requirements calibrated using these measures [Adrian and 

Brunnermeier (2011)].   

The argument for using CoVaR and MES to measure of systemic risk is simple enough.  Should 

a systemically important financial institution teeter on the brink of default, its elevated risk of 

failure will negatively impact the lower tail of the stock return distributions of many other firms 

in the economy. The loss-tail of firms’ return distributions will experience a negative shift 

because the institution’s failure will spread losses throughout the financial sector and choke off 

credit intermediation to the real economy. Formally, stock returns will have asymptotic left-tail 

dependence with the stock returns of a systemically important financial institution. Intuitively, 

CoVaR and MES are empirical measures of the shift in the loss-tail of stock return distributions 

brought on by a specific conditioning event, so it is reasonable to think they might be useful for 

identifying and measuring the systemic risk potential of an institution.  

The CoVaR measure is the difference between two 1 percent value-at-risk (VaR)3 measures. 

First, the 1 percent VaR of a portfolio is calculated using returns conditioned on the event that a 

single large financial institution experiences a return equal to the 1 percent quantile of its 

unconditional return distribution. The second step is to subtract the VaR of the same portfolio 

conditioned on the event that the large financial institution in question experiences a median 

                                                           
2 These papers include: Acharya, Engle and Richardson (2012), Acharya, Pedersen, Philippon and Richardson 

(2010), Adrian and Brunnermeier (2011) and Brownlees and Engle (2012).  See Flood, Lo and Valavanis (2012) for 

a recent survey of this literature. Kupiec (2012) or Benoit, Colletaz, Hurlin and Perignon (2012) provide a critical 

assessment. 
3 In this literature, a 1 percent VaR measure is defined as the 1 percent quantile of the underlying return distribution. 
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return. CoVaR is typically estimated using quantile regression on the grounds that such estimates 

are non-parametric and free from biases that may be introduced by inappropriately restrictive 

parametric distributional assumptions.  

MES is the expected shortfall calculated from a conditional return distribution for an individual 

financial institution where the conditioning event is a large negative market return realization.  

Two proposed measures of systemic risk, Expected Systemic Shortfall (SES) and the Systemic 

Risk Index (SRISK) are simple transformations of the MES that generate an approximation of 

the extra capital the financial institution will need to survive a virtual market meltdown.  The 

primary input into SES and SRISK measures is the financial institution’s MES which is 

estimated as the institution’s average stock return on days when the market portfolio experiences 

a return realization that is in its 5 percent unconditional lower tail. This measure is non-

parametric as it requires no maintained hypothesis about the probability density that generates 

observed stock return data.  

The existing literature argues that CoVaR or MES estimates that are large relative to other 

financial firm estimates are evidence that a financial institution is a source of systemic risk. The 

validity of these systemic risk measures is established by showing that virtually all of the large 

financial institutions that required government assistance (or failed) during the recent financial 

crisis exhibited large CoVaR or MES measures immediately prior to the crisis.  Moreover, the 

nonparametric nature of CoVaR and the MES estimators has been portrayed as a strength since 

they avoid biases that may be introduced by inappropriate parametric distributional assumptions.   

We identify a number of important weaknesses in the CoVaR and MES literature. One important 

flaw is that it eschews formal statistical hypothesis tests to identify systemic risk. A second 

weakness is that the CoVaR and MES measures are contaminated by systematic risk.4  Firms that 

have large systematic risk are more likely to produce large (negative) CoVaR and MES statistics 

even when there is no systemic risk in stock returns.   

To address these two short comings, we introduce the null hypothesis that returns have a 

multivariate Gaussian distribution.  The Gaussian distribution is asymptotically tail independent 

which rules out systemic risk.  Using the Gaussian null, we construct classical hypothesis test 

                                                           
4 See, for example Kupiec (2012) or Benoit, Colletaz, Hurlin and Perignon (2012). 
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statistics that use alternative CoVaR and MES estimators to detect asymptotic tail dependence.  

We use Monte Carlo simulations to construct the critical values of the small sample distributions 

of our two test statistics.   

We use daily return data on 3518 firms and the CRSP equally-weighted market portfolio over the 

sample period 2006-2007 to construct CoVaR and MES hypothesis tests and identify 

systemically important firms.  The CoVaR test identifies roughly 500 firms as sources of 

systemic risk; the MES test identifies nearly 1000 firms.  Both tests identify many more real-side 

than financial firms, and the tests often disagree about which firms are a source of systemic risk.  

To better understand our hypothesis test results, we perform simulations to evaluate the 

performance of our hypothesis tests for nested alternative return distributions, some with 

asymptotic tail dependence, and others asymptotically tail independent.  Our analysis shows that 

our hypothesis tests may reject the null hypothesis in the presence of return skewness patterns 

that are common in the data, even when the return distributions are asymptotically tail 

independent.5  Thus a rejection of the null need not be an indication of systemic risk. This 

finding highlights the potential benefit of choosing a more general null hypothesis to construct 

the test statistics, but other findings suggest that the search for a better null is probably moot.  

The final and fatal weakness we identify is a lack of power: CoVaR and MES measures are 

unable to reliably detect asymptotic tail dependence, even when asymptotic tail dependence is 

exceptionally strong.  We show that distributions with weak but non-zero asymptotic tail 

dependence produce CoVaR and MES sampling distributions that significantly overlap the 

sampling distributions of CoVaR and MES estimators from nested distributions that are 

asymptotically tail independent.  Unless asymptotic tail dependence is very strong, the CoVaR 

and MES test statistics will have low power meaning that they are unable to reliably distinguish 

returns with asymptotic tail dependence from returns that come from an asymptotically tail-

independent return distribution. Even when asymptotic tail dependence is strong, the CoVaR and 

MES test statistics have poor power characteristics because, as asymptotic tail dependence 

increases, the variance of the CoVaR and MES estimates grow significantly. Paradoxically, the 

                                                           
5 A distribution’s skewness can cause the hypothesis tests to under- or over-reject, depending on the pattern of 

skewness in the data.  When the market return distribution is strongly negatively skewed, and individual returns are 

weakly positively skewed, the tests over-reject the null hypothesis.  This pattern is particularly common in our 

sample of stock returns.  
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CoVaR and MES systemic risk proxies are noisier and less efficient when there is more systemic 

risk.       

The remainder of the paper is organized as follows. Section II provides a brief overview of the 

existing literature.  Section III applies the CoVaR and MES measures to the daily returns of 3518 

individual stocks over the sample period 2006-2007 and highlights many features that are 

counterintuitive if CoVaR and MES are reliable measuring systemic risk. Section IV derives 

CoVaR and MES measures when returns are multivariate Gaussian, and it constructs classical 

hypothesis test statistics and calculates the critical values of their sampling distribution under the 

Gaussian null. Section V applies our hypothesis tests to the pre-crisis sample of individual sock 

returns data.  Section VI investigates the properties of our hypothesis test statistics under nested 

alternative return distribution assumptions that both include and exclude asymptotic tail 

dependence. Section VII provides our summary and conclusions. 

II. Literature Review 

1.  Conditional Value at Risk (CoVaR) 

Let �̃�𝑃 represent the return on a reference portfolio of stocks, �̃�𝑗represent the return on an 

individual stock,  �̃�𝑃|𝑅𝑗 = 𝑟 be the return on the reference portfolio conditional on a specific 

realized value for 𝑅�̃�, 𝑅𝑗 = 𝑟, and 𝑉𝑎𝑅(𝑅�̃�,p) represent the p-percent value at risk for stock j, or 

the critical value of the return distribution for �̃�𝑗 below which, there is at most p-percent 

probability of a smaller return realization.  

Adrian and Brunnermeier (2012) define the q-percent CoVaR measure for firm j to be the q-

percent quantile of a reference portfolio’s conditional return distribution, where the reference 

portfolio’s distribution is conditioned on a return realization for stock j equal to its q-percent 

VaR value.  Using our notation, firm j’s q-percent CoVaR is formally defined as: 

𝐶𝑜𝑉𝑎𝑅(�̃�𝑃|𝑗, 𝑞  ) = 𝑉𝑎𝑅[�̃�𝑃|𝑅𝑗 = 𝑉𝑎𝑅(�̃�𝑗,q), q]                             (1)                           

Adrian and Brunnermeier define ∆CoVaR is the difference between the stock j’s q-percent 

CoVaR and the stock’s median CoVaR defined as stock j’s CoVaR calculated conditional on a 

median market return.   
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∆𝐶𝑜𝑉𝑎𝑅(�̃�𝑃|𝑗 , 𝑞) = 𝐶𝑜𝑉𝑎𝑅(�̃�𝑃|𝑗 , 𝑞) − 𝐶𝑜𝑉𝑎𝑅(�̃�𝑃|𝑗, 50%)                     (2) 

Adrian and Brunnermeier (2011) set “q” equal to 1-percent and estimate ∆CoVaR using quantile 

regressions. They also show that GARCH-based ∆CoVaR estimates yield values similar to 

quantile regression estimators.  They argue that ∆CoVaR measures how an institution contributes 

to the systemic risk of the overall financial system.6  

2. Marginal Expected Shortfall (MES) 

Acharya, Pedersen, Phillipon, and Richardson (2010) define MES as the marginal contribution of 

firm j to the expected shortfall of the financial system. Formally, MES for firm j is the expected 

value of the stock return �̃�𝑗 conditional on the market portfolio return �̃�𝑀 being at or below the 

sample q-percent quantile.  

𝑀𝐸𝑆(�̃�𝑗 , 𝑞) = 𝐸(�̃�𝑗|𝑅𝑀 < 𝑉𝑎𝑅(�̃�𝑀, 𝑞))                                              (3) 

Higher levels of MES imply that firm j is more likely to be undercapitalized in the bad states of 

the economy and thus contribute more to the aggregate risk of the financial system.  

Acharya, Pedersen, Phillipon, and Richardson (2010) use a 5 percent left-tail market return 

threshold and estimate MES by taking a selected-sample average. They argue that that MES 

calculated over the 2006-2007 period can predict stock returns during the crisis.  Brownlees and 

Engle (2012) and Acharya, Engle and Richardson (2012) refine the MES measure and use 

dynamic volatility and correlation models to estimate MES from firm and market returns.  

Systemic Expected Shortfall (SES)  

Acharya, Pedersen, Phillipon, and Richardson (2010) define Systemic Expected Shortfall (SES) 

as the expected undercapitalization of bank i when the aggregate banking system as a whole is 

undercapitalized.  Acharya, Engle, and Richardson (2012) rename SES as SRISK and define 

SRISK for firm j: 

𝑆𝑅𝐼𝑆𝐾𝑗 =  𝑚𝑎𝑥 ( 0 ,  𝐸𝑞𝑢𝑖𝑡𝑦𝑗   [ 𝐾 𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑗 –  (1 − 𝐾) 𝑒𝑥𝑝(−18 𝑀𝐸𝑆𝑗) ] )                 (4) 

                                                           
6 Adrian and Brunnermeier (2011) also estimate a measure they call “forward-∆CoVaR” by projecting estimates of 

∆CoVaR on bank-level characteristics. 
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where 𝐸𝑞𝑢𝑖𝑡𝑦𝑗  denotes market capitalization of firm j, K is the minimum capital requirement for 

banks, and leverage is the book value of bank j’s debt divided by equity. The authors appeal to 

extreme value theory to argue that the transformation t 𝑒𝑥𝑝(−18 𝑀𝐸𝑆𝑗)  converts MES, which is 

estimated on moderately bad days into a proxy for MES measured during the extreme event of a 

systemic banking crisis.7  

MES only depends on stock return moments while SRISK/SES incorporates additional 

information about firm size and leverage. Since the underlying intuition in these systemic risk 

measures is that systemic risk potential can be measured using information compounded in 

observed stock return distributions, we focus our interest on the MES component of the SES risk 

measure.  

III.   Do CoVaR and MES Statistics Measure Systemic Risk? 

The existing CoVaR and MES literature focuses on the stock returns of large financial 

instructions just prior to the crisis.  It argues that CoVaR and MES are measures of systemic risk 

because there is a high correspondence between institutions that had large MES and CoVaR 

measures immediately prior to the crisis and institutions that subsequently required extensive 

government capital injections or failed. While this justification can seem convincing in the 

context of a selected sample of financial firms, the argument becomes less convincing when it is 

viewed in a broader context.  CoVaR and MES statistics can be calculated for all firms with 

stock return data and it is informative to see the magnitude of CoVaR and MES statistics for 

firms outside of the financial services industry. 

In this section we calculate the MES and ∆CoVaR measures using the nonparametric methods 

recommended in the literature for all CRSP stocks with close to 500 days of daily return data in 

the sample period 2006-2007. We start with all US firms identified in CRSP database between 

2006 and 2007. We calculate daily log returns on days where reported closing prices are based 

on transactions. We exclude security issues other than common stock such as ADRs and REITs. 

                                                           
7 MES is estimated on days when the market portfolio realization is in the lower 5 percent tail.  This within-sample 

condition is likely less severe than the returns associated with a financial crisis. Scaled MES is an approximation for 

the expected losses on financial crisis days. It is based on an extreme value approximation that links expected losses 

under more extreme events to sample MES estimates based on less restrictive conditions.  
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We eliminate firms if: the market capitalization is less than $100 million. These filters result in 

3518 return series.  

Our reference portfolio is the CRSP equally-weighted index.  For each firm in the sample, we 

estimate 1 percent ΔCoVaR statistics using quantile regression.8 We measure MES for each stock 

as the average stock returns on days when the equally-weighted market portfolio experiences a 

return in the 5 percent lower tail of its sampling distribution. The reference portfolio is the CRSP 

equally-weighted market portfolio.   

Table 1 describes the sample. It lists the number of firm in the sample by industry and the 

average ∆CoVaR and MES estimates for each industry. The ΔCoVaR estimates indicate that, on 

average, the construction industry has the largest (negative) ∆CoVaR estimates suggesting that, 

on average, this industry has the most systemic risk.  Following the construction industry, 

according to the ΔCoVaR measure, on average, broker-dealers and mining firms are the next 

most important industry sources of systemic risk. According to the MES statistic, on average 

broker-dealers are the largest contributors to systemic risk, followed by mining companies and 

then the construction industry.     

Table 2 lists the fifty companies that exhibit the largest ΔCoVaR measures in descending order 

of “systemic risk” importance as indicated by the magnitude of their 1-percent ΔCoVaR 

statistics. Most of the firms listed in Table 1 are part of the “real-side” of the economy and have 

nothing to do with the financial services sector.  Among the firms listed in Table 2 are 7 financial 

firms. It is very unlikely that anyone would view any of these 7 firms as “systemically 

important.” The depository institution with the largest ΔCoVaR statistic, Citizens First Bancorp, 

has less than half the indicated systemic risk of Proquest, the company with the largest ΔCoVaR 

systemic risk measure among traded firms.  

Table 3 lists, in descending order, the fifty companies with the largest (negative) MES systemic 

risk measures. While the top-fifty MES firms are still dominated by the real sector, the MES 

statistic does generate a list of “high risk” financial firms that did subsequently flounder during 

the crisis.  CompuCredit, E-trade, Countrywide Financial, IndyMac, BankUnited Financial, Net 

                                                           
8 ∆CoVaR is the difference between the two quantile regression estimates: the 1 percent quantile regression of the 

market portfolio on an individual firm’s return less the estimate of the 50 percent quantile regression of the market 

return on the individual firm’s return.   
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Bank, Accredited Home Lenders and Fremont General Corporation all experienced serious 

distress or failed subsequent to the onset of the financial crisis.  Still, none of these firms are 

exceptionally large and none was considered to be systemically important or “too-big-to-fail” 

during the financial crisis. The firm with the largest MES, China Precision Steel, is not a 

financial firm. It is not particularly important for the U.S. domestic economy as more than 60 

percent of its operations are in China.  

The results in Table 1 through 3 demonstrate that when ΔCoVaR and MES statistics are 

calculated for all traded stocks in the years immediately preceding the crisis (2006-2007), the 

largest financial institutions that are alleged to be the primary sources of systemic risk for the 

economy do not even appear among the list of firms with the fifty most negative ΔCoVaR or 

MES estimates.  The omission of the largest financial institutions from either list calls into 

question previous claims that ΔCoVaR and MES provide accurate measures of a firm’s potential 

to cause systemic risk.  

Another troubling feature of MES and ΔCoVaR estimates is that there is a systematic 

relationship between ΔCoVaR and MES statistics and common market factor beta risk. A 

significant share of the cross sectional variation in ΔCoVaR and MES statistics can be attributed 

to variation in firms’ systematic risk or the firm’s return correlation with the returns from the 

equally-weighted CRSP portfolio.9  Figure 1 shows the fit of a regression of the sample 

individual stock MES estimates on their market model beta coefficients estimates. The simple 

market model beta coefficient (systematic market risk) explains nearly three-quarters of the 

cross-section variation in MES estimates.  Figure 2 shows the fit of a cross-sectional regression 

of ΔCoVaR estimates on individual stocks’ sample correlation estimates with the equally-

weighted market portfolio return. This regression explains nearly 30 percent of the observed 

cross-sectional variation in the sample ΔCoVaR estimates.   

The data clearly show that, the greater a firm’s systematic risk, the greater the potential that it 

produces a large value ΔCoVaR or MES statistic.  Hence, to construct a ΔCoVaR or MES-based 

test for systemic risk, it is first necessary to remove the effects of a firm’s systematic risk.  In the 

next section, we construct ΔCoVaR and MES-based test statistics that remove the effects of 

                                                           
9 Our estimates for ΔCoVaR or MES are similar when we use S&P 500 or value-weighted market portfolio. 
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systematic risk and common factor correlation that are compounded in the “raw” ΔCoVaR and 

MES measures.   

IV. Systematic Risk Hypothesis Test based on ΔCoVaR and MES Statistics 

To construct classical hypothesis tests to detect systemic from ∆CoVaR and MES statistics, we 

must adopt a null hypothesis for stock returns that excludes the possibility of systemic risk.  

Under the null hypothesis, we develop test statistics using ΔCoVaR and MES estimates that 

allow us to assess the probability that the MES and ∆CoVaR estimates would be observed if the 

null hypothesis is true.  When we observe ∆CoVaR and MES test statistics that are so large that 

they are highly unlucky to be generated under the null hypothesis return distribution, we reject 

the null hypothesis in favor of alternative stock return generating process that includes the 

possibility of systemic risk.       

Admissible candidates for the distribution under the null hypothesis must exhibit asymptotic left-

tail independence since we formally define systemic risk as asymptotic dependence in the left tail 

of the distribution. The bivariate Gaussian distribution satisfies the independence condition, is 

analytically tractable, and given the long history of using the Gaussian distribution to model 

stock returns, it is a logical distribution to use initially. In the penultimate section of this paper, 

we discuss the performance of our test statistic under alternative hypotheses that deviate from the 

Gaussian null hypothesis including alternatives that are asymptotically tail independent and 

thereby lack systemic risk.       

When  (�̃�𝑗, �̃�𝑃)  have a bivariate normal distribution, Φ [(𝜇𝑗
𝜇𝑃

) , (
𝜎𝑗

2 𝜌𝜎𝑗𝜎𝑃

𝜌𝜎𝑗𝜎𝑃 𝜎𝑃
2 )], where Φ(𝑎, 𝑏)  

represent the Gaussian distribution function with mean “a” and variance “b”. The conditional 

distributions are also normal random variables, 

�̃�𝑗|(�̃�𝑃 = 𝑟𝑃𝑖) ~ Φ [𝜇𝑗 + 𝜌
𝜎𝑗

𝜎𝑃
(𝑟𝑃𝑖 − 𝜇𝑃), (1 − 𝜌2)𝜎𝑗

2]                                          (5a) 

�̃�𝑃|(�̃�𝑗 = 𝑟𝑗𝑖 )~ Φ [𝜇𝑃 + 𝜌
𝜎𝑃

𝜎𝑗
(𝑟𝑗𝑖 − 𝜇𝑗), (1 − 𝜌2)𝜎𝑃

2]                                          (5b) 

where 𝜇𝑗 and 𝜇𝑃 represent the individual (univariate) return means, 𝜎𝑗
2 and 𝜎𝑃

2 represent the 

individual return variances and 𝜌 represents the correlation between the returns.  
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Parametric CoVaR for Gaussian Returns  

CoVaR can be measured in two ways.  One CoVaR measures the conditional VaR of a reference 

portfolio conditional on an individual stock experiencing an extreme left-tail return event. A 

second possible CoVaR calculation (called the Exposure CoVaR) measures the conditional value 

at risk of an individual stock conditional on the reference portfolio experiencing an extreme left-

tail return event.  While we derive closed form expressions for both measures, we focus our 

analysis on the former measure during the rest of the paper.   

First we derive the CoVaR measure for the reference portfolio conditioned on the extreme 

negative return of an individual stock. The conditional distribution function for �̃�𝑃 conditional 

on �̃�𝑗 equal to its 1 percent value at risk is, 

�̃�𝑃| (�̃�𝑗 = Φ−1(. 01,   �̃�𝑗)) ~ Φ [𝜇𝑃 + 𝜌
𝜎𝑃

𝜎𝑗
(Φ−1(. 01,   �̃�𝑗)  − 𝜇𝑗), (1 − 𝜌2)𝜎𝑃

2] ,                    (6) 

and observing Φ−1(. 01,   �̃�𝑗) = 𝜇𝑗 − 2.32635 𝜎𝑗, the 1 percent CoVaR for the portfolio 

conditional on �̃�𝑗   equal to its 1 percent VaR is, 

𝐶𝑜𝑉𝑎𝑅 (�̃�𝑃| (�̃�𝑗 = Φ−1(. 01,   �̃�𝑗))) = 𝜇𝑃 − 𝜌
𝜎𝑃

𝜎𝑗
(2.32635 𝜎𝑗) − 2.32635 𝜎𝑃√1 − 𝜌2 ,      (7) 

The conditional return distribution for the portfolio, conditional on �̃�𝑗 equal to its median is,  

�̃�𝑃| (�̃�𝑗 = Φ−1(. 50,   �̃�𝑗)) ~ 𝑁[𝜇𝑃, (1 − 𝜌2)𝜎𝑃
2].                                             (8) 

Consequently, the CoVaR for the portfolio with  �̃�𝑗 evaluated at its median return is, 

𝐶𝑜𝑉𝑎𝑅 (�̃�𝑃| (�̃�𝑗 = Φ−1(. 50,   �̃�𝑗))) = 𝜇𝑃 − 2.32635𝜎𝑃√1 − 𝜌2 ,                     (9) 

Subtracting (8) from (7) and defining 𝛽𝑗𝑃 =
𝐶𝑜𝑣(�̃�𝑗,�̃�𝑃)

𝜎𝑃
2 ,  the contribution CoVaR measure is, 

∆𝐶𝑜𝑉𝑎𝑅 (�̃�𝑃| (�̃�𝑗 = Φ−1(. 01,   �̃�𝑗))) = − 𝛽𝑗𝑃 ∙ 2.32635 
𝜎𝑃

2

𝜎𝑗
                              (10a) 

= −𝜌 ∙ 2.32635𝜎𝑃                                   (10b) 
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Reversing the order of the conditioning variable (i.e., the CoVaR for  �̃�𝑗 conditional on �̃�𝑃 equal 

to its 1 percent VaR ), it is straight-forward to show that the so-called exposure CoVaR measure 

is, 

∆𝐶𝑜𝑉𝑎𝑅 (�̃�𝑖| (�̃�𝑃 = Φ−1(. 01,   �̃�𝑃))) = − 𝛽𝑗𝑃 ∙ 2.32635 𝜎𝑃,                              (11a) 

= −𝜌 ∙ 2.32635𝜎𝑗                                   (11b) 

Regardless of which return is used to do the conditioning, both ∆CoVaR measures are negatively 

related to the correlation between the stock and the reference portfolio return.  

1. Parametric MES for Gaussian Returns 

The marginal expected shortfall measure is the expected shortfall calculated from a conditional 

return distribution.  In Acharya, Pedersen, Philippon and Richardson (2010), the conditioning 

event is when the return on a reference portfolio, �̃�𝑃, is less than or equal to its 5 percent VaR 

value. The reference portfolio could be a well-diversified portfolio representing the entire stock 

market, or a portfolio of bank stocks.    

Under the assumption of bivariate normality, the conditional stock return is normally distributed, 

and consequently, 

𝐸(�̃�𝑗|�̃�𝑃 = 𝑟𝑃) = 𝜇𝑗 − 𝜌
𝜎𝑗

𝜎𝑃
 𝜇𝑃 + 𝜌

𝜎𝑗

𝜎𝑃
𝑟𝑃.                                               (12) 

Now, if �̃�𝑃 is normally distributed with mean 𝜇𝑃 and standard deviation 𝜎𝑃, then the expected 

value of the market return truncated above the value “b” is, 

𝐸(�̃�𝑃|�̃�𝑃 < 𝑏) = 𝜇𝑃 − 𝜎𝑃 [
𝜙(

𝑏−𝜇𝑃
𝜎𝑃

)

Φ(
𝑏−𝜇𝑃

𝜎𝑃
)
],                                                                (13) 

If b is the lower 5 percent tail value, 𝑏 = 𝜇𝑃 − 1.645𝜎𝑃, and the expected shortfall measure is, 

𝐸(�̃�𝑗|�̃�𝑃 < 𝑉𝑎𝑅(�̃�𝑃, 95%)) = 𝜇𝑗 − 𝜌𝜎𝑗 [
𝜙(−1.645)

Φ(−1.645)
]                                           (14a) 

= 𝜇𝑗 − 2.062839 𝜎𝑀 𝛽𝑗𝑃                                     (14b) 
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where the constant (2.062839) is a consequence of the 5 percent tail conditioning on the market 

return, i.e., 
𝜙(−1.645)

Φ(−1.645)
= 2.062839.  

2. Systemic Risk Test Statistics when Returns are Gaussian 

Our hypothesis test statistic is constructed as difference between non-parametric and parametric 

(Gaussian) ∆CoVaR (or MES) estimates, scaled to remove dependence on a volatility parameter.  

Under the null hypothesis of Gaussian returns, the parametric MES and ∆CoVaR estimators are 

unbiased and efficient since they are maximum likelihood estimates.  Similarly, under the null 

hypothesis the alternative non-parametric ∆CoVaR and MES estimators are unbiased, but they 

are not efficient as they do not use any information on the parametric form of the stock return 

distribution.  If the alternative hypothesis is true, nonparametric ∆CoVaR and MES estimators 

should have expected values that differ from their parametric Gaussian counterparts. Under the 

alternative hypothesis, the magnitude of the nonparametric estimators reflect tail-dependence in 

the sample data while their parametric Gaussian estimates do not. Thus, if the alternative 

hypothesis that stock returns are in part driven by systemic risk is correct, the nonparametric 

estimators should produce larger (more negative) ∆CoVaR and MES statistics.   

Under the null hypothesis, the difference between the two estimators (nonparametric and 

parametric) has an expected value of 0, but has a sampling error in any given sample.  An 

important issue is whether the variance of this sampling error is independent of the 

characteristics of the stock and portfolio returns that are being analyzed.  It turns out that the 

difference between the non-parametric and the Gaussian parametric estimators has a sampling 

error that depends on both the return correlation and a volatility parameter.  We can control for 

volatility dependence by normalizing the differences between the nonparametric and parametric 

measures by an estimate of the relevant volatility parameter, but we are still left with the returns 

correlation as a “nuisance” parameter that must be controlled for when we construct our small 

sample Monte Carlo test statistic simulations. 

Let ∆𝐶𝑜𝑉𝑎𝑅̌  represent the non-parametric quantile regression estimator for the contribution 

∆CoVaR measure.  Let ∆𝐶𝑜𝑉𝑎𝑅̂  represent the sample parametric Gaussian estimator for 

∆CoVaR, and let  𝜎�̂� represent the sample standard deviation of the returns on the reference 

portfolio.  We define the CoVaR test statistic as, 
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𝜅𝐶𝑜𝑉𝑎𝑅 = −
∆𝐶𝑜𝑉𝑎𝑅̌ −∆𝐶𝑜𝑉𝑎𝑅̂

𝜎�̂�
.                                                                     (15)                                                  

Under the Gaussian null hypothesis, it can be easily demonstrated the sampling distribution of 

 𝜅𝐶𝑜𝑉𝑎𝑅 depends only on the correlation parameter between the stock returns and the returns on 

the reference portfolio.  

Under the alternative hypothesis of systemic risk,  ∆𝐶𝑜𝑉𝑎𝑅 −̌ ∆𝐶𝑜𝑉𝑎𝑅̂  is expected to be 

negative, and since �̂�𝑃 is positive, systemic risk is evident when the test statistic produces a large 

positive value.  Statistical significance is determined by comparing the test value for 𝜅𝐶𝑜𝑉𝑎𝑅 with 

its sampling distribution under the null.  When the test value of 𝜅𝐶𝑜𝑉𝑎𝑅 is in the far right-hand 

tail of its sampling distribution, we can reject the null hypothesis of no systemic risk. The critical 

value used to establish statistical significance determines the type 1 error rate for the test.  For 

example, rejecting the null hypothesis for test values at or above the 95 percent quantile of the 

sampling distribution for 𝜅𝐶𝑜𝑉𝑎𝑅 is consistent with a 5 percent type 1 error meaning there is at 

most 5 percent chance of rejecting a true null hypothesis.  

Let 𝑀𝐸�̌� represent the non-parametric estimator for MES. The literature defines it as the average 

individual stock return on days when the reference portfolio has a return realization in its lower 

tail.  We condition on reference portfolio returns in the 5 percent tail.  Let 𝑀𝐸�̂� represent the 

sample parametric Gaussian estimator for MES and �̂�𝑖 represent the sample standard deviation of 

the individual stock return in the calculation. We define the MES test statistic as, 

𝜅𝑀𝐸𝑆 = −
𝑀𝐸�̌�−𝑀𝐸�̂�

�̂�𝑖
                                                                          (17) 

Under the alternative hypothesis of systemic risk,  𝑀𝐸�̌� is expected to produce a larger negative 

number compared to 𝑀𝐸�̂�, and since �̂�𝑖 is positive, systemic risk is evident when the test statistic 

produces a large positive value.  As in the ∆CoVaR case, this test statistic still depends on the 

correlation between the stock and the reference portfolio, so correlation is a “nuisance” 

parameter that enters into the sampling distribution critical value calculations.   

In Table 4 we report the small sample distribution 1, 5 and 10 percent critical value estimates for 

the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 for 12 different portfolio-stock return correlation assumptions between -0.2 
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and 0.9.10  The critical values are calculated using Monte Carlo Simulation11 for a sample size of 

500 observations, the equivalent of about two years of daily data. We focus on a two-year 

estimation window because the characteristics of institutions, especially large financial 

institutions, change very quickly over time through mergers and acquisitions. The critical value 

statistics we report are based on 50,000 Monte Carlo simulations. 

V. Systemic Risk Test Application to 2006-2007 Stock Returns Data  

1. Estimation Methodology 

 

We use daily CRSP stock return data from the period 2006-2007 to calculate 𝜅𝐶𝑜𝑉𝑎𝑅  and 𝜅𝑀𝐸𝑆.   

The data set construction is discussed in Section III.  

Nonparametric CoVaR 

We estimate the nonparametric ΔCoVaR statistic,  ∆𝐶𝑜𝑉𝑎𝑅̌ , in three steps:  

 We run a 1-percent quantile regression of the CRSP equally weighted market return, 𝑅𝑀 

on 𝑅𝑗 and estimate 𝛽�̂�, the stock return coefficient in the quantile regression. 

 Estimate the 1-percent sample quantile and the median of the firm’s stock return, 𝑅𝑗, 

𝑉𝑎�̌�(𝑅𝑗, 𝑞) and 𝑉𝑎�̌�(𝑅𝑗, 0.50). 

 Nonparametric ΔCoVaR estimator is defined as: 

∆𝐶𝑜𝑉𝑎𝑅̌ (𝑅𝑀 |𝑅𝑗 = 𝑉𝑎𝑅(𝑅𝑗 , 𝑞)) = 𝛽�̂� (𝑉𝑎�̌�(𝑅𝑗 , 𝑞) − 𝑉𝑎�̌�(𝑅𝑗, 0.50))                   (18) 

We estimate our parametric ΔCoVaR statistic, ∆𝐶𝑜𝑉𝑎𝑅̂ , using equation (11) and the 

sample moments of individual stock returns and the equally-weighted market portfolio 

returns. 

                                                           
10Under the null hypothesis, we use Monte Carlo simulations to construct the sampling distribution for the 

hypothesis test statistics.  The 90th, 95th, and 99th percentiles of the estimated sampling distribution determine, 

respectively, the 10 percent, 5 percent and 1 percent critical values of the test statistic.  If the null hypothesis true, 

and we reject the null hypothesis if the sample statistic exceeds the critical threshold value, the type I error is 10 

percent, 5 percent or 1 percent respectively because there is less than a 10 percent, 5 percent or 1 percent probability 

of observing a larger value than the threshold in any random sample of 500 observations if the null hypothesis is 

true. 
11 We use the quantile regression package QUANTREG in R written by Roger Koenker. 
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Nonparametric MES 

We estimate nonparametric MES, 𝑀𝐸𝑆,̌  as the average of individual stock returns on sample 

subset of days that correspond with the 5 percent worst days of the equally-weighted broad stock 

market index.  

𝑀𝐸�̌�(𝑅𝑗 , 5%) =
∑ 𝑅𝑗 𝐼(𝑅𝑚<𝑉𝑎𝑅(𝑅𝑚,5%))

∑ 𝐼(𝑅𝑚<𝑉𝑎𝑅(𝑅𝑚,5%))
=

1

𝑁
∑ 𝑅𝑗𝑅𝑚<𝑉𝑎𝑅5%

                           (19) 

where I(.) is the indicator function and N is the number of 5 percent worst days for the market.              

 We measure parametric MES, 𝑀𝐸�̂�, using  expression (14) and sample moments for individual 

stock returns and the returns on the equally-weighted market portfolio.  

2. Hypothesis Test Results 

Table 5 summarizes 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 hypothesis test results.  Evaluated at the 5 percent level of 

the test, the 𝜅𝐶𝑜𝑉𝑎𝑅 test identifies 496 of 3518 firms as systemically important, or 14 percent of 

all sample firms.  Ranked by industry, the mining industry has the largest share of firms 

identified as systemically important (36.4 percent), followed by “other financial” (25.7 percent) 

and wholesale trade (22.1 percent).  Among the remaining financial services industries, broker 

dealers have the largest share of firms identified as systemically important (14.5 percent), 

followed by insurance (13 percent) and depository institutions (9.4 percent). 

The 𝜅𝑀𝐸𝑆 test identifies a much larger number of firms as systemically important.  At the 5 

percent level, the MES test identifies 979 firms as potential sources of systemic risk, or 28 

percent of the firms in the sample. Among specific industries, public administration has the 

largest share of firms with systemic risk potential (54.5 percent), followed by broker dealers 

(49.1 percent), and transportation, communications and utilities (46.9 percent).  Among the 

remaining financial services industries, insurance had the largest share of firms identified as 

systemically risky (43.5 percent), followed by depository institutions (37.7 percent) and other 

financial (28.4 percent). 

These formal hypothesis tests identify many more firms as sources of systemic compared to 

previous papers that examined only a small subset of financial institutions. And, unlike prior 

papers, because we examine all firms with actively traded equity, we identify many real-side 
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firms as systemically important. If systemic risk is manifest as asymptotic tail dependence in 

stock returns, and if our MES and CoVaR tests reliably identify tail dependence, then a lot firms 

will require systemic risk taxes or heightened prudential standards as prophylactic measures to 

keep the financial system safe. Clearly, the issue of the reliability of our test statistics is central.  

The Gaussian null hypothesis is very restrictive and it is important to understand whether 

commonly observed non-Gaussian  stock return characteristics can lead to a test rejection even 

when stock returns are asymptotically tail independent.  

VI. Do 𝜿𝑪𝒐𝑽𝒂𝑹 and 𝜿𝑴𝑬𝑺 Rejections Detect Asymptotic Tail Dependence? 

Let (𝑅1̃, 𝑅2̃) represent a bivariate random vector with individual univariate marginal distributions 

defined by 𝐹1(𝑟) = 𝑃𝑟(�̃�1 ≤ 𝑟), and 𝐹2(𝑟) = 𝑃𝑟(�̃�2 ≤ 𝑟).  Let 𝐿(𝑢) represent the conditional 

probability, 

𝐿(𝑢) = 𝑃𝑟(𝐹1(𝑅1) < 𝑢| 𝐹2(𝑅2) < 𝑢)                                            (20) 

The asymptotic left tail dependence between 𝑅1̃ and 𝑅2̃ is defined as, 𝐿 = lim
𝑢→0

𝐿(𝑢).   If this limit 

is 0, the random variables are asymptotically independent in their left tails.  If the limit is 

positive, then the random variables have asymptotic tail dependence in the left tail.  The larger is 

the value of the limit, the stronger is the left-tail dependence. 

Many distributions can be used to model stock returns, and among these, any distribution that 

exhibits asymptotic left-tail independence is a candidate for use as the null hypothesis in the 

construction of our CoVaR and MES test statistics.  In this section, we consider the properties of 

the Gaussian null hypothesis against a family of alternative distributions nested within the 

bivariate skew-t distribution. Depending on parameter values, the bivariate skew-t-distribution 

nests the bivariate skewed Gaussian distribution and the bivariate symmetric student-t and 

Gaussian distributions.  

Let 𝑑 be the dimension of the multivariate distribution.  Let 𝑦 be a (𝑑 × 1) random vector, 

and  𝛽  and 𝛼  (𝑑 × 1) vectors of constants.  Ω is a (𝑑 × 𝑑) positive definite matrix.  𝜈 ∈

(0, ∞)  is the scalar that represents the degrees of freedom parameter. The multivariate skew-t 

density 𝑦~𝑓𝑇(𝑦, 𝛽, Ω, 𝛼, 𝜈) is defined in Azzalini (2005): 
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𝑓𝑇(𝑦, 𝛽, Ω, 𝛼, 𝜈) = 2𝑡𝑑(𝑦; 𝛽, 𝛺, 𝜈)𝑇1 (𝛼𝑇𝜔−1(𝑦 − 𝛽) (
𝜈+𝑑

𝑄𝑦+𝜈
)

0.5

; 𝜈 + 𝑑)                      (21) 

where,                             𝑡𝑑(𝑦; 𝛽, 𝛺, 𝜈) =
𝛤(0.5(𝜈+𝑑))

|𝛺|0.5(𝜋𝜈)𝑑 2⁄ 𝛤(0.5𝜈)(1+𝑄𝑦 𝜈⁄ )
(𝜈+𝑑) 2⁄    

is the density function of a d-dimensional student t variate with ν degrees of freedom, and 

T1(x;ν+d) denotes the scalar t distribution with ν+d degrees of freedom. 𝛽 is the location 

parameter which controls the distribution means, 𝛼 is the parameter which controls the skewness 

of the distribution,12 and Ω is a generalized covariance matrix.13   The remaining parameters are, 

𝜔 = 𝑑𝑖𝑎𝑔(𝛺)0.5 and  𝑄𝑦 = (𝑦 − 𝛽)𝑇𝛺−1(𝑦 − 𝛽). 

The skew-t distribution nests the symmetric t-distribution, (𝛼 = 0 ,0 < 𝜈 < ∞), the skewed 

Gaussian distribution, (𝛼 ≠ 0, 𝜈 = ∞), and the symmetric Gaussian distribution, (𝛼 = 0, 𝜈 = ∞).  

The flexibility of the skew-t distribution facilities the process of evaluating the behavior of the  

∆CoVaR and MES hypothesis test statistics under a number of plausible alternative hypothesis. 

It is well-known that the Gaussian distribution is asymptotically tail independent. The skewed-

Gaussian distribution is also asymptotically tail independent [Bortot (2010)]. Both the skewed 

and symmetric t-distributions have asymptotic tail dependence where the tail dependence 

depends on the degrees of freedom parameter, the generalized correlation parameter, and the 

skewness parameters.   

The expression for the asymptotic left tail dependence of a bivariate symmetric t distribution is 

given by, 

𝐿𝑠𝑦𝑚 𝑡 = 2𝑇1 (−
√(𝜈+1)(1−𝜌)

√1+𝜌
, 𝜐 + 1)                                            (22) 

where 𝑇1(𝑥, 𝜈) is the distribution function for a  univariate t distribution with 𝜈 degrees of 

freedom.  Figure 3 illustrates the relationship between the asymptotic tail dependence in the 

symmetric bivariate t distribution and the distribution’s correlation and degrees of freedom 

                                                           
12 α is not equal to but monotonically related to skewness. α=0 implies a symmetric non-skewed distribution, 

whereas  α > 0 (α < 0) implies positive (negative) skewness. It is also called the “shape” or the “slant” parameter.  
13 Ω is equal to the covariance matrix of y only when the skewness and kurtosis are 0 (α=0, ν=∞). 
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parameters.  The higher the bivariate correlation and smaller the degrees of freedom, the stronger 

the distribution’s asymptotic tail dependence. 

In most cases, there is no closed-form expression for the asymptotic tail dependence of a 

bivariate skew-t distribution.  In the special case where the skew is identical across the individual 

random variables, 𝛼1 = 𝛼2 = 𝛼 ,  the distribution’s asymptotic tail dependence is given by   

𝐿𝑠𝑘𝑒𝑤−𝑡 = 𝐾(𝛼, 𝜈, 𝜌)  2𝑇1 (−
√(𝜈+1)(1−𝜌)

√1+𝜌
, 𝜐 + 1),                                                 (23) 

where,                       𝐾(𝛼, 𝜈, 𝜌) =
𝑇1(2𝛼√

(𝜈+2)(1+𝜌)

2
;𝜈+2)

𝑇1(
𝛼(1+𝜌)√𝜈+1

√1+𝛼2(1−𝜌2)

; 𝜈+1)

 

Figure 4 illustrates the relationship between strength of the asymptotic tail dependence for the 

skew-t distribution and the degrees of freedom parameter, 𝜈, correlation parameter ρ,  and 

skewness parameters 𝛼1 = 𝛼2 = 𝛼. We observe that negative skewness increases tail 

dependence, but only when the degree of freedom is low, that is when tails of the distribution are 

fat.     

We estimated the parameters for the bivariate skew-t distribution using maximum likelihood for 

each of the 3518 stocks in our sample paired with the CRSP equally-weighted market return.14  

The subscript 1 (2) indicates a parameter estimate that is associated with the individual stock 

return (equally-weighted CRSP portfolio return). The distribution of resulting parameter 

estimates is reported in Table 6.  Key parameters of interest in Table 6 are 𝛼1, 𝛼2, 𝜐, and 𝜌. 

Table 6 shows that, for most of the stocks in the sample over the 2006-2007 sample period, �̂�1 >

0, indicating that most individual stock’s return distributions are positively skewed. This finding 

is consistent with the literature [e.g., Singleton and Wingender (2006), or Carr et al, (2002)].    

𝛼2 is the parameter that determines the skewness of the market return distribution. While its 

magnitude varies among the 3518 bivariate maximum likelihood estimations, in all cases, �̂�2 <

0, indicating that the market return distribution is negatively skewed.15  Again, a negatively 

                                                           
14 We used the “sn” package in “R” written by Adelchi Azzalini 
15 The market skewness parameter is estimated simultaneously with the individual stock’s skewness parameter and 

the single degrees of freedom parameter for the bivariate distribution.  Ideally we would prefer to estimate the entire 
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skewed market return distribution is consistent with the literature [e.g., Fama (1965), Duffee 

(1995), Carr et al, (2002)), or Adrian and Rosenberg (2008)].    

The degrees of freedom parameter, 𝜐, is the most important determinant of the asymptotic tail 

dependence of the bivariate distribution.  The results in Table 6 show that in more than 75 

percent of the sample, 𝜐 < 4.5.  

Our test statistics are derived under the null hypothesis that stock returns are bivariate normal.  

The results in Table 6 suggest that the Gaussian null hypothesis is incorrect in a large number of 

cases as indicated by non-zero skewness parameter estimates and a predominance of small 

values for the degrees of freedom estimate. It is important to understand how alternative return 

distributions affect the sampling distribution of our test statistics.  For example, will return 

distributions with asymptotic tail dependence reliably cause our test statistic to reject the 

Gaussian null?  Will any degree of asymptotic tail dependence cause a rejection of the null 

hypothesis or must the asymptotic tail dependence reach a critical strength before it is detected? 

Will skewness trigger a rejection of null hypothesis even when returns have no asymptotic tail 

dependence? The bivariate skew-t distribution provides an ideal model of stock returns that can 

be used to investigate all of these questions.  

In the remainder of this section we generate simulated stock return data from alternative 

parameterizations of the skew-t distributions and estimate the sampling distribution for our 

hypothesis test statistics using Monte Carlo simulation and kernel density estimation.  For 

alternative parameterizations, we calculate our hypothesis test statistics for 10,000 samples of 

500 observations.  We consider alternative parameterizations of the skew-t distribution that use 

parameter values that more realistically represent the underlying distribution of the actual stock 

return series. 

We first investigate whether 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 have statistical power against alternative 

hypothesis that include negative asymptotic tail dependence.  Figure 5 plots the sampling 

distribution for the 𝜅𝐶𝑜𝑉𝑎𝑅 test statistic under the Gaussian null hypothesis distribution and two 

                                                           
multivariate (3518 dimensions) skew-t distribution simultaneously and thereby get one set of parameters for the 

market portfolio.  However, with only 500 daily observations, the joint return system not be identified unless 

additional structural simplification are imposed to reduce the number of independent parameters that must be 

estimated. 
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symmetric t distributions with degrees of freedom that are characteristic of the estimates 

produced in our cross section of stock returns.   

Recall that the asymptotic tail dependence of the t distribution is largest when the correlation is 

strong and the degrees of freedom parameter is small. Across the panels in Figure 5, as 𝜌 

increases, we plot the sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅 test statistics as the underlying 

distributions have stronger and stronger asymptotic tail dependence.  For most of the 

distributions, the sampling distribution for 𝜅𝐶𝑜𝑉𝑎𝑅 under the null hypothesis substantially 

overlaps the sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅 under the alternative hypothesis, and the 

alternative hypothesis sampling distributions have relatively little cumulative probability to the 

right of the 5 percent critical value under the null hypothesis.  This relationship indicates that is 

highly probable that, should the alternative hypothesis be true, the calculated test statistics may 

not reject the null.  In other words, the 𝜅𝐶𝑜𝑉𝑎𝑅 test has lower power for detecting asymptotic tail 

dependence.  This is especially true for 𝜌 = 0 and 𝜌 = .2 panels when the asymptotic tail 

dependence of the alternative t distributions is under 30 percent. 

Figure 6 repeats the symmetric t distribution power simulations for the 𝜅𝑀𝐸𝑆   test statistic and the 

results are similar to those for the 𝜅𝐶𝑜𝑉𝑎𝑅 statistic.   While the 𝜅𝑀𝐸𝑆 test has slightly better power 

characteristics compared to 𝜅𝐶𝑜𝑉𝑎𝑅, it still has poor power unless the returns have very strong 

asymptotic tail dependence.  For example, the 𝜌=.7 panel shows that, even when asymptotic tail 

dependence is 0.489, the power of the 𝜅𝑀𝐸𝑆 test is still only about 50 percent meaning that if the 

alternative hypothesis of tail dependence is true, the test will not reject the null hypothesis about 

half the time.   

What is more, the figures also show that as, asymptotic tail dependency increases, the variance of 

𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics grow significantly. Hence, almost paradoxically, these test 

statistics become noisier and less efficient when the distribution has greater systemic risk. This 

tradeoff between the magnitude of systemic risk to be detected and the efficiency of the tests 

statistic estimators may be small sample issue. Relatively short time series (about 500 daily 

observations) are too small to effectively detect tail dependence. However, the use of longer time 

series is impractical because the characteristics of the individual firms, especially the largest 

financial institutions, can change dramatically within a period of only a few years.    
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Taken together Figures 5 and 6 make a strong case against using ∆CoVaR and MES as measures 

of systemic risk.  Even after correcting for market risk, and developing a formal hypothesis test, 

the ∆CoVaR and MES are not going to be able to accurately distinguish returns with asymptotic 

tail dependence from returns that are independent in the asymptotic tails.  While the lack of 

statistical power calls into question the value of further research on refining our ∆CoVaR and 

MES hypothesis test statistics, it is still valuable to better understand the consequences of 

adopting the Gaussian null hypothesis.  

Figures 7 and 8 analyze the behavior of the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics under alternative 

return distributions in which market returns are symmetric Gaussian, but individual firm returns 

are positively skewed Gaussian. Under these alternative distributions, returns are asymptotically 

independent and the null hypothesis should not be rejected.  Figures 7 and 8 show that the 

sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics under the alternative hypothesis are 

very similar to the sampling distribution under the null, and there is little risk that positively 

skewed Gaussian individual returns (with symmetric Gaussian market returns) will generate 

many false rejections of the null.  

Figures 9 and 10 analyze the behavior of the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics under alternative 

return distributions in which market returns are negatively skewed Gaussian, but individual firm 

returns are symmetric Gaussian.  Returns are asymptotically independent and the null hypothesis 

should not be rejected.  Figures 9 and 10 clearly show that negatively skewed market returns can 

cause false rejection of the null hypothesis. This is especially true when the individual stocks and 

the market are highly positively correlated.  The  𝜅𝐶𝑜𝑉𝑎𝑅 seems to be more susceptible to this 

type of error, but for both statistics, the Gaussian null hypothesis critical values will cause false 

rejections that could be misinterpreted as evidence of tail dependence and systemic risk.  

Figures 11 and 12 analyze the behavior of the 𝜅𝐶𝑜𝑉𝑎𝑅 and 𝜅𝑀𝐸𝑆 test statistics under alternative 

return distributions in which market returns are negatively skewed Gaussian, and individual firm 

returns are positively-skewed Gaussian.  Negative market skewness with positive individual 

stock skewness is the most prevalent pattern observed in the data. Here again, returns are 

asymptotically independent and the null hypothesis should not be rejected.  The pattern in 

Figures 11 and 12 is similar.  Mild positive individual stock skewness with relatively strong 

negative market skewness and strong positive return correlation is a pattern that is likely to 
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generate false rejections of the null hypothesis. This particular skewness and correlation pattern 

is predominant in the 2006-2007 sample data suggesting that the large number of rejections in 

our sample may owe in part to an overly restrictive null hypothesis.  Generalizing the test 

statistic to incorporate a skewed Gaussian distribution under the null would be a step in the right 

direction, but again the poor ∆CoVaR and MES power characteristics show there will be limited 

benefits for further refinements.  

VII. Summary and Conclusions 

In this paper, we develop a new methodology to control for systematic risk biases inherent in 

CoVaR and MES risk measures and construct classical hypothesis tests for the presence of 

systemic risk.  The methodology and test statistics are based on the Gaussian model of stock 

returns.  We use Monte Carlo simulation to estimate the critical values of the sampling 

distributions of our proposed test statistics and use these critical values to test for evidence of 

systemic risk in a wide cross section of stocks using daily return data over the period 2006-2007.  

Our methodology introduces formal hypothesis tests to detect systemic risk, tests which 

heretofore have been absent from the literature.  However, our hypothesis tests are composite 

tests, and as a consequence they do not provide an ideal solution to the CoVaR and MES 

measurement issues we identify. Our hypothesis tests for MES and ∆CoVaR require a 

maintained hypothesis of a specific return distribution under the null hypothesis.  The composite 

nature of the null hypothesis is problematic because it can lead to false indications of systemic 

risk.  For example, we show that, depending on the return generating process, our tests reject 

may the null hypothesis of no systemic risk even when returns are generated by a tail-

independent distributions. Thus, the choice of a specific return distribution to characterize returns 

under the null hypothesis is a crucial aspect of systemic risk test design that has garnered little 

attention in the literature.  While this finding suggests a research agenda focused on clarifying 

the nature of stock returns under null hypothesis, our findings on the power of ∆CoVaR and 

MES tests suggest that these efforts would be wasted.   

In particular, our simulation results suggest that ∆CoVaR and MES statistics are unlikely to 

detect asymptotic tail dependence unless the tail dependence is very strong.  And even in cases 

with strong tail dependence, the power of these tests is limited.  The power limitations are a 

consequence of sampling variance of ∆CoVaR and MES statistics.  In small samples (e.g. 500 
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observations), as tail dependence strengthens, the variance of the MES and CoVaR estimators 

increases.  If systemic risk is truly manifest as asymptotic left-tail dependence in stock returns, 

∆CoVaR and MES seem incapable of providing a reliable measure of a firm’s systemic risk 

potential.      
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Industry Number of  Firms Mean DCoVaR Mean MES

Broker Dealers 55 -0.0321 -0.0102

Construction 41 -0.0345 -0.0095

Depository Institutions 426 -0.0196 -0.0067

Insurance 138 -0.0206 -0.0075

Manufacturing 1336 -0.0231 -0.0076

Mining 151 -0.0272 -0.0100

Other Financial 74 -0.0267 -0.0087

Public Administration 11 -0.0085 -0.0033

Retail Trade 227 -0.0231 -0.0075

Services 626 -0.0213 -0.0070

Transportation, Communications 320 -0.0211 -0.0086

Wholesale Trade 113 -0.0234 -0.0084

Table 1: Sample Characteristics by Industrial Classification

∆CoVaR is estimated as the difference between two linear quantile regressions estimates of the market

portfolio return on individual stock returns: the 1 percent quantile estimate less the 50 percent quantile

estimate. The reference portfolio is the CRSP equally-weighted market index. Quantile regressions are

estimated using the R package Quantreg.  MES is estimated as the average of individual stock returns on 

sample subset of days that correspond with the 5 percent worst days of the equally-weighted CRSP

stock market index.   



27 
 

 

Rank Company Name
Median Market 

Capitalization ($thous)
Industry CoVaR

1 PROQUEST CO 370,338 Manufacturing -0.0400

2 TETRA TECHNOLOGIES INC 1,739,641 Manufacturing -0.0246

3 NEWSTAR FINANCIAL INC 516,271 Other Financial -0.0245

4 IBASIS INC 324,017 Transportation, Communications -0.0226

5 ISILON SYSTEMS INC 852,653 Manufacturing -0.0215

6 NEOWARE SYSTEMS INC 265,074 Manufacturing -0.0207

7 MATTSON TECHNOLOGY INC 493,509 Manufacturing -0.0207

8 TITAN INTERNATIONAL INC ILL 397,960 Manufacturing -0.0203

9 VALERO ENERGY CORP NEW 37,153,498 Manufacturing -0.0200

10 ROBERT HALF INTERNATIONAL INC 6,167,046 Services -0.0200

11 DOVER CORP 9,885,112 Manufacturing -0.0196

12 MURPHY OIL CORP 9,977,096 Manufacturing -0.0194

13 VENOCO INC 814,278 Mining -0.0192

14 CONSTELLATION BRANDS INC 4,953,574 Manufacturing -0.0188

15 CITIZENS FIRST BANCORP INC 203,931 Depository Institutions -0.0187

16 M S C INDUSTRIAL DIRECT INC 2,149,047 Manufacturing -0.0186

17 SMURFIT STONE CONTAINER CORP 2,928,624 Manufacturing -0.0184

18 SOUTHERN COPPER CORP 16,450,064 Mining -0.0180

19 STILLWATER MINING CO 1,095,439 Mining -0.0180

20 A M R CORP DEL 5,753,965 Transportation, Communications -0.0179

21 AMERIPRISE FINANCIAL INC 13,095,030 Broker Dealers -0.0178

22 NASDAQ STOCK MARKET INC 3,617,941 Broker Dealers -0.0178

23 U A L CORP 4,264,734 Transportation, Communications -0.0177

24 PARKER HANNIFIN CORP 9,950,826 Manufacturing -0.0176

25 TECH DATA CORP 2,065,805 Wholesale Trade -0.0176

26 ORMAT TECHNOLOGIES INC 1,368,098 Transportation, Communications -0.0175

27 WESTERN REFINING INC 1,830,752 Manufacturing -0.0175

28 AMERICA SERVICE GROUP INC 152,270 Services -0.0174

29 CIRCOR INTERNATIONAL INC 568,005 Manufacturing -0.0174

30 CATERPILLAR INC 46,739,598 Manufacturing -0.0174

31 RADIO ONE INC 595,811 Transportation, Communications -0.0174

32 CIMAREX ENERGY CO 3,213,883 Mining -0.0173

33 EMPIRE RESOURCES INC DEL 104,041 Wholesale Trade -0.0173

34 CLEVELAND CLIFFS INC 2,149,713 Mining -0.0173

35 R P C INC 1,463,770 Mining -0.0173

36 EVERCORE PARTNERS INC 175,262 Other Financial -0.0172

37 PROCENTURY CORP 194,361 Insurance -0.0172

38 KOMAG INC 1,111,125 Manufacturing -0.0172

39 LEGG MASON INC 12,749,954 Broker Dealers -0.0171

40 PULTE HOMES INC 7,395,542 Construction -0.0171

41 DYNAMEX INC 244,848 Transportation, Communications -0.0170

42 GATEHOUSE MEDIA INC 745,417 Manufacturing -0.0170

43 FREEPORT MCMORAN COPPER & GOLD 11,781,130 Mining -0.0170

44 ROWAN COMPANIES INC 4,092,873 Mining -0.0170

45 MOSAIC COMPANY 9,378,757 Manufacturing -0.0170

46 HOME DIAGNOSTICS INC 198,165 Manufacturing -0.0169

47 OIL STATES INTERNATIONAL INC 1,680,397 Manufacturing -0.0169

48 COOPER CAMERON CORP 6,046,972 Manufacturing -0.0168

49 HANMI FINANCIAL CORP 910,360 Depository Institutions -0.0168

50 MARINE PRODUCTS CORP 358,240 Manufacturing -0.0168

Table 2. Fifty Firms with the Largest DCoVaR Estimates over 2006-2007

∆CoVaR is estimated as the difference between two linear quantile regressions estimates of the market portfolio

return on individual stock returns: the 1 percent quantile estimate less the 50 percent quantile estimate. The

reference portfolio is the CRSP equally-weighted market index. Quantile regressions are estimated using the R

package Quantreg. The median market capitalization is the median value of the closing share price times the number

of shares outstanding.
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Rank Company Name
Median Market 

Capitalization ($thous)
Industry MES

1 CHINA PRECISION STEEL INC 191,188 Manufacturing -0.0780

2 FREMONT GENERAL CORP 1,083,450 Depository Institutions -0.0771

3 ESCALA GROUP INC 177,063 Services -0.0742

4 ACCREDITED HOME LENDERS HLDG CO 697,385 Other Financial -0.0697

5 URANERZ ENERGY CORP 133,479 Mining -0.0688

6 CRAWFORD & CO 160,407 Insurance -0.0629

7 ORBCOMM INC 360,348 Transportation, Communications -0.0591

8 TRIAD GUARANTY INC 674,462 Insurance -0.0590

9 STANDARD PACIFIC CORP NEW 1,525,954 Construction -0.0589

10 DELTA FINANCIAL CORP 211,543 Other Financial -0.0587

11 W C I COMMUNITIES INC 792,183 Construction -0.0583

12 COMPUCREDIT CORP 1,786,092 Other Financial -0.0582

13 BEAZER HOMES USA INC 1,601,873 Construction -0.0573

14 EMPIRE RESOURCES INC DEL 104,041 Wholesale Trade -0.0570

15 HOUSTON AMERICAN ENERGY CORP 120,614 Mining -0.0566

16 RADIAN GROUP INC 4,673,175 Insurance -0.0557

17 I C O GLOBAL COMMS HLDGS LTD DE 590,548 Transportation, Communi -0.0555

18 E TRADE FINANCIAL CORP 9,718,507 Broker Dealers -0.0552

19 BUCKEYE TECHNOLOGIES INC 451,391 Manufacturing -0.0548

20 BADGER METER INC 383,436 Manufacturing -0.0545

21 CHESAPEAKE CORP VA 280,014 Manufacturing -0.0543

22 AVANEX CORP 376,476 Manufacturing -0.0543

23 BANKUNITED FINANCIAL CORP 945,137 Depository Institutions -0.0538

24 NASTECH PHARMACEUTICAL CO INC 328,747 Services -0.0533

25 IDAHO GENERAL MINES INC 254,642 Mining -0.0533

26 GEORGIA GULF CORP 694,153 Manufacturing -0.0524

27 WINN DIXIE STORES INC 1,001,750 Retail Trade -0.0523

28 PANACOS PHARMACEUTICALS INC 241,728 Manufacturing -0.0520

29 CROCS INC 1,864,861 Manufacturing -0.0517

30 GRUBB & ELLIS CO 266,193 Other Financial -0.0514

31 K B W INC 877,814 Broker Dealers -0.0513

32 FRANKLIN BANK CORP 425,906 Depository Institutions -0.0511

33 ASIAINFO HOLDINGS INC 289,401 Services -0.0508

34 FIRST AVENUE NETWORKS INC 613,862 Transportation, Communications -0.0508

35 WHEELING PITTSBURGH CORP 293,215 Manufacturing -0.0505

36 STILLWATER MINING CO 1,095,439 Mining -0.0504

37 TOREADOR RESOURCES CORP 353,326 Mining -0.0500

38 COUNTRYWIDE FINANCIAL CORP 21,663,474 Depository Institutions -0.0497

39 CHAMPION ENTERPRISES INC 781,824 Manufacturing -0.0495

40 REVLON INC 554,749 Manufacturing -0.0494

41 TIENS BIOTECH GROUP USA INC 285,336 Services -0.0493

42 AIRSPAN NETWORKS INC 142,206 Transportation, Communications -0.0492

43 FREEPORT MCMORAN COPPER & GOLD 11,781,130 Mining -0.0490

44 MERITAGE HOMES CORP 1,069,891 Construction -0.0486

45 EDDIE BAUER HOLDINGS INC 273,345 Retail Trade -0.0485

46 A Z Z INC 235,577 Manufacturing -0.0483

47 GRAFTECH INTERNATIONAL LTD 722,492 Manufacturing -0.0483

48 P M I GROUP INC 3,817,586 Insurance -0.0483

49 ASYST TECHNOLOGIES INC 341,391 Manufacturing -0.0480

50 NEUROGEN CORP 213,849 Manufacturing -0.0480

Table 3. Fifty Firms with the Largest MES Estimates over 2006-2007

MES is estimated as the average of individual stock returns on sample subset of days that correspond with the 5

percent worst days of the equally-weighted CRSP stock market index. The median market capitalization is the

median value of the closing share price times the number of shares outstanding.
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Type I Type I Type I Type I Type I Type I

Correlation error=10% error=5% error=1% error=10% error=5% error=1%

-0.2 47.6 60.7 87.0 21.7 27.8 39.6

-0.1 47.8 62.3 88.5 21.9 28.1 39.8

0.0 47.4 61.3 88.4 21.9 28.2 39.9

0.1 47.1 61.5 88.9 21.7 28.0 39.7

0.2 46.7 60.7 87.2 21.3 27.6 39.2

0.3 44.6 58.1 83.8 20.8 26.9 38.4

0.4 43.0 56.2 81.9 20.1 25.9 37.1

0.5 40.8 53.4 79.8 19.1 24.8 35.3

0.6 38.1 50.2 74.0 18.0 23.3 33.1

0.7 34.4 45.7 68.2 16.4 21.4 30.4

0.8 30.0 40.3 59.5 14.7 19.0 27.0

0.9 23.7 32.1 48.6 12.3 16.0 22.9

Critical Value of DCoVaR Test Statistic KCoVaR Critical Value of MES Test Statistic, KMES

For each correlation value we run 50,000 simulations of the bivariate normal distribution with 500 pairs of returns of zero

mean and unit variance. In each simulation we estimate the DCoVaR test statistic, KCoVaR and the MES test statistic, KMES. 

10% , 5% , and 1% Type I errors correspond to the 90th, 95th and 99th percentile values of the sample distibutions of the

test statistics. 

Table 4. Critical Values for DCoVaR and MES Test Statistics

Industry
Number of  

Firms

DCoVaR 

Statistically 

Significant at 

1% level

DCoVaR 

Statistically 

Significant at 

5% level

Percentage of 

Firms Sig. at 

5% Level 

under DCoVaR 

Test

MES 

Statistically 

Significant at 

1% level

MES 

Statistically 

Significant 

at 5% level

Percentage of 

Firms Sig. at 

5% Level 

under MES 

Test

Broker Dealers 55 3 8 14.5% 22 27 49.1%

Construction 41 1 4 9.8% 4 11 26.8%

Depository Institutions 426 16 40 9.4% 88 158 37.1%

Insurance 138 5 18 13.0% 36 60 43.5%

Manufacturing 1336 75 159 11.9% 132 326 24.4%

Mining 151 22 55 36.4% 11 28 18.5%

Other Financial 74 9 19 25.7% 13 21 28.4%

Public Administration 11 1 2 18.2% 0 6 54.5%

Retail Trade 227 10 27 11.9% 27 63 27.8%

Services 626 38 80 12.8% 50 129 20.6%

Transportation, Communications 320 21 59 18.4% 80 150 46.9%

Wholesale Trade 113 9 25 22.1% 8 24 21.2%

Table 5. Summary of DCoVaR and MES Hypothesis Test Results

The DCoVaR estimate is statistically significant at 1% (5%) level if the sample estimate of the κCoVaR test statistic exceeds its

critical value for a given correlation level and Type I error of 1% (5%) provided in Table 4. Similarly MES estimate is

statististically significant if the sample estimate of the κMES test statistic exceeds its critical value provided in Table 4 for a given

correlation and Type I error level . 
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Distribution 

Quantiles
β₁ β₂ Ω₁₁ Ω₁₂ Ω₂₂ α₁ α₂ ν ρ

1% -1.050 0.239 0.400 0.002 0.243 -0.304 -1.611 2.306 0.002

5% -0.408 0.332 0.705 0.079 0.311 -0.165 -1.301 2.805 0.100

25% 0.010 0.398 1.501 0.293 0.387 0.062 -1.056 3.426 0.313

50% 0.197 0.435 2.608 0.445 0.426 0.213 -0.925 3.875 0.454

75% 0.389 0.469 4.234 0.601 0.470 0.382 -0.815 4.480 0.549

95% 0.776 0.522 7.767 0.908 0.552 0.698 -0.629 5.737 0.651

99% 1.189 0.574 11.369 1.137 0.663 0.987 -0.468 7.617 0.713

This table summarizes the distribution quantiles of the bivariate skew-t parameter estimates for 3518 daily

stock and market return pairs between January 2006 and December 2007. The parameters are estimated for

each firm by maximum likelihood using the Adelchi Azzalini's "SN" package in "R". The subscript 1 (2)

indicates a parameter estimate that is associated with the individual stock return (equally weighted CRSP

portfolio return). Parameter ρ is not estimated but calculated as ρ= σ12(σ11σ22)
-0.5

. Estimates are for 100 times

daily log returns.

Table 6. Maximum Likelihood Estimates of Bivariate Skew-t Distribution for 3518 firms



31 
 

 

 

 

 

 

 

 

 

Figure 1: Relationship between 5 % MES Estimates and Market Beta  

Figure 1 plots the linear regression estimate of 5 percent MES statistics for 3518 individual stocks estimated over the 

sample period 2006-2007 on a constant and the individual stocks’ market model beta coefficient estimates.  MES 

statistics are calculated as the average individual stock returns on days in which the market portfolio experiences a return 

realization that is in its 5 percent (left) tail.  
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Figure 2: Relationship between 1% ΔCoVaR Estimate and Market Return Correlation 

Figure 2 plots the linear regression estimate of the relationship between 1-percent ∆CoVaR sample estimates for 3518 

individual stocks over the sample 2006-2007 on a constant and the sample correlation estimate between the returns on 

the individual stocks and the equally-weighted CRSP market portfolio. The 1 percent ∆CoVaR is measured as the 

difference between the 1 percent conditional Value at Risk estimate for the market portfolio where the conditioning 

event is a 1 percentile realization of the individual stock, and the “median” conditional value at risk for the market 

portfolio where the conditioning event is a median return realization from the individual stock.  The individual CoVaRs 

are estimated using quantile regressions on daily log returns. 
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Figure 3: Symmetric T-Distribution Asymptotic Tail Dependence as a Function of 

Correlation and Degrees of Freedom 

The figure plots the asymptotic tail dependence for various levels of degrees of freedom and correlation for the 

symmetric bivariate t distribution. Asymptotic tail dependence is given by: 

𝐿𝑠𝑦𝑚 𝑡 = 2𝑇1 (−
√(𝜈 + 1)(1 − 𝜌)

√1 + 𝜌
, 𝜐 + 1) 
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Figure 4: Magnitude of the Asymptotic Left Tail Dependence in a Skew-t Distribution 

The figure illustrates the relationship between strength of the asymptotic left tail dependence for the skew-t distribution 

and the degrees of freedom parameter, 𝜈, correlation parameter, 𝜌 and skewness parameters, 𝛼1 = 𝛼2 = 𝛼. The 

distribution’s asymptotic tail dependence, 𝐿𝑠𝑘𝑒𝑤−𝑡 is given by:   

𝐿𝑠𝑘𝑒𝑤−𝑡 =

𝑇1 (−2𝛼√(𝜈 + 2)(1 + 𝜌)
2

; 𝜈 + 2) ∗ 2𝑇1 (−
√(𝜈 + 1)(1 − 𝜌)

√1 + 𝜌
, 𝜐 + 1)

𝑇1 (
−𝛼(1 + 𝜌)√𝜈 + 1

√1 + 𝛼2(1 − 𝜌2)
;  𝜈 + 1)

 

where 𝑇1 represents the cumulative distribution function of univariate student t. 
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Figure 5:  𝜅𝐶𝑜𝑉𝑎𝑅 Power against Symmetric T-Distribution Alternatives 

The figure shows the simulated sampling distributions 𝜅𝐶𝑜𝑉𝑎𝑅  based on a sample size of 500 and 10 thousand Monte Carlo 

replications, and a Gaussian kernel density estimator. The blue distributions are test statistics calculated from the bivariate Gaussian 

distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies Ω12  varies,  

Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝐶𝑜𝑉𝑎𝑅  test statistic under the null hypothesis.  

The red and light green distributions are symmetric t distributions  (𝛼1 = 𝛼2 = 0) with degrees of freedom 𝜈 = 3.6 (𝑙𝑖𝑔ℎ𝑡 𝑔𝑟𝑒𝑒𝑛), 

𝜈 = 2.5 (𝑟𝑒𝑑) and median parameter values from Table 6 for the remaining parameters.  “atd” is an abbreviation for the asymptotic 

tail dependence of the t-distribution.  
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Figure 6:  𝜅𝑀𝐸𝑆 Power against Symmetric T-Distribution Alternatives 

The figure shows the simulated sampling distributions for 𝜅𝑀𝐸𝑆 based on a sample size of 500 with 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies 

Ω12 varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝑀𝐸𝑆  test statistic under the 

null hypothesis.  The red and light green distributions are symmetric t distributions  (𝛼1 = 𝛼2 = 0) with degrees of freedom 

𝜈 = 3.6 (𝑙𝑖𝑔ℎ𝑡 𝑔𝑟𝑒𝑒𝑛), 𝜈 = 2.5 (𝑟𝑒𝑑) and median parameter values from Table 6 for the remaining parameters.  “atd” is an 

abbreviation for the asymptotic tail dependence of the t-distribution. 
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Figure 7:  𝜅𝐶𝑜𝑉𝑎𝑟 Tests Statistics when Individual Stocks are Positive-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅  based on a sample size of 500, with 10,000 Monte Carlo replications, 

and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate Gaussian distribution 

(𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies Ω12  varies,  Ω12 = 𝜌 ∗

√Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝐶𝑜𝑉𝑎𝑅  test statistic under the null hypothesis. The red and 

light green distributions are Gaussian distributions where the market return is symmetric and the individual stock return is positively 

skewed. The light green distribution has mild positive skewness  (𝛼1 = .2 , 𝛼2 = 0, 𝜈 = ∞ ) while the red distribution has a stronger 

positive skew (𝛼1 = .8 , 𝛼2 = 0, 𝜈 = ∞ ).  Remaining parameters are set to median parameter values from Table 6.  All of the 

distributions are asymptotically tail independent. 
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Figure 8:  𝜅𝑀𝐸𝑆 Tests Statistics when Individual Stocks are Positive-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝑀𝐸𝑆 based on a sample size of 500 with 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies 

Ω12  varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝑀𝐸𝑆 test statistic under the 

null hypothesis.  The red and light green distributions are Gaussian distributions where the market return is symmetric and 

the individual stock return is positively skewed. The light green distribution has mild positive skewness  

(𝛼1 = .2 , 𝛼2 = 0, 𝜈 = ∞ ) while the red distribution has a stronger positive skew (𝛼1 = .8 , 𝛼2 = 0, 𝜈 = ∞ ).  Remaining 

parameters are set to median parameter values from Table 6.  All of the distributions are asymptotically tail independent. 
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Figure 9:  𝜅𝐶𝑜𝑉𝑎𝑟 Tests Statistics when Market Returns are Negative-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅  based on a sample size of 500 with 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies 

Ω12  varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝐶𝑜𝑉𝑎𝑅  test statistic under the 

null hypothesis.  The red and light green distributions are Gaussian distributions where the individual stock return is symmetric 

and the market return is negatively skewed. The light green distribution has mild negative skewness  (𝛼1 = 0, 𝛼2 = −1, 𝜈 =

∞ ) while the red distribution has a stronger negative skew (𝛼1 = 0 , 𝛼2 = −1.6, 𝜈 = ∞ ).  Remaining parameters are set to 

median parameter values from Table 6.  All of the distributions are asymptotically tail independent. 
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Figure 10:  𝜅𝑀𝐸𝑆 Tests Statistics when Market Returns are Negative-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝑀𝐸𝑆 based on a sample size of 500, 10,000 Monte Carlo 

replications, and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate 

Gaussian distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies 

Ω12  varies,  Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝑀𝐸𝑆 test statistic under the 

null hypothesis.  The red and light green distributions are Gaussian distributions where the market return is symmetric and 

the individual stock return is positively skewed. The light green distribution has mild negative skewness  

(𝛼1 = 0 , 𝛼2 = −1, 𝜈 = ∞ ) while the red distribution has a stronger negative skew (𝛼1 = 0 , 𝛼2 = −1.6, 𝜈 = ∞ ).  

Remaining parameters are set to median parameter values from Table 6.  All of the distributions are asymptotically tail 

independent. 
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Figure 11:  𝜅𝐶𝑜𝑉𝑎𝑟 Tests Statistics when Individual Stocks are Positive-Skewed and  

Market Returns are Negative-Skewed Gaussian 

The figure shows the simulated sampling distributions for 𝜅𝐶𝑜𝑉𝑎𝑅  based on a sample size of 500, 10,000 Monte Carlo replications, 

and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate Gaussian 

distribution (𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies Ω12  varies,  

Ω12 = 𝜌 ∗ √Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝐶𝑜𝑉𝑎𝑅  test statistic under the null hypothesis.  

The red and light green distributions are Gaussian distributions where the market return is negatively skewed and the individual 

stock return is positively skewed. The light green distribution has strong positive skewness  (𝛼1 = .8 , 𝛼2 = −1, 𝜈 = ∞ ) while 

the red distribution has a lower positive skew (𝛼1 = .2 , 𝛼2 = −1.6, 𝜈 = ∞ ).  Remaining parameters are set to median parameter 

values from Table 6.  All of the distributions are asymptotically tail independent. 
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Figure 12:  𝜅𝑀𝐸𝑆 Tests Statistics when Individual Stocks are Positive-Skewed and  

Market Returns are Negative-Skewed Gaussian 

This figure plots the simulated sampling distributions for 𝜅𝑀𝐸𝑆 based on a sample size of 500, 10,000 Monte Carlo replications, 

and a Gaussian kernel density estimator.  The blue distributions are test statistics calculated from the bivariate Gaussian distribution 

(𝛼1 = 𝛼2 = 0, 𝜈 = ∞) using the median parameter values in Table 6 for 𝛽1, 𝛽2, Ω11, Ω22. When 𝜌 varies Ω12  varies,  Ω12 = 𝜌 ∗

√Ω11Ω22.   The blue vertical lines are the 5 percent critical values of the 𝜅𝑀𝐸𝑆  test statistic under the null hypothesis.  The red and 

light green distributions are Gaussian distributions where the market return is symmetric and the individual stock return is 

positively skewed. The light green distribution has strong positive skewness  (𝛼1 = .8 , 𝛼2 = −1, 𝜈 = ∞ ) while the red 

distribution has lower positive skew (𝛼1 = .2 , 𝛼2 = −1.6, 𝜈 = ∞ ).  Remaining parameters are set to median parameter values 

from Table 6.  All of the distributions are asymptotically tail independent. 


