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The Microstructure of the Reinsurance Network among US Property-Casualty Insurers 
and Its Effect on Insurers’ Performance 

Abstract 
 

Reinsurance is the primary source of interconnectedness in the insurance industry and is 
analogous to inter-bank lending. As such, reinsurance connectivity provides a transmission 
mechanism for financial shocks and exposes insurers to contagion (and potential systemic) risk.  
In this paper, connectivity within the U.S. property-casualty (P/C) reinsurance market is modeled 
as a network. This research is the first detailed empirical analysis of the microstructure of the 
reinsurance network including both affiliated and unaffiliated insurers. We find that reinsurance 
networks are highly sparse and yet largely connected, and exhibit hierarchical core-periphery 
structure. Moreover, an insurer’s network position, measured by its network centrality, has 
economically significant implications for its loss experience and performance. Particularly, we 
find that there is an inverse U-shaped relationship between an insurer’s network position and its 
combined ratio, and a U- shaped relationship between an insurer’s network position and its 
performance measured by risk adjusted return on assets and risk adjusted return on equity. We 
also analyze the resilience of the reinsurance network against contagion risk by simulating 
economic impacts resulting from failures of one or more strategically networked reinsurers. 

Key Words: Reinsurance market, contagion, systemic risk, firm performance, network analysis, 
property-casualty insurance
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1. Introduction 

Economic agents do not exist in isolation, but rather are connected by various economic 

relationships. One common driver of interconnectedness is financial transactions among 

financial institutions (for instance, borrowing and lending among banks) which comprise the so-

called “financial network” (Upper 2011). A growing body of evidence has shown that 

characteristics of the financial network have important economic implications for contagion risk 

and the stability of a particular financial market (Haldane 2009, Bilio et al. 2011, Kaushik and 

Battiston 2012, Markose, Giansate and Shaghaghi 2012, Hasman 2013, Acemoglu, Ozdaglar and 

Tahbaz-Salehi 2013). The most recent financial crisis of 2007-2008 is a good example. 

Literature also indicates that financial network characteristics can affect an individual economic 

agent’s decisions and performance (Ahern and Harford 2014, Li and Schurhoff 2012, Cohen-

Cole, Kirilenko and Patacchini  2014, Lin, Yu and Peterson 2014). 

As the insurance of insurers, reinsurance plays a fundamental role in the insurance 

industry, allowing insurers to transfer risk among each other, thereby enhancing risk sharing and 

risk diversification. At the same time, reinsurance transactions connect insurers in a complex 

network where insurers hold bilateral exposures to each other, leading to potential contagion risk. 

Therefore, reinsurance has been recognized as the primary source of interconnectedness in the 

US property-casualty (P/C) insurance industry (Cummins and Weiss 2014). As such, reinsurance 

interconnectedness can serve as a transmission mechanism for financial shocks and may 

exacerbate insurers’ exposure to contagion and/or systemic risk. 

Prior studies, however, have concluded that that the reinsurance industry is not subject to 

systemic risk (e.g., Swiss Re 2003, Geneva Association 2010, International Association of 

Insurance Supervisors (IAIS) 2011, 2012, 2013, Park and Xie 2014, Cummins and Weiss 2014). 

Caution is necessary when interpreting this conclusion because of the existence of some 
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limitations in these studies. First of all, most of the prior studies focus on the conventional 

“primary insurer - professional reinsurer” relationship, where “professional reinsurers” are 

identified as the key players in the reinsurance market. This identification could be arbitrary 

because there is no clear definition of “professional reinsurers” in the insurance literature (Cole 

and McCullough 2008). Second, reinsurance transactions can occur not only between primary 

insurers and professional reinsurers, but also among primary insurers themselves. Without taking 

into account all types of reinsurance transactions, we might underestimate the complexity and 

interconnectedness of the reinsurance market. Third, previous studies rest on a simplified 

reinsurance market structure: the dominant connections are between primary insurers and 

reinsurers; connections among reinsurers (i.e. retrocession) are usually ignored; and in general 

connections among primary insurers are not assumed to be important (IAIS 2012). Little 

empirical evidence has been provided to support these assumptions. Lastly, although the effects 

of reinsurance decisions on insurer’s performance have been extensively studied in the insurance 

literature, prior research mainly focuses on analyzing the impact of some firm characteristics 

such as capital, risk, and insurers’ group affiliation on reinsurance usage and performance. 

Another important dimension, i.e., reinsurers’ roles in the reinsurance market, has not been fully 

explored. Little is known about whether (and how) an (re)insurer’s reinsurance market position 

affects its performance. 

The purpose of this study is threefold. First, we aim to broaden the work of previous 

studies by treating the reinsurance market of the US P/C insurance industry as a whole, i.e., 

considering both affiliated and nonaffiliated reinsurance transactions at the individual firm level. 

Particularly, we examine the microstructure of insurer-reinsurer relationships and their main 

characteristics by adopting a network analysis framework. Second, we investigate the stability of 

the US P/C insurance industry under our reinsurance network. We determine whether a default 
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cascade can be triggered by reinsurer insolvencies. Third, we empirically analyze the impact of 

an (re)insurer’s network position on its performance.  

Our research is most closely related to Park and Xie (2014) and Lin, Yu and Peterson 

(2014). Park and Xie (2014) study reinsurance counterparty risk in the US P/C insurance 

industry between 2003 and 2009. They investigate the impact of reinsurance downgrades on the 

stock prices of ceding insurers. Lin, Yu and Peterson (2014) find an insurer’s reinsurance 

network position affects its reinsurance decisions in a non-linear manner. Our study differs from 

theirs in several major ways. First, Park and Xie (2014) do not employ network analysis to 

measure interconnectivity among insurers, but rather use more standard accounting measures 

such as reinsurance premiums ceded.1 Second, we provide a much more complete analysis of the 

microstructure of the reinsurance market which is not explicitly addressed in Lin, Yu and 

Peterson (2014). Based on the constructed reinsurance network, we examine its resilience in the 

face of highly connected reinsurers’ insolvency. Third, the empirical results provided in Lin, Yu 

and Peterson (2014) are based on group-level data instead of firm-level data. By utilizing firm-

level data, our analysis allows us to examine the interrelationships among insurers in much more 

detail, shedding light on both affiliated and non-affiliated reinsurance transactions. Lastly, Lin, 

Yu and Peterson (2014) do not explore the effect of an insurer’s network position on its loss 

experience and firm performance.  

We contribute to the literature in several ways. A detailed analysis of the topology of the 

reinsurance network, along with the individual insurer’s characteristics, not only helps us better 

understand the interconnectedness created by reinsurance transactions but also has implications 

                                                            
1 Park and Xie (2014) study US P/C insurers’ dependence on reinsurance and the diversification of reinsurance 
portfolios. They analyze the composition of US P/C insurers’ reinsurance premiums ceded and reinsurance 
recoverables by reinsurers’ domicile and group affiliation. They find that US P/C insurers depend mostly on group 
affiliated reinsurance transactions. Moreover, they use the Herfindahl index to measure the diversification of 
reinsurance portfolios. They find that US insurers are not diversified.  
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for regulatory measures and macroprudential policies. We also provide new empirical evidence 

that an insurer’s position in the reinsurance network affects its loss experience and performance. 

We find an inverse U-shaped relationship between an insurer’s network position and its 

combined ratio and a U-shaped relationship between an insurer’s reinsurance network position 

and its performance. 

The remainder of this paper is organized as follows.  In section 2, we briefly review the 

literature regarding the application of network analysis in financial markets and related studies 

for the insurance industry. In section 3, we introduce some basic concepts in network analysis 

and then explain network centrality measures adopted in this study. In section 4, we develop our 

hypotheses and discuss the simulation algorithm and empirical models. In section 5, we describe 

the data and construct the reinsurance network, followed by a detailed analysis of its 

microstructure. In section 6, we report the results regarding the resilience of the US P/C 

insurance industry against contagion risk and the effect of an insurer’s network position on its 

performance. Section 7 concludes.  

2.  Related Literature 

 In this section recent network and financial market resilience literature is reviewed. 

Following this, P/C insurance related studies are discussed. 

2.1. Network Literature 

In an early and important study, Allen and Gale (2001) examine inter-linkages in the 

credit market and show that increasing connectivity monotonically increases financial stability 

through risk sharing. They argue that a more equal distribution of interbank claims increases the 

resilience of the system against the insolvency of any individual bank. However, this view has 

been challenged after the recent financial crisis.  

The current, general consensus seems to be that a nonlinear relationship exists between 
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interconnectedness and the stability of the financial market, which can be termed as the “robust-

yet-fragile” property of a connected network (Haldane 2009) or “phase transition” (Acemoglu, 

Ozdaglar and Tahbaz-Salehi 2013). Below a certain threshold, connectivity among financial 

institutions serves as a shock-absorber, allowing the system to function as a mutual insurance 

device and disperse exogenous shocks. Connectivity therefore improves the robustness of the 

system through risk sharing and diversification. Above the threshold, however, interconnections 

can serve as shock-amplifiers that channel and enhance the propagation of losses through the 

system and lead to more fragility.  

In addition to connectedness, other network characteristics are found to be important. For 

instance, many financial markets share the property that the total number of counterparties of 

market participants follows a power law distribution. In addition, a core-periphery market 

structure, combined with the well-known “small world” property, can result in the “too-

interconnected-to-fail” phenomenon (Borgatti and Everett 1999, Markose, Giansate and 

Shaghaghi 2012).2, 3  

Another strand of the financial economics literature focuses on the strategic interactions 

of financial firms in a particular network and the implications for a firm’s decision-making, 

acquisitions, and firm performance (Ahern and Harford 2014, Li and Schurhoff 2012, Cohen-

Cole, Kirilenko and Patacchini 2014). Generally, a central position in a financial network comes 

with both benefits and costs. From the benefits perspective, a central network position can 

provide information advantages that (1) facilitate risk management and develop expertise; (2) 

                                                            
2 In the financial network literature, the core-periphery structure can be viewed as a two-class partition of nodes, 
where nodes refer to financial institutions in the network. Nodes in the core have higher connectivity and financial 
flows than nodes in the periphery; usually periphery nodes only connect to the core nodes and barely connect with 
each other. Many financial markets are found to have the core-periphery structure. See Markose, Giansate and 
Shaghaghi (2012) for a brief review.  
3 Small world networks exhibit a small average shortest path length between nodes and a large clustering coefficient 
(see Watts and Strogatz, 1998). In other words, in a small world most nodes are not neighbors of one another, but 
most nodes can be reached from every other node by a small number of steps. Haldane (2009) suggests that the 
“small world” property tends to increase the likelihood of local disturbances having global effects over the network. 
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increase operational efficiency; (3) reduce transactions costs and achieve economies of scale; and 

(4) gain market power, allowing firms to charge above-average market prices for their services. 

However, the costs associated with contagion risk, such as counterparty risk, may also increase 

when a firm becomes more central in a financial network (Li and Schurhoff 2012, Cohen-Cole, 

Kirilenko and Patacchini 2014).  

Thus, network theory can provide a conceptual framework within which the intricate 

structure of linkages and various patterns of connections formed among financial institutions can 

be described and analyzed in a meaningful way (Allen and Babus 2009). It is therefore not 

surprising that there is a fast growing literature concerning market structure and its implications 

for financial stability for various financial markets using network analysis. Among these studies 

the banking system has been most extensively analyzed (European Central Bank 2010, also see 

Hasman 2013 for a recent survey). This strand of literature has extended from banking to other 

financial systems, such as the credit default swaps (CDS) market (Kaushik and Battiston 2012, 

Markose, Giansate and Shaghaghi 2012), the global banking market (Minoiu and Reyes 2012), 

and the global derivatives market (Markose 2012). Empirically, Upper (2011) reviews network 

analysis and systemic risk with an emphasis on simulation-based methods. Hasman (2013) 

provides a recent survey in the area of contagion risk and the banking system. On the theoretical 

side, Chinazzi and Fagiolo (2013) compare various economic models in the network structure 

and financial stability. One important message from these studies is that the microstructure of a 

particular financial market has important economic implications for financial stability. 

2.2. Insurance Related Studies 

 The aforementioned literature provides a rationale for documenting the network 

properties of the reinsurance market and the resilience of (re)insurers with respect to reinsurer 

insolvencies. This subsection reviews the limited insurance literature on network analysis and 
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insurance market resilience. 

Lelyveld et al. (2011) provides an empirical analysis of the effect of reinsurer failures on 

the stability of Dutch insurers. They model the contagion risk from the direct linkage between 

insurers and reinsurers through a reinsurance matrix and conduct scenario analysis to test the 

resilience of the Dutch insurance industry to the failure of reinsurers. They find no evidence of 

systemic risk due to reinsurance failure in the Dutch insurance market.  

Park and Xie (2014) examine the interconnectedness in the US P/C insurance industry 

using a sample period of 2003 to 2009. They study both the direct contagion effect due to the 

failure of top reinsurers and an information-based indirect contagion effect via reinsurer 

downgrading. Based on their simulation study, they conclude that the likelihood of systemic risk 

caused by the failure of the top 3 reinsurer groups (Swiss Re, Munich Re and Berkshire 

Hathaway) is small for the US P/C insurance industry. They also find that primary insurers’ 

stock prices react negatively to their reinsurer’s downgrade. Such negative effects can spill over 

to insurers that are not directly exposed to downgraded reinsurers.  

Only one insurance study, Lin, Yu, and Peterson (2014), investigates the relationship 

between a reinsurer’s network position and reinsurance decisions in the US P/C insurance 

industry.  Lin, Yu, and Peterson (2014) build an optimal reinsurance model for the insurer and 

posit that there is a nonlinear trade-off between the costs and benefits of reinsurance. As an 

insurer conducts business with more reinsurance counterparties, an insurer’s reinsurance 

loadings decrease.  At the same time, its search and monitoring costs increase. When its network 

centrality is below a certain threshold, the decrease in reinsurance loadings outweighs the 

increase in costs, resulting in an increasing usage of reinsurance. When its network centrality is 

above this threshold, the costs associated with contagion risk and search/monitoring costs 

dominate, leading to a decrease in the usage of reinsurance. They also provide empirical 
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evidence that supports such a curvilinear (i.e., inverse U-shaped) relationship between an 

insurer’s network position and its reinsurance decisions. They, however, do not analyze the 

relationship between an insurer’s network position and its performance. In addition, their 

analysis is conducted at the group level, i.e., they do not consider group affiliated reinsurance 

transactions in the reinsurance network.4 They do not study P/C insurers’ network characteristics 

in detail, either. We therefore address these gaps in this paper. 

3. Introduction to Network Analysis 

 In this section, we introduce basic concepts used in network analysis. The focus is on the 

network density and centrality measures.  

3.1. Basic Concepts 

A network or graph, denoted by ( , )G N E  , is defined by two nonempty sets: the set  

{1,..., }N n  of nodes or vertices and the set  ( , ) , ,E i j i j N    of pairs of distinct elements 

which are called links or edges that represent the connections between the nodes. The size of the 

set N  is the number of nodes in the network and the size of E  is the total number of direct links 

established in the network. Every graph can be represented as a N N  binary adjacency matrix, 

{ }ijA a , where 1ija   if a node i  has a direct link with node j  and 0ija   otherwise. If there is 

an edge between nodes i  and j , then i  and j  are neighbors.  

A graph is directed (or undirected) if the edges are formed by ordered (or unordered) 

pairs of nodes. 5  For instance, in a directed graph, an edge originating from node i and 

terminating at node j does not necessarily imply there is another edge from node j  to node i .  

                                                            
4 We investigate the relationship between an insurer’s network position and its reinsurance utilization using both 
firm-level and group-level data. Similar to Lin, Yu and Peterson (2014), we find that there is an inverse U-shaped 
relationship between an insurer’s network centrality measure and its reinsurance utilization at the group level. Such 
relationships hold at the firm level, too. 
5 In a directed graph, edges can be defined by ordered pairs of nodes where each ordered pair of nodes represents the 
originating and terminating node of an edge. In an undirected graph, edges do not have directions.  
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In a graph, two nodes can be connected not only by a direct link but also by indirect 

link(s). A key concept in network theory is a path: two nodes i and j are connected if there is a 

path from i  to j . A path of length k from i  to j  is defined as an ordered sequence of nodes 

0 1[ , ,..., ]ki i i  starting from i  and ending at j  (i.e., 0 , ki i i j  ). That is, a path is an ordered 

sequence of nodes where node si  and 1si   are directly connected. There may be several paths 

connecting two nodes. A geodesic path is the shortest path between two nodes. The distance, 

denoted by ijd , is the length of the shortest path between node i  and node j . 

3.2. Connected Sub-graphs: Network Component 

A network is connected if there is a path from each node to every other node, i.e., every 

pair of nodes in the network is reachable. Conversely, a network may be disconnected. Figure 1 

presents a disconnected network, where node e cannot reach other nodes. A disconnected graph 

can be partitioned into two or more components. A component is a subset of the nodes in a 

network such that there exists at least one path from each member of that subset to each other 

member and such that no other nodes in the network can be added to the subset while preserving 

this property.  

Components are classified into two types according to whether the nodes in the subset are 

reachable via directed or undirected edges. A strongly connected component (SCC) is a maximal 

subset of nodes such that there is a directed path between every pair of nodes. A weakly 

connected component (WCC) is a maximal subset of nodes such that any two nodes are 

connected by one or more paths, where paths are allowed to go either direction along any edge 

(i.e., ignoring the direction of the edge). The SCCs of a network might be subsets of the largest 

and any of the smaller WCCs of the same network.  

Using the directed graph in Figure 1 as an example, we can find three SCCs. The largest 
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SCC includes four nodes: a, b, c and f. Although node d is connected to node a and c via direct 

links and to b and f via indirect links, node d does not belong to the largest SCC because it only 

has outgoing edges and thus cannot be reached by node a, b, c and f. By definition, single nodes 

d and e each represents a SCC. The network itself is weakly connected. That is, by ignoring the 

direction of edges, all nodes are connected with each other. Clearly, the largest SCC consisting 

of node a, b, c and f  is a subset of the largest WCC, including all nodes in the graph.  

Component analysis is important to our reinsurance network analysis because it can 

provide an alternative measure of interconnectedness of the network. For instance, the network 

presented in Figure 1 is not complete (i.e., not all nodes can be reached by all other nodes) but all 

nodes are connected in the same WCC. Moreover, it helps us identify the active risk sharing 

community (as measured by SCC) that might be subject to contagion risk. In Figure 1, if a shock 

hit node f, it could spread to other nodes in the largest SCC (i.e., node a, b and c) and nodes that 

are not in the largest SCC but are connected to it (i.e., node d). 

3.3. Network Centrality Measures 

One of the most prominent questions in network analysis is how to identify the most 

“influential” or “central” nodes in a graph. We choose three commonly used centrality measures 

(i.e., degree centrality, eigenvalue centrality and betweenness centrality) to characterize an 

insurer’s reinsurance network position. 

Degree centrality measures the connectivity of an insurer in the network (a local property) 

by computing the number of counterparties to which an insurer is directly connected through 

reinsurance transactions. In a directed reinsurance network where we differentiate the direction 

of the reinsurance transactions (i.e., ceding or assuming), both the out-degree and in-degree are 

used for a node: out-degree,
out

ig , counts the number of insurers to which insurer i  cedes 
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reinsurance; in-degree, 
in

ig , is the number of the insurers from which insurer i  assumes 

reinsurance. The total degree, ig , of node i  is the sum of its out-degree and in-degree. Formally,  

; ;  out in total out in
i ij i ji i i i

j j

g A g A g g g     ,                                (1) 

where A  denotes the (directed) binary adjacency matrix.  

Moreover, a node’s strength (or weighted degree) can be computed by using proper 

transactional measures to weight the links with the other nodes. In particular, we choose two 

measures of transactional exposures: reinsurance premium and net reinsurance recoverable. 

Calculations of the total strength, in-strength and out-strength are similar to calculations of the 

total degree, in-degree and out-degree by using a properly weighted adjacency matrix. For 

instance, node i ’s  reinsurance premium weighted strengths can be calculated as 

; ;  out strength in strength total strength out strength in strength
i ij i ji i i i

j j

g W g W g g g                           (2) 

where W  denotes the reinsurance premium weighted adjacency matrix. Note that an insurer’s 

reinsurance premium weighted out-strength and in-strength are its total reinsurance premiums 

ceded and assumed, respectively. Also note at the reinsurance network level, the total 

reinsurance premiums ceded is equal to the total reinsurance premiums assumed because 

ij ij
i j j i

W W  . 

Eigenvector centrality measures the importance of an insurer in the network (a global 

property) by assigning relative scores to all insurers in the network based on the principle that 

connections to high-scoring insurers contribute more to the score of the insurer than equal 

connections to low-scoring insurers. 

While degree centrality only considers a node’s direct links, eigenvector centrality takes 

into account not only direct links of a node but also the links of its neighbors and the links of the 
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neighbors of the neighbors, etc. The defining equation of an eigenvector in a matrix form is 

v Av                                                                            (3) 

where A  is the binary adjacency matrix,   is the eigenvalue, and  is the corresponding 

eigenvector. The standard convention is to use the eigenvector associated with the largest 

eigenvalue. Such a measure can also be applied to a weighted and/or directed network by using a 

proper adjacency matrix. 

Betweenness centrality measures a node’s absolute position (a global property) by taking 

into account the connections beyond the immediate neighbors. Betweenness is computed by 

counting the number of shortest paths linking any two insurers in the network that pass through 

the insurer. Like eigenvector centrality, betweenness captures an insurer's overall importance. 

Formally, the normalized betweenness centrality for a directed network is defined as 

,

,

( 1)( 2)

jl i

j l
jl

i

a

a
btw

n n


 



                                                                  (4) 

where ,jl ia  denotes the number of shortest paths between j  and l  that pass through node i , and 

jla  denotes the total number of shortest paths between node j  and l . 

3.4. Network Density and Clustering 

Network density is defined as the number of actual links formed in a network, denoted by

m , divided by the total number of possible links. Formally,  

( 1)

m
density

n n



                                                           (5) 

This indicator ranges from 0 to 1 as a network gets “denser.” In the limiting case of a complete 

graph where each node is directly connected with all other nodes, the density is 1.  

It is very common in many real world networks (for instance, social networks) that there 
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is a high probability that nodes having the same neighbors are connected with each other. Such a 

tendency is measured by the local clustering coefficient, defined as the number of connected 

pairs of neighbors divided by the total number of pairs of neighbors. That is, the local clustering 

coefficient measures the average probability that two neighbors of a node are themselves 

neighbors. Formally, the clustering coefficient, ic,  of node i is defined as 

,

( 1)

jk ij k
i

i i

g
c

g g



 

,                                                           (6) 

where ig  denotes the degree of node i,  ,jk ig  equals one for all ,j k  that are connected with each 

other and are both neighbors to node i  and zero otherwise.6   

4. Hypothesis Development and Empirical Methodologies 

In this section, we posit the hypotheses about the financial stability of reinsurance 

networks and the impact of an insurer’s network position on its performance. We then describe 

the empirical methodologies that we employ to test these hypotheses, including the algorithm of 

simulations, regression models and variable definitions.  

4.1. Hypotheses Development 

The reinsurance market is vulnerable to a retrocession spiral whereby the failure of 

major reinsurers triggers the failure of their reinsurance counterparties, who in turn default on 

their obligations to primary insurers, resulting in a crisis permeating the insurance industry on a 

worldwide scale (Cummins and Weiss 2014). In 2008, US P/C insurers ceded $412.5 billion in 

reinsurance premiums, representing 83.7% of direct premiums written and 86.8% of surplus. 

Although P/C insurers’ equity is not seriously exposed to counterparty risk in terms of current 

receivables (8.4% of equity), the reinsurance counterparty exposure for estimated future losses 

                                                            
6 In order to calculate the clustering coefficient, the node’s degree has to be greater than or equal to 2. If a node has a 
degree of 1 (i.e., it only has one neighbor), its clustering coefficient is defined as 0. 
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and benefits is much higher. For example, the net reinsurance recoverable from non-affiliated 

reinsurers is 32.5% of surplus and that from affiliated reinsurance is 128.9% of surplus. 

Cummins and Weiss (2014) argue that “at least one-fourth of property-casualty insurers would 

be seriously at risk if several large reinsurers were to fail.”  

Nevertheless, the evidence associated with the aftermath the 2007-2008 financial crisis 

suggests that the insurance industry is not subject to systemic risk due to reinsurance (IAIS 2012). 

Park and Xie (2014) consider multiple scenarios where top global reinsurers become insolvent. 

They find that under an extreme assumption of a 100 percent reinsurance recoverable default by 

one of the top three global reinsurers, only about 2 percent of insurers would be downgraded, and 

1 percent of insurers would become insolvent. The chain effect that insolvent primary insurers 

caused via affiliated and non-affiliated reinsurance transactions was minimal too. Though their 

analysis is limited to hypothetical defaults of global reinsurers, we believe the result would not 

be significantly different if large group affiliated insurers defaulted. We therefore posit: 

H1: The US P/C insurance industry is not subject to contagion risk resulting from 
insolvency of either global reinsurers or group affiliated insurers.  

 
We next turn our attention to the economic implications of an insurer’s network position 

to its performance. A central reinsurance network position comes with both benefits and costs. 

Burt (1992) argues that firms can obtain significant performance advantages, such as 

heterogeneous sources of information and diverse business opportunities, when exploiting 

relationships with their partners in an industrial network. In line with this view, a central 

reinsurance network position might provide insurers with several benefits that might potentially 

enhance their performance. First, it can facilitate insurers exploring business opportunities that 

are not viable in the primary insurance market, such as participation in global risk-diversification. 

Second, insurers with a central network position have easy access to information in the 
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reinsurance market, such as reinsurance price, quality of services, and financial status of 

reinsurance counterparties. These information advantages, in turn, can help insurers increase 

bargaining power in the reinsurance market and obtain coverages and rates that otherwise would 

not be available. Third, a central reinsurance network position might allow insurers to develop 

knowledge and expertise in their reinsurance operations, which may further improve their 

performance in the primary insurance market. Fourth, centrality can help insurers improve 

operational efficiency in the reinsurance market and benefit from economies of scale.     

On the cost side, there are at least three types of costs associated with an insurer’s 

reinsurance network positions: coordination costs, cost related to counterparty risk, and cost 

associated with contagion risk. Coordination costs include the direct costs for managing an 

insurer’s reinsurance counterparty relationships, such as search and monitoring costs. Costs may 

also arise due to the need to effectively allocate an insurer’s internal resources between the 

primary insurance and reinsurance markets. As an insurer becomes more central, its coordination 

costs inevitably increase because of the increasing complexity of its reinsurance operations. In 

the meantime, costs from counterparty risk increase with an insurer’s network centrality. The 

level of counterparty risk may depend on the extent of information asymmetries in the 

reinsurance market. Garven, Hilliard, and Grace (2014) find that a long-term and focused cedant-

reinsurer relationship helps reduce information asymmetries between reinsurance counterparties. 

As a result, the ceding insurer’s reinsurance utilization, profitability, and credit quality will 

increase as the reinsurance tenure increases. Lastly, we should take into account costs associated 

with contagion risk. Park and Xie (2014) have provided evidence that the downgrading of 

reinsurers can have a spillover effect to the stock prices for insurers even if they do not have 

direct transactions with downgraded reinsurers.  

Thus benefits and costs associated with an insurer’s network position are complicated, 
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with non-linear manner tradeoffs as a possibility. In fact, Lin, Yu and Peterson (2014) find a 

non-linear relationship between reinsurance utilization and reinsurance network position. As an 

insurer plays a more central role in the reinsurance network, both the costs and benefits increase. 

Up to some point, the costs from coordination, counterparty risk and contagion risk may 

dominate the benefits from risk-diversification, information advantages, reinsurance expertise 

and economies of scale, resulting in a deterioration in loss experience and firm performance. 

Beyond this point, the benefits may outweigh the costs, leading to an improvement in loss 

experience and firm performance. This discussion suggests the following two hypotheses: 

H2: An insurer’s reinsurance network position is non-linearly related to its underwriting 
experience.  

 
H3: An insurer’s reinsurance network position is non-linearly related to its firm 

performance.  

4.2. Empirical Methodologies 

Simulation Algorithm for Insolvency Tests 

To test Hypothesis H1, i.e., the resilience of the reinsurance network against contagion 

risk caused by the failure of central insurers, we perform several simulation studies using the 

reinsurance network constructed in year 2011. The simulation algorithm is designed as follows.  

Step 1: Initialize simulation parameters: reinsurance net recoverable matrix, denoted by 

N NR   (where column i of R  represents insurer i’s net reinsurance recoverable payable to its 

reinsurance counterparties); and total surplus vector, denoted by 1NS  (where N denotes the 

total number of insurers). 
 

Step 2: Given insurer i’s default, update the total surplus vector as ,' N iS S R LGD   , where 

LGD is the ratio of loss (of the net reinsurance recoverable) given default.  
 
Step 3: Based on the updated total surplus vector, 'S , find the insurers whose total surplus 
after reduction of the loss of net reinsurance recoverable is below 0. These insurers are 
considered to be insolvent (or defaulted insurers) 
 

 If the number of defaulted insurers is greater than 0, update the total surplus 
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vector as ,' ' N j
j D

S S R LGD


   , where D denotes the set of defaulted insurers and 

repeat step 3. 
 
 If no insurers are found to default, then go to step 4. 

Step 4: Based on the updated total surplus vector, 'S , find the number of impaired insurers, 
defined as insurers with a risk-based capital (RBC) ratio (i.e., the total surplus divided by 
risk-adjusted capital) after surplus deduction of  less than 200%. 7 
 
Step 5: Calculate the total number of defaulted insurers and impaired insurers. Calculate the 
total surplus losses of defaulted insurers and impaired insurers. 
 

In the above algorithm, we assume that once an insurer defaults, it cannot pay its net 

reinsurance recoverable to its reinsurance counterparties, resulting in immediate surplus 

reductions at the counterparties. We assume the same LGD ratio in all calculations of surplus 

reductions. This algorithm allows us to trace the possible “default cascade” in the reinsurance 

network and can be easily adapted to the scenario where several insurers default at the same time.   

Regression Models and Variable Definitions 

To test Hypotheses H2 and H3, we specify a two-way fixed effect regression model:8 

2
, 0 1 , 2 . , ,Centrality + Centrality +i t i t i t i t i t i tDependentVariable X           ,         (7) 

where i  represents the firm fixed effect for insurer i and t  is the time fixed effect for year t. 

To test Hypothesis H2, we choose the combined ratio, defined as the sum of the loss ratio 

and the expense ratio for insurer i in year t, as the dependent variable in equation (7). For 

Hypothesis H3, we use risk adjusted return on assets (RAROA) or risk adjusted return on equity 

(RAROE) as the dependent variable. We define an insurer’s return as net income before 

dividends to policyholders and federal/foreign income taxes. An insurer’ RAROA (RAROE) is 

then defined as the ratio of the return on total admitted assets (total surplus) to its standard 
                                                            
7 We choose 200% as a conservative capital requirement for the RBC ratio since the NAIC starts to monitor insurers 
closely when this ratio is below 200%.   
8 Two way fixed effects models are chosen after conducting the Hausman test to determine whether fixed or random 
effects should be used. 
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deviation in the previous three years.  

The key variable of interest, ,Centralityi t , measures insurer i’s reinsurance network 

position in year t. We include its square term, 
2
.Centralityi t   to test for a non-linear effect. For 

simplicity, we choose two measures of the reinsurance network position in our regression 

analysis: ,i tDegree , defined as insurer i’s total degree in year t, and ,i tNet , defined as the first 

principal component of insurer i’s total degree centrality, eigenvalue centrality, betweenness 

centrality, and clustering coefficient in year t (see Li and Schurhoff 2012). ,i tX  is a vector of 

insurer i’s characteristics in year t. Specifically, we choose the following variables to control for 

the heterogeneity among insurers. The formal definitions of dependent variables and control 

variables, along with the predicted signs, are summarized in Table 1.  

 Size: Size may play an important role in influencing an insurer’s risk-taking behavior and 
performance through its effect on investment opportunities and access to capital markets. Large 
insurers are usually more diversified by line and geographical location; they benefit from 
economies of scale in risk management and have greater ability to raise capital than small 
insurers. Previous studies have found firm size positively affects P/C insurers’ performance 
(Cummins and Nini 2002). Size is measured as the natural logarithm of an insurer’s total 
admitted assets. 
 
 Organizational form: There are two main types of insurers in the insurance industry – 
stock insurers, owned by stockholders, and mutual insurers, owned by policyholders. Generally 
speaking, stock firms have better access to the capital market and can raise capital more easily 
than mutual insurers. The effect of organizational form on insurers’ underwriting experience and 
performance is ambiguous. For instance, Cummins et al. (1999) and Liebenberg and Sommer 
(2008) find that mutuals have higher costs than stocks because the former have more difficulties 
in controlling managerial perquisite consumption. By contrast, Greene and Segal (2004) find no 
significant difference in accounting profitability between mutual and stock life insurers. We use 
a dummy variable, Dummy_stock, which is equal to one if an insurer is a stock insurer and zero 
otherwise.  
 
 Group affiliation: Reinsurance transactions can occur among group affiliated insurers or 
between (re)insurers that are not part of the group. Previous studies consider group affiliated 
transactions as internal capital market activities that help affiliated insurers stabilize their 
performance and maintain a target capital structure (Powell and Sommer 2007, Fier et al. 2013). 
Park and Xie (2014) also find that group affiliated transactions account for a major portion of 
reinsurance market activities in terms of reinsurance premiums ceded. We therefore expect that 
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group affiliated insurers obtain better underwriting experience and performance. We use a 
dummy variable, Dummy-group, to denote insurers that belong to an insurance group.  
 
 Leverage: Leverage can be an indicator of an insurer’s insolvency risk which tends to 
affect returns and losses. A high debt ratio can worsen the underinvestment problem and increase 
bankruptcy costs. We expect leverage to be negatively associated with an insurer’s underwriting 
experience and performance. We define Leverage as the ratio of the total liabilities to total 
admitted assets. 
 
 Business concentration: In addition to using reinsurance, an insurer can diversify its 
underwriting risk across different lines of business or geographic regions. The predicted effect of 
business concentration on firm performance is undetermined. On the one hand, the pro-
conglomeration arguments suggest that geographically diversified insurers face lower risk and 
can thus charge higher prices. On the other hand, pro-focus arguments suggest that 
geographically focused insurers can avoid monitoring costs associated with operations across 
different areas and gain efficiencies through market specialization (Cummins et al. 2010). The 
degree of an insurer’s diversification is measured by the Herfindahl index by lines of business 
and by geographical areas based on net premium written. 
 
 Business mix:  Business mix is the degree of concentration in an insurer’s core business.   
Following Cummins et al. (2008) and Lin, Yu and Peterson (2014), we classify an insurer’s lines 
of business into four categories: short-tail personal, long-tail personal, short-tail commercial and 
long-tail commercial. We use the percentage of net premiums written for each line to indicate an 
insurer’s business mix. The variable defined as the short-tail personal line is omitted in the 
regression. 
 

5. Data and the Microstructure of Reinsurance Networks 

Our main analysis is conducted at the individual firm level, i.e., including all affiliated 

and non-affiliated insurers, for several reasons. First, by recognizing the intra- and inter- group 

reinsurance transactions, we gain a better understanding of interconnectedness among insurers, 

both affiliated and non-affiliated, and thus present a more detailed microstructure of the 

reinsurance network than previous research. Second, certain analyses, such as the insolvency 

tests for the reinsurance network, are not permissible if we use group-level data. Third, it is 

meaningful for each insurer to understand its network position in order to achieve better 

performance. It is also crucial for regulatory authorities to make and implement macroprudential 

policies for each insurer. We perform additional analysis as robustness tests using group-level 

data, i.e., the network is constructed using insurance groups and nonaffiliated single insurers.  
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Our data is from the National Association of Insurance Commissioners (NAIC) annual 

statements for US P/C insurers during the period of 2000-2011. We require the insurers included 

in our sample to have positive total assets, surplus, and net premiums written in each sample year. 

The reinsurance networks are constructed based on our sample insurers’ reinsurance transactions 

extracted from Schedule F, Part 3 of the NAIC annual statement. In order to uniquely identify 

and trace each insurer and its reinsurance counterparties, we use the NAIC assigned company 

code and Federal employer identification number (FEIN) for US P/C insurers and their 

reinsurance counterparties, respectively. We manually clean the firm-level reinsurance 

transactions by excluding reinsurance transactions with negative reinsurance premium ceded or 

negative net reinsurance recoverable and transactions without enough information for us to 

identify the counterparties. In this way, we can measure all types of reinsurance transactions, 

especially those between US P/C insurers and non-US domiciled reinsurance counterparties.  

The final sample represents more than 98% of total P/C industry net premiums written. 

For each sample year, we construct three reinsurance networks: (1) an equally-weighted 

network, i.e., each existing edge is weighted by 1; (2) a value-weighted network, weighting by 

reinsurance premiums ceded; and (3) a value-weighted network, weighting by net reinsurance 

recoverables. In total, we trace 2,901 US P/C insurers and 6,737 non-NAIC regulated 

reinsurance counterparties with 419,524 reinsurance transaction relationships. On average, our 

reinsurance network has 4,505 nodes with 1,952 US P/C (re)insurers and 34,960 edges per year. 

We use the network measures introduced in Section 3 to characterize the structure of the 

reinsurance market. Table 2 Panel A repots the reinsurance network density over the sample 

years. For example, the network density is 0.0014 in 2011.9 We conclude that the reinsurance 

network is sparse with a low degree of density. Although the overall network density is low, the 

                                                            
9 For comparisons, the density for a complete graph where all nodes are directly connected with each other is 1. 
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component analysis reveals that most of the US P/C insurers are still connected in one risk-

sharing community as defined by the largest WCC. In 2011, the largest WCC consists of 89% of 

the total US P/C insurers (1,717 out of 1,923), and it generates 78% of total reinsurance 

premiums ceded (Table 2 Panel B). Moreover, there is a sizeable risk-sharing community as 

defined by the largest SCC where insurers actively trade reinsurance with each other. In 2011, 26% 

(491 out of 1,923) of US P/C insurers belong to the largest SCC, generating 55% of total 

reinsurance premiums ceded (Table 2 Panel C). The last column of Table 2 documents an 

increasing trend in the number of SCCs with size (i.e., the number of insurers included in the 

SCC) greater than 2. It suggests that the reinsurance market is slowly moving toward 

“decentralized” risk-sharing. We conjecture that this is because the increasing amount of 

catastrophe losses drives US P/C insurers into different local markets where insurers share risks 

with those who have similar exposures (Swiss Re 2012).  

IAIS (2012, p. 9) concludes that “the insurance market does not contain the feedback 

mechanisms that would make it fully interconnected and therefore prone to potentially systemic 

events akin to the systemic events observed in the interbank market and recently seen between 

banks and shadow banks.” This conclusion has to be interpreted with caution given the evidence 

we present here. As shown above, the majority of the reinsurance market is weakly connected, 

and more importantly, a large portion of (re)insurers is strongly connected with each other. Each 

SCC can be viewed as a risk-sharing community subject to contagion risk. When a shock hits 

one or more insurers within an SCC it can spread to the insurers within the SCC and those 

connected to the SCC. It suggests that “feedback” mechanisms may exist and thus result in 

contagion risk in the reinsurance network. This incentivizes us to investigate the resilience of the 

reinsurance market against contagion risk in section 6.1.  

Figures 2A and 2B provide us a visualization of the reinsurance network that we 
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construct using our sample in 2011, revealing the fact that all insurers do not play an equal role. 

We can see from Figure 2A that top nodes ranked by in-degree are the conventional professional 

reinsurers, such as Munich Re America and Swiss Re America. However, if we rank insurers by 

their in strength weighted by reinsurance premium ceded as shown in Figure 2B, top nodes 

become large group affiliated P/C insurers, such as Travelers (Travelers), Liberty Mutual 

Insurance (Liberty Mutual), and National Union Fire Insurance Company of Pittsburgh (AIG 

group), which are heavily engaged in intra-group reinsurance transactions.  

Empirical evidence from other financial networks suggests that the degree distribution 

follows a power-law distribution (see, e.g., Markose, Giansate and Shaghaghi 2012, Li and 

Schurhoff 2012), i.e., the degree density function is ( )f x x  , where x  denotes the degree of 

the node in the financial network and   is the power-law exponent. We, therefore, fit the nodes’ 

total degree, in-degree and out-degree to a power-law distribution. Not surprisingly, we find that 

the power-law distribution provides a good fit and the estimated exponent is highly significant.10 

This result has two economic implications. First, the reinsurance network is far from a random 

network which would yield a Poisson distribution of node degrees.11 In other words, instead of 

randomly choosing their reinsurance counterparties, insurers tend to cede reinsurance to “core” 

(re)insurers. Second, a power-law distribution is heavy-tailed, implying that the reinsurance 

network may be subject to “targeted” shocks that hit “core” (re)insurers (Haldane 2009).   

Table 3 further documents the importance of the “core insurers” (top 10, 20, and 30) in 

terms of the percentage of links formed with other insurers to total links in the reinsurance 

                                                            
10 To save space, we choose not to report parameter estimates and goodness of fit. The results are available from the 
authors upon request. 
11 In a random network where connectivity between any two nodes is uncorrelated, the probability distribution of a 
node with k degrees is given by 

11
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, where p denotes the probability of a node to 

connect with other nodes. In this case, the degree distribution would not exhibit a long tail. In a regular network, the 
degree of each node will be the same. See Markose (2012) for a brief comparison of the properties of regular, 
random and scale-free networks.    
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network and the percentage of reinsurance premiums assumed to total premiums assumed in the 

network. Although none of the top insurers dominates the reinsurance market, the top insurers as 

a group have important market influence. For instance, in 2011 the top 10 insurers ranked by in-

degree account for 37% of total links formed in the reinsurance network, and the top 10 insurers 

ranked by in-strength account for 36% of reinsurance premiums assumed. 

A natural question is whether the reinsurance network has a single or several market 

center(s). We find there is an inverse relationship between the degree distribution and the 

clustering coefficient.12 On the one hand, periphery insurers with low degrees tend to cede 

reinsurance to only a few (re)insurers (i.e., local market centers) that are connected with each 

other to form a highly clustered local risk-sharing community, resulting in larger clustering 

coefficients. On the other hand, reinsurance transaction flows among those local market centers 

are only maintained by a few (re)insurers, resulting in low clustering coefficients for nodes with 

high degrees. The negative relationship between the clustering coefficient and the degree 

distribution, together with the power-law degree distribution, reveals a core-periphery 

reinsurance market structure. 

To summarize, the reinsurance networks are sparse with decentralized risk-sharing, i.e., a 

few insurers play active risk-taking roles in the market. Concentration of reinsurance premium 

flows to a few reinsurers in the reinsurance network comes with both benefits and costs. On the 

one hand, such concentration may lead to more efficient risk diversification and yield economies 

of scale in risk management for assuming insurers. On the other hand, concentration may reduce 

the reinsurance network’s stability and resilience to shocks, increasing contagion risk and costs 

associated with counterparty risk for ceding insurers. We, therefore, turn to examining contagion 

risk in the reinsurance network in the next subsection. 
                                                            
12 To save space, we do not report the figure showing a reverse relationship between node degrees and clustering 
coefficients. The result is available from the authors upon request. 



 

24 
 

6. Empirical Results 

This section presents our empirical results. We first report the simulation results from 

insolvency tests and then provide the regression results regarding the impact of an insurer’s 

network position on its performance. Lastly, we discuss the results of robustness tests.  

6.1. Insolvency Tests 

Using the algorithm outlined in Section 4, we choose top reinsurers ranked by in-degree 

(the number of incoming links) or in-strength (weighted by the total reinsurance premium 

assumed) to conduct our simulation study. Table 4 reports the results. The LGD ratio for the net 

reinsurance recoverables is assumed to be 100%, i.e., when an insurer defaults, its counterparties 

will lose 100% of reinsurance recoverables. Overall, the results suggest that the failure of any top 

insurer is unlikely to lead to systemic risk in the US P/C insurance industry. If one of the top 

insurers ranked by in-degree defaulted, on average 6 insurers (0.3% of 1,923 sampled US P/C 

insurers) would become either insolvent or impaired with a total loss of $181 million (0.016% of 

the industry surplus). If one of the top insurers ranked by reinsurance premiums assumed 

defaulted, on average 15 insurers (0.8% of 1,923 sampled US P/C insurers) would be either 

insolvent or impaired resulting in a loss of $ 8,787 million (0.77% of the industry surplus). The 

last column of Table 4 further reports the loss attributed to the affiliated insurers. The failure of 

top insurers ranked by in-degree results in the failures of non-affiliated insurers, whereas the 

failure of insurers ranked by in-strength mostly impacts intra-group insurers. 

The key assumption that the LGD ratio of net reinsurance recoverables equals 100% 

upon an insurer’s default may be too restrictive. We conduct sensitivity analysis by changing the 

LGD ratio to 80%, 50%, and 30%. When the LGD ratio decreases, the numbers of defaulted 

insurers and impaired insurers also decrease. For instance, the possible failure of Munich 

Reinsurance America, the top reinsurer by in-degree ranking, would trigger 3 (or 0) insurers’ 
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default when the LGD ratio is 80% (or 30%).13 These results further confirm that the default of a 

single top reinsurer is unlikely to cause systemic risk in the US P/C insurance industry. 

The next question is then what would happen if multiple top insurers defaulted at the 

same time. We illustrate our simulation results in Figure 4. Panel A of Figure 4 shows the 

impacts of simultaneous failures of top insurers on the US P/C insurance industry in terms of the 

percentage of the number of defaulted and impaired insurers to the total number of insurers in 

our sample and Panel B of Figure 4 demonstrates the impacts in terms of the percentage of the 

total surplus loss to the total surplus of our sampled insurers. For instance, if the top 10 insurers 

ranked by in-degree defaulted at the same time, less than 5% of our sampled insurers would 

either default or become impaired with surplus losses accounting for less than 6% of total surplus. 

The failures of top insurers ranked by in-strength (weighted by reinsurance premiums assumed) 

have a relatively big impact in terms of the total surplus losses. If the top 10 insurers ranked by 

in-strength defaulted simultaneously, nearly 7% of our sampled insurers would become either 

insolvent or impaired and about 16% of total surplus would be wiped out.  

  To summarize, we cannot reject Hypothesis H1, i.e., the US P/C insurance industry is not 

subject to contagion risk resulting from intra-company reinsurance transactions, under extreme 

scenarios when one or more top insurers ranked by in-degree (mostly traditional reinsurers) or 

in-strength (mostly group affiliated insurers) default. This is consistent with the conclusion in 

Park and Xie (2014). While they only focus on the defaults of top professional reinsurers, we 

provide a more comprehensive study by taking into account defaults of top group affiliated 

insurers that account for a large portion of transactions in terms of reinsurance premium assumed.  

6.2. Reinsurance Network Position and Insurer Performance 

This subsection presents regression results of the two-way fixed effects model estimating 
                                                            
13 To save space, we do not report the results of sensitivity analysis of insolvency tests. The results are available 
upon request.  
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the impact of an insurer’s network position on its performance. Our original sample includes 

23,367 firm-year observations. We remove observations with (1) missing values for the 

geographic Herfinahl index; (2) negative combined ratio or negative incurred losses; and (3) 

missing values for risk adjusted ROA/ROE.14 We then perform outlier detection by running the 

pooled ordinary least squared (OLS) regression on equation (7) and calculate the Cook’s distance 

for each observation. We then remove the outliers determined by the Cook’s distance.15 Our final 

sample is an unbalanced panel with 17,746 firm-year observations, which account for 83% (86%) 

of the entire US P/C insurance market in terms of total assets in year 2000 (2011). After 

removing the outliers, we find that all variables, except for the combined ratio, have reasonable 

distributions. We therefore Winsorize the combined ratio at the 5 and 95 percentiles. 

Table 5 reports the summary statistics for the dependent variables and independent 

variables. The mean value for the centrality measure, Degree, is 0.005 and that for Net is 0.0033. 

The mean values for our main dependent variables, Combined Ratio, RAROA, and RAROE, are 

1.021, 2.090, and 1.871, respectively. Moreover, 69.7% of insurers are stock insurers and 67.2% 

of insurers are group affiliated insurers. 

We first test Hypothesis H2 using the combined ratio as a measure of an insurer’s loss 

experience and report the regression results in Table 6. We observe that the combined ratio is 

positively associated with the centrality measure (degree or Net) but negatively related to its 

squared term, and both are statistically significant at the 1% level. That is, when an insurer 

becomes more connected with other (re)insurers in the reinsurance network, its loss experience 

deteriorates at first. We conjecture that this occurs because the search and monitoring costs 

outweigh the benefits of risk diversification below a certain threshold. However, when the 

                                                            
14 We remove 2,631, 1,066, and 1,319 observations in step (1)-(3) respectively, resulting in 18,351 observations for 
the next step – outlier analysis.  
15 We consider the observations whose Cook’s distance is greater than 4/N as outliers, where N denotes the number 
of observations in the regression model (Fox 1997). In total, we identify and remove 605 outliers. 
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insurer plays a more important role in the reinsurance network such that this threshold is passed, 

it can diversify the risk in a more efficient way and thus its loss experience starts to improve (the 

combined ratio decreases) with the centrality measure.  

The regression results also show that size is negatively related to the combined ratio, 

suggesting that larger insurers may enjoy economies of scale in risk diversification which can 

lead to better underwriting performance. There is a statistically significant, positive relationship 

between an insurer’s leverage and combined ratio. Intuitively, an insurer with higher leverage 

faces higher insolvency risk, which can drive up transactions costs in acquiring new business in 

the primary market and lead to an increase in the expense ratio; in the meantime, the insurer with 

higher insolvency risk may have to reduce premiums in order to compete with other insurers in 

the market, resulting in an increase in its loss ratio. Moreover, stock insurers tend to have a better 

underwriting performance than mutual insurers, consistent with the fact that stock insurers have 

easier access to the capital markets which can lower their capital costs. We also find that the 

business line Herfindahl index is positively related to an insurer’s combined ratio, i.e., an insurer 

with more concentrated business may incur higher costs and suffer larger losses. Lastly, it is 

interesting to note that the percentage of net premium written in long-tail personal, short-tail 

commercial and long-tail commercial lines are all negatively related with the combined ratio, 

with short-tail and long-tail commercial lines significant at the 10% level. This can be explained 

by the high level of losses associated with short-tail personal lines (the omitted category) which 

contains homeowners insurance; homeowners insurance is subject to catastrophe risk.  

We then test Hypothesis H3 by regressing an insurer’s performance measure (RAROA 

and RAROE) on the centrality measure. The results are presented in Table 7. The linear models 

show a statistically significant negative impact of an insurer’s network position on its 

performance. In the non-linear models, the coefficient of Degree or Net is negative and that of 
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the squared term is positive, and both are statistically significant at the 1% level. These 

coefficients indicate a U-shaped curve for an insurer’s performance against its centrality in the 

reinsurance network. This result is consistent with the inverse U-shaped curve of the insurer’s 

combined ratio reported in Table 6. Among other explanatory variables, an insurer’s size and 

leverage are statistically significant in the performance models. That is, insurers with larger size 

and lower leverage ratios tend to have better performance. Moreover, the coefficient of 

Dummy_reinsurer is significantly negative in both the RAROA and RAROE regressions. This 

could possibly result from the fact that multiple catastrophic events occurred during the sample 

period which caused more volatile ROA (ROE) for reinsurers and thus lower RAROA (RAROE).   

6.3. Robustness Tests at the Group Level 

Previous literature argue that affiliated insurers’ reinsurance decisions may be 

coordinated at the group level (Cummins 2008, Lin, Yu and Peterson 2014). We therefore 

construct the reinsurance networks at the group level during our sample period. In the group-

level reinsurance network, the nodes represent US P/C insurance groups, single non-affiliated US 

P/C insurers and their reinsurance counterparties, and the edges represent non-affiliated 

reinsurance counterparty relationships.16 We find that the reinsurance networks at the group level 

exhibit similar properties to those at the firm level, i.e., the group-level reinsurance network is 

sparse with a low network density and the degree distributions follow a long-tailed distribution.  

The analyses at the group level reveal some interesting facts that are not shown at the 

firm level. First, we find that US P/C insurance groups are highly connected at the group level. 

E.g., out of a total of 381 sampled insurance groups in 2011, 362 (141) insurance groups are 

connected in the largest WCC (SCC) of the network. Second, the dominant reinsurance 

counterparty relationships at the firm level are intra-group reinsurance transactions among US 
                                                            
16 We treat all affiliated insurers, both domestic and foreign, under the same insurance group as a single node. In this 
way, we remove all the intra-group reinsurance transactions at the group level. 
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domestic affiliated insurers, which on average account for 70% of total reinsurance premiums 

ceded. At the group level, when the US domestic affiliated reinsurance transactions are 

eliminated, the reinsurance relationships between US P/C insurers and foreign reinsurers become 

important. We observe that US P/C insurers tend to utilize more reinsurance from foreign 

reinsurers during our sample period. E.g., the percentage of reinsurance premiums ceded to 

foreign reinsurers increased from 35% in 2000 to 60% in 2011. This increase is most likely due 

to the trend for US P/C insurers to utilize more reinsurance from their foreign affiliated 

reinsurers.17 The percentage of reinsurance premiums ceded to foreign affiliated reinsurers to 

total reinsurance premiums ceded increased from 12% in 2000 to 37% in 2011. The increasing 

utilization of foreign affiliated reinsurance transactions could be driven by tax considerations. 

Based on the reinsurance networks we construct at the group level, we calculate the 

network centrality measures for each insurer and run the regressions again to study the effect of 

an insurer’s network position on its loss experience and performance. We find that the previous 

results still hold at the group level, i.e., there is an inverse U-shaped (U-shaped) relationship 

between an insurer’s network position and its combined ratio (RAROA and RAROE). 

7. Conclusion 

In this paper, we analyze the microstructure of the reinsurance network for US P/C 

insurers and investigate the impact of an insurer’s reinsurance network position on its loss 

experience and firm performance. Using detailed reinsurance transaction data at the individual 

firm level, we perform network analysis for the US P/C reinsurance market and describe its basic 

characteristics. We further examine its stability under some market distress conditions and find 

that the US P/C reinsurance market is not subject to contagion risk.  

                                                            
17 In reinsurance premium ceded flow analysis,  we keep the foreign affiliated reinsurers for comparison purposes. 
When we calculate the network centrality measures to perform regression analysis at the group level, we eliminate 
foreign affiliated reinsurers. 
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Our empirical analysis has important policy implications. Currently adopted conventional 

measures related to reinsurance, such as those proposed in IAIS (2013), may not be adequate to 

capture the complexity of the reinsurance market and interconnectedness among insurers through 

reinsurance transactions. In order to effectively address the issues relevant to contagion risk and 

financial stability from the regulator’s perspective, the introduction of new regulatory measures 

based on new methodologies such as network analysis seems to be necessary. Our results also 

shed light on an insurer’s performance based on its network position. We find that there is an 

inverse U-shaped (U-shaped) relationship between an insurer’s reinsurance network position and 

its combined ratio (RAROA and RAROE) due to the tradeoff between the benefits and costs 

associated with its network position.  

As with all research, some limitations exist. For instance, the resilience tests on the 

reinsurance market are conducted based on relatively strict assumptions which might be quite 

different from real world conditions. Moreover, an important part of the reinsurance network is 

still missing due to the lack of the reinsurance transaction data among non-state regulated 

insurers, which could further increase the complexity of the reinsurance network. Therefore, our 

analysis can be viewed as preliminary and the results need to be interpreted with caution. This 

data limitation also calls for regulatory cooperation in information disclosure at an international 

level in order to effectively regulate the US reinsurance market. 

For future research, this paper can be extended in several ways. For instance, one can 

conduct an efficiency study to further examine the interactions between a firm’s reinsurance 

market position and its cost, revenue and profit efficiency. One can also examine how the 

transactional relationship in the reinsurance network affects a firm’s key decisions, such as 

capital structure and mergers and acquisitions.    
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Figure 1: An example of simple networks 
This is an example to demonstrate the concept of weakly connected component (WCC) and 
strongly connected component (SCC) discussed in Section 3. The largest SCC consisting of node 
a, b, c and f is shaded in green.  
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Figure 2A: Graph for the reinsurance networks in year 2011 

This figure presents the reinsurance network among US P/C insurers in year 2011, consisting of 1623 nodes and 
9429 edges. The size of the node is proportional to the node’s in-degree. Top 10 insurers ranked by in-degree and in-
strength are labeled.  (Note: we label top 10 for in-degree ranking and top 10 for in-strength ranking, so that in total 
we label 20 nodes.) 

 

Figure 2B: Graph for the reinsurance networks in year 2011 

This figure presents the reinsurance network among US P/C insurers in year 2011, consisting of 1623 nodes and 
9429 edges. The size of the node is proportional to the node’s in-strength. Top 10 insurers ranked by in-degree and 
in-strength are labeled. 
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Figure 3: Simulation results for the impact of multiple top insurers’ failures 

This figure reports the simulation results for the impact of multiple top insurers’ failures at the same time based on 
the reinsurance network in year 2011. The horizontal axis is the number of failed top insurers. The vertical axis in 
panel A represents the percentage of defaulted insurers (i.e. total surplus<=0) and impaired insurers (i.e. RBC 
ratio<200%) to the total number of insurers (1923) in year 2011. The vertical axis in panel B represents the 
percentage of surplus wiped out to total surplus of sampled insurers in year 2011. We compare the losses of top 
insurers ranked by in-degree (i.e., in-coming links ranking) and those ranked by in-strength (i.e., reinsurance 
premium assumed ranking). The loss given default ratio for net reinsurance recoverable is assumed to be 100% in all 
scenarios considered here.  
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Table 1: Definitions of variables 

Variable Measurement Expected sign 

Dependent variables 
 

Combined 
Ratio 

RAROA/ 
RAROE 

Combined Ratio The sum of the loss ratio and the expense ratio, where the loss ratio 
is defined as the sum of loss incurred and loss adjustment expenses 
divided by net premium earned, and the expense ratio is defined as 
expenses divided by net premium written.  

  

RAROA Risk adjusted return on assets, defined as return on assets divided 
by the standard deviation of return on assets in the previous 3 
years, where return on assets is calculated as net income before 
dividends to policyholders and before federal and foreign income 
taxes divided by total admitted assets.  

  

RAROE Risk adjusted return on equity, defined as return on equity divided 
by the standard deviation of return on equity in the previous 3 
years, where return on equity is calculated as net income before 
dividends to policyholders and before federal and foreign income 
taxes divided by total surplus.  

  

Independent variables   

Degree An insurer’s total degree centrality in the reinsurance network +/- +/- 

Degree2 The square term of Degree +/- +/- 

Net The first principal component of an insurer’s reinsurance network 
position measured by degree centrality, eigenvalue centrality, 
betweenness centrality and clustering coefficient. 

+/- +/- 

Net2 The square term of Net +/- +/- 

Ln(asset) The logarithm of total admitted assets  - + 

Leverage The ratio of total liabilities to  total admitted assets - + 

HHI_geo Herfindahl index of direct premium written across geographic 
areas 

+/- +/- 

HHI_line_npw Herfindahl index of net premium written across all business lines   

Percent_lp_npw The percentage of net premium written in long-tail personal lines 
to total direct premium written 

+/- +/- 

Percent_sc_npw The percentage of net premium written in short-tail commercial 
lines to total direct premium written 

+/- +/- 

Percent_lc_npw The percentage of net premium written in long-tail commercial 
lines to total direct premium written 

+/- +/- 

Dummy_Stock 1 for stock insurers, 0 otherwise +/- +/- 

Dummy_Group 1 for group affiliated insurers, 0 otherwise + + 

Dummy_Reinsurer 1 for an insurer satisfying the A.M. Best definition for professional 
reinsurer, 0 otherwise 

+/- +/- 
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Table 2: Reinsurance network density and component analysis 

Panel A reports the overall reinsurance network density. Panel B (Panel C) reports the size (i.e., the number of 
insurers) in the largest WCC (SCC), the percentage of insurers in the largest WCC (SCC) to the total number of 
insurers in our sample and the percentage of reinsurance premium ceded in the largest WCC (SCC). Panel D reports 
the number of SCCs with size bigger than 2.  

Panel A Panel B: Largest WCC Panel C: Largest SCC Panel D 
# of SCC 

with size >2 Year 
No. of total 

insurers 
Network 
Density 

Size 
No. of 

insurers (%) 
Premium 

(%) 
Size 

No. of 
insurers (%) 

Premium 
(%) 

2000 1991 0.0024 1933 97 84 828 42 75 19 

2001 1978 0.0021 1902 96 82 806 41 69 19 

2002 1917 0.0019 1840 96 81 715 37 69 25 

2003 1923 0.0017 1820 95 81 654 34 64 28 

2004 1903 0.0017 1786 94 81 593 31 65 30 

2005 1883 0.0017 1661 88 79 492 26 59 41 

2006 1975 0.0017 1792 91 81 552 28 68 44 

2007 1972 0.0016 1770 90 80 468 24 56 46 

2008 2017 0.0016 1824 90 80 511 25 57 46 

2009 1981 0.0015 1778 90 79 515 26 63 42 

2010 1963 0.0015 1748 89 79 511 26 55 47 

2011 1923 0.0014 1717 89 78 491 26 55 52 

 

Table 3: Importance of top (re)insurers in reinsurance networks 

This table reports the importance of top (re)insurers in the reinsurance networks as measured by (1) the percentage 
of links formed to total links in the reinsurance network; (2) the percentage of reinsurance premiums assumed to 
total premiums in the reinsurance network. 

  
Panel A:  

Ranked by node in-degree 
Panel B: 

Ranked by node in-strength 

  
Percentage of Total 

Connected P/C Insurers 
Percentage of Reins. 
Premiums Assumed 

Percentage of Total 
Connected P/C Insurers 

Percentage of Reins. 
Premiums Assumed 

Year Top10 Top20 Top30 Top10 Top20 Top30 Top10 Top20 Top30 Top10 Top20 Top30 
2000 27% 44% 58% 13% 16% 17% 9% 19% 23% 32% 45% 54% 

2001 26% 44% 57% 14% 17% 19% 12% 19% 24% 33% 47% 57% 

2002 26% 45% 59% 11% 16% 21% 10% 22% 24% 34% 48% 57% 

2003 27% 46% 60% 8% 16% 23% 7% 21% 29% 36% 49% 58% 

2004 30% 50% 63% 7% 11% 23% 8% 18% 28% 37% 50% 59% 

2005 30% 52% 63% 5% 14% 16% 7% 16% 23% 39% 52% 60% 

2006 33% 55% 66% 5% 10% 20% 7% 14% 23% 38% 50% 59% 

2007 37% 58% 68% 5% 14% 34% 7% 16% 23% 39% 52% 60% 

2008 37% 58% 68% 5% 14% 24% 6% 15% 21% 37% 50% 59% 

2009 37% 58% 68% 4% 13% 22% 6% 14% 21% 38% 51% 59% 

2010 36% 57% 68% 5% 7% 21% 6% 12% 17% 36% 49% 57% 

2011 37% 59% 69% 5% 8% 23% 5% 13% 21% 36% 50% 58% 
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Table 4: Simulation results for the impact due to the failure of an individual top insurer to the reinsurance network 

Panel A: Ranked by the insolvent insurer’s in-degree 

Company Name 
# of 

Defaulted 
Insurers 

# of 
Impaired 
Insurers 

Loss of 
Defaulted 
Insurers 
($ mn) 

Loss of 
Impaired 
Insurers 
($ mn) 

Total 
Loss 

($ mn) 

Percentage of 
Total US P/C 
Insurers (%) 

Percentage 
of Total 

Surplus (%) 

Loss of 
Affiliated 
Insurers 
($ mn) 

Munich Reins. Amer Inc 4 4 36.14 68.73 104.87 0.45 0.02 0.00 

General Reins. Corp 2 5 5.63 18.57 24.20 0.39 0.00 0.00 

Swiss Reins. Amer Corp 11 5 608.69 297.65 906.34 0.90 0.14 410.55 

QBE Reins. Corp 0 2 0.00 25.69 25.69 0.11 0.00 0.00 

Odyssey Reins. Co 2 2 149.06 9.46 158.51 0.23 0.02 137.99 

Transatlantic Reins. Co 5 4 43.26 28.42 71.68 0.51 0.01 0.00 

Arch Reins. Co 0 2 0.00 5.45 5.45 0.11 0.00 0.00 

Toa Re Ins. Co Of Amer 0 2 0.00 28.16 28.16 0.11 0.00 28.16 

Partner Reins. Co Of The US 2 3 28.48 15.94 44.42 0.28 0.01 0.00 

Everest Reins. Co 3 3 302.65 137.25 439.91 0.34 0.07 179.70 

Average 3 3 117.39 63.53 180.92 0.34 0.027 75.64 

Panel B: Ranked by the insolvent insurer’s in-strength 

Travelers Ins. Co 27 2 14505.24 3786.00 18291.24 1.63 2.77 18184.54 

Farmers Ins. Exch 9 1 2621.54 51.67 2673.21 0.56 0.41 2673.21 

Liberty Mut Ins. Co 9 0 3002.07 0.00 3002.07 0.51 0.45 3002.07 

Hartford Fire Ins. Co 9 2 2551.88 353.22 2905.09 0.62 0.44 2725.98 

National Union Fire Ins. Co Of Pitts 6 1 10921.41 1465.47 12386.88 0.39 1.88 12386.12 

Peerless Ins. Co 13 1 3141.14 915.08 4056.22 0.79 0.61 4050.17 

American Home Assur Co 6 1 17868.11 1465.47 19333.58 0.39 2.93 19332.83 

Progressive Cas Ins. Co 12 1 1776.58 323.64 2100.22 0.73 0.32 2100.22 

Ace Prop & Cas Ins. Co 8 5 2660.31 912.17 3572.48 0.73 0.54 3457.63 

St Paul Fire & Marine Ins. Co 27 2 15766.90 3786.00 19552.91 1.63 2.96 19446.20 

Average 13 2 7481.52 1305.87 8787.39 0.80 1.33 8735.90 
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Table 5: Summary Statistics 

This table reports the summary statistics for the variables used in the regression analysis. Degree is an insurer’s 
normalized total degree; Net is the first principal component of degree centrality, eigenvalue centrality, betweenness 
centrality and clustering coefficient; RAROA is the ratio of return on total admitted assets divided by the standard 
deviation of return on total admitted assets in the previous three years; RAROE is the ratio of return on total surplus 
divided by the standard deviation of return on total surplus in the previous three years; Ln(asset) is defined as the 
natural logarithm of total admitted assets; Leverage is the total liabilities to total admitted assets; Combined Ratio is 
the sum of the loss ratio and expense ratio; HHI_geo is the geographic Herfindahl index;HHI_line_npw is the 
business line Herfindahl index based on net premium written; Percent_npw_lp, Percent_npw_sc, Percent_npw_lc) 
is the percentage of net premium written in long-tail personal lines, short-tail commercial lines and long-tail 
commercial lines, respectively; Dummy_stock is equal to 1 if the firm is a stock insurer and 0 otherwise; 
Dummy_group is equal to 1 if the firm is affiliated with an insurance group and 0 otherwise; Dummy_reinsurer is 
equal to 1 if the insurer satisfies the A.M. Best definition of reinsurer and 0 otherwise.  
 

Variable # of obs Mean Std Dev p5 Median p95 

Combined Ratio 17746 1.021 0.195 0.693 0.993 1.536 

RAROA 17746 2.090 3.423 -1.539 1.344 8.353 

RAROE 17746 1.871 2.973 -1.599 1.306 7.451 

Degree 17746 0.005 0.012 0.000 0.002 0.020 

Net 17746 0.033 1.481 -0.615 -0.421 1.904 

Ln(asset) 17746 18.368 1.948 15.296 18.287 21.725 

Leverage 17746 0.571 0.182 0.195 0.609 0.804 

HHI_line_npw 17746 0.489 0.302 0.124 0.407 1.000 

HHI_geo 17746 0.567 0.385 0.055 0.536 1.000 

Percent_npw_lp 17746 0.279 0.302 0.000 0.169 0.802 

Percent_npw_lc 17746 0.451 0.394 0.000 0.427 1.000 

Percent_npw_sc 17746 0.154 0.266 0.000 0.042 1.000 

Dummy_stock 17746 0.697 0.460 0.000 1.000 1.000 

Dummy_group 17746 0.672 0.469 0.000 1.000 1.000 

Dummy_reinsurer 17746 0.031 0.173 0.000 0.000 0.000 
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Table 6: The effect of an insurer’s network position on its combined ratio 
This table reports the regression results of a two-way fixed effects model to investigate the effect of an insurer’s 
network position on its combined ratio. The clustered standard errors based on insurers are reported in parentheses. 
The last two rows report test statistics and p-values for the Hausman test for random effects vs. fixed effects. We 
omit the time dummy variables to save space. The symbol ***, **, * denote the statistical significance at the level of 
0.01, 0.05 and 0.1, respectively. The dependent variable is Combined Ratio which is defined as the sum of the loss 
ratio and expense ratio. Degree is an insurer’s normalized total degree; Degree2 is the squared value of Degree; Net 
is the first principal component of degree centrality, eigenvalue centrality, betweenness centrality and the clustering 
coefficient; Net2 is the squared value of Net; Ln(asset) is the natural logarithm of total admitted assets; Leverage is 
the total liabilities to total admitted assets; HHI_geo is the geographic Herfindahl index; HHI_line_npw is the 
business line Herfindahl index based on net premium written; Percent_npw_lp, Percent_npw_sc, Percent_npw_lc 
are the percentages of net premium written in long-tail personal lines, short-tail commercial lines and long-tail 
commercial lines, respectively; Dummy_Stock is equal to 1 if the firm is a stock insurer and 0 otherwise; 
Dummy_Group is equal to 1 if the firm is affiliated with an insurance group and 0 otherwise; Dummy_Reinsurer is 
equal to 1 if the insurer satisfies the A.M. Best definition of reinsurer and 0 otherwise.  

 (1) (2) (3) (4) 
VARIABLES Combined Ratio Combined Ratio Combined Ratio Combined Ratio 
     
Intercept 2.0991*** 2.1218*** 2.1112*** 2.1401*** 
 (0.1386) (0.1394) (0.1397) (0.1412) 
Degree 0.8984** 3.4591***   
 (0.3834) (0.7383)   
Degree2  -22.7237***   
  (5.1957)   
Net   0.0075*** 0.0216*** 
   (0.0028) (0.0052) 
Net2    -0.0012*** 
    (0.0003) 
Ln(asset) -0.0633*** -0.0654*** -0.0636*** -0.0652*** 
 (0.0077) (0.0078) (0.0077) (0.0078) 
Leverage 0.2318*** 0.2307*** 0.2327*** 0.2317*** 
 (0.0277) (0.0277) (0.0277) (0.0278) 
Percent_npw_lp -0.0315 -0.0312 -0.0304 -0.0304 
 (0.0471) (0.0469) (0.0470) (0.0468) 
Percent_npw_lc -0.0687* -0.0684* -0.0685* -0.0689* 
 (0.0412) (0.0411) (0.0411) (0.0409) 
Percent_npw_sc -0.0817* -0.0794* -0.0814* -0.0806* 
 (0.0462) (0.0459) (0.0461) (0.0457) 
HHI_geo -0.0153 -0.0140 -0.0164 -0.0148 
 (0.0187) (0.0187) (0.0187) (0.0187) 
HHI_line_npw 0.0738*** 0.0790*** 0.0732*** 0.0762*** 
 (0.0261) (0.0260) (0.0261) (0.0260) 
Dummy_stock -0.0282* -0.0266* -0.0286* -0.0282* 
 (0.0158) (0.0159) (0.0158) (0.0159) 
Dummy_group 0.0193* 0.0189 0.0194* 0.0186 
 (0.0116) (0.0116) (0.0116) (0.0116) 
Dummy_reinsurer 0.0256 0.0243 0.0272 0.0262 
 (0.0192) (0.0193) (0.0193) (0.0192) 
     
Observations 17,746 17,746 17,746 17,746 
R-squared 0.091 0.093 0.091 0.092 
Number of cocode 2,502 2,502 2,502 2,502 
Adj R-squared 0.0898 0.0917 0.0898 0.0908 
Chi2 Stat 288.65 286.72 285.86 284.22 
Hausman p-value 0.0000 0.0000 0.0000 0.0000 
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Table 7: The effects of an insurer’s reinsurance network position on its performance 
This table reports the regression results of a two-way fixed effects model to investigate the effect of an insurer’s network position on its performance. The clustered standard errors based on insurers are 
reported in parentheses. The last two rows report test statistics and p-values for the Hausman test for random effects vs. fixed effects. We omit the time dummy variables to save space. The symbol ***, **, * 
denote the statistical significance at the level of 0.01, 0.05 and 0.1, respectively. The dependent variables in models (1)-(4) are RAROA defined as the ratio of return on total admitted assets divided by the 
standard deviation of return on total admitted assets in the previous three years. The dependent variables in models (5)-(8) are RAROE defined as the ratio of of return on total surplus divided by the standard 
deviation of return on total surplus in the previous three years. Degree is an insurer’s normalized total degree; Degree2 is the squared value of Degree; Net is the first principal component of degree centrality, 
eigenvalue centrality, betweenness centrality and clustering coefficient; Net2 is the squared value of Net. Ln(asset) is the natural logarithm of total admitted assets; Leverage is the total liabilities to total 
admitted assets; HHI_geo is the geographic Herfindahl index; HHI_line_npw is the business line Herfindahl index based on net premium written; Percent_npw_lp, Percent_npw_sc, Percent_npw_lc are the 
percentages of net premium written in long-tail personal lines, short-tail commercial lines and long-tail commercial lines, respectively; Dummy_stock is equal to 1 if the firm is a stock insurer and 0 otherwise; 
Dummy_group is equal to 1 if the firm is affiliated with an insurance group and 0 otherwise; Dummy_reinsurer is equal to 1 if the insurer satisfies the A.M. Best definition of reinsurer and 0 otherwise.  

 
 (1) (2) (3) (4) (5) (6) (7) (8) 
VARIABLES RAROA RAROA RAROA RAROA RAROE RAROE RAROE RAROE 
         
Intercept -10.8171*** -11.1354*** -11.13*** -11.6031*** -8.486*** -8.7317*** -8.743*** -9.1870*** 
 (2.0284) (2.0357) (2.042) (2.0579) (1.790) (1.7971) (1.802) (1.8156) 
Degree -26.4176*** -62.3738***   -22.23*** -49.9733***   
 (6.0784) (11.8631)   (5.552) (10.9495)   
Degree2  319.0722***    246.1864***   
  (74.3718)    (68.3268)   
Net   -0.207*** -0.4372***   -0.172*** -0.3887*** 
   (0.0531) (0.0957)   (0.0531) (0.0868) 
Net2    0.0189***    0.0179*** 
    (0.0049)    (0.0049) 
Ln(asset) 0.8796*** 0.9090*** 0.886*** 0.9118*** 0.705*** 0.7281*** 0.710*** 0.7346*** 
 (0.1103) (0.1111) (0.111) (0.1116) (0.0974) (0.0981) (0.0979) (0.0986) 
Leverage -5.4906*** -5.4749*** -5.517*** -5.5015*** -4.531*** -4.5184*** -4.552*** -4.5381*** 
 (0.3507) (0.3509) (0.351) (0.3508) (0.319) (0.3199) (0.319) (0.3205) 
Percent_npw_lp -0.9823 -0.9875 -1.014 -1.0136 -1.086* -1.0904* -1.113* -1.1122* 
 (0.7467) (0.7470) (0.748) (0.7496) (0.622) (0.6227) (0.623) (0.6246) 
Percent_npw_lc 0.2960 0.2915 0.285 0.2927 0.400 0.3964 0.390 0.3974 
 (0.6351) (0.6365) (0.636) (0.6385) (0.545) (0.5461) (0.545) (0.5472) 
Percent_npw_sc 0.3667 0.3337 0.356 0.3444 0.393 0.3673 0.384 0.3728 
 (0.6544) (0.6554) (0.655) (0.6570) (0.554) (0.5559) (0.555) (0.5573) 
HHI_geo 0.4032 0.3857 0.437 0.4103 0.307 0.2937 0.336 0.3108 
 (0.3001) (0.3003) (0.299) (0.2998) (0.264) (0.2642) (0.264) (0.2638) 
HHI_line_npw -0.2075 -0.2817 -0.187 -0.2373 -0.157 -0.2145 -0.140 -0.1867 
 (0.3561) (0.3568) (0.357) (0.3585) (0.307) (0.3079) (0.307) (0.3080) 
Dummy_stock 0.3546 0.3325 0.367 0.3603 0.181 0.1642 0.192 0.1852 
 (0.3207) (0.3210) (0.322) (0.3230) (0.240) (0.2404) (0.241) (0.2424) 
Dummy_group -0.0629 -0.0564 -0.0671 -0.0539 0.0729 0.0778 0.0692 0.0817 
 (0.1882) (0.1880) (0.188) (0.1881) (0.155) (0.1547) (0.155) (0.1545) 
Dummy_reinsurer -0.9502*** -0.9322*** -0.998*** -0.9808*** -0.712*** -0.6979*** -0.752*** -0.7359*** 
 (0.2600) (0.2601) (0.261) (0.2592) (0.237) (0.2374) (0.238) (0.2365) 
         
Observations 17,746 17,746 17,746 17,746 17,746 17,746 17,746 17,746 
R-squared 0.085 0.086 0.085 0.086 0.089 0.090 0.089 0.090 
Number of cocode 2,502 2,502 2,502 2,502 2,502 2,502 2,502 2,502 
Adj R-squared 0.0844 0.0853 0.0842 0.0849 0.0883 0.0891 0.0881 0.0890 

Chi2 Stat 101.08 81.71 103.25 101.47 69.09 66.31 70.23 68.93 

Hausman p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 


