
The Great Reversal in the Demand for Skill and Cognitive Tasks

Paul Beaudry

University of British Columbia and NBER

997-1873 East Mall, Vancouver, BC Canada V6T 1Z1.

Paul.Beaudry@ubc.ca

David A. Green

University of British Columbia and Research Fellow, IFS, London

997-1873 East Mall, Vancouver, BC Canada V6T 1Z1.

David.Green@ubc.ca

and

Benjamin M. Sand

York University

1090 Vari Hall, 4700 Keele St., Toronto, ON, M3J 1P3.

bmsand@yorku.ca

This paper argues that several of the poor labor market outcomes observed in the

great recession can be traced back to a change in the demand pattern for skilled workers

that started with the tech bust of 2000. In particular, we show that around the year

2000, the demand for cognitive tasks underwent a reversal. In response, high-skilled

workers moved down the occupational ladder and increasingly displaced lower-educated

workers in less skill intensive jobs. While these effects where present before the financial

crisis of 2008, they became more obvious after jobs associated with the housing bubble

disappeared.

The poor performance of the US labor market since the financial crisis of 2008 continues to

generate enormous debate around the fundamental forces driving the decline. One side argues

that difficulties in the US economy can be characterized as stemming from very weak aggregate

demand due to a de-leveraging process and the zero lower bound constraint on nominal interest

rates. The other side argues for a set of explanations which emphasize more structural difficulties in

combination with cyclical elements. Many of these structural explanations view the housing boom

of the 2000s as having hidden (for a few years) longer term problems with employment options.

The housing bust accompanying the cyclical downturn is then viewed as unveiling those problems.

For example, the papers by Charles et al. (2012) and Siu and Jaimovich (2012) emphasize the
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ongoing role of declining manufacturing employment and the disappearance of other routine jobs in

causing the current low rates of employment. This type of explanation traces the origins of current

difficulties back several decades, with a possible acceleration of the process more recently. While

these different perspectives contain important elements for understanding the current situation, we

believe that an important factor has been missed in the current debate.

In this paper, we argue that in about the year 2000, the demand for skill (or, more specifically,

the demand for cognitive tasks that are often associated with high educational skill) underwent a

reversal, and that this reversal can help in understanding poor labor market outcomes after 2000

more generally.1 Numerous researchers have documented a substantial growth in the demand for

occupations involving cognitive tasks (whether occurring exogenously (Katz and Murphy 1992) or

endogenously (Beaudry and Green 2005; Acemoglu 2002)) and an accompanying reduction in the

demand for more middle-wage routine occupations in the two decades or so before 2000 (Juhn

(1999); Autor et al. (2003); Autor and Dorn (2013); Autor et al. (2006, 2008); Dustmann et al.

(2009); Firpo et al. (2011); Goos and Manning (2007)). This period is often described as a period

of polarization, with an increased concentration of employment in either high-paying cognitive oc-

cupations or in lower-paying manual-service jobs. Since more educated workers have a comparative

advantage in performing cognitive tasks, this explains a large fraction of the increase in returns to

education over the period. While the existing literature appears to reflect an implicit belief that

this process has continued unabated in the period since the turn of the century, the first object of

this paper will be to document that the demand for cognitive tasks has actually been declining since

2000. Such a decline in demand has had, and continues to have, a direct impact on more skilled

workers, but we go on to show that it has likely had a substantial impact on less skilled workers

as well. In particular, we argue that in response to the demand reversal, high-skilled workers have

moved down the occupational ladder and have begun to perform jobs traditionally performed by

lower-skilled workers. This de-skilling process, in turn, results in high-skilled workers pushing low-

skilled workers even further down the occupational ladder and, to some degree, out of the labor

force all together. This process had been going on since 2000, but, as argued in earlier papers, the

housing boom between 2003 and 2006 masked some of the effects which only become fully apparent

after the financial crisis.

The contributions of this paper are twofold. First, we present a simple framework clarifying

why skilled-biased technological change can cause a boom and bust in the demand for cognitive

tasks. The key idea is that the IT revolution, and the revolution in organizational form that has

gone along with it, can be seen as a General Purpose Technology (GPT) and, like all GPTs before

1Throughout this paper, we will focus on three broad occupation groups that are based on the discussion in

Acemoglu and Autor (2011). Cognitive task occupations consist mainly of managers, professionals and technical

workers, and are seen as complementary to Information Technology capital and the organizational forms that go with

it. Routine tasks are mainly production and clerical workers, and are seen as easily replaced by the new technology.

Manual tasks are laborer and service occupations which require low skill but are not easily substituted for with IT

capital.
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it, it will eventually reach maturity. If the implementation of the GPT has a capital investment

form and cognitive tasks are a key component of the investment phase, under reasonable conditions,

demand for cognitive tasks will have an over-shooting property. During the key investment stage,

there will be high and growing demand for cognitive tasks to build the new capital, but once the

new capital is in place, cognitive task workers are only needed to maintain the new capital. At

this maturity stage, there will be greater demand for cognitive tasks than before the technological

revolution but we will see a reduction in demand for these tasks relative to the peak investment

stage. We argue that the turn of the century is that approximate turning point from the peak

investment to the maturity stage. Importantly, it is not the case that all innovation related to the

GPT needs to cease in the maturity stage for this model to fit the data patterns we describe; only

that it slow down. As an historical example, innovation related to electricity continued long after

the investments involved in building the spine of the national electrical system were completed.

In describing the adjustment process for this cycle, we exploit insights of the extensive task-

versus-skill literature (see Acemoglu and Autor (2011) for an overview) which emphasizes that

changes in task demands will affect workers across the entire labor market – not just those currently

performing these tasks – since workers will adapt to changing circumstances by redirecting the

supply of their skills to the other tasks they can perform. In particular, we are arguing that relative

to the 1990s, the post 2000 maturity era for the IT revolution is one where even the demand for

skilled workers is reduced. In this maturity stage, having a college degree is only partly about

obtaining access to high-paying managerial and technology jobs – it is also about beating out less

educated workers for barista and clerical-type jobs.

At first pass, the idea that the IT GPT reached a sort of maturity stage around 2000 may seem

surprising. The theory does fit with overall wage and employment patterns, but we also corroborate

it with two other pieces of evidence. First, we will show that investment in both IT equipment

and software showed sharp breaks in 2000, moving from previous periods of strong growth to either

declining or stagnant trends after 2000. Thus, there is reason to believe that something changed

with respect to IT implementation at the time of the tech-bubble crash and that the change has

persisted. Second, we investigate patterns of change within and across industrial sectors. In that

exercise, we find that the majority of the change in the cognitive task employment pattern between

the 1990s and 2000s happened within all industries (which fits with the idea of IT being a GPT).

At the same time, for college educated workers, the management services industry stands out as a

sector that underwent very substantial growth in employment in the 1990s and then decline in the

2000s. We show that if this sector alone had continued its 1990s growth pattern in the 2000s, then

the post-2000 decline in the proportion of young college workers employed in cognitive occupations

would not have happened. Since this sector includes both management services and computer

related services, its importance and pattern fits with idea of IT being a GPT that went through

an investment stage before 2000 and a maturity stage thereafter. Many industries working to

incorporate this new technology would have turned to consultants while putting the new technology

in place and those consultants would show up in the management services sector.
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Our second main contribution is that we provide a detailed picture of the changes in employ-

ment and wage patterns over the last thirty years with a particular focus on the reversal in the

growth in demand for more cognitive intensive occupations and the adjustment of more skilled

workers to this change. Importantly, we view this contribution as standing even if the reader is not

convinced about our specific story behind the cognitive task demand reversal.

The remaining sections of the paper are structured as follows. In section 1 we begin by

presenting some very broad labor market trends which highlight the salience of the year 2000 as an

important turning point in the US economy. Since 2000 is the year of the tech bust, this motivates

some of our modelling choices in Section 2. In that section, we present a simple dynamic model of

adjustment to new technological opportunities which creates a cycle in the demand for cognitive

tasks together with a continuous decline in the demand for routine tasks. During this process,

workers with different skills shift their supply of labor across tasks as a means of adapting to the

changes in demand. Since the model is highly stylized, at the end of the section we provide an

heuristic generalization which provides an general framework for exploring the empirical relevance of

our story. Section 3 looks at a large set of data patterns. In particular, we examine the employment

patterns in different sets of occupations, the assignment of workers of different skills to tasks, and

adjustment in wages. A key challenge in our empirical investigations will be to try to focus on skill

price changes by netting out changes in the composition of the labor force arising, for example, from

increased educational attainment in the population as a whole. We focus much of our attention

on wage adjustments of younger workers as we believe these best reflect current changes in market

forces. Section 4 concludes.

1. Aggregate Employment and Average Real Wages

1.1. Data

We begin our investigation by presenting some key labor market trends for the US. The data

we use for this (and the empirical exercises later in the paper) are drawn from the Outgoing

Rotation Group (ORG) Current Population Survey Supplements for the years 1979-2013. Following

Lemieux (2006), we use the hourly wage as our wage measure, weight observations by hours worked

in combination with the ORG weights, and do not use observations with allocated wages when

calculating wage statistics.2 Wages, hours of work and employment status refer to the week prior

to the survey week. We present annual values by averaging across all months in a calendar year.

For our employment rate constructs, we sum the number of respondents who report working in the

reference week over the calendar year and divide this by the sum of working age respondents in the

calender year. In doing so, we adjust the ORG weights such that the annual sum equals the size

of the US population for a particular group. In our main empirical work, we restrict the sample to

2The Data appendix provides additional information on our data processing.
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individuals aged 25-54 with positive potential work experience (i.e., with age - years of schooling -

5 > 0) to ensure that our patterns are not being driven by schooling decisions at the young end or

changes in retirement at the older end. In several instances, we will present results just for young

individuals, by which we mean individuals aged 25 to 35. We will also present some results broken

down into two education groups: College graduates, which includes all individuals with a college

or higher university degree; and high school graduates.

1.2. Wage and Employment Rate Patterns

In Figure 1 we plot the employment rate of individuals aged 25 to 54. We superimpose on

the figure an estimated linear trend allowing for one break. The pattern in the figure is quite clear

and rather well-known. The US employment rate increases substantially over the 1980s and 1990s,

apart from the downturn in the early 90s recession, and then this growth reverses around 2000

(testing for the single optimal break point actually indicates 1999 as the point of the break with

these data). The growth in the employment rate in the 1980s and part of the 1990s is dominated

by the trend increase in participation of women in the labor force. It is striking to note that the

reversal after 2000 was so strong that by 2010 the employment rate was back to a level close to

what was recorded in 1980. We interpret the graph as showing a trend break in 2000, and our goal

is to explore the nature and potential causes of that trend break. One could, alternatively, view

the graph as showing a relatively stationary series with a larger than normal boom peaking in 2000

and bracketed by two historically large recessions. Under our interpretation, the prognosis for the

immediate future is pessimistic, while under the second interpretation, we are just witnessing cycles

of varying amplitudes and one would predict a strong period of growth in the near to medium-run

future. Later in the paper, we will present investment series that we see as fitting with the trend

break interpretation but, of course, we have no way of being sure which forecast for the near future

is the right one.

In Figure 2 we plot the average real hourly wage for all workers against the employment

rate. We plot the post 1990 period to focus attention away (to some extent) from the role of the

increased labor force attachment of women. Based on this figure, it is not the employment rate

alone that changes after 2000, but the whole relationship between employment and wages. From

the end of the 1990s recession to 2000, both employment rates and real wages rose substantially.

But after 2000, the relationship changes direction, with employment rates falling while real wages

climbed. Even with the (somewhat small) improvements in the employment rate after 2011, real

wages remain over 7% higher than their levels in the early 1990s. Interestingly, the 2003-7 period

appears as what might be characterized as a stalling phase in the general pattern. This fits with

the analysis in Charles et al. (2012), who argue that the construction boom served to mask longer

run negative employment patterns for non-college men. In a simple demand and supply framework,

the post 2000 pattern would fit with an inward shift of the labor supply curve. While some authors

have suggested such a shift in response to enhanced UI benefits after 2008, we do not know of
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Fig. 1.— Employment Rate with Fitted Trend

a candidate explanation for why such a shift would have occurred starting in 2000. In the next

section, we present a theoretical model which can explain the post-2000 pattern without a supply

shift.

Plotting the same figure for men and women, separately, and for different education groups

(not shown here), we find the same general pattern with the same directional change in the wage-

employment relationship in about 2000 in each case. The main exception is for the high school

educated, where the employment rate follows the same pattern seen in Figure 2 but real wages fall

back to their early-90s level by 2013. The fact that the high school employment rate is 7 points

lower in 2013 than in 1996 (0.71 versus 0.78), even after real wages are back at the same level

suggests that there has been a structural change of some kind in the intervening years. At the

same time, the fact that the same general pattern is observed for men and women, and for the

highly educated suggests that the pattern in 2 is not being driven by easily observable shifts in

composition.
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While both the college graduates and high school educated groups show the same general

employment rate patterns, their movements are far from identical. In Figure 3 we plot the ratio of

the employment rate of high school educated workers to that of college educated workers. From this

we see that, prior to 2000, the employment ratio of the high school workers increased faster than

that of the college workers, while after 2000 we see the reverse. Thus, changes in the employment

rate of less educated workers play an important role in the employment rate patterns observed in

Figure 2.

The patterns in these first three figures motivate us to downplay the housing boom and bust

of 2003-2008 for understanding the current labor market situation and to focus, instead, on longer-

run trends. In particular, we want to ask: “What type of force could be driving these medium run

patterns in which employment and wages increase for at least a decade then switch direction with

employment falling but real wages staying high or rising?” We are interested, moreover, in whether

there is a force that could explain both the pre- and post-2000 patterns in a unified way. It would

always, of course, be possible to explain the patterns with different forces operating before and
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Fig. 3.— High School – College Employment Rate Ratio

after 2000 but such an approach would impose little discipline on our investigation and would still

call for an overall explanation for why the driving force changed in 2000.

Since 2000 was the year of the bust in the high-tech sector, forces related to the IT revolution

seem to have the potential to provide a unifying explanation. To investigate whether that might

be the case, we turn to plots of IT related investment in Figure 4. The panel (a) in the figure

corresponds to investment in information processing equipment and software as a ratio to GDP

for the US. With the exception of a slowdown in the late 1980s, the series shows a prolonged and

substantial increase between 1960 and 2000. After 2000, however, this broad IT investment rate

first jumps down then follows a declining path. The panel (b) focuses on the hardware part of this

pattern, containing a plot of the ratio of investment in computers to GDP. This series also shows

the increase to 2000 and the jump down immediately after the tech bust, with a more dramatic

decline in the ensuing years. Finally, in panel (c), we plot the ratio of investment in software to

GDP. In this case, there is no evidence of a post-2000 decline but there is a clear trend break in

2000, with the series being quite flat in the 2000s. We view these series as evidence that forces
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related to the IT revolution are a reasonable place to focus attention in looking for an explanation

for the 2000 break in the wage and employment series. In the next section, we present a model

based on that idea and turn, in the ensuing sections, to investigating the empirical implications of

that model.
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Fig. 4.— Investment in IT as a share of GDP

2. A model of boom and bust in the demand for cognitive tasks

The goal of this section is to show how a rather standard model of skill-biased technological

change, extended to include a dynamic adjustment process, can create a boom-bust cycle in the

demand for cognitive tasks along with a continuous decline in the demand for routine tasks. Our

aim will be to emphasize simple empirical implications of the model, which can then be readily

compared with data. While we will present some comparative static results, our main interest will

be in the transitional dynamics that arise after the initiation of a technological change. In this

sense, our approach is very much in the spirit of papers such as Welch (1970), Schultz (1975) and
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Bartel and Lichtenberg (1987) which emphasize the notion that skills are particularly important

during adjustment phases. In those papers, more educated entrepreneurs (where Schultz (1975)

defines this term quite broadly) imply more efficient uses of other inputs to production and more

effective adoption of new technologies. Similarly, in our model, cognitive skills are needed to get a

new technology working.

2.1. Basic Model

Consider an environment with three types of agents: highly educated individuals, less educated

individuals, and entrepreneurs who run firms. There is one consumption good which plays the role of

the numeraire. All individuals are risk neutral and discount the future at rate, ρ. The entrepreneurs

hire individuals to perform two distinct tasks. One task will be referred to as a cognitive task (or

cognitive occupation) and one as a routine task. Individuals can perform only one task at a time,

choosing where to supply their labor based on comparative advantage. The market for each task

is assumed to be competitive and to function in a Walrasian fashion. The production possibilities

available to the entrepreneur will vary over time to reflect technological change in favor of the more

cognitive task. Our main departure from the literature on skill-biased technological change will be

the way we assume the cognitive task affects production. In particular, instead of assuming that

these tasks only affect current production, we view them as building intangible capital for the firm

in the form of organizational capital denoted by Ωt. We refer to this as organizational capital in

order to emphasize recent changes that go beyond the direct use of computers in production. We

will show that this simple alteration leads to a model with a boom and bust in demand for the

cognitive task.

Defining Lct as the effective units of the cognitive task hired by the representative firm and Lrt
as the effective units of the routine task, we can represent the optimization problem faced by the

entrepreneur as choosing Lct and Lrt to maximize profits given by:

max
{Lc

t},{Lr
t }

∫ ∞
0

[F (Ωt, L
r
t , N, θt)− wctLct − wrtLrt ]expρtdt

s.t

Ω̇ = Lct − δΩ, (1)

where F (·) is the instantaneous production function of the consumption good, N is the entrepreneur’s

time endowment, θt is an technology parameter, δ is the depreciation rate of organizational capital,

wct is the price of an effective unit of cognitive skill and wrt is the price of an effective unit of routine

skill. The production function is assumed to be increasing in all its arguments, concave, and to

exhibit constant returns to scale with respect to Lc, Lr, and N . For simplicity, we will normalize

N = 1 and drop it from further notation. The law of motion for organizational capital, Ω, which

says that it is created with cognitive tasks and depreciates at a constant rate, will play a key role

in the insights gained from the model.
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We make two main assumptions regarding the production function. The first (which is standard

in the large literature on skill-biased technical change and polarization) is that the organizational

capital produced by cognitive tasks is a substitute for routine labor, that is, FΩ,Lr < 0. Second,

we assume that an increase in θ increases the productivity of the organizational capital produced

by the cognitive task, that is, FΩ,θ > 0. For simplicity, we also assume that θ has no direct

effect on the productivity of routine tasks, that is, FLr,θ = 0.3 Many examples of this type of

technology (including the use of computers in clerical workplaces) have been presented in discussions

of technological change and polarization starting at least as far back as Autor et al. (2003).

The first order conditions associated with this optimization are given by:

FLr(Ωt, L
r
t , N, θt) = wrt (2)

ẇct = (δ + ρ)wct − FΩ(Ωt, L
r
t , N, θt). (3)

The first condition indicates that units of the routine task should be hired up until their marginal

product is equal to their task price, while the second condition indicates that organizational capital

should be accumulated to the point where its marginal product is equal to its user cost inclusive of

capital gains or losses on the value of Ω (note that the shadow price of Ω is simply wct ). The two

conditions, (2) and (3), combined with the accumulation equation, Q̇ = Lct − δQ, implicitly define

the demands for cognitive and routine tasks as functions of their prices.

To complete the model we need to determine how the supplies of cognitive and routine tasks

respond to prices. This requires specifying the labor supply decisions of the the high- and low-

educated workers. The problem faced by these individuals will be virtually identical except for the

fact that the distribution of their relative productivities in the two tasks will differ. Let us begin

by considering the decision problem faced by a high-educated worker.

Assume there is a measure H of highly educated workers and each of these individuals has an

identifier ψ drawn from a uniform distribution defined over the unit interval [0, 1]. The identifier

ψ gives their productivity rank in cognitive tasks with a function, h(ψ), translating that rank into

effective units of cognitive skill. For convenience, we will define h(ψ) such that h′(ψ) ≤ 0, i.e., ψ

ranks individuals in decreasing order of productivity. Accordingly, if a high educated individual

indexed by ψ decides to supply her labor to the cognitive occupation, she will receive a wage,

h(ψ)wct . In contrast, we will assume that her productivity in routine tasks is independent of ψ

and is such that she would supply 1 + α effective units of the routine task, (where α > 0). This

implies that her wage payment if she supplied her labor to the routine task would be (1 + α) · wrt .
The individual also has the option of home production, where her labor can produce A units of the

consumption good. As will become clear, in equilibrium wrt will be greater or equal to A so that

highly educated workers will not choose to stay in the home sector. Thus, their optimal decision

3We could relax this last assumption and allow for a more general production technology. What we need is that

the main effect of technological change is to raise the productivity of Ω.
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will be characterized by a cut-off for ψ denoted ψ̄t and defined by:

wct · h(ψ̄t) = (1 + α) · wrt , (4)

with individuals having a ψ ≤ ψ̄t supplying their labor to cognitive tasks and those with ψ > ψ̄t
supplying their labor to the market for routine work.4

The decision problem for less educated workers is very similar. 5 There is a measure W of the

less educated workers, and each of these has an index φ drawn from a uniform distribution on [0, 1],

with g(φ) giving the effective units of cognitive skill of a less educated worker with rank φ. The

first difference between the more and less educated workers is that h(x) > g(x) for all x ∈ [0, 1];

that is, less educated workers of each rank generate fewer effective units of cognitive tasks. If a

less educated worker supplies his labor to routine tasks, he will receive a wage payment wrt since

we assume that his labor is equivalent to 1 effective unit of routine work independent of his rank,

φ. The fact that the effective labor of less educated workers is also lower in routine tasks is the

second difference that separates the two classes of workers.6 As with the more educated workers,

less educated workers produce A units of the consumption good if they choose home production.

As with the highly educated, the decision problem of the less educated workers is characterized by

a cut-off φ̄t, where all workers with φ ≤ φ̄t supply their labor to cognitive tasks. For both types of

workers, the proportion choosing the cognitive sector will increase if wct increases relative to wrt .

For workers with φ > φ̄t there are two possible equilibrium configurations. Either wrt > A and

they supply their labor to routine tasks, or wrt = A and they are indifferent between working at

routine tasks or staying at home. In the latter case, the division of labor between routine jobs and

home work (i.e., the employment rate) will be determined solely by demand. Because we want to

focus on a case where technological adjustment can change the economy’s employment rate, we will

assume that parameter values are such that the second (wrt = A) equilibrium holds. In this case,

the employment of routine tasks is implicitly determined by FLr(Ωt, L
r
t , N, θt) = A. We assume

that routine employment for less educated workers is this demand minus the amount of the routine

task supplied by more educated workers.7

4If ψ̄t ≥ 1, then all high-education workers supply their labor to cognitive occupations.

5In the appendix we provide complete details on the model and its solution.

6This could occur, for example, even if more educated workers are not more productive per unit time working at

a routine task but are more likely to show up to work on time each day.

7In order to guarantee that more educated worker have a comparative advantage in cognitive jobs, we assume that

b · (1 + α) < 1.
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2.2. Steady State Implications

We now turn to the question of how such an economy reacts to an increase in θ. In particular,

we want to highlight the dynamic properties of this model when, starting from a steady state with

constant θ, there is an improvement of θ over time which takes the shape of a diffusion process.

However, before looking at the dynamic properties, we want to highlight the difference between

an initial steady state with θ = θ0 and a later steady state with θ = θ1 > θ0. In doing this,

we want to emphasize that when looking only at steady state comparisons, the model maintains

the key features emphasized in the skill biased technological change literature. This is stated in

Proposition 1.

Proposition 1. The steady state effects of an increase in θ are:

– An increase in the employment rate in cognitive occupations and a decrease in the employment

rate in routine occupations.

– Skill upgrading in the sense that, for each education class, a greater fraction of individuals is

in cognitive occupations.

– The wage differential between more and less educated workers will increase as long as b is not

too big.8

Proposition 1 indicates that when comparing steady states, our model mimics implications

of existing models of skill biased technological change with endogenous occupational choice (See,

for example, Acemoglu and Autor (2011)). However, the addition of organizational capital to the

standard model does permit some extra steady state implications, as summarized in the following

proposition:

Proposition 1B If δ is sufficiently small, the steady state effects of an increase in θ are:

– The overall average wage increases,

– The overall employment rate decreases.

The intuition behind this proposition is that when δ is small, the fruits of cognitive employment

act like a capital stock. With more organizational capital being used in the higher θ steady state,

more cognitive tasks are needed to offset depreciation. This, in turn, implies more workers in the

8 In this model it is possible for an increase in θ to reduce the differential between more and less educated

workers. This arises when the technological change pushes a sufficiently large number of the lowest paid less educated

individuals out of market employment, leaving mainly the lower educated workers employed in relatively high paying

cognitive jobs. However, this will not arise if b is sufficiently small.
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high wage, cognitive occupation and, thus, a higher overall average wage. However, with more

organizational capital in the new regime, there is also lower demand for routine tasks and if the

number of added workers needed to service the new organizational capital is not too large (i.e.,

if δ is small) then the net effect is a reduction in demand for labor overall, and a reduction in

the employment rate. This fits with the long run pattern shown in our first set of figures, with a

decrease in the employment rate and an increase in the average wage between the early 1990s and

the late 2000s. While at first pass, such a pattern may seem to require a inward shift of a labor

supply curve, our model suggests it could be the result of technological change. To explore the

relevance of such a possibility, we now examine the model’s dynamic implications.

2.3. Dynamics

The new insights of our model come from its dynamic implications for an economy adjusting

to the diffusion of technological knowledge. For simplicity, we take an extreme form of a diffusion

process whereby at time 0 the economy is in a steady state with θ = θ0, and then all the agents in

the economy learn that θ will increase to θ1 > θ0 at time τ . Thus, the diffusion process used here

is a step function, which allows for an easy characterization of the problem. The results extend

easily to a more gradual process, including one where diffusion is first rapid then slows down as the

technology gradually reaches maturity.

To analyze this dynamic system, we can either examine the issue numerically, take a linear

approximation of the system, or adopt simple functional forms. In the appendix, we provide

theoretical results based on specific functional forms. This permits analytic solutions which clarify

insights into the main model implications.

The dynamics in the model involve an initial stage where the employment of cognitive skills

increase followed by a period of decrease. Throughout this process, Ωt increases and the employment

of routine skills decrease. The turning point for cognitive skill employment is at time t = τ where

the technology becomes fully operational.9 We present the implications for the economy in two

propositions, with Proposition 2 containing the implications during the period when cognitive task

employment is increasing and Proposition 3 corresponding to the period when it is decreasing.10

Proposition 2. Upon learning of the diffusion process for technology, the economy will initially

go through a stage where:

– The average employment rate and, by implication, the employment rate of less educated

workers, will increase.

9Note that these dynamics mimic those associated with a standard Q-theory of investment with an anticipated

shock.

10Here we do not need to assume that b and α are small.
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– The average wage will increase, as will the average wage of each educational class.

– There will be skill upgrading in the sense that the fraction of employment in cognitive jobs

of both education groups will increase.

Proposition 2 indicates that the arrival of the new technological opportunities will lead to an

initial period where the economy can be unambiguously described as a going through a boom.

In particular, the economy will initially experience increased employment and wages, and this is

beneficial to both types of workers. Intuitively, during the boom period there is increasing demand

for cognitive tasks in order to build the organizational capital that will allow the economy to

take full advantage of the technological change. This will generate increases in the cognitive task

price, wct , which will draw both high- and low-education workers into cognitive occupations. This,

in turn, puts pressure on the routine task market that draws more individuals out of the home

production sector, raising the employment rate. It is this technology implementation stage that is

most reminiscent of the models in Welch (1970) and Schultz (1975).

However, as the next proposition indicates, this boom will eventually be followed by a bust

period. It is this subsequent bust period induced by the process of technology adoption which is

the key insight of the model.11

Proposition 3. Due to the diffusion of the new technology, the economy will eventually go into

a bust phase (which will last until the new steady state is attained) with the following properties

(expressed relative to the boom period):

– A decrease in the aggregate employment rate including a decrease in the employment rate of

both cognitive and routine occupations.

– Skill degrading in the sense that, for each education class, a lower fraction of individuals is

employed in cognitive occupations.

– For less educated workers, there is also a reduction in the fraction of individuals in routine

tasks and an increase in non-employment.

– Even during the bust, there are continued increases in returns for the entrepreneurial class.

Although technological change in the model has only positive impacts on the productivity of

cognitive tasks, Proposition 3 states that this change eventually leads to a period characterized by

a decreasing path for the cognitive task employment rate. This arises because cognitive tasks are

modelled as creating a stock of organizational capital for the firm. Hence, there is an initial period

when firms want to hire cognitive task workers to increase the stock of this capital, but eventually,

11There are several models in the literature which suggest that skill biased technological change can create an initial

bust period (e.g., Carlaw and Lipsey (2002)), but seldom do they predict a later bust period.
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when the stock is sufficiently large, there is less need for cognitive employment as it is only required

to offset depreciation. If δ happens to be very close to zero, then the change in employment in

cognitive tasks induced by a change in θ would be essentially an entirely temporary phenomena.

Once the economy enters into the period of declining cognitive task employment, it is clearly in

a bust period as it is also the case that employment in routine tasks continues to be replaced by

the improved organizational capital. One group continues to do well throughout the two phases,

though: the entrepreneurs. They are the ones reaping the benefit of the technological advance,

fitting in a broad way with the pattern of larger shares of income going to the top 1%.

It is interesting to highlight the skill downgrading process and its crowding out effect of the

employment of low-educated workers during the bust period. The reduction in demand for cognitive

jobs during this period implies that high-educated workers switch, in part, to accepting routine jobs.

This movement of high-educated workers into the less skilled occupations amplifies the push of less

educated workers toward non-employment. In fact, less educated workers move out of cognitive

jobs because of the decrease in demand for those tasks, and they move out of routine jobs both

because of decreased demand and because of increased supply to those jobs by the higher educated

individuals. In this sense, employment has what we think of as a cascading nature, with more

skilled workers flowing down the occupation structure and pushing less skilled workers even further

down. Hence, even though the major change in the bust period relative to the boom period is the

shift in the demand for cognitive jobs, non-employment increases among the less-educated as this

is the main escape valve for the labor market.

Because of some of the stark assumptions we use in the model, its implications for wages are

more stylized than those for quantities. In particular, it can easily be verified that the average wage

for each education-occupation grouping is actually a constant in this model.12 For the routine occu-

pations this is not surprising since wages are pinned down by the value of home production, which

is a constant by assumption. For the cognitive occupation this may be somewhat more surprising

since the price of effective units of cognitive skill goes though an identical boom-bust cycle to that

of employment in cognitive occupations. However, selection acts to de-couple movements in the

skill price from movements in the observed average wage in cognitive occupations. When the price

of effective units goes up, marginally less productive individuals enter these occupations, bringing

down the average observed wage. Given the functional forms assumed for task-generation functions,

these two effects cancel each other out, leaving average wages within occupation-education classes

constant. Thus, the model’s insights for occupational average wages is limited, and one needs to

focus either on trying to obtain estimates of skill price movements by controlling for selection or on

average wages for skill groups. For groups defined by skill, selection is assumed not to be an issue

and thus wage implications can be examined directly.

With these selection forces in mind, it is interesting to consider how the average wage for the

12For example, the average wage for high educated workers in the cognitive occupation is 2A(1 + α), while for the

lower educated individuals in the same occupation it is simply 2A.
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whole economy behaves during the bust period.13 On the one hand, during this period there is a

movement away from the high-paying cognitive jobs to the low-paying routine jobs, and this should

depress the average wage. However, at the same time, less educated workers are leaving the labor

force to non-employment, and since the departing individuals had the lowest wages, this tends to

increase the overall average wage. Hence, the bust in this model – although it is spread widely

across the economy – can be consistent with an average wage that looks rather unresponsive to the

decline in employment.

To illustrate this latter fact, Figure 5 plots the joint movement of the average wage and

the employment rate for a simple parametrization of the model.14 As can be seen in the figure,

the employment rate and the average wage initially increase and then there is a reversal with the

employment decreasing but the average wage actually increasing slightly. While this figure should be

taken only as illustrative since the parameters are chosen arbitrarily, it does convey that this model

can qualitatively replicate the pattern reported in Figure 2, with the boom period corresponding

to the 1990s and the bust period being the 2000s. The model implies that the muted movements

in the overall average wage in the 2000s are a reflection of selection. Proposition 1B states that if

δ is sufficiently small then the process will converge to a point where the employment rate is lower

and the average wage higher than the point of departure, which fits with the long term differences

in Figure 2. Thus, the model provides a unified explanation for the wage and employment patterns

in the 1990s and 2000s with only one driving force. In contrast, an explanation built from a simple

demand and supply model would require both positive movements in demand in the 1990s and

negative supply shifts in the 2000s. Our model avoids the need to invoke unexplained labor supply

disturbances to understand the patterns.

2.4. Introducing Manual Tasks

The model presented to this point is useful in terms of providing a way to organize our thoughts

about empirical patterns (e.g., highlighting difficulties in interpreting average occupational wages)

but it is also highly stylized. In particular, it is overly simplified in including only two types of tasks

13Proposition 1 already indicated that it will initially increase during the boom period.

14Figure is generated from a discrete-time version of the model. The production function is given by F (Ω, Lr, θ) =

α1Q+α2L
r−α3QL

r−α4Q
2−α5 (Lr)2 +α6θQ, with parametrization (α1, α2, α3, α4, α5, α6) = (2, 4.3, 1.1, 0.4, 1.2, 1).

The firm’s discount factor is β = 0.95, and the depreciation rate on organizational capital is δ = 0.1. A highly

educated individual of rank ψ ∈ [0, 1] working in the cognitive sector supplies h (ψ) = aψ−1/2 efficiency units of

labor, while a less-educated individual of rank φ ∈ [0, 1] supplies g (φ) = bφ−1/2 efficiency units of labor, where we set

a = 0.15 and b = 0.1. In the routine sector, highly educated and less-educated workers supply 1 + α and 1 effective

units of labor, respectively, where α = 0.05. All workers produce A = 1 units of output per unit of labor in the home

sector. There are total measures µH = 0.7 and µL = 1 of highly educated and less-educated workers, respectively.

The Figure plots the response of the economy to shocks to θ as follows: at t = 0, the economy is in steady state with

θ0 = 0.2. At t = 1, agents learn that at t = 10, θ will increase to θ1 = 0.3 and remain at that level thereafter.
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Fig. 5.— Employment Dynamics from a Simulated Model

(Cognitive and Routine). The characterization of production in what might be seen as the goods

producing sector as just using these two types of tasks is common in the polarization literature

(e.g., Autor and Dorn (2013)). The lower paid service sector (which employs non-routine manual

tasks) is then added on by, for example, having utility being a function of both goods and services.

We left the service sector out of our model because we do not have anything to add to what the

existing literature has found for these jobs in the 1990s and including it in the model would not

have changed the conclusions about the cognitive and routine sectors but would have made the

model too cumbersome to provide clean insights into what we see as a new point: the demand

reversal for cognitive tasks.

Including a manual, non-routine (i.e., service) sector in our discussion leads to the following

heuristic description of the impact of the technological revolution. In the boom period (the 1990s),

there is shift out in the demand curve for cognitive tasks. In our model, this happens because firms
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are building organizational capital to take advantage of the technical change. The resulting rise in

the cognitive task price implies a move up the supply curve for these tasks. At the same time, in

the market for routine tasks there is both a shift down in demand (since the technical change is

biased against such tasks) and a shift back in supply as workers are drawn up into the cognitive

task market. Again, both of these would be found in standard polarization models, though the

supply shift tends not to be emphasized. Taken together, we expect to see a rise in employment

and the skill price for cognitive tasks and a decline in employment and possibly the skill price for

routine tasks.15

We follow Autor and Dorn (2013) in viewing manual tasks as directly providing a service

good to households. In the boom phase, the demand for such services is likely to increase (i.e.,

the demand curve shifts out) because of increased demand for services coming from segments of

the population that are becoming richer. Given that demand is increasing for cognitive tasks and

decreasing for routine tasks during the boom phase, the net effect on the supply of workers to

manual occupations is unclear. If the net effect is small, the increased demand for manual work

implies the price of these tasks will rise. This, in turn, would favor the movement of people from

the household sector to the manual task sector. Thus, this simple extension of the model captures

a polarization of jobs during the boom phase with employment and the task price increasing in

both the cognitive and manual sectors.

In the bust phase (the 2000s), the demand curve for cognitive tasks shifts down relative to

the 1990s as the demand for cognitive workers to implement the new technology dissipates. In the

routine sector, the technological change continues to shift the demand curve downward while the

supply curve shifts out because the falling skill price in the cognitive sector induces workers (who

are predominantly high educated) to shift toward other sectors. The result is a clear implication

in terms of a falling routine task price and falling employment if the demand shift is stronger than

the supply shift. With skill prices falling in both the cognitive and routine sectors, more skilled

workers move down the occupation ladder. This de-skilling process will tend to increase the supply

of workers to the manual task sector thereby putting downward pressure on the task price in that

sector. With a depressed price now in all three task markets, this will also tend to push the least

skilled individuals out of the market altogether and into the home sector. The net result in the bust

phase for this extended version of the model is decreased employment in both the cognitive sectors

and the routine sector, increased employment in the manual sector, and decreased employment

rates as the least skilled leave the market. In the cognitive task sector, we would expect to see a

falling skill price along with declining employment, as fits with a decline in demand. In comparison,

in the manual sector, we expect to see movements that fit with an outward shift in supply: more

employment but lower skill prices. This contrasts with the evidence of a positive shift in demand

15 As we emphasized earlier, it is important to bear in mind that the price of the task is not generally equivalent

to the observed wage in a sector since wage payments are a combination of the price of the task and the number of

efficiency units of the person performing the task.
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in this sector in the 1990s documented by Autor and co-authors. Finally, in the routine sector, the

combination of supply and demand shifts make implications somewhat less clear, but we expect

to see a decline in the skill price and a decline in employment. Whether driven by our specific

mechanism or not, the key points are: a) that a period of increased demand for cognitive tasks

was followed by a period of declining demand; b) that this has generated first a drawing of workers

up the occupational skill ladder (and into the labor market in general) and then a cascading of

workers down the skill ladder (and out of the labor market for some); and c) that together these

movements can explain the patterns in our initial figures as being driven ultimately by the reversal

in the cognitive task market. We investigate these broad patterns empirically in the next section.

Finally, it is interesting to consider the relative sizes of the declines in the skill prices in

the three sectors during the bust phase. It is not uncommon to depict the routine sector as an

imperfectly competitive sector (perhaps because of unions) with workers being paid above market

clearing wages. In that case, the workers entering the manual job sector in the bust phase would

not be indifferent between manual and routine jobs, and we would expect to see relatively larger

declines in manual occupation wages.

3. Patterns of Employment, Skill Upgrading and Task Prices

In this section we use data from the US Current Population Survey (CPS) from 1980-2013 to

document three sets of labor market patterns which we argue support the simple boom-bust model

of technological change we outlined in Section 2. We begin by examining aggregate changes in

employment across occupations, focusing on differences between the 1990s and the 2000s. Then we

turn to the changes in the distribution of workers across occupations, conditioning on worker skill.

Finally, we report wage patterns. Our goal is to explore the extent to which these data are broadly

consistent with the extended version of the model. In summary, we see the model (including the

extension incorporating the manual sector) as predicting the following key patterns:

1. During an initial boom phase, we should observe an increase in employment in cognitive and

possibly in manual tasks, with an increase in the price of both these tasks. We should witness

a decrease in employment in routine tasks and a likely exit out of the home sector (i.e., an

increase in the overall employment rate). This process should generally be associated with

occupational up-grading for individuals of all skill levels.

2. During the later bust phase, we should observe a decrease in the price of all three tasks. For

cognitive and routine tasks we should observe a reduction in employment, while there would

be increased employment in manual tasks and a flow into the home sector. Throughout this

phase of the process, we should observe task down-grading for individuals in both high and

low education groups.
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3.1. Occupational Employment Patterns

In order to document the employment patterns of job categories captured by the model, we

group occupations into three broad categories based on the types of tasks predominantly performed

within them. The categorization follows that in Acemoglu and Autor (2011) and Autor and Dorn

(2013) and consists of: 1) cognitive, non-routine task occupations, including managerial, profes-

sional and technical occupations; 2) routine task occupations, which include clerical and office jobs,

sales and production occupations; and 3) manual, non-routine task occupations, which include la-

borers, transportation, farming, and household service occupations. In what follows, we refer to

these three occupation groups by their respective predominant task usage.

In Figure 6 we plot the employment rate of individuals aged 25-54 employed in occupations that

require substantial cognitive skills for each year from 1980 through 2013. The employment rate in

the figure is calculated as the total hours worked in cognitive jobs over the size of the workforce and

represented as the log-change from 1980. This ratio increased substantially between 1980 and 2000,

as one would expect given all the attention that has been paid to skill biased demand shifts. But,

remarkably, the ratio flattens after 2000. In the same figure, we also plot the growth what could

loosely be called a (per capita) supply index for cognitive occupations. This index is constructed

from a counterfactual exercise. In particular, changes in occupational employment rates could come

about through changes in the occupation structure or from composition changes. We perform a

simple reweighting exercise that holds the composition of educational attainment, age, and gender

constant overtime. Using these weights, we recalculate counterfactual occupational employment

rates holding constant the composition of the workforce. We interpret the difference between the

observed and counterfactual employment rates as a supply index, and plot the percentage growth

in this index from 1980. It rises strongly over time because of increased education levels in the

labor force (among other reasons). Essentially, it says that given the rise in education levels and

given the occupations that more educated people tended to work in during the base year (1980),

one would predict an increasing proportion of the labor force would see itself as suited to cognitive

task jobs.

There are two key features of Figure 6 that we wish to highlight. First, from 1980 to about

2000, employment in cognitive jobs grew faster than the supply index, suggesting that demand for

cognitive tasks outstripped supply. In contrast, after 2000, the supply index continued to grow

at a similar rate as in the pre-2000 period, but cognitive employment stalled. We interpret these

trends as suggesting that demand for cognitive jobs likely decreased over this second period since

in a simple demand and supply framework, for overall employment to stay constant in the face of

increased supply would require a shift down in demand. This constitutes a first piece of evidence

suggesting an important reversal in the demand for cognitive tasks beginning in the year 2000.

It is interesting to consider the compositional underpinnings of the post-2000 slowdown in cog-

nitive occupational growth. To that end, in Figure 7, we plot changes in the cognitive employment

rate from 1980 for high school graduates (panel (a)) and those with a college or higher degree
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Fig. 6.— Cognitive Employment Rate and Supply Index

(panel (b)), separately, and show the movements in occupational sub-groups. Overall, employment

in cognitive task jobs relative to the population for high school graduates continued to increase

until 2004, trending sharply downward after that point. For the university educated, the decrease

occurred starting in 2000. For the high school graduates, the rise and fall are larger (notice the

y-axes labels) and are almost entirely accounted for by employment in management occupations.

For the university educated, management also plays an important role in the overall pattern but

the Math, Science and Engineering category also exhibits a pattern of growth to 2000 followed by

decline or stagnation.

In Panel (a) of Figure 8, we plot the log-change in the employment rate and supply index for

routine (i.e., production and clerical) occupations. The employment pattern follows the observation

in Siu and Jaimovich (2012) that the decline in routine task employment since the 1980s in the US

occurred in a ratcheting pattern with declines in recessions that are not recouped in subsequent

booms. The supply index indicates that as education levels rose, the proportion of people who

we would expect to occupy routine task jobs declined. This decline essentially matched the fall
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Fig. 7.— Employment Rates for Cognitive Occupations

in employment up to 2000, suggesting that demand and supply in these occupations were falling

at a similar pace. But after 2000, employment fell dramatically. Our model does not necessarily

predict this sharp drop since it implies a combination of a drop in demand and an increase in supply

as workers exit the cognitive sector. Instead, the timing may fit with a combination of technical

change forces and the impact of increased Chinese imports emphasized in Autor et al. (2013).
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Fig. 8.— Employment Rates and Supply Index: Routine and Manual Occupations

Finally, in Panel (b) of Figure 8, we consider manual jobs. Employment in these occupations

grew steadily, if slowly, throughout the period, with a surge upward in the early 2000s. In contrast,

the proportion of people one would predict to be in these jobs declined strongly over time as edu-

cation levels rose. Our model implies that the increase in employment in these service occupations

relative to the supply of less educated workers reflects a demand shift in favor of these occupations

before 2000 but a supply shift as more educated workers moved into these occupations after 2000.

If this is true, we would expect to see an increase in service sector wages before 2000 but a decline

after 2000. We return to this point in our consideration of wages, later.
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One drawback of the approach we have taken so far is that it involves a somewhat artificial

division of occupations into a small number of groups. But occupations typically combine different

types of tasks, implying that the classification should be much more continuous. To examine the

robustness of the above patterns to a more continuous classification, we adopt a version of Autor

et al. (2006)’s methodology in which we rank occupations by their mean wage in 1980 then group

occupations together into 100 categories that correspond to percentiles of employment. This is

intended to represent a ranking of occupations by a measure of skill (the log-average wage). We

then calculate the change in the share of total hours worked in the economy for each percentile and

fit a smoothed line through these data to get a measure of employment growth for jobs at different

percentiles of the occupational skill distribution.16 Each year of data in the figure actually represents

two adjacent years that we pool together to reduce noise. Figure 9 contains the resulting smoothed

employment growth changes for the periods 1980-1990, 1990-2000, 2000-2007, 2000-2010.17

A few key patterns stand out from this figure. For the decades prior to 2000, employment

growth occurs disproportionately in occupations with base-period wages above the median. Given

that high-wage occupations tend to be more strongly associated with cognitive tasks and with

higher skills, this pattern fits well with theories of skill-biased demand shifts. It is also noteworthy

that the changes become non-monotonic in the 1990s, with occupations in the bottom decile of the

wage distribution growing relative to those between about the 20th and 40th percentiles. This is

the source of Autor et al. (2006)’s argument that technological change became polarizing in the

1990s in the US.

What is perhaps most striking, though, is the change in the shape of the curve after 2000.

The relative growth of the lowest percentile occupations becomes very strong after 2000. This is a

point emphasized by Acemoglu and Autor (2011) in a figure that is extremely similar to the one

presented here. But just as striking is the evaporation of relative growth in the top percentiles.

Acemoglu and Autor (2011) note this change in passing but do not emphasize it. We, in contrast,

believe this change could be key to understanding the overall shifts emphasized in Section 1. In the

figures, we report changes for the period 2000-2007 and 2000-2010 in order to clarify the role of the

financial crisis, and subsequent adjustments, on the patterns we are emphasizing. A comparison

of these lines indicates that the post-2000 shifts in the occupation structure are not driven by the

post-financial crisis period as the data give a similar picture when examining the 2000-2007 or

2000-2010 periods. Thus, we see a dominant feature of this figure being the evaporation of the

growth in employment in top paying jobs after 2000. We see this as implying a‘great reversal’ in

the demand for cognitive tasks. Later, we argue that the wage patterns are supportive of the notion

16A key challenge in constructing these figures is to obtain consistent occupational categories across time. In the

Data Appendix, we provide the details on how we constructed those categories and on robustness check exercises.

17Since this figure relates to the share of hours worked in the economy, it is unclear whether the plotted changes

correspond to net increases or decreases in employment. In the appendix we therefore report a similar figure calculated

for changes in employment rates instead of employment shares.
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Fig. 9.— Smoothed Changes in Employment by Occupation: 1980-2010

of such a reversal.

3.2. Skill Upgrading and Downgrading

In the previous section, we presented evidence suggesting that the demand for cognitive task

skills reversed after 2000. Our model fits with this pattern but also includes the prediction that

workers in all education groups will move into cognitive task occupations and out of them in the

2000s. Moreover, we hypothesized that this will follow a “cascading” pattern in which the most

educated will move into lower paying routine and manual jobs after 2000, pushing the less educated

to even lower paying jobs and/or out of the labour market. We already saw evidence of the in

and out nature of the flows to cognitive occupations for both high school and university educated

workers in Figure 7. We pursue this further, and show patterns for the other occupation groups,

using an alternate measure in Figure 10. Panel (a) in this figure contains plots of indexes of average

cognitive task intensity of employment for high school and university graduates.
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(b) Average Routine Task
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(c) Average Manual Task College workers High School

Fig. 10.— Occupation Task Content. Left scale refers to college graduates and right scale to high

school graudates.

To construct the index, we first assign to each 3-digit occupation the average of the scores for

cognitive tasks for that occupation from the Dictionary of Occupation Titles (DOT). We define

cognitive tasks as the non-routine analytic and interactive tasks used in Autor et al. (2003) in their

examination of the skill content of jobs. We then get the overall index value for a year by taking

the weighted average of these occupation specific scores, where the weights are the proportion of

employed people in each occupation. Thus, movements in the index reflect movements in college

educated workers across occupations. Since this index takes account of the cognitive content of all

possible occupations, it provides a more general measure of engagement with cognitive tasks than

the approach in the last section of focussing on a subset of occupations. We normalize the index to

equal one in 1990 so that movements in it can be interpreted as changes in average cognitive task

usage relative to that year. The remaining panels contain plots of indexes constructed in the same

way for routine and manual tasks.18

18We use data on the content of five different tasks for occupations coded at the 1980/90 Census Occupation Code

level from Autor et al. (2003). We use these data to calculate three task measures that are closely related to measured

used in Autor et al. (2003). First, we calculate a Cognitive Task measure by using the DOT codes GED Math, which

measures general education development in mathematics and measured on a scale where a higher number indicates
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For college educated workers, this set of graphs indicates a movement into occupations with

greater cognitive task content in the 1990s and a move out in the 2000s. This matches what we saw

earlier in terms of the subset of high cognitive task content jobs. Offsetting this was a movement

out of routine (largely clerical) and manual task jobs before 2000. After 2000, college educated

workers moved back into both routine and manual intensive occupations. The routine movement

is particularly interesting since it is the opposite of the long term trend out of these types of

occupations that can be seen in the high school grads data. For the latter group, the dominant

pattern is a movement out of routine production and clerical occupations and into service/manual

occupations. They also move into and then out of cognitive task occupations, but the latter are

never represent a large proportion of employment for this group.

To obtain a more detailed view of the occupational shifting by different education groups,

in Figure 11 we plot smoothed decadal changes in employment shares for occupations ranked by

their average wage in 1990, in a manner similar to Autor et al. (2006)’s investigation of changes

in the occupation structure. We do this separately for high school and college graduates. Occupa-

tional shares are constructed by calculating the share of hours worked in an occupation for a given

group. Taking the difference in occupational shares over time, when the occupations are ranked

by their average wage in 1990, indicates whether a given education group has shifted employment

systematically in terms of occupations ranked by wage. For the high school graduates, the 1980s

reflects a loss of middle-paying occupation jobs being offset by an increasing number of low-paying

occupations jobs. In the 1990s, this pattern is muted, with less job loss in the middle, less gain

at the bottom end, and some increase in employment in top-paying occupations. From 2000 to

2010, however, there is a loss in employment over a broad range of middle- and high-paying oc-

cupations with an offsetting growth in the bottom three deciles. This fits broadly with a picture

of improvements in the middle and top in the 1990s versus the 1980s being more than offset with

losses in the 2000s, which matches the model predictions. Even more striking, are the patterns for

the college workers. For this group, both the 1980s and 1990s show a clear pattern of movement out

of middle-and low-paying occupations and into high-paying occupations. After 2000, the pattern

reverses, with declines in top-paying occupations and growth in the lowest-paying sectors. This fits

with our model of a long term growth in employment in cognitive occupations offset by a reversal

more complex math skills are required for an occupation, and DCP, which measures adaptability or responsibility

of decision, control and planning of an activity. Our cognitive task measure is cog task = (GED + DCP)/2 at the

disaggregated occupation level. When we compute this measure for more aggregated occupation categories, we take a

weighted average of this measure where the weights are the proportion of hours worked in each occupation. Similarly,

we calculate a measure of routine task intensity by using the codes STS and finger, which measure the extent that an

occupation requires the use of “set limits, standards or tolerances” and “finger dexterity”, and are argued to capture

occupational activities which are routine and can be replaced by computing technology. Finally, we use the measure

EHF which measures “Eye, hand, and foot coordination” as a measure for manual task intensity. Cognitive task

occupations we use are based on Acemoglu and Autor (2011) and include Management, Professional and Technical

occupations, and, as a group, have a cog task measure is larger than the routine or manual occupations. More detail

is given in the Data Appendx.
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of this trend after 2000.
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 (b) College graduates  

Fig. 11.— Smoothed Employment Changes by Skill Quartile: Young Workers

We provide further evidence on the occupation and wage experiences of cohorts of new college

graduates in our paper, Beaudry et al. (2014). There, we show that the proportion of new graduates

starting out in manual and professional jobs grew by over 10 percentage points between the early

1990s and 2000. But this was completely reversed by the time the 2010 graduates enter the labor

market. For all cohorts, one can observe a pattern where at least a third of new graduates start out

in manual or routine jobs and then a portion of them move into cognitive task occupations with

time. The rate at which this latter movement occurred slowed down substantially in the 2000’s

relative to the 1990s. Thus, new college graduates are have become increasingly less likely to start

out in a management or professional job and more likely to be trapped in service or routine jobs.

These patterns are reminiscent of the literature on the effects of graduating in a recession.

Using Canadian data, Oreopoulos (2012) show that university educated workers who graduate in

a recession have lower initial earnings and take approximately 10 years to catch back up to the

earnings of luckier cohorts that do not graduate in a recession. Similarly, Kahn (2010) and Altonji

et al. (2013) show significant effects of graduating in a recession in the US, with some of the

initial difficulties being related to starting out in lower paying/lower prestige occupations. The

patterns that we document can similarly be construed as reflecting reduced access to higher paying

occupations during periods of reduced demand for labor. This brings us back to the earlier question

of whether the reduction in labor demand after 2000 can be seen as essentially cyclical in nature

versus reflecting a structural shift. We view results such as those in Figure 11 for college workers,

in which the pattern of changes in the occupational density in the 1980s and 1990s is completely

reversed after 2000, as fitting with the structural shift view, though we obviously cannot prove this.

Only time will tell whether the reduced demand for labor continues or reverses once again.

Together, we view Figures 10 and 11 as providing a consistent picture of shifts in occupational

employment for college and high school graduates. In particular, these figures document that

over the 1990s there was a shift in employment that is characterized by skill-upgrading of college



– 29 –

workers. In the post-2000 period, however, the shifts in employment for both groups of workers

can be characterized as one of skill-downgrading, with those shifts having started well before the

2007 financial crisis.

3.3. Wage Patterns

The narrative that we advance suggests that the decrease in cognitive tasks in the post-2000

period is due to a reduction in demand. If this is the case, we should observe an accompanying

decrease in the price of cognitive tasks. On the other hand, we also observe a shift in employment

toward jobs utilizing manual tasks. Our interpretation of the data suggests that this shift is mainly

driven by a supply channel; that is, we argue that this shift is the result of high-skilled individuals

taking lower skilled jobs due to the decline in demand for both routine and cognitive tasks. As

such, this outward shift in supply should place downward pressure on the price of manual tasks.

The difficulty we face in examining these issues is that these patterns should properly be seen as

referring to task prices for the three tasks emphasized in the model: cognitive, routine, and manual.

We observe the wage paid to workers in different occupations, but, as the model suggests, these

wages will not in general reflect the task price. The reason is that the wage paid to an individual

employed in a given occupation will reflect the the number of effective units of skill embodied in

the individual multiplied by the skill price. As task prices change, so too will the composition of

individuals across occupations. The selection mechanism, as parametrized in the model, implies

that changes in the price of the cognitive task would not be reflected in changes in the average

wage in cognitive jobs. While we do not take this parametrization seriously, we do believe that

selection is relevant over this period, and this makes inferences about task prices from observed

wage movements difficult.

To illustrate the potential importance of selection of individuals across occupations over time,

in Figure 12 we plot two alternative measures of the average wage paid in cognitive (panel (a)),

routine (panel (b)) and manual (panel (c)) jobs. The first measure, represented by the dark line

in each of the figures, corresponds to the simple, observed average wage paid in each occupation.

The second measure, represented by the dashed line in each figure, calculates the average wage in

each occupation while holding the composition of education, age and gender constant at their 1980

levels. When focusing on the 2000-2010 period, the average wage for each of the three occupation

groups increases substantially. From this perspective, it would not appear that the prices for any of

these tasks had declined. However, when we control for changes in the observable characteristics of

the individuals in each of these occupations, we get a very different picture. Composition adjusted

changes in real wages over the period are close to zero for each group. For example, the real wage

growth over 2000-2010 for wages in cognitive occupations is 6% in the raw data and about 2% when

adjusted for observable. Similarly, for manual tasks the growth in real wages is close to 6% in the

raw data and close to 1% in the adjusted data over the same period.
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Fig. 12.— Average Wage by Occupation: Actual and Fixed Weight

We take two points from these figures. First, the cognitive wage follows a pattern much like

cognitive employment, with strong growth in the 1990s followed by little or no growth after 2000.

Similarly, routine and manual wages stop growing and start declining in the early 2000’s. These

wage patterns emerge well before the 2008 recession. Second, the fact that the difference between

the observed wage lines and the composition constant wage lines increased after 2000 indicates that

the skill composition in terms of observable measures (experience and education) increased within

each occupation. This fits with the earlier observations that high school workers moved out of

cognitive task jobs and college workers moved down the occupation ladder after 2000. If, as seems

plausible, selection on unobservables moved in the same direction as the observable characteristics

change then the implication is that the actual task prices declined after 2000. This would fit with

the model implications that decreased demand for cognitive occupations drove the cognitive task

price down after 2000 and increased supply drove down the manual task price.

In Figure z, we present differences in wages at each percentile of the wage distribution for both

young (age 25 to 34) and older (age 35 and above) workers, broken down by education. If we are

willing to assume that workers maintain their relative rank in the wage distribution within their

age x education group over time then the shifts in percentiles in these figures are a step closer to

controlling for both unobservable and observable skills. In that context, it is interesting to note
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that for young workers in both education groups, the 2000s correspond to a period of wage decline

(with the declines being larger if we include the post-2008 recession years) while the 1990s wage

changes were positive or zero across all percentiles. For older workers, the 2000s again corresponds

to a shift down in the wage change line relative to the 1990s line at all percentiles, though for

older college workers the changes are not negative across most percentiles. We view the plots

for younger workers as more closely corresponding to the types of wage movements that allow us

to understand the impacts of technology changes since wage patterns for older workers are more

affected by implicit contracts, etc.. Given that, we view this as evidence that the key implications

of the model in terms of declining real wages (once one controls for composition shifts) are present

in the data. However, we recognize that a more complete investigation of selection effects would be

useful and leave that for future work.

3.4. Corroborating Evidence and Competing Theories

To this point, we have presented evidence of a shift in the US labor market beginning around

2000 and set out a model for why that might have occurred that relies on the notion of a maturing

General Purpose Technology. We see patterns in wages and employment within education groups

as fitting with that theory but readers might reasonably demand more corroborating evidence. In

this section, we present two types of corroborating evidence based on sector and on geography. We

then turn to considering alternative theories for why the labor market changed in 2000.

3.4.1. Sectoral Patterns

One of the key pieces of evidence in favor of IT related technological change as a main driving

force for US labor market patterns is the IT investment series presented earlier. Those series show

trend breaks in 2000 in both equipment and software, with strong upward trends giving way to

either declining or flat investment. In Figure 13, we show the ratio of investment in IT equipment

and software to output for what we call IT intensive industries (industries where the ratio is over

5 at some point).19 Apart from transportation, the IT intensive industries tend to be ones where

we expect cognitive tasks to be important (Professional and Scientific, Education, etc.). For the

information and cultural sector, the series rises sharply to its peak in 2000 then falls substantially.

The Professional, Scientific, and Math sector also peaks in 2000. For other sectors, the peaks are

more scattered, with Transportation peaking in 1997, Education peaking in 2002, and Finance

having a local peak in 1999. But regardless of the exact timing of the peaks, these sectors all show

patterns of flat or negative growth in the IT investment ratio in the 2000s. The only exception is the

Management sector within which the ratio continues to grow throughout the period. Interestingly,

19In the figure, the ratio is multiplied by 100.
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the pattern of relative stagnation of IT investment in the 2000s is present even in low IT intensive

sectors such as Construction and Manufacturing. We plot the IT investment - output ratios for a

set of these industries in Figure 14, where one can see a fall in the investment ratio in all sectors

that has varying timing but in all cases occurs before the onset of the 2008 recession. We view

this as reflecting IT being a General Purpose Technology (GPT) that transformed all sectors of the

economy. All sectors, whether heavy industry or scientific services, invested in IT before 2000 and

reduced their investment in it after the late 1990s.
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Fig. 13.— IT Investment to Output for IT Intensive Industries

IT being a GPT makes it more difficult to test the predictions of our model since impacts show

up in all sectors, leaving us with variation in the form of a single time series. The same can be

seen in employment data when we examine the rates of employment of cognitive task occupations

by industry during the 1990s and 2000s. We perform a standard decomposition exercise in which

we decompose changes in the share of employment in cognitive task occupations into between and
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Fig. 14.— IT Investment to Output for non-IT Intensive Industries

within industry components.20 For the 1990s, the overall share in cognitive task occupations for

young (age 25 to 34) BA or more educated workers increased by 3.32, with 77.1% of the increase

associated with the within component and the remainder accounted for by shifts in the industrial

composition of employment for this group. For the 2000s, the overall share fell by 3.11, with 65%

accounted for by the within component. Thus, the majority of the total change in cognitive task

employment for young, well-educated workers happens within all industries, fitting with what we

would predict for a GPT.21

20We use 15 two digit industries: agriculture; construction; manufacturing, durable goods; manufacturing, non-

durable goods; transportation; communications; wholesale trade; retail trade; finance, insurance, and real estate;

business and repair services; non-business services; hospitals; education services; social services; and public adminis-

tration.

21For college workers of all age groups, the comparable numbers are: an increase of 1.34 in the 1990s, with the

within component accounting for 140% of the change; and a fall of 3.0 in the 2000s, with 51% being due to the within

component. Thus, the within component being the main determinant is also present for the overall college educated
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There is one industry that holds specific interest even within the context of a GPT: business and

repair services. This sector includes: research, development, and testing services; personnel supply

services; management and public relations services; and computer and data processing services.

If IT represents a GPT then one would expect firms in various industries to look to hire help in

implementing the new technology and the workplace changes that go with it. The categories in

this industry indicate that it contains the types of firms that others would turn to for this help.

During the 1990s, the share of young college graduates in the business and repair services industry

nearly doubled, from 17% in 1990 to approximately 30% in 2000, before declining to approximately

24% by the end of the 2000s. In Figure 15, we present a counterfactual exercise highlighting the

importance of this sector for the overall decline in the proportion in cognitive task jobs among

young college graduates. The solid line in the figure shows the actual cognitive proportion for this

group.22 The dotted line above it corresponds to a counterfactual exercise in which we held the

proportion of workers within the management services industry at its 2000 level. Removing this

industry from the overall within-industry component in this way reduces the 2000’s decline in the

cognitive share. For the next line up (the dashed line), we projected what the overall cognitive

share would have been for young college educated workers if the proportion of them working in the

management services industry had continued to grow as it did in the 1990s. The top line combines

the latter between-industry counterfactual with holding the within-management-services cognitive

proportion constant at its 2000 level. Under the latter counterfactual, the overall proportion in

cognitive task occupations would not have declined in the 2000s. Thus, it appears that changes in

the proportion working in the sector that supports the implementation of the IT GPT along with

changes in the use of cognitive tasks within that sector played an important role in the turnaround

in the overall demand for cognitive tasks after 2000. This fits with our notion that there was

investment in putting in place systems that made use of the IT GPT before 2000 that slowed after

2000.

3.4.2. Cross-City Evidence

We next look for further corroborating evidence for the model by using very different data

variation from what we have used to this point: cross-city variation. In particular, we treat each

city as a separate economy with differential abilities to take advantage of the new technology. In

group, though it is more important in the 1990s but somewhat less important in the 2000s than for younger college

educated workers. We view the young workers as the most useful for capturing newly emerging patterns because they

are not yet subject to rigidities associated with longer term contracts and work arrangements.

22The original ”business and repair services” industry also includes industries such as automotive repair. The

counterfactual exercise in the figure is based on a constructed sector including only research, development, and testing

services; personnel supply services; management and public relations services; and computer and data processing

services. Dropping automotive repair and other similar sub-industries has little impact on our exercise because very

few college graduates are employed in these categories.
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Fig. 15.— Employment Rate in Cognitive Occupations for Young College Graduates

the context of the model, this corresponds to assuming that local economies can differ in their

change in φ, the technology improvement. Differences in the capacity of cites to take advantage of

new technological opportunities could arise from difference in local culture or local advantages, but

we will remain agnostic about the specific reason for these capacity differences.

Given these differences across local economies, cities with a greater change in θ (i.e., cities

better situated to take advantage of the technological shift) should have seen a greater boom in the

1980 and 1990s, especially in terms of increased hiring in managerial and professional occupations.

However, such cities should also experience a greater bust post-2000. To explore this implication

– which suggests that the post-2000 decline reflects an ongoing adjustment to the earlier boom –

we examine the extent to which the post-2000 bust is associated with measures of the pre-2000

boom. In particular, our measure of the bust is the change in the employment rate. We begin by

focusing on changes in the aggregate employment rate, but we also provide evidence broken down

by education groups.
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Given our assumption that adoption of the new technology requires managerial workers, higher

adoption cities should be cities with more substantial increases in managers both as a proportion

of the population of the city and as a share of employment in the city in the 1990s. The higher-

adoption cities should also see a specific set of patterns in the 2000s that can be explored using a

common regression framework as follows:

∆ERc,2010−2000 = α0 + α1Xc,pre−2000 + εct, (5)

where ∆ERc,2010−2000 is the change in the employment rate in city c post-2000, Xc,pre−2000 is an

indicator of the boom in the pre-2000 period, and εct is an error term. In addition, α0 is a constant,

which allows for a common trend for all cities. Our main focus is on the sign of α1, which should

be negative if our boom-bust interpretation is valid.

Table 1: Estimates of Equation (5)

(1) (2) (3) (4) (5) (6)

∆2000−1990M
rate
c -0.48∗

(0.13)

∆2000−1980M
rate
c -0.26∗

(0.087)

∆2000−1990 logM rate
c -0.15∗

(0.037)

∆2000−1980 logM rate
c -0.12∗

(0.023)

∆2000−1990ERc -0.32∗

(0.10)

∆2000−1980ERc -0.39∗

(0.055)

Constant -0.017∗ -0.011 -0.015∗ 0.0084 -0.034∗ -0.016∗

(0.0053) (0.0079) (0.0054) (0.0088) (0.0020) (0.0033)

Observations 231 231 231 231 231 231

R2 0.071 0.060 0.089 0.13 0.069 0.24

Notes: U.S. Census and ACS data from 1980-2010. Unit of observation is the CMSA. All regressions

are weighted by the square root of the city size in 1980. Robust standard errors in parentheses. (∗)

denotes significance at the 5% level.

Table 1 presents the results of OLS estimates of equation (5). The data we use in all of our

city-level cross section estimations comes from the U.S. Census and ACS data from 1980-2010.

The dependent variable in all estimates contained in Table 1 is the change in employment rate for
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both men and women from 2010-2000. Each column contains the estimate of α1 obtained using a

specific measure of Xc,pre−2000. In particular, in columns 1 and 2, the regressors are the change in

the employment rate of Managers, Professionals, and Technicians for the 1990s and for the whole

1980-2000 period, respectively. Columns 3 and 4 contain the estimates when we use the growth

rates of those same employment rates, and columns 5 and 6 report estimates using the change in

the overall city employment rate. In all the columns, estimates of the α1 coefficient are negative

and statistically significant. While these results are just simple associations, they are supportive of

the boom-bust interpretation of the model.

3.4.3. Competing Explanations

The turmoil in the US labor market in the 2000s has not, of course, gone unnoticed by other

researchers, and other explanations have been advanced. Perhaps chief among these is the argument

that the increased export capacity of China has had an important impact on the American econ-

omy. Autor et al. (2013) support this conclusion for employment and wages in US manufacturing

using cross-regional variation in the predicted impact of Chinese good import penetration. At the

aggregate level, they show that the long term decline in employment in manufacturing accelerated

after China joined the WTO in 2001, at which point the growth in the import penetration ratio of

goods from China accelerated upward. The timing of this shift is quite similar to the change we

have documented throughout the US labor market in 2000. We see the relationship between these

changes as nuanced. On one side, we have just seen that the changes in the proportion working

in cognitive task jobs after 2000 is spread across all sectors, not just manufacturing. Moreover,

it seems unlikely to us that increased imports of goods produced using low skilled labor in China

would be a direct determinant of reduced demand for cognitive task occupations. On the other

side, it does seem plausible that at least part of what we see in terms of reductions in routine task

employment - and, particularly, its acceleration downward after 2000 – could be stemming from

trade with China as well as from technological change. In that case, the apparent increase in supply

of workers to the manual/service sector after 2000 could also be partly due to trade effects. At

the same time, the increased outsourcing of jobs typically held by those with a BA, particularly

to India, could imply that some of what we observe in terms of cognitive task trends is related to

trade (though, possibly, not to China). Because this type of outsourcing is only possible because

of the IT revolution, we would view such effects as potentially part of what we are describing.

A second possibility is that the post-2000 period represents a new technological era: one where

technologies have turned what people who have exactly a BA do into more routine tasks that

can be replaced with technology or outsourced. At the same time, demand for those with more

advanced degrees could have increased. In other words, the same notion of technological change

as a polarizing force could have continued but what occupations are in the middle verus upper

part of the polarization has shifted upward. Lindley and Machin (2013) document the increased

share of employment accounted for by advanced degrees. While this may be part of what has been
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happening, we don’t believe it is the main story for two reasons. First, all the patterns we have

presented work with a combination of BA’s and those with advanced degrees. When we work only

with those with exactly a BA, we observe very similar patterns. Similarly, in Beaudry et al(2014),

we find similar growth and decline in the proportion in cognitive task employment among the exact

BA’s and those with advanced degrees. Second, to the extent the advanced degree holders are

following a different trend, we would expect to see a different employment pattern in the very high

wage occupations in Figure 9. Instead, we see a decline in the growth rate in employment in all

top paying occupations.

A third possibility is that there was a general, protracted downturn in the US economy be-

ginning around 2000, and that showed up in college educated workers moving down through the

occupational structure. It is not clear that we can identify against a broad story of downturn in the

labor market driven by unspecified forces, but several pieces of evidence incline us toward our story

of stagnation associated with a maturing GPT. First, while it is true that employment in cognitive

task jobs stalls or declines slightly for college educated workers in the 1980s (as fits with work on

effects of graduating in a recession by Kahn (2010) and Oreopoulos (2012)), these appear as rela-

tively small interruptions in the longer term pattern of growth. In contrast, the break downward

in the proportion in these jobs among college graduates is stark and large. Second, investment in

IT related capital (both equipment and software) also shows a significant break in 2000. Third,

the management services industry shows a particularly strong pattern of increased employment

in the 1990s followed by decline after 2000 and played a substantial role in the overall cognitive

employment pattern.

3.5. How important could the reversal in cognitive skill demand be in explaining

the current low rate of employment?

In this subsection, we wish to quantify the importance of the forces we have identified (the

reversal in demand for cognitive tasks and the cascading down of supply after 2000) for under-

standing current low rates of employment in the US. The precise counterfactual to consider in this

exercise is not easy to discern. We address this issue by asking an extremely simple question: How

much higher would employment after 2000 have been if:

1. The growth in demand for cognitive tasks had been as great as in the pre-2000 period,

2. All workers displaced from cognitive occupations directly push out workers in other sectors,

one for one

3. The greater increase in the demand for cognitive jobs that would have occurred if the pre-2000

trend had continued would not have increased or decreased the demand for routine or manual

tasks.
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Under this extreme scenario, which we view as a clear upper bound on the potential effects of the

the reversal of cognitive demand, we can simply use Figure 6 and project the trend growth in the

pre-2000 period in cognitive employment to the post-2000 period and take the difference relative

to the actual outcome. Doing this simple calculation we find that the employment rate would be

about 5% higher today. While we do not claim that this counterfactual is very meaningful, we do

believe that it highlights (as an upper bound) the potential quantitative importance of the reversal

in skill demand in adding to our understanding of the fall in employment rates since 2000.

4. Conclusion

As we noted at the outset, a substantial disagreement exists about the causes behind the

current low rate of employment in the US. Cyclical effects of the 2008 financial crisis likely play

a role, and the structural decline in employment in routine occupations and manufacturing jobs

are certainly contributing factors (Charles et al. 2012; Siu and Jaimovich 2012). In this paper, we

present theory and evidence suggesting that to understand the current low rates of employment in

the US one needs to recognize the large reversal in the demand for skill and cognitive tasks that

took place around the year 2000. In particular, we have argued that after two decades of growth

in the demand for occupations high in cognitive tasks, the US economy reversed and experienced

a decline in the demand for such skills. The demand for cognitive tasks was to a large extent the

motor of the US labor market prior to 2000. Once this motor reversed, the employment rate in

the US economy started to contract. While this demand for cognitive tasks directly affects mainly

high skilled workers, we have provided evidence that it has indirectly affected lower skill workers by

pushing them out of jobs that have been taken up by higher skilled worker displaced from cognitive

occupations. This has resulted in high growth in employment in low skilled manual jobs with

declining wages in those occupations, and has pushed many low skill individual;s out of the labor

market.

To help organize our thoughts about this process, we presented a simple model where both the

pre-2000 boom and post-2000 bust in demand for cognitive tasks could be interpreted as the result

of one underlying force in the form of the diffusion of skilled-biased technological change. The only

difference with more conventional models of skill-biased technological change is our modelling of

the fruits of cognitive employment as creating a stock instead of a pure flow. This slight change

causes technological change to generate a boom and bust cycle as is common in most investment

models. We also incorporated into this model a standard selection process whereby individuals

sort into occupations based on their comparative advantage. The selection process is the key

mechanism that explains why a reduction in the demand for cognitive task occupations, which are

predominantly filled by higher educated workers, can result in a loss of employment concentrated

among lower educated workers. While we do not claim that our model is the only structure that

can explain the observations we present, we believe it gives a very simple and intuitive explanation

for the changes pre- and post-2000.
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Finally, it is interesting to consider what this hypothesis might imply for the recovery of the

US labor market in the aftermath of the Great Recession. For those who see the recession as

a cyclical demand deficiency problem, the labor market can make a full recovery once sufficient

stimulus is applied to the economy. For those who blame persistent employment problems on

structural changes on the supply side of the labor market, stimulus is not the answer. Instead, they

advocate making the labor market more flexible by, for example, reducing unemployment insurance

generosity. Our argument is that the problems in the labor market pre-date the recession and that

while they are structural in nature, the relevant structural shift is on the demand side rather than

the supply side of the market. In this sense, our results fit with the work of (Charles et al. 2012)

and (Siu and Jaimovich 2012) who argue that long term problems in the manufacturing sector

were temporarily masked by the early 2000s housing boom. Like them, we would argue against

expecting a return to persistently strong demand for labor in the near future even if governments

either increased stimulus or cut benefits. In contrast to them, we look beyond the manufacturing

sector to the whole labor market and lay the blame on patterns of technological change that have

implied a reversal in the demand for the more educated. In that sense, the direct implications of

our argument are more pessimistic: the US cannot expect good demand for labor even at the top

end of the labor market in the near term. More optimism awaits a new technological revolution.
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