Skill Premium in Wages

Chong-En Bai (*Tsinghua*) Qing Liu (*Tsinghua*) Wen Yao (*Tsinghua*)

Prepared for Conference

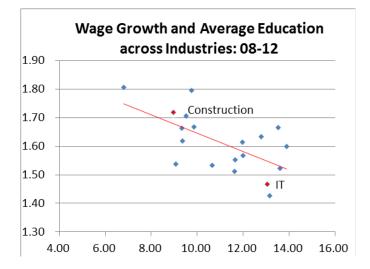
April 27, 2016

Wage Premium

- Motivation
- Our Explanation
- The Model
- Other Empirical Evidence
- Alternative Explanations
- Implications

Motivation

Facts: Skill Premium in Wage

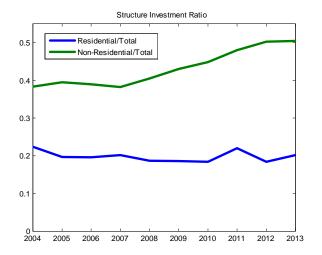

Source: Author's Computation using UHS data

- Following Ge and Yang (2014), we examine the changes in skill premium in wage
- Data: National sample of Urban Household Surveys (1993-2012)
- Specificly, the following regression function is used:

$$\ln w_i^t = \beta_k^t S_{ik}^t + \beta_1^t X_i^t + \beta_2^t X_i^{t^2} + \beta_g^t G_i^t + \sum_n \beta_n^t R_{in}^t + \varepsilon_i^t$$

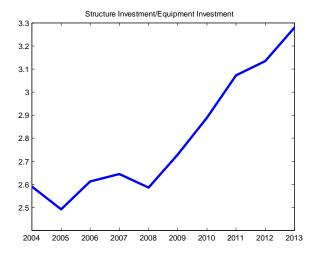
- *S*^{*t*}_{*ik*} : dummy variables for schooling levels (middle school, high school and above)
- X_i^t : potential experience
- G_i^t : gender
- R_{in}^{t} : dummy variables for regions (province)
- Robustness checks are done

Facts: Wage Growth and Skill Intensity

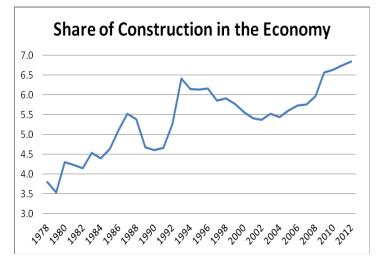


• What is the reason behind the observation?

- What is the reason behind the observation?
- What does it say about the structure of the economy?


Our Explanation

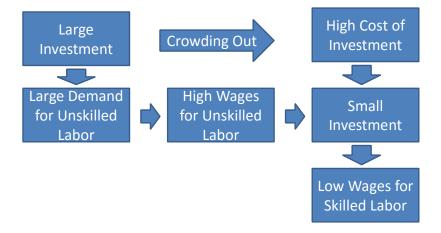
Fact: Structure of Investment


Source: National Bureau of Statistics

Fact: Structure of Investment

Source: China Statistical Yearbook

Fact: Share of Construction in the Economy



Source: China Statistical Yearbook

A Simple Model

Other Industries: Use Both Skilled and Unskilled Labor

The Model

- Infinite horizon, representative household
- 2 sectors and 3 production factors
 - Infrastructure sector: unskilled labor and capital, unskilled labor intensive.
 - General good sector: skilled, unskilled labor and capital.
- Competitive banking provides loan for capital accumulation.
- Capital market is distorted:
 - infrastructure sector can rent the capital at a lower rate than the market loan rate
- Labor are freely mobile across the sectors

• A representative household faces the following problem:

$$\max_{c_{t},l_{t},s_{t},a_{t+1}}\sum_{t=0}^{\infty}\beta^{t}U(c_{t})$$

s.t.
$$c_t + a_{t+1} = w_{Lt}l_t + w_{St}s_t + (1 + r_{dt})a_t$$
.

• Euler equation:

$$rac{U^{\prime}\left(c_{t}
ight)}{U^{\prime}\left(c_{t+1}
ight)}=eta\left(1+ extsf{r}_{dt+1}
ight);$$

()

• The firm uses unskilled labor L_{lt} and capital K_{lt} to produce infrastructure good Y_{lt}

$$Y_{lt} = e^{z_{lt}} A_l \left(K_{lt}\right)^{1-\alpha_l} \left(L_{lt}\right)^{\alpha_l};$$

• Given factor prices $\{w_{Lt}, r_{St}, p_{lt}\}$, the equilibrium conditions:

$$w_{Lt} = \alpha_I p_{lt} e^{z_{lt}} A_{lt} \left(\frac{K_{lt}}{L_{lt}}\right)^{1-\alpha_I};$$

$$r_{St} = (1 - \alpha_I) p_{lt} e^{z_{lt}} A_{lt} \left(\frac{K_{lt}}{L_{lt}}\right)^{-\alpha_I}$$

• note that r_{st} is the government-regulated rate

Production - General Good Sector

 In addition to K_{Ct}&L_{Ct}, the general good producer also need S_{Ct} for production

$$Y_{Ct} = e^{z_{Ct}} A_C \left(K_{Ct}\right)^{1-lpha_C-eta_C} \left(S_{Ct}\right)^{eta_C} \left(L_{Ct}\right)^{lpha_C};$$

• note that $\alpha_C < \alpha_I$.

 Given factor prices { w_{Lt}, w_{St}, r_{Lt}, p_{Ct} }, following conditions have to be satisfied in an equilibrium:

$$w_{Lt} = \alpha_C p_{Ct} e^{z_{Ct}} A_{Ct} \left(\frac{K_{Ct}}{L_{Ct}}\right)^{1-\alpha_C} \left(\frac{K_{Ct}}{S_{Ct}}\right)^{-\beta_C};$$

$$w_{St} = \beta_C p_{Ct} e^{z_{Ct}} A_{Ct} \left(\frac{K_{Ct}}{L_{Ct}}\right)^{-\alpha_C} \left(\frac{K_{Ct}}{S_{Ct}}\right)^{1-\beta_C};$$

$$L_t = (1 - \alpha_C - \beta_C) p_{Ct} e^{z_{Ct}} A_{Ct} \left(\frac{K_{Ct}}{L_{Ct}}\right)^{-\alpha_C} \left(\frac{K_{Ct}}{S_{Ct}}\right)^{-\beta_C};$$

• note that r_{Lt} is the market rate

r

Production - Final Good Producer

The final goods are produced using infrastructure good and general good:

$$Y_{t} = \left(\varphi\left(Y_{lt}\right)^{\frac{\sigma-1}{\sigma}} + \left(Y_{Ct}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}};$$

• The price of final good is used as the numeraire, and the standard price aggregation holds:

$$\left[\varphi^{\sigma}\left(p_{I}\right)^{1-\sigma}+\left(p_{C}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}=1;$$

• Equilibrium condition:

$$\frac{Y_l}{Y_C} = \left(\varphi \frac{p_C}{p_l}\right)^{\sigma}.$$

- There exists a representative bank in the economy
- The bank absorbs the deposit at the rate, r_{dt} , convert it into capital goods, and then rent the capital to firms in both infrastructure sector and general good sector
 - rental rate for infrastructure sector, r_{St}
 - rental rate for general good sector, r_{Lt}
- Competitive banking requires:

$$(1 + r_{dt}) a_t = (1 - \delta + r_s) K_{lt} + (1 - \delta + r_l) K_{Ct}$$

where

$$r_{Lt} \geqslant r_{dt} \geqslant r_{St}$$
.

• Note that the investment in infrastructure sector is implicitly subsidized by the govn.

Equilibrium

Given initial labor and capital endowment, L_{t_0} , S_{t_0} , and K_{t_0} , a set of exogenous rental rate, and sectorial *TFP* $\{r_{st}, A_{lt}, A_{Ct}\}_{t \ge t_0}$. A *competitive equilibrium* consists of:

- Sequences of good prices and factor prices,
 - $\{p_{lt}, p_{Ct}, w_{Lt}, w_{St}, r_{dt}, r_{lt}\}_{t \ge t_0};$
- Firms allocations, $\{K_{lt}, K_{Ct}, L_{lt}, L_{Ct}\}_{t \ge t_0}$;
- Household allocations, $\{c_t, a_{t+1}\}_{t \ge t_0}$;

such that:

- Given the sequence of prices, the firm allocation solves (FP);
- Given the sequence of prices, the household allocation solves (HP);
- Market clears:
 - Capital allocation across sectors: $K_{lt} + K_{Ct} = K_t$;
 - Unskilled-labor allocation across sectors: $L_{lt} + L_{Ct} = L_t$;
 - Goods market: $C_t + I_t = Y_t$
 - Capital accumulation: $K_{t+1} = I_t + (1-\delta) K_t$
- Competitive banking:

$$(1 + r_{dt}) a_t = (1 - \delta + r_{St}) K_{lt} + (1 - \delta + r_{lt}) K_{Ct}.$$

Variables and Equilibrium Conditions

- The equilibrium is characterized by 16 variables and equations
 - prices and factor prices: $\{p_{lt}, p_{Ct}, w_{Lt}, w_{St}, r_{dt}, r_{lt}\};$
 - factor allocations across sectors: {K_{lt}, K_{Ct}, L_{lt}, L_{Ct}, Y_{lt}, Y_{Ct}, Y_t};
 - consumption and saving: $\{C_t, I_t, A_{t+1}\}$
- Note that:
 - the first two set of variables are static in the sense that they are functions of ${\cal K}_t$
 - $\{C_t\}$ involve dynamics and is a function of $K_t \& K_{t+1}$
- The transition path is characterized by:

$$\frac{U'\left[c_{t}\left(K_{t},K_{t+1}\right)\right]}{U'\left[c_{t+1}\left(K_{t+1},K_{t+2}\right)\right]}=\beta\left[1+r_{dt+1}\left(K_{t+1}\right)\right].$$

Effects on Output and Factor Allocations

Suppose more subsidies to infrastructure sector, i.e., $r_{St} \downarrow$

Theorem (1)

In equilibrium, the factor allocations and sectoral output depend on r_{St} . When infrastructure sector receives more subsidies, i.e., facing a falling r_{St} , it attacts more capital and labor. As the results, the infrastructure sector expands, while the general good sector shrink. More formally, we have:

$$i) \quad \frac{dk_{lt}}{dr_{st}} = -\phi \left(1 + \omega_{p_{lt}}\right) \left[\left(1 - \alpha_{I}\right) \sigma + \left(1 - \alpha_{C}\right) \sigma \omega_{L_{lt}} + \alpha_{I} + \alpha_{C} \omega_{L_{lt}} \right] < 0;$$

$$\frac{dk_{Ct}}{dr_{st}} = -\omega_{K_{lt}} \frac{d\tilde{k}_{lt}}{dr_{st}} > 0;$$

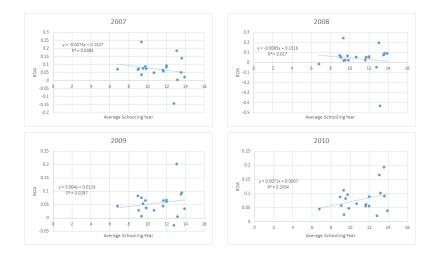
$$\begin{array}{l} \text{ii}) \quad \frac{dI_{lt}}{dr_{st}} = -\phi \left(1 + \omega_{p_{lt}}\right) \left(\sigma - 1\right) \left[\left(1 - \alpha_{I}\right) + \omega_{K_{lt}} \left(1 - \alpha_{C} - \beta_{C}\right)\right] < 0; \\ \frac{d\tilde{I}_{Ct}}{dr_{st}} = -\omega_{L_{lt}} \frac{d\tilde{I}_{lt}}{dr_{st}} > 0; \end{array}$$

$$\begin{array}{ll} \textit{iii}) \quad \frac{d\tilde{y}_{lt}}{dr_{st}} = (1 - \alpha_I) \, \frac{d\tilde{k}_{lt}}{dr_{st}} + \alpha_I \frac{d\tilde{l}_{lt}}{dr_{st}} < 0; \\ & \frac{d\tilde{y}_{Ct}}{dr_{st}} = (1 - \alpha_C - \beta_C) \, \frac{d\tilde{k}_{Ct}}{dr_{st}} + \alpha_C \frac{d\tilde{l}_{Ct}}{dr_{st}} > 0; \\ & \frac{d\tilde{y}_t}{dr_{st}} = \omega_{Y_{lt}} \frac{d\tilde{y}_{lt}}{dr_{st}} + (1 - \omega_{Y_{lt}}) \, \frac{d\tilde{y}_{Ct}}{dr_{st}} < 0, \text{ if } \omega_{Y_{lt}} > \bar{\omega}. \end{array}$$

Suppose more subsidies to infrastructure sector, i.e., $r_{St} \downarrow$

Theorem (2)

In equilibrium, the factor prices also depend on r_{St} . When facing a lower r_{St} , infrastructure sector crowds out capital for other sectors and dive up the market rental rate, r_{lt} . Meanwhile, skilled premium in wage decreases. More formally, we have:


i)
$$\frac{d\tilde{r}_{lt}}{dr_{st}} = \frac{d\tilde{p}_{Ct}}{dr_{st}} + \alpha_C \left(\frac{d\tilde{l}_{Ct}}{dr_{st}} - \frac{d\tilde{k}_{Ct}}{dr_{st}} \right) - \beta_C \frac{d\tilde{k}_{Ct}}{dr_{st}} < 0;$$

Other Empirical Evidence

• The relationship between the rate of return to capital and the skill intensity

- The relationship between the rate of return to capital and the skill intensity
 - Our prediction: lower rate of return to capital in the unskilled-labor-intensive sectors

Facts: Capital Return and Skill Intensity

Wage Premium

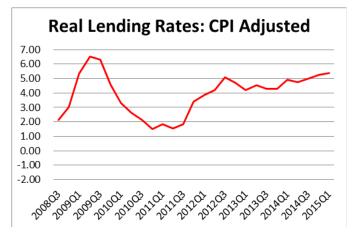
Supporting Facts: Firm Level Evidence

	Return to Capital	
Dependent variables	(1)	(2)
ASY t=2007	0.02827**	0.02644**
	(0.00083)	(0.00084)
ASY t=2008	0.01781**	0.01849**
	(0.00074)	(0.00075)
ASY _{t=2009}	0.05318**	0.05457**
	(0.00064)	(0.00064)
ASY _{t=2010}	0.06364**	0.06495**
	(0.00061)	(0.00061)
ASY _{t=2011}	0.02814**	0.02928**
	(0.00060)	(0.00060)
2008.year	0.07267**	0.06357**
	(0.01125)	(0.01128)
2009.year	-0.26042**	-0.27524**
	(0.01059)	(0.01062)
2010.year	-0.32752**	-0.34029**
	(0.01045)	(0.01048)
2011.year	-0.02996**	-0.03745**
	(0.01034)	(0.01037)
Market Concentration	0.55035**	0.55649**
	(0.02000)	(0.02005)
LOG(capital stock)	0.05034**	0.05109**
	(0.00016)	(0.00016)
Province Dummy	YES	YES
Cons	-0.71722**	-0.71897**
	(0.00859)	(0.00862)
R ²	0.07	0.07
N	2,987,528	2,987,528

Note: * p<0.05; ** p<0.01

Note:***Significant at the 1 percent level.

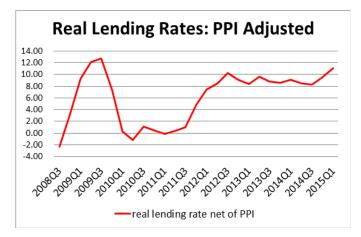
()


- The relationship between the rate of return to capital and the skill intensity
 - Our prediction: lower rate of return to capital in the unskilled-labor-intensive sectors

- The relationship between the rate of return to capital and the skill intensity
 - Our prediction: lower rate of return to capital in the unskilled-labor-intensive sectors
- Real market interest rate rises
 - Our prediction: more subsidies lead to higher real market interest (see Theroem 2)

$$\frac{d\tilde{r}_{lt}}{dr_{st}} < 0.$$

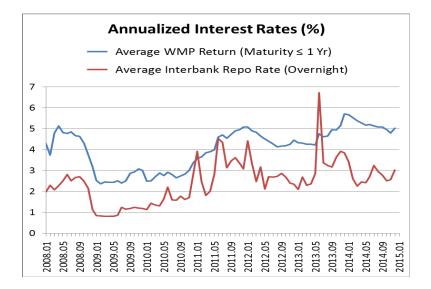
()


Other Empirical Evidence: Real Lending Rates

Data Source: National Bureau of Statistics for CPI & PPI;

PBOC for lending rates

Other Empirical Evidence: Real Lending Rates


Data Source: National Bureau of Statistics for CPI & PPI;

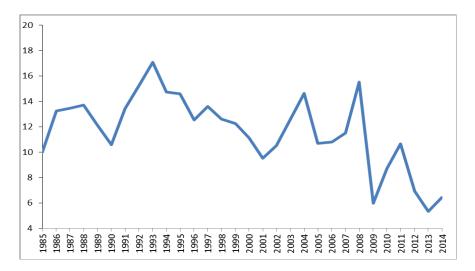
PBOC for lending rates

Wage Premium

()

Other Empirical Evidence: Other Interest Rates

- The relationship between the rate of return to capital and the skill intensity
 - Our prediction: lower rate of return to capital in the unskilled-labor-intensive sectors
- Real market interest rate rises
 - Our prediction: higher real market interest rate with more subsidies (see Theroem 2)


$$\frac{d\tilde{r}_{lt}}{dr_{st}} < 0.$$

- The relationship between the rate of return to capital and the skill intensity
 - Our prediction: lower rate of return to capital in the unskilled-labor-intensive sectors
- Real market interest rate rises
 - Our prediction: higher real market interest rate with more subsidies (see Theroem 2)

$$\frac{d\tilde{r}_{lt}}{dr_{st}} < 0.$$

• Average return to capital declines

Rate of Return to Investment (after taxes and Depreciation)

Alternative Explanations

• The supply of skilled labor increases relative to that of the unskilled labor, reducing the skill premium in wages

- The supply of skilled labor increases relative to that of the unskilled labor, reducing the skill premium in wages
- Implications of this explanation
 - If this is the case, skilled-labor intensive sectors should expand faster than unskilled-labor intensive sector

- The supply of skilled labor increases relative to that of the unskilled labor, reducing the skill premium in wages
- Implications of this explanation
 - If this is the case, skilled-labor intensive sectors should expand faster than unskilled-labor intensive sector
- Evidence: the relationship between the growth rate of value added and skill intensity

Supporting Facts: Firm Level Evidence

Dependent variables	Return to Capital		Value-Added Growth
	(1)	(2)	(3)
ASY t=2007	0.02827**	0.02644**	-0.05432**
	(0.00083)	(0.00084)	(0.00825)
ASY t=2008	0.01781**	0.01849**	-0.00106*
	(0.00074)	(0.00075)	(0.00723)
ASY t=2009	0.05318**	0.05457**	-0.10908**
	(0.00064)	(0.00064)	(0.00649)
ASY _{t=2010}	0.06364**	0.06495**	-0.08818**
	(0.00061)	(0.00061)	(0.00644)
ASY _{t=2011}	0.02814**	0.02928**	
	(0.00060)	(0.00060)	
2008.year	0.07267**	0.06357**	-0.54689**
	(0.01125)	(0.01128)	(0.10862)
2009.year	-0.26042**	-0.27524**	0.73753**
	(0.01059)	(0.01062)	(0.10400)
2010.year	-0.32752**	-0.34029**	0.46321**
	(0.01045)	(0.01048)	(0.10358)
2011.year	-0.02996**	-0.03745**	
	(0.01034)	(0.01037)	
Market Concentration	0.55035**	0.55649**	0.03923
	(0.02000)	(0.02005)	(0.21718)
LOG(capital stock)	0.05034**	0.05109**	0.02420**
	(0.00016)	(0.00016)	(0.00181)
Province Dummy	YES	YES	YES
Cons	-0.71722**	-0.71897**	0.79498**
	(0.00859)	(0.00862)	(0.08440)
R ²	0.07	0.07	0.01
N	2,987,528	2,987,528	715,284

Note: * p<0.05; ** p<0.01

• If the productivity of skilled-labor intensive sectors increases slower than that of the unskilled-labor intensive sectors, than the skill premium in wages would decline


- If the productivity of skilled-labor intensive sectors increases slower than that of the unskilled-labor intensive sectors, than the skill premium in wages would decline
- If this is the case, than the rate of return to capital in the skilled-labor intensive sectors should not be higher than that in the unskilled-labor intensive sectors

- If the productivity of skilled-labor intensive sectors increases slower than that of the unskilled-labor intensive sectors, than the skill premium in wages would decline
- If this is the case, than the rate of return to capital in the skilled-labor intensive sectors should not be higher than that in the unskilled-labor intensive sectors
- Our empirical finding is that skilled-labor intensive sectors generate higher rate of return to capital

• If the demand for skilled-labor intensive products declines relative to that for unskilled-labor intensive products, than the skill premium in wages would decline

- If the demand for skilled-labor intensive products declines relative to that for unskilled-labor intensive products, than the skill premium in wages would decline
- This case is similar to that of relative productivity change

Implications

