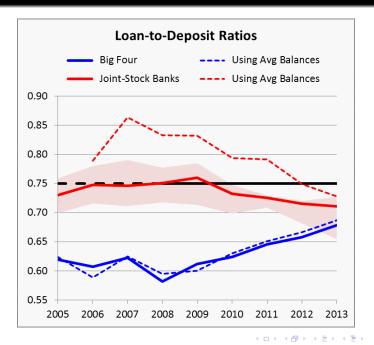
Introduction Institutional Background Model Calibration New Development Evidence Conclusion


Transformation in China

Kinda Cheryl Hachem Zheng (Michael) Song Chicago Booth Chinese University of Hong Kong

First Research Workshop on China's Economy April 28-29, 2016

- China starts tightening liquidity rules on banks in 2008
 - The reserve requirement: 11% in 2007 to 21.5% in 2011
 - Stricter enforcement of the 75% cap on the loan-to-deposit ratio (LDR)

Sar

э.

- What happens?
 - Credit expands: The Debt-to-GDP ratio nearly doubled in 2008-2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interbank market tightens

New Development

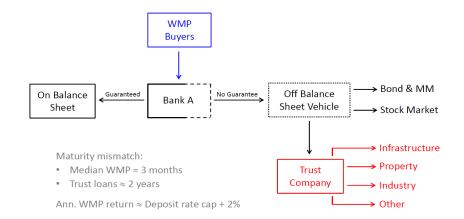
- Regulatory arbitrage by small banks leads to shadow banking
- Shadow banking creates competition with big banks
 - Big banks respond by exploiting interbank market power
 - In GE, the regulation has the opposite of its intended effect

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Quantitative significance
 - $\bullet\,$ Accounts for 40% of the recent credit expansion

• The tightening of liquidity rules encourages shadow banking activities

- Weakens the effect
- Shadow banking with Chinese characteristics
 - Reverses the effect



- Regulations on interest rates: Cap on deposit rate
- Restrictions on lending: Cap on loan-to-deposit ratio

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Anatomy of a WMP: The First Wave of China's Shadow Banking

イロト 不得 トイヨト イヨト

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

New Development

Evidence Concl

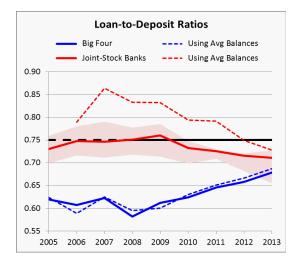
The Size of the Shadow Sector

- Regulatory arbitrage (sources of fund)
 - WMPs \approx 24% of GDP in 2014 (China Banking Assocation)
 - $\bullet\,$ Non-guaranteed WMPs \approx 15% of GDP in 2014 (WIND)
- A broader definition (uses of fund)
 - Trust loans + Entrusted loans + Undiscounted banker's accepances ... \approx 35% of GDP in 2014 (NBS)

• Large in size: half of the market share

Fortune 500 (2014)						
25th	ICBC	59th	BoC			
38th	CCB	66th	Bank of American			
47th	ABC	77th	HSBC			
57th	JP Morgan Chase	82nd	Citigroup			

- Extensive price and quantity coordination
 - All firmly controlled by the party
 - Job rotation in the big four and regulatory bodies


Introduction

libration M

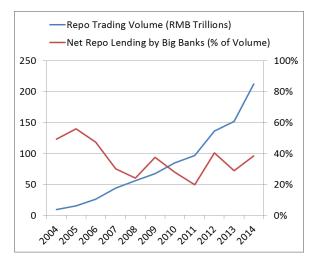
New Development

Evidence Conclus

Big Banks: Not Constrained by the Loan-to-Deposit Limit

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Introduction


lodel

Calibration

New Development

Evidence Concl

Big Banks: The Main Liquidity Provider

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Model

- The framework
 - Diamond-Dybvig maturity transformation
 - Imperfect substitutability between deposits and WMPs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Asymmetric competition in interbank markets
- Analytical and quantitative results ...

- Notation for bank *j*:
 - D_j = traditional deposits
 - W_j = wealth management products (WMPs)
 - au_{j} = fraction of WMPs sent off-b/s

$$R_j$$
 = reserves

Bank's liabilities:

$$\underbrace{\underbrace{D_j + (1 - \tau_j) W_j}_{\text{on-b/s}} + \underbrace{\tau_j W_j}_{\text{off-b/s}}}_{\text{off-b/s}}$$

Bank's assets:

$$\underbrace{R_j}_{\text{reserves}} + \underbrace{D_j + (1 - \tau_j) W_j - R_j}_{\text{on-b/s loans}} + \underbrace{\tau_j W_j}_{\text{off-b/s loans}}$$

• Household savings normalized so $\sum_{j} (D_j + W_j) = 1.$

Introduction Institutional Background **Model** Calibration New Development Evide

Conclusion

Diamond-Dybvig Maturity Transformation

• Loans are long-term:

$$\begin{array}{cccc} \underline{t=0} & \underline{t=1} & \underline{t=2} \\ \$1 & \longrightarrow & \$0 & \longrightarrow & \$(1+i_A) \end{array}$$

• Deposits and WMPs are short-term:

$$\begin{array}{cccc} \underline{t} = \underline{0} & \underline{t} = \underline{1} & \underline{t} = \underline{2} \\ \\ \$1 & \longrightarrow & \$ \left(1 + i_B \right) & \longrightarrow & \begin{cases} \$ \left(1 + i_B \right)^2 & \text{if } D_j \\ \$ \left(1 + i_B \right)^2 + \xi_j & \text{if } W_j \end{cases}$$

- Idiosyncratic withdrawals of deposits and WMPs:
 - With probability π , fraction $heta_\ell$ withdrawn at t=1 ("state ℓ ")
 - With probability 1π , fraction is $\theta_h > \theta_\ell$ ("state h")

• Fixed i_A and i_B

2 Loan-to-deposit limit:

$$\underbrace{ \underbrace{D_j + (1 - \tau_j) \, W_j - R_j}_{\text{on-b/s loans}} \leq \underbrace{(1 - \alpha)}_{\text{limit}} \cdot \underbrace{[D_j + (1 - \tau_j) \, W_j]}_{\text{on-b/s deposits}}$$

Rewrite limit as reserve requirement:

$$\lambda_j \equiv \frac{R_j}{D_j + (1 - \tau_j) W_j} \ge \alpha$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction Institutional Background Model Calibration New Development Evidence Conclusion Benchmark: Small Banks Only

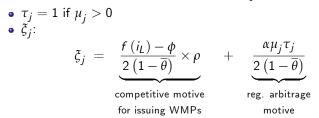
- Unit mass of ex ante identical small banks
- Each is a price-taker on the interbank market
- At t = 0, the representative bank chooses D_j , W_j , ξ_j , τ_j , and R_j to maximize expected profit subject to $\lambda_j \ge \alpha$
- Objective function:

$$\underbrace{(1+i_A)\left(D_j+W_j-R_j\right)}_{\text{from loans}} + \underbrace{(1+i_L)\left[R_j-\overline{\theta}\left(1+i_B\right)\left(D_j+W_j\right)\right]}_{\text{from surplus/shortage of reserves at }t=1} - \underbrace{\left(1-\overline{\theta}\right)\left[\left(1+i_B\right)^2\left(D_j+W_j\right)+\xi_jW_j\right]}_{\text{final payment to savers at }t=2} - \underbrace{\frac{\phi}{2}\left(D_j+W_j\right)^2}_{\text{operational costs}}$$

• Denote $\overline{\xi}$ the average WMP returns. Assume:

$$W_j = \omega arsigma_j,$$
 $D_j + W_j = 1 +
ho \left(arsigma_j - \overline{arsigma}
ight) .$

. . .


Each bank takes ξ as given.
 Competitive motive is captured by ρ > 0.

• In symmetric equilibrium, $\xi_j = \overline{\xi}$ and interbank market clears:

• Shadow cost of liquidity rule $(\lambda_j \ge \alpha)$ is $\mu_j \equiv i_A - i_L$.

• Consider low ρ and α to match negligible issuance before 2008

Calibration

New Development

Evidence Con

Conclusion

The Benchmark Doesn't Work!

Proposition:

- **1** Increasing α above some threshold makes $\tau_j \xi_i$ positive
- 2 But i_L is highest at zero α (market mechanism at work)
- 3 Credit shrinks as α increases

• So cannot explain all the facts with only interbank price-takers

- Big bank (k) internalizes its effect on all endogenous variables
 - Small banks take as given ξ_k , $\overline{\xi_i}$, and interbank rate
- Allocation of household savings:

$$egin{aligned} D_j + W_j &= 1 - \delta +
ho \left(\xi_j - \overline{\xi_j}
ight) +
ho_1 \left(\xi_j - \xi_k
ight), \ D_k + W_k &= \delta +
ho_1 \left(\xi_k - \overline{\xi_j}
ight). \end{aligned}$$

• Can consider three cases:

() $\rho_1 = 0$ and $\rho = 0$: no bank has a competitive motive **()** $\rho_1 > 0$ and $\rho = -\rho_1$: big bank has a competitive motive **()** $\rho_1 > 0$ and $\rho > -\rho_1$: all banks have a competitive motive

Market Clearing and the Big Bank's Choices

- ullet In equilibrium, $\xi_j = \overline{\xi_j}$ and
 - Market clearing when big bank's withdrawal shock is high:

$$R_{j} + R_{k} + \Psi\left(i_{L}^{h}\right) = (1 + i_{B})\left[\overline{\theta}\left(D_{j} + W_{j}\right) + \theta_{h}\left(D_{k} + W_{k}\right)\right]$$

- To simplify, $i_L^\ell = i_B$ when big bank's withdrawal shock is low

- At t = 0, the big bank chooses ξ_k , τ_k , and R_k to maximize its expected profit subject to:
 - Liquidity rule λ_k ≥ α
 Small bank optimality conditions for ξ_j, τ_j, and R_j
 i^h_L from interbank market clearing equation

Introduction Institutional Background Model Calibration New Development Evidence

Case 1: No Competitive Motive

- Introduce a regulation of $\alpha = \overline{\theta}$. Parameters exist such that:
 - Small banks issue off-b/s WMPs ($\xi_i > 0$ and $\tau_i = 1$)
 - e Big bank Internalizes the benefit of the stricter rule by making more loans (λ_k ↓):

- Interbank rate (i^h_I) increases
- Total credit $(1 R_j R_k)$ increases

New Development

Case 2: Big Bank Has a Competitive Motive

•
$$\rho_1 > 0$$
 and $\rho = -\rho_1$:
1 If $\alpha = 0$, then $\xi_j = 0$.
2 Set ϕ so $\xi_k = 0$ at $\alpha = 0$

- Introduce a regulation of $\alpha = \overline{\theta}$. There are parameters that deliver the same effects as Case 1 along with:
 - On-b/s WMPs by big bank $(\xi_i > \xi_k > 0 \text{ and } \tau_k = 0)$
 - 2 A bigger increase in the interbank rate (i_l^h)

 Introduction
 Institutional Background
 Model
 Calibration
 New Development
 Evidence
 Conclusion

 Our Story in Words

- Stricter liquidity rule pushes small banks off-balance-sheet:
 - Benefit is no regulation, cost is higher interest rate to savers
 - High-return WMPs by small poach savings from big
 - Poached savings become trust loans instead of reserves
- Big bank fights back:
 - Internalize the benefit of the stricter rule by making more loans
 - Can hit small by moving from interbank to loans (competitive motive)
- Implications:
 - Stricter liquidity rule \Rightarrow credit expansion and interbank tightness

- General equilibrium effects of stricter liquidity rule (higher α):
 - Converging LDRs
 - Ø More lending and higher fraction done off-balance-sheet

eigher interbank rate

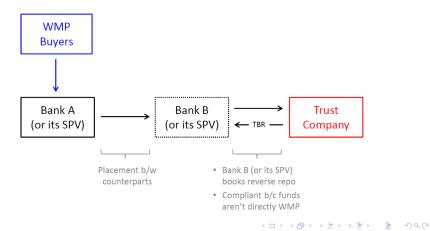
- Calibrating i_B , i_D and i_A to match the interest rates in 2014.
- Calibrating θ , ϕ_k , ω , δ_1 , ρ to match
 - θ : The weighted average seven-day interbank repo rate of 3.6%;
 - ϕ_k : The loan-to-deposit ratio of 70% for the big four
 - ω, δ₁, ρ: (i) WMPs of 10% and 5% of the total savings for the small and big banks; (ii) Market share of 43% for the big four

• Lowering α from 0.25 to 0.14

	Model	Data	Model	Data
	$\alpha = 0.14$	2007	$\alpha = 0.25$	2014
Interbank Rate	3.4%	3.3%	3.6%	3.6%
$W_j(W_k)$	0.03 (0.01)	NA	10% (5%)	10% (5%)
LDR _k	57%	62.5%	70%	70%
MS_k	50.5%	55%	43%	43%
Total Credit	71.6%	65%	75.4%	75%

• A more disciplined central bank (lower ψ) can dampen the rise of WMPs and the expansion of total credit

Introduction Institutional Background Model C


Calibration

New Development

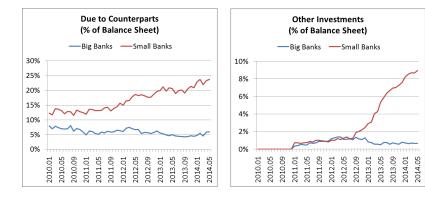
Evidence Conclusi

A New Wave of Shadow Banking

- Recent regulatory crackdown on bank-trust cooperation
- New way to connect WMPs with trusts:

Calibration

New Development

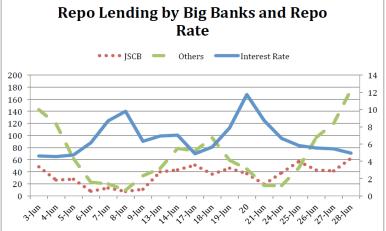

Evidence Co

・ロト ・ 雪 ト ・ ヨ ト

э.

Conclusion

Big vs. Small

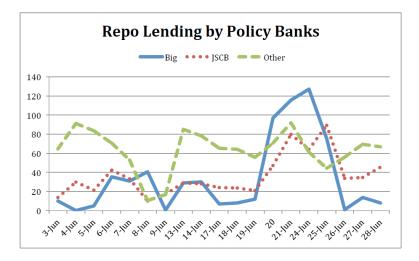

- WMPs issued by small banks Granger-cause WMPs issued by big banks
- Big banks offer lower returns to WMPs and are less involved in non-guaranteed WMP issuance

• The 20th of June: A day of liquidity crisis

New Development

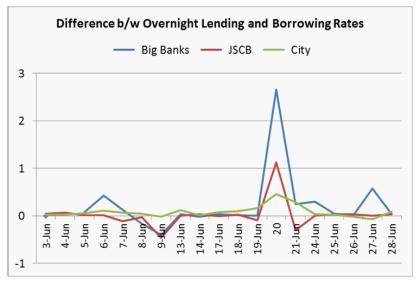
Institutional Background

Evidence

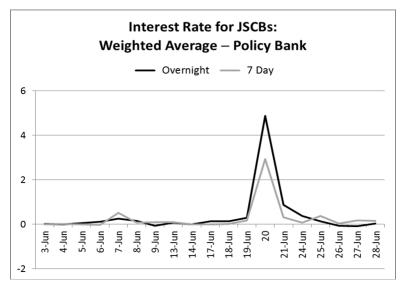

Vlodel

Calibration

New Development


Evidence Con

Liquidity Absorbed by Big Banks



Introduction Institutional Background Model Calibration New Development **Evidence** Conclusion

Interest Rate Spreads

Introduction Institutional Background Model Calibration New Development Evidence Conclusion
Interest Rate Spreads

- Combining market structure and banking
 - helps explain the facts
 - might reverse the effect of liquidity rule
- The calibrated model can explain a third of the observed increase in total credit (a "supply-side" story)

• Future work: More on the demand side