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Abstract

Firms account for a substantial share of earnings inequality. Although the standard expla-
nation for why is that search frictions support an equilibrium with rents, this paper finds that
compensating differentials are at least as important. To reach this finding, this paper develops a
structural search model and estimates it on U.S. administrative data with 1.5 million firms and
100 million workers. The model analyzes the revealed preference information contained in how
workers move between firms. Compensating differentials are revealed when workers systemat-
ically move to lower-paying firms, while rents are revealed when workers systematically move
to higher-paying firms. With the number of parameters proportional to the number of firms
(1.5 million), standard estimation approaches are infeasible. The paper develops an estimation
approach that is feasible for data on this scale. The approach uses tools from numerical linear
algebra to measure central tendency of worker flows, which is closely related to the ranking of
firms revealed by workers’ choices.
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Firms play a central role in explaining worker earnings. Conditional on person fixed effects,

firms account for over 20% of the variance of worker earnings (e.g., Abowd, Kramarz, and Margolis

(1999) and Card, Heining, and Kline (2013)).1 But there is little work asking why firms play

such a central role. There are two main explanations that differ in whether high-paying firms

are high-value firms: rents and compensating differentials. Rents is the leading explanation in

the literature (e.g., Postel-Vinay and Robin (2002)). In the rents explanation, frictions prevent

workers from bidding away the rents at high-paying firms. In this explanation, workers are lucky

to end up at high-paying firms. As a result, high-paying firms are high-value firms. In contrast,

in the compensating differentials explanation (e.g., Rosen (1986)), firms differ both in how much

they pay and in nonpay characteristics. In this explanation, higher pay compensates for variation

in unpleasant nonpay characteristics. As a result, high-paying firms are not high-value firms.

Thus, measuring the relative importance of rents and compensating differentials means figuring

out whether high-paying firms are high-value firms.

To distinguish between high-paying and high-value firms, this paper estimates the value of

working at a firm without using information in pay. Specifically, I use information in quantities.

To do so, I exploit the revealed preference idea embedded in search models that workers move to

firms with higher value. Using U.S. matched employer-employee data with 1.5 million firms, I map

the 1.5 million by 1.5 million matrix of worker flows across firms into the value of working at each

firm.

By comparing the firm-level values to firm-level pay, I find that both rents and compensating

differentials explanations are operative, but compensating differentials are more important. This

finding has four (closely related) implications. First it shows that in many cases the conventional

interpretation of high-paying firms as “good” firms is not warranted. Second, it contrasts with the

conventional wisdom that compensating differentials are unimportant in explaining the variance of

worker earnings. Third, it resolves a puzzle that benchmark search models are unable to reproduce

the extent of earnings dispersion while also yielding plausible values of nonemployment. Fourth,

the distribution of compensating differentials across firms means that the variance of earnings is

larger than it would be if all jobs were equally pleasant.

In the first part of the paper, I write down a simple model of the labor market that contains both

the rents explanation and the compensating differentials explanation and develop tools to estimate

it using only quantity information. The model is a benchmark partial equilibrium utility-posting

model in the spirit of Burdett and Mortensen (1998). The nonstandard ingredients in the model

are first, that firms post a utility offer that consists of both earnings and a nonpecuniary bundle

and second, that workers receive idiosyncratic utility draws (taste shocks) each period. On the one

hand, the rents explanation is contained in the model because there is the possibility of equilibrium

1See also Andersson et al. (2012), Barth et al. (2014), and Song et al. (2015) for analyses of the role of em-
ployers and firms in the growth of earnings inequality in the U.S. In this paper, I use the word firm and employer
interchangeably.
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dispersion: different firms offer different levels of utility. On the other hand, the compensating

differentials explanation is contained in the model because high earnings might be offset by a low

nonpecuniary bundle. The role of the idiosyncratic utility draws is to add preference heterogeneity

and allow workers to make different decisions when faced with the same choice. Specifically, these

draws explain why there would be flows both from firm A to firm B and from firm B to firm A.

I estimate the model in two steps. In the first step, I isolate the transitions that reveal prefer-

ences by using information about what the worker’s coworkers were doing at the time of the sep-

aration. In the spirit of the displaced worker literature (Jacobson, LaLonde, and Sullivan (1993)),

if an unusually high share of coworkers were also separating, then a firm-level shock caused the

workers to leave, and there is a high probability that any particular separation was exogenous. In

contrast, if turnover levels look normal, then this separation was likely idiosyncratic to the worker.

In the second step, I measure the central tendency of worker flows. I record worker flows in a 1.5

million by 1.5 million matrix, where one cell is the number of workers who go from firm A to firm

B. The model implies a set of linear restrictions on the entries in this matrix and a flow-relevant

firm-level value. The flow-relevant firm-level value captures the central tendency of worker flows

and is a known function of structural parameters.

Computing this central tendency of worker flows—and showing that it exists and has a meaning-

ful economic interpretation—is the main technical contribution of this paper. The central tendency

of worker flows is captured by the top eigenvector of a normalized matrix of worker flows. Showing

when this eigenvector exists and is unique requires a new analytical result. Computing the eigen-

vector relies on techniques from numerical linear algebra that are scalable to massive datasets such

as a 1.5 million by 1.5 million matrix.

In addition to the value of a firm, two factors affect the central tendency of mobility. First,

a large firm will naturally have more workers moving away from it than a small firm. I account

for this because I observe firm size. Second, a firm that makes a lot of offers will naturally have

more workers moving towards it. I account for this because I estimate the offer distribution using

information in nonemployment-to-employer flows. By jointly estimating the offer distribution and

the value of nonemployment, I allow nonemployed workers to reject offers.

In the second part of the paper, I estimate the earnings that firms post and show how to

combine these with the estimates of firm values to decompose the variation in firm-level earnings into

compensating differentials and rents. The model implies that—as in Abowd and Schmutte (2014)—

I can estimate the earnings that firms post using a selection-corrected version of the statistical

decomposition pioneered by Abowd, Kramarz, and Margolis (1999) (and also used by Card, Heining,

and Kline (2013)), which controls for person effects.

Because I use revealed preference at the firm level, I can identify compensating differentials.

At the individual level, about a third of employer-to-employer moves result in earnings cuts. As

the literature recognizes, this finding does not identify compensating differentials because the pay
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cut might reflect idiosyncratic factors that are not priced in the labor market. At the firm level,

however, systematic patterns of workers moving from higher-paying to lower-paying firms indicates

factors that are valued by all workers and are priced in the labor market.

Formally, I prove an identification result to show how to measure the relative roles of compen-

sating differentials and rents. Combining utilities and earnings gives a lower bound on the variance

of nonpecuniary characteristics, which is the extent of compensating differentials. The complement

is the role of rents in explaining the variance of earnings. The identification result is consistent

with an argument in the search literature that compensating differentials are hard to find because

desirable nonearnings factors might be positively correlated with earnings (Hwang, Mortensen,

and Reed (1998) and Lang and Majumdar (2004)). Specifically, I distinguish between Rosen and

Mortensen amenities. Rosen amenities are priced in the labor market and generate compensating

differentials. In contrast, Mortensen amenities are positively correlated with earnings and generate

equilibrium dispersion; for example, some high-paying firms might also offer great benefits. The

result shows that in my framework the variance of Mortensen amenities is not identified.

I estimate the model on the U.S. Census Bureau’s Longitudinal Employer Household Dynamics

(LEHD) dataset. Compensating differentials explain twice as much of the variance of firm-level

earnings as rents. The estimated ranking of sectors is intuitively plausible, as is the implied dis-

tribution of nonpay characteristics. For example, education has good nonpay characteristics, while

many blue-collar sectors have bad nonpay characteristics. The central finding that compensating

differentials are at least as important as rents holds within subgroups defined by age and gender.

The finding that compensating differentials are important contrasts with conventional wisdom.2

Research that looks at specific amenities rarely finds robust evidence that amenities are priced

in the labor market. By using revealed preference at the firm-level, however, I overcome a few

challenges in this literature. First, I distinguish between Rosen and Mortensen amenities, so allow

for some amenities to be unpriced and contribute to dispersion in firm-level value. Second, revealed

preference takes into account the entire bundle of amenities. As a result, it does not take a stand on

what workers value, or how firms use amenities to offset other amenities. Third, at the firm-level,

revealed preference uncovers amenities that are priced. In contrast, at the individual-level revealed

preference can uncover idiosyncratic factors that are unlikely to be priced.

The finding of a large role for compensating differentials helps resolve the puzzle emphasized by

Hornstein, Krusell, and Violante (2011) that benchmark search models cannot generate the extent

of observed residual earnings inequality. I find that workers act as if a large share of the variance

of firm-level earnings does not reflect variation in value. I also find an empirically reasonable value

for nonemployment, and thus pass a crucial test they propose.

Finally, if the estimated nonpay characteristics were removed and earnings changed to com-

pensate workers, then earnings inequality would decline. The effect depends on the correlation

2For example, Hornstein, Krusell, and Violante (2011, pg. 2883) write that compensating differentials “does not
show too much promise” in explaining earnings dispersion.
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between earnings potential and nonpay characteristics. In this counterfactual, earnings inequality

as measured by the variance of earnings declines. Many low-paying jobs come with good amenities

so this reduction comes mainly from the lower tail of the income distribution shifting up.

This paper unites two distinct literatures that seek to understand the structure of earnings.

On the one hand, a reduced-form, descriptive literature has shown that industries and firms pay

different amounts to identical workers (see, e.g., Krueger and Summers (1988), Abowd, Kramarz,

and Margolis (1999), Card, Heining, and Kline (2013), Barth et al. (2014), and Song et al. (2015)).

On the other hand, this reduced-form literature has inspired a structural literature that uses fric-

tional search models to understand and quantify the forces that explain how high- and low-paying

firms can coexist in equilibrium (see, e.g., Burdett and Mortensen (1998), Postel-Vinay and Robin

(2002), Cahuc, Postel-Vinay, and Robin (2006) and Bagger and Lentz (2015)). This paper uses

ideas from the structural literature to interpret the reduced-form literature. Specifically, by es-

timating a search model using quantities, I allow it to be result rather than an assumption that

high-paying firms are high-value firms.

This paper uses how workers move across firms in a new way relative to existing literature.

Bagger and Lentz (2015) also emphasize patterns in worker reallocation across firms, but they do

not allow for nonpecuniary characteristics and do not exploit the complete structure of employer-

to-employer moves. Similarly, Moscarini and Postel-Vinay (2014), Haltiwanger, Hyatt, and McEn-

tarfer (2015) and Kahn and McEntarfer (2014) explore worker flows and ask whether these are

consistent with a job ladder defined by a particular observable characteristic (e.g., size or wages).

I invert the approach in these papers and instead construct the job ladder implied by worker flows.

The idea that earnings cuts identify amenities is shared with a few papers (e.g., Becker (2011),

Hall and Mueller (2013), Sullivan and To (2014), and Taber and Vejlin (2013)). Only the last

paper operates at the firm-level and relates variation in amenities to compensating differentials. In

section 6, I discuss these papers in more detail.3

The estimation approach applies conditional choice probability estimation (Hotz and Miller

(1993)) to matched employer-employee data, which allows gross worker flows between firms to

exceed net flows. Other papers exploit similar modeling insights to study situations where gross

flows exceed net flows; see e.g. Kline (2008) and Artuc, Chaudhuri, and McLaren (2010).

1 Ranking firms using revealed preference

1.1 A model with utility-posting firms

This section develops a partial equilibrium search model in the spirit of Burdett and Mortensen

(1998) where firms post utility offers. This model is sometimes described through the metaphor of

3There is also literature (e.g., Gronberg and Reed (1994), Dey and Flinn (2005), Bonhomme and Jolivet (2009)
and Aizawa and Fang (2015)) which estimates the value of specific observable amenities in a search environment. See
section 6 for further discussion of this approach.
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a job ladder, where there is a common ranking of firms and workers try to climb the ladder through

employer-to-employer mobility.

To allow the model to contain both the rents and compensating differentials explanations and to

rationalize workers making different choices, the structure of job value is nonstandard in two ways.

First, it is in units of utility. By posting a level of utility, firms can create value for workers through

both earnings and nonpecuniary characteristics. To connect to the second part of the paper, the

value that firm i posts is given by:

V e
i︸︷︷︸

value

= ω︸︷︷︸
conversion factor

( Ψi︸︷︷︸
earnings

+ ai︸︷︷︸
amenities

).

The key innovation in this paper relative to the structural search literature is to directly estimate

the V e. The potential trade-off between earnings and nonpecuniary characteristics reflected in this

equation allows the model to contain both the compensating differentials explanation and the rents

explanation.

The second way in which the structure of job value is nonstandard is that in each period a worker

receives a new idiosyncratic utility draw, which is the preference heterogeneity in the model. This

preference heterogeneity explains why two workers would make different choices, and so we would

observe workers moving from employer A to employer B and B to A. It also explains why over

time a given worker’s feelings about her employer might change and gives the model a theory of

endogenous separations. While this preference heterogeneity is novel to the search literature, it

is restrictive and is probably the most controversial assumption in the model. According to this

assumption, all workers consider the same factors when making choices between firms, whereas in

other models different workers might consider different things. Put differently, the i.i.d. assumption

rules out persistent preference heterogeneity. A justification for this restriction is that firms appear

to be governed by an equal treatment norm, where a desirable firm for a janitor is also a desirable

firm for an executive. For example, Goldschmidt and Schmieder (2015, Figure 6) show that in

Germany, high-paying firms for food, cleaning, security and logistics workers are also high-paying

for workers outside these occupations. Similarly, I have estimated my model by men and women and

young (18-34 years old) and old (35-61 years old) workers separately, and firms that are high-paying

or high-value for one group are high-paying or high-value for the other group. (See Appendix G).

An additional assumption in the model is what Hall and Mueller (2013) term the proportionality-

to-productivity hypothesis. Persistent heterogeneity only enters through a worker-specific constant

that shifts the flow payoff to all employers as well as nonemployment. Specifically, this assumption

means that the search parameters are the same for all workers, and so I can use the structure of

the search model to infer rejected offers.

Because workers sometimes move between employers or to nonemployment involuntarily, the

model contains both exogenous and endogenous moves. Exogenous moves are related to a firm-
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level shock and would typically be labelled involuntary. I identify these moves by building on the

displaced worker literature, which aims to capture mass layoff events. In contrast, endogenous

moves result from maximizing decisions in the model. From the worker perspective, some of these

moves would be perceived as involuntary because they are in response to a negative idiosyncratic

draw at the current firm. For example, in Mortensen and Pissarides (1994) all separations are

endogenous and unpleasant for workers.

The following Bellman equation summarizes this verbal discussion of the model. A worker at

employer i has the following value function:4

V e(vi)︸ ︷︷ ︸
value of being at i

= vi︸︷︷︸
flow payoff

+ β︸︷︷︸
discounter

E
{

δi

∫
ι1

{V n + ι1}dI︸ ︷︷ ︸
exogenous job destruction

+ ρi(1− δi)
∫
V e(v′)

∫
ι2

{V e(v′) + ι2}dIdF̃︸ ︷︷ ︸
exogenous employer-to-employer (reallocation)

+ (1− ρi)(1− δi)︸ ︷︷ ︸
no exogenous shocks

×
[
λ1︸︷︷︸

offer

∫
V e(v′)

∫
ι3

∫
ι4

max{V e(v′′) + ι3︸ ︷︷ ︸
accept

, V e(vi) + ι4︸ ︷︷ ︸
reject

}dIdIdF

︸ ︷︷ ︸
endogenous employer-to-employer

+ (1− λ1)︸ ︷︷ ︸
no offer

∫
ι5

∫
ι6

max{V n + ι5︸ ︷︷ ︸
accept

, V e(vi) + ι6︸ ︷︷ ︸
reject

}dIdI

︸ ︷︷ ︸
endogenous job destruction

]}
. (1)

Reading from left to right, a worker employed at i has value V e(vi). This value consists of the

deterministic flow payoff, vi, and the continuation value, which she discounts by β. The flow payoff

is the same for all workers at employer i and is the basis on which the model ranks and values

employers. It represents the utility-relevant combination of pay, benefits, and non-wage amenities

such as working conditions, status, location, or work-life balance at employer i. In addition, in every

state workers also receive an idiosyncratic utility draw ι, which is drawn from a type I extreme

value distribution.

The continuation value weights the expected value of four mutually exclusive possibilities. Two

possibilities generate employer-to-employer transitions. A worker can be hit by a reallocation shock

and forced to take a random draw from the offer distribution, or she can receive an offer and make

a maximizing decision of whether to accept or reject it. And two possibilities generate employer-

to-nonemployment transitions. A worker can be hit by a job destruction shock and forced to move

to nonemployment, or she can make a maximizing choice to quit to nonemployment.

To estimate the offer distribution, I use information on where workers who are hired from

4The fact that the idiosyncratic shock shows up on the forward-looking values, rather than in the flow payoff,
may look odd but is standard in the conditional choice probability literature. See Arcidiacono and Ellickson (2011,
pg. 368).
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nonemployment end up. A worker who is nonemployed has the Bellman equation:

V n︸︷︷︸
value of being nonemployed

= b︸︷︷︸
flow payoff

+ β︸︷︷︸
discounter

E{ λ0︸︷︷︸
offer

∫
V e(v′)

∫
ι7

∫
ι8

max{V e(v′) + ι7︸ ︷︷ ︸
accept

, V n + ι8︸ ︷︷ ︸
reject

}dIdIdF

︸ ︷︷ ︸
endogenous nonemployment-to-employment

+ (1− λ0)

∫
ι9

{V n + ι9}dI︸ ︷︷ ︸
no offer

}. (2)

Reading from left to right, a nonemployed worker receives a total value of nonemployment of b,

which includes both unemployment benefits as well as the value of nonmarket time and household

production. Then each period two things might happen. She might receive an offer from an

employer, in which case she decides whether or not to accept it. Or nothing might happen in which

case she receives a new idiosyncratic draw associated with nonemployment.

1.2 Estimating the utility levels that firms post

This section shows how to estimate the utility levels that firms post. To allow for an arbitrary

relationship between utilities and earnings, I do not use the earnings data in my estimation of the

utilities.

The estimation procedure is semiparametric and is in the spirit of Postel-Vinay and Robin

(2002). I do not impose parametric assumptions on the distribution of firm values or on the offer

distribution. The estimation proceeds in two steps.

This section describes the two aspects of estimation that leverage novel features of the data,

while Appendix B provides the complete details. The first novel aspect is in the calibration step. I

use firm-level information in the spirit of the displaced worker literature to estimate which worker

transitions do not reflect worker choices. The second novel aspect is that I develop a flow-relevant

firm-level value—and prove when it exists and how to solve for it—that summarizes the central

tendency of worker flows across employers (and to nonemployment) in terms of parameters of the

model. With this value determined, the model reduces to an overidentified (by one equation) system

of equations. I can then unravel this central tendency into the underlying structural parameters.

1.2.1 Calibration step: identifying displaced workers probabilistically

To calibrate the firm-specific shocks experienced by workers, I develop a continuous measure of

displaced workers, or workers who left their employer because it was contracting. This amounts

to identifying exogenous transitions as excess correlations in the transitions. Flaaen, Shapiro, and

Sorkin (2015) use similar reasoning to detect whether workers report the proximate or ultimate

reason for separations in surveys.
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When an employer contracts by a lot, the displaced worker literature presumes the employer

contraction caused the worker separations. To see this graphically, consider Figure 1a, which,

using data and definitions described in Section 2, shows employer-to-employer and employer-to-

nonemployment separation probabilities as a function of quarterly employer growth. The figure

makes two points. First, even when an employer grows, workers separate. Second, as an employer

starts to shrink, the probability of a separation rises. Starting with Jacobson, LaLonde, and Sullivan

(1993), the displaced worker literature draws a vertical line at −30% and presumes all separations

to the left were caused by the employer contracting and all separations to the right were not.

The continuous notion of displacement assigns an exogenous probability as the excess prob-

ability of separation at a contracting employer relative to that at an expanding employer. To

see this graphically, Figure 1a draws a horizontal dashed line at the average of the employer-to-

nonemployment separation rates at the expanding employers. The level of separations captured by

this line are what would be expected in the absence of a firm-level shock.5 Any separations above

this line are excess and I attribute to a firm-level shock. The exogenous weight is then the excess

probability relative to the total probability of a separation given the employer growth rate.6

I use the displacement probabilities to assign exogenous weights to each transition in the data.

Figure 1b depicts the weights as a function of employer growth rates. To compute the overall

probability of an exogenous job destruction shock (δ in the model), I sum over the exogenous

probabilities of all employer-to-nonemployment transitions in the data and divide by the number

of person-years in the data; while to compute the probability of an exogenous reallocation shock

(ρ in the model), I sum over the exogenous probability of all the employer-to-employer transitions

in the data and divide by the number of person-years in the data.7

The inference from administrative data that workers are being laidoff at contracting employers

and are more likely to perceive separations as voluntary at expanding employers is supported by

both employer- and worker-side survey data. Davis, Faberman, and Haltiwanger (2012, Figure 6)

compute employers’ reported reasons for separations as a function of firm growth rates. They find

5Figure A1 in Appendix H shows that the model reproduces the relationship between firm growth and the
endogenous employer-to-employer and employer-to-nonemployment transitions in the data. The figure plots the
probability of endogenous employer-to-employer and employer-to-nonemployment transitions as a function of firm
growth rate in the data, as well as in the model. The figure shows that the model reproduces the upward slope on
both the left and right of both the employer-to-employer and employer-to-nonemployment probabilities.

6Formally, let Pr(EN|g) be the probability of an employer-to-nonemployment transition at a firm that grows at rate
g. Then let gc be a particular rate of employer contraction. The endogenous probability at a firm contracting by gc is
Pr(EN & Endogenous|gc) = Pr(EN|g>0)

Pr(EN|gc)
, while the exogenous probability is Pr(EN & Exogenous|gc) = 1− Pr(EN|g>0)

Pr(EN|gc)
.

7This approach to measuring exogenous separations using information on employer-side performance differs from
typical approaches. The most common approach uses the rate of flows to nonemployment to estimate exogenous
shocks (e.g., Postel-Vinay and Robin (2002, pg. 2319)), or uses the exogenous shocks to explain unexplained mobility
(e.g., flows to worse firms as in Moscarini and Postel-Vinay (2014, pg. 15)). An alternative approach to removing
layoffs more closely in the spirit of this paper is followed by Taber and Vejlin (2013, pg. 22, note 15), who drop
all employer-to-employer transitions from employers that contract by more than 70%; similarly, Fox (2010, pg. 364)
eliminates firm-years in which the firm closed. In both cases, they treat all other mobility as reflecting workers’
choices.
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patterns of employers’ reports of quits and layoffs that are similar to the employer-to-employer line

and employer-to-nonemployment lines in Figure 1a. Flaaen, Shapiro, and Sorkin (2015) compute

workers’ reported reasons for separations as a function of firm growth rates and find similar patterns.

Specifically, the probability of separating and reporting all reasons for separations rise as firms

contract, but “distress”-related reasons rise most rapidly.

1.2.2 Summarizing the central tendency of endogenous worker flows

The model implies a flow-relevant firm-level value that summarizes the complete structure of how

workers move across firms and can be written in terms of underlying parameters of the model. To

estimate this firm-level value, I derive a set of linear restrictions from the model on the values that

firms post. To show when this firm-level value exists, I prove a graph theoretic result.

The goal of the firm-level value is to find values that rationalize the structure of flows between

employers. I record endogenous flows between employers in a mobility matrix, denoted by M . The

(i, j) entry in M is the number of nondisplaced workers flowing to employer i from employer j.8

In the model, workers receive one offer at a time and, therefore, only ever make binary choices.

Because I adopt the standard continuum assumption in discrete choice models, such flows from

employer j to employer i are given by

Mij︸︷︷︸
j to i flows

= gjW︸︷︷︸
# of workers at j

(1− δj)(1− ρj)︸ ︷︷ ︸
no shocks

λ1fiPr(i � j),︸ ︷︷ ︸
get offer from i and accept

(3)

where W is the number of employed workers. To interpret this equation, note that there are gjW

workers at employer j and (1 − δj)(1 − ρj) share of them do not undergo exogenous separations.

These workers get an offer from i with probability λ1fi and accept the offer with probability

Pr(i � j).
The model implies a simple expression for the flow-relevant value of an employer and nonem-

ployment. To derive this expression, consider relative flows between pairs of employers, which are

given by:

Mij

Mji
=
figj(1− δj)(1− ρj)Pr(i � j)
fjgi(1− δi)(1− ρi)Pr(j � i)

. (4)

It is helpful to use the type I extreme value distribution to simplify Pr(i � j). Specifically, the type

I extreme value distribution implies the differences in the error terms are distributed logistically so

8To continue with the formality from footnote 6, suppose that there is one worker who moves from j to i. Then
the observed matrix is 1 = Mo

ij . Further, suppose that firm j was contracting when the worker made the move. Then

the endogenous matrix is Mij = Pr(EN|g>0)
Pr(EN|gc)

×Mo
ij .

9



that

Pr(i � j) =
exp(V e(vi))

exp(V e(vi)) + exp(V e(vj))︸ ︷︷ ︸
logistic (difference of type I errors)

⇒ Pr(i � j)
Pr(j � i)

=
exp(V e(vi))

exp(V e(vj))
. (5)

Combining (4) and (5) gives:

Mij

Mji︸︷︷︸
relative flows

=
fi
fj︸︷︷︸

relative offers

× gj
gi︸︷︷︸

relative size

× (1− δj)(1− ρj)
(1− δi)(1− ρi)︸ ︷︷ ︸

relative shocks

× exp(V e(vi))

exp(V e(vj))
.︸ ︷︷ ︸

relative values

(6)

Relative flows (accepted offers) are directly related to relative values, but multiplied by relative

offers and effective size. These additional terms account for the rejected offers. A firm that is large

relative to the number of offers it makes must have had few rejected offers.9 Now introduce notation

which defines the flow-relevant firm-level value that summarizes the determinants of relative flows:

exp(Ṽi)︸ ︷︷ ︸
flow-relevant value

≡ fiexp(V
e(vi))

gi(1− δi)(1− ρi)︸ ︷︷ ︸
offer × value / effective size

. (7)

exp(Ṽi) is the flow-relevant value of an employer. It combines differences in the underlying value of

an employer, as well as differences in (effective) size and the offer rate. For flows between employers

and the nonemployed state, an analogous derivation implies:

Mni

Min
=

(1− λ1)giW (1− δi)(1− ρi)Pr(n � i)
λ0fiUPr(i � n)

=
exp(Ṽn)

exp(Ṽi)
, (8)

where

exp(Ṽn)︸ ︷︷ ︸
flow-relevant value

=
(1− λ1)Wexp(V n)

λ0U︸ ︷︷ ︸
offers × values / effect size

. (9)

Reading across, note the “offers” of nonemployment to employed workers occur when a worker does

not get an outside offer, and the effective size of the nonemployed pool for valuation purposes is

the number of workers who have offers.

9In the steady state where all firms are a constant size, this ratio is in fact sufficient to rank firms. If firms
are growing or shrinking this ratio also reflects the recent growth trajectory. The approach developed here is not
mechanically related to the rate of firm growth.
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Combining (6) and (7) gives relative flows between employers in terms of exp(Ṽi):

Mij

Mji︸︷︷︸
relative flows

=
exp(Ṽi)

exp(Ṽj)︸ ︷︷ ︸
relative flow-relevant values

. (10)

While it would be possible to take equation (10) directly to the data, doing so would run into two

problems. First, for many pairs of firms there are not flows in both directions so this approach would

not yield well-defined values of employers. Second, there is no guarantee that this approach would

yield consistent valuations of employers. For example, there might be Condorcet cycle-like cases

where combining the comparisons of employer A with employer B and employer B with employer C

would give different relative valuations of employer A and employer C than the direct comparison

of employer A and employer C.

To estimate the firm-level value, I now show that the model implies a set of linear restrictions.

These restrictions address the two problems mentioned directly above. First, the restrictions imply

a unique set of firm-level values that best explain all the flows. Second, the condition for uniqueness,

which I discuss formally later in this section, is a restriction on the pattern of zeros in the flows

that is much weaker than that each pair of firms have flows in both directions. Let E be the set of

employers and n be the nonemployment state. Cross-multiplying (10) gives

Mijexp(Ṽj) = Mjiexp(Ṽi), ∀j ∈ E + n,

where the “for all” holds because the derivation of (10) goes through for all employers (as well as

nonemployment). Summing across all employers on both sides gives∑
j∈E+n

Mij︸ ︷︷ ︸
# of hires by i

exp(Ṽj)︸ ︷︷ ︸
flow-relevant value

=
∑
j∈E+n

Mji︸ ︷︷ ︸
# of exits from i

exp(Ṽi)︸ ︷︷ ︸
flow-relevant value

. (11)

Dividing by the summand on the right-hand side gives

value weighted hires︷ ︸︸ ︷∑
j∈E+n

Mijexp(Ṽj)∑
j∈E+n

Mji︸ ︷︷ ︸
exits

= exp(Ṽi)︸ ︷︷ ︸
flow-relevant value

. (12)

Equation (12) implies one linear restriction per firm (and one for nonemployment). The equation

generates a recursive definition of employer quality: the quality of an employer depends on the

quality of the employers it hires from, which in turn depends on the quality of the employers it
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hires from. In other words, the equation says that a good firm hires a lot from other good firms

and has few workers leave.

To solve for the flow-relevant values, create the matrix version of equation (12). Specifically,

define a square matrix S that is all zeros off-diagonal with the ith diagonal entry being Sii =∑
j∈E+nMji. Then letting exp(Ṽ ) be the |E +n|×1 vector that contains the firm-level exp(Ṽi) and

exp(Ṽn) yields the following:

S−1M︸ ︷︷ ︸
normalized flows

exp(Ṽ )︸ ︷︷ ︸
flow-relevant values

= exp(Ṽ )︸ ︷︷ ︸
flow-relevant values

. (13)

This equation allows me to solve for exp(Ṽ ). Intuitively, exp(Ṽ ) is the fixed point of the function

S−1M : R|E+n| → R|E+n|. In many settings in economics, fixed points can be found by starting

with an initial guess and repeatedly applying the function to the resulting output until it converges.

Despite the very high-dimensionality of the function, the same idea applies here.

To show when the exp(Ṽ ) vector exists requires tools from graph theory. In the context of

a linear system, the fixed point is an eigenvector corresponding to an eigenvalue of 1. For the

iteration idea to work, the technical condition is that S−1M has an eigenvalue of 1 and this is the

largest eigenvalue of the matrix.10 Moreover, in order for the values to be interpretable, the exp(Ṽ )

vector needs to be all positive so that Ṽ is defined (the log of a negative number is not defined).

Result 1. Let S−1M be matrices representing the set of flows across a set of employers and be

defined as above. If the adjacency matrix associated with M represents a set of strongly connected

employers, then there exists a unique-up-to-multiplicative-factor vector of the same sign exp(Ṽ )

that solves the following set of equations:

S−1Mexp(Ṽ ) = exp(Ṽ ).

Proof. See Appendix A (also for graph theory definitions).

This result shows that I can only estimate the value of employers in the strongly connected set.

Strongly connected is a restriction on the pattern of zeros in the M matrix. To be in the strongly

connected set, an employer has to both hire a worker from and have a worker hired by an employer

in the strongly connected set. This result is intuitive. The information used to estimate values is

relative flows. If an employer either never hires, or never has anyone leave, then we cannot figure

out its relative value. To see this, consider equation (12). If a firm never hires, then its value is

mechanically zero. Alternatively, if a firm has no workers leave, then the denominator is zero and

10 In many other contexts the (top) eigenvector of matrices have been shown to have interesting economic content.
Some examples include the following: the Leontief inverse of the input-output tables, and, in a network context,
eigenvector centrality and Bonacich (1987) centrality. For some applications and development of these network ideas,
see Ballester, Calvo-Armengol, and Zenou (2006), Acemoglu et al. (2012), and Elliott and Golub (2014).
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the value of the firm is infinite. This result is related to the identification result in Abowd, Creecy,

and Kramarz (2002) who show that the employer fixed effect in Abowd, Kramarz, and Margolis

(1999) can only be estimated in the connected set of employers. To be in the connected set, an

employer has to either hire a worker from or have a worker hired by an employer in the connected

set.

Remark on Result 1: Because the search model implies that the S matrix is different than in

standard applications, the novelty in result 1 is showing that the top eigenvalue is 1 (the Perron-

Frobenius theorem is used to show that the top eigenvector is unique). S divides the ith row of

M by the ith column sum of M . In other applications (e.g., Pinski and Narin (1976), Page et al.

(1998) (Google’s PageRank), and Palacios-Huerta and Volij (2004)), the normalizing matrix instead

divides the ith column of M by the ith column sum. This normalization makes the resulting matrix

a transition matrix and standard results imply that the top eigenvalue is 1. With the alternative

normalization implied by the discrete choice model, standard results do not apply.

The diagonal entries in M are not defined using the model. The following result shows that

because of the normalization, the top eigenvector of S−1M is invariant to the value of the diagonal

entries in M .

Result 2. Suppose that exp(Ṽ ) is a solution to exp(Ṽ ) = S−1Mexp(Ṽ ) for a particular set of

{Mi,i}i∈E . Pick arbitrary alternative values of the diagonal: {M ′i,i}i∈E 6= {Mi,i}i∈E . Let S′ and M ′

be the natural variants on S and M . If exp(Ṽ ) solves the equation exp(Ṽ ) = S−1Mexp(Ṽ ), then

it also solves the equation exp(Ṽ ) = S′−1M ′exp(Ṽ ).

Proof. See Appendix A.

1.3 Summary

Appendix B shows how to take the employer-level value defined in equations (7)and (9) and infer

the underlying values of employers and nonemployment. Here I summarize these steps. To facilitate

this discussion, rearrange equation (7) to the following:

exp(V e(vi))︸ ︷︷ ︸
value

=
exp(Ṽi)gi(1− δi)(1− ρi)

fi︸ ︷︷ ︸
flow-relevant value×effective size/offers

.

The object of interest is the firm value on the left-hand side. From the calibration step described

in Section 1.2.1, I get the M matrix of endogenous moves and {δi, ρi}.11 The approach developed

11In practice, I use the population averages of δi and ρi instead of the firm-specific values. The reason is that with
the firm-specific values, the model failed the overidentification test and was not able to find a value of nonemployment
that generated the extent of employer-to-employer transitions. With the population averaged values, the model was
able to do so. The reason the value of nonemployment is relevant for the extent of employer-to-employer transitions
is that it affects the estimate of the arrival rate of offers while employed.
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in Section 1.2.2 takes the M matrix and gives exp(Ṽi). In addition, I observe gi. The remaining

term on the right-hand side is fi, or the share of offers a firm makes. Intuitively, the structure

of the employer-to-nonemployment transitions tells me the value of nonemployment, while the

nonemployment-to-employer transitions tells me the offer distribution facing workers. By estimating

the value of nonemployment and the offer distribution jointly, I allow nonemployed workers to reject

offers.

2 Matched employer-employee data

This section describes the U.S. Census Bureau’s Longitudinal Employer Household Dynamics data,

which is a quarterly data that is constructed from unemployment insurance records.12 The LEHD

is matched employer-employee data and so allows me to follow workers across firms.

2.1 Data description

Three features of the LEHD should be kept in mind when interpreting the results. First, the notion

of an employer in this dataset is a state-level unemployment insurance account, though the dataset

follows workers across states.13 Second, only employers that are covered by the unemployment

insurance system appear in the dataset.14 Overall, in 1994 the unemployment insurance system

covered about 96% of employment and 92.5% of wages and salaries (BLS (1997, pg. 42)). Third,

the unemployment insurance system measures earnings, but not hours.15 Thus, variation in hours

as well as in benefits will be included in my measure of compensating differentials.

Being able to track employers over time is central to measuring employer-to-employer flows and

administrative errors in the employer identifiers would lead to an overstatement of flows. Following

Benedetto et al. (2007), I assume that large groups of workers moving from employer A to employer

12See Abowd et al. (2009) for details.
13This can understate firm size for two reasons. First, for employers that operate in multiple states, this understates

true employer size. Second, it is also possible for a given employer to have multiple unemployment insurance accounts
within a state, which would also lead to an understatement of true employer size, though this is quantitatively
unimportant (personal communication from Henry Hyatt (dated June 12, 2014): “the employment weighted fraction
of firmids with multiple SEINs [state employer identification number] in a given state is about 1.5%, and...this
fraction is actually lower in some of the larger states.”) That said, working conditions are probably more similar
within establishments than within employers, so having a “smaller” notion of an employer is desirable from the
perspective of measuring compensating differentials.

14This restriction results in the exclusion of certain sectors of the economy. In particular, small nonprofit (or-
ganizations employing fewer than four workers), domestic, self-employed, some agricultural and federal government
(but not state and local government) workers are excluded. For more complete discussions, see Kornfeld and Bloom
(1999, pg. 173), BLS (1997, pg. 43) and http://workforcesecurity.doleta.gov/unemploy/pdf/uilawcompar/

2012/coverage.pdf.
15The notion of earnings captured by UI records is as follows: “gross wages and salaries, bonuses, stock options,

tips and other gratuities, and the value of meals and lodging” (BLS (1997, pg. 44)). This omits the following
components of compensation: “employer contributions to Old-age, Survivors, and Disability Insurance (OASDI);
health insurance; unemployment insurance; workers’ compensation; and private pension and welfare funds” (BLS
(1997, pg. 44)).

14

http://workforcesecurity.doleta.gov/unemploy/pdf/uilawcompar/2012/coverage.pdf
http://workforcesecurity.doleta.gov/unemploy/pdf/uilawcompar/2012/coverage.pdf


B in consecutive periods—especially if employer B did not previously exist—likely reflects errors

in the administrative data rather than a genuine set of flows. As such, I correct the employer

identifiers using worker flows. I use the Successor-Predecessor File and assume that if 70% or

more of employer A’s workers moved to employer B, then either 1) employer B is a relabelling of

employer A or 2) employer B acquired employer A. Therefore, I do not count such “moves” as

employer-to-employer transitions.

I pool data from 27 states from the fourth quarter of 2000 through the first quarter of 2008.16

Pooling data means that I keep track of flows between as well as within these states. Like the dataset

used by Topel and Ward (1992), the LEHD contains limited worker covariates. In particular, it

includes age, race, and sex.

2.2 Dataset construction

I treat the model as an annual model, and I make several choices to go from the raw data to

model-relevant objects.

To define a worker’s employer, I reduce my dataset to one observation per person per year.

The observation is the worker’s annual dominant employer: the employer from which the worker

made the most money in the calendar year. In addition, to facilitate coding transitions, I require

that to count as an annual dominant employer the worker had two quarters of employment at the

employer and that the second quarter occurred in the calender year.17 I also restrict attention to

workers aged 18-61 (inclusive) and, following Card, Heining, and Kline (2013), require that the

annualized earnings exceed $3,250 (in 2011 dollars). Earnings are annualized by adjusting earnings

for the number of quarters a worker was at a particular employer. With an annual dataset it is not

possible to infer whether a change in dominant job was an employer-to-employer transition or an

employer-to-nonemployment-to-employer transition.

To understand more about the transition, I use the quarterly detail of the LEHD to code

transitions as employer-to-employer or employer-to-nonemployment-to-employer and to construct

the displacement probabilities. I construct a quarterly dataset building on ideas in Bjelland et al.

(2011) and Hyatt et al. (2014). First, I code a worker’s transition between annual dominant

employers as employer-to-employer or employer-to-nonemployment-to-employer. The transition is

coded as employer-to-nonemployment-to-employer if between the annual dominant employers there

is a quarter when the worker is nonemployed or has very low earnings. Second, I use the quarterly

dataset to measure whether (and by how much) the employer was contracting in the quarter the

worker separated, and to construct the relevant exogenous weight (see section 1.2.1). See Appendix

16I use the following states: CA, FL, GA, HI, ID, IL, IN, KS, MD, ME, MN, MO, MT, NC, ND, NJ, NM, NV,
PA, OR, RI, SC, SD, TN, VA, WA, and WI. See Figure A2 in Appendix H for a map.

17Reduction to one observation per person per year is common. See Abowd, Kramarz, and Margolis (1999)
(France), Abowd, Lengermann, and McKinney (2003) (US), Card, Heining, and Kline (2013) (Germany), and Card,
Cardoso, and Kline (2014) (Portugal). Even outside of estimating statistical wage decompositions, Bagger et al.
(2014) also reduce to one such observation per year.
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C for details on my dataset construction (including how earnings are annualized) and Appendix D

for a discussion of my computation.

2.3 Sample sizes

The sample restrictions that I impose to estimate the model eliminate many of the smallest firms

where it would be hard to plausibly estimate a firm effect. A standard step in the estimation of

search models is to impose a minimum size threshold; for example, Postel-Vinay and Robin (2002,

pg. 2311) impose a minimum size threshold of 5. Table 1, column (1) shows the full annual sample.

The subsequent columns show what happens to sample sizes and descriptive statistics as I restrict

attention to the largest set of firms I can estimate the firm effects in (column (2)), the set of firms I

use to compute the top eigenvector (column (3)), and the set that I estimate the model in (column

(4)). Moving from column (1) to column (4), I lose very few person-years and people, but I do lose

a large number of employers: I keep over 90% of person-years but only about 25% of employers.

Under the assumption that the firms that I eliminate while moving from column (1) to column (4)

exist for 7 years, the firms had 1.5 people per year on average. The second portion of Table 1 shows

that the mean and variance of earnings are quite stable as I lose person-years and employers.

3 Features of the choice data

This section displays the patterns in the flow data that go into estimating the model and shows

that the model is able to reproduce them.

3.1 Isolating endogenous moves: constructing the M matrix

Identifying compensating differentials relies on endogenous moves across firms. In the model, these

moves are recorded in the M matrix. This section reports on the quantitative importance of

the two steps I take to focus on endogenous moves. First, I separate transitions between annual

dominant employers into employer-to-employer and employer-to-nonemployment-to-employer tran-

sitions. Second, even within employer-to-employer transitions, I use my firm-level calibration of

shocks to downweight the moves where it is less likely that the worker had a choice to stay because

the employer was contracting. Finally, even when I label a transition as endogenous, it does not

necessarily mean that it feels good to the worker because it might be in response to a negative

idiosyncratic (worker-match-specific) shock.

Fewer than half of the transitions between annual dominant employers are employer-to-employer.

For workers in column (1) of Table 1, I code each transition between annual dominant jobs as

employer-to-employer or employer-to-nonemployment-to-employer. The top rows of Table 2 shows

that the annual separation probability is 25% and only 40% of these are employer-to-employer.18

18To compute a probability, the denominator is the number of person-years minus one per worker. The level of
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Among employer-to-employer transitions, about three-quarters are endogenous. I assign the

endogenous weight to each employer-to-employer separation. The table shows that 26% of employer-

to-employer transitions are exogenous. At contracting employers, the share of exogenous employer-

to-employer transitions is 48%.19

Only about a third of employer-to-nonemployment moves are associated with contracting em-

ployers. Aggregating across the exogenous weights on each employer-to-nonemployment transition,

I find that 34% of the employer-to-nonemployment transitions are exogenous; that is, there are

many separations to nonemployment in the absence of what looks like a firm-level shock. In the

model, this is because workers, especially at the worst firms, sometimes quit to nonemployment fol-

lowing an idiosyncratic shock. At contracting firms, 56% of employer-to-nonemployment transitions

are exogenous.20

Summing up across firms, I get novel estimates of the rate of two sources of exogenous mobility:

the job destruction rate and the reallocation rate. Combining the exogenous weights and the

separation probabilities gives an annual exogenous employer-to-nonemployment, or job destruction,

rate (δ) of 0.05.21 Combining the exogenous weights and the separation probabilities, gives an

annual exogenous employer-to-employer, or reallocation, rate (ρ) of 0.03.22 The remaining rows of

Table 2 contain the other model parameters.23

transitions is slightly lower than—but the share of employer-to-employer transitions is similar to—what previous
literature using similar definitions has found. For example, Bjelland et al. (2011, pg. 498) find that the quarterly
employer-to-employer rate is about 4% (on an annualized basis about 16%), and employer-to-employer flows make
up 27% of all separations, while Hyatt and McEntarfer (2012, Figure 2) find quarterly dominant job separation rates
of about 16% (on an annualized basis about 50%) and close to half of such separations are employer-to-employer. I
find lower separation rates for two reasons. I look at an annual frequency and so miss multiple separations within a
year, and I also select for a slightly more stable populaton by imposing an earnings test.

19This exogenous share is between the estimates of Sullivan and To (2014, pg. 482, Table 1) who find that about
15% of employer-to-employer transitions are reallocations, and those of Moscarini and Postel-Vinay (2014, pg. 30),
who find that about half of employer-to-employer transitions (49.7%) are exogenous in the sense used here. However,
I do not use worker outcomes to categorize employer-to-employer transitions as being exogenous or endogenous.

20This ratio is the opposite of what Moscarini and Postel-Vinay (2014, pg. 21, Figure 11) find when separating
employer-to-nonemployment transitions into layoffs and quits; they find that about 2

3
of employer-to-nonemployment

transitions are layoffs and 1
3

are quits. This emphasizes that an endogenous separation is simply due to a shock
idiosyncratic to the worker and that the separation might be labelled by the firm as a layoff.

21This annual job destruction rate is quite similar to Bagger and Lentz (2015, pg. 34), who estimate the annual
job destruction rate for the low type worker in their model (which dominates their data) at 0.063. However, it is
much lower than annualized versions of the monthly layoff rates estimated by Hornstein, Krusell, and Violante (2011,
pg. 2879) (0.03). In general, monthly/quarterly views of the labor market do not aggregate in an i.i.d. way to annual
values.

22The reallocation rate is quite a bit lower than the estimate of Bagger and Lentz (2015) of 0.106, but again, I do
not use outcomes to code the reallocation rate.

23I estimate the arrival rate of offers on the job, λ1, by matching the level of endogenous employer-to-employer
transitions. The annual probability of receiving an offer is 0.20. (This is lower than the annualized offer rates reported
by Moscarini and Postel-Vinay (2014, pg. 30) (about 30%) and Hornstein, Krusell, and Violante (2011, pg. 2889 and
Figure 3) (at least 60%). This is presumably because I have annual data.)
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3.2 The slippery ladder

Figure 2 shows that the model generates what the literature has termed a “slippery ladder.” The

figure sorts firms into 20 bins on the basis of firm-value. Within each bin, I compute the average

probability of each kind of exogenous separation shock by summing across the exogenous weights,

which are constructed using the variation depicted in Figure 1. The figure shows that job destruction

and reallocation shocks are more likely at the worst firms. This means that the bottom rungs of

ladder are “slippery” in that workers are more likely to experience exogenous shocks. This result is

not mechanical, since the model does not use the exogenous transitions in computing firm values.

This feature of the data has also been emphasized—or conjectured—by Jarosch (2014), Krolikowski

(2014), Pinheiro and Visschers (2015) and Bagger and Lentz (2015).

3.3 Assessing the fit of the search model

The model does a reasonable job of fitting the choice (“revealed preference”) information in the

data along three dimensions. First, the model fits the pattern of workers at better firms being less

likely to quit to take another job. Second, the model fits the pattern of workers at better firms

being less likely to quit to nonemployment. Third, the model fits the detailed structure of the

patterns of movements between employers on employer-to-employer transitions.

I first consider whether the model can match both the slope of the probability of making an

employer-to-employer transition and the slope of the probability of making employer-to-nonemployment

transition by firm value. This tests whether there is a single employer value that can rationalize

the heterogeneity in both kinds of transitions. Heuristically, the slope of the probability of the

employer-to-employer transitions tells us how different the firms are: in the model, the slope re-

flects the different probabilities across firms of workers accepting an offer from a random firm. Given

these values, the model then picks the value of nonemployment to match the overall probability of

endogenous employer-to-nonemployment transitions, but not the slope. It is not mechanical that

a single firm value would match both slopes.

First, the model matches the probability of endogenous employer-to-employer transitions across

employers. Figure 3a shows the probability of an endogenous employer-to-employer separation in

the data and in the model. To construct the figure, I take all firms and sort them on the basis of

the estimated firm values (V e) into 20 bins with the same number of person-years. For each firm,

I then compute the model-implied probability of an endogenous employer-to-employer separation.

Within a bin, I average over the firm-specific probabilities implied by the model and in the data.

The model implies that the probability of an endogenous employer-to-employer transition varies

by a factor of about 5 from the bottom 5% of firms to the top 5% of firms. This variation is also

present in the data.

Second, the model predicts that workers at better firms are less likely to make endogenous

employer-to-nonemployment transitions, a pattern that is also in the data. Figure 3b shows the
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probability of an endogenous employer-to-nonemployment separation in the data and the model.

The construction of the figure is analogous to the employer-to-employer figure. The figure shows

that the model implies that the probability of an endogenous employer-to-nonemployment transition

(one from an expanding firm) varies by a factor of about 10 from the bottom 5% of firms to the

top 5% of firms, which nearly exactly matches the pattern in the data.

Third, the search model matches the detailed patterns of how workers make employer-to-

employer transitions. To study how well the model matches the detailed structure of employer-to-

employer transitions, I compare rankings based on “global” and “local” information. The model

uses “global information” and says that A wins if ṼA > ṼC .24 The local information is contained

in binary comparisons. A binary comparison of employer A and employer C occurs when I observe

accepted offers from A to C and C to A. In the binary comparison, I say that employer A wins if

more workers join A from C than vice versa.

Any disagreement between the global and the local rankings should be explained by small

samples. In small samples, these two rankings can differ. For an example of this phenomenon,

consider Figure 4. In this figure, employer C wins on the binary comparison over employer A

(2 > 1). But when the accepted offers related to employer B are taken into account, the estimated

value has A winning, or ṼA > ṼC . In large samples, this cannot happen.

The extent of disagreement between the global and local rankings is consistent with the model

being the data-generating process. When I weight the comparisons by the number of accepted

offers represented in each comparison, the model and the binary comparisons agree on 70.39% of

comparisons. Is 70% big or small? This number allows me to reject the null of the model being

equivalent to all firms having the same value (the neoclassical model of the labor market).25 I find

that the 90% confidence interval under the random null is [49.67%, 50.28%]. Under the null that the

model is the data-generating process, the 90% confidence interval is [75.38%, 75.56%].26 This means

that the data are statistically inconsistent with the model being the data-generating process, but

the economic magnitude of the rejection is not large. Thus, I conclude that the top eigenvector of

the mobility matrix does a reasonable job of summarizing the structure of the employer-to-employer

transitions.

24That is, I focus on the information in the accepted offers to parallel the binary comparisons. I use the values
defined in equation (7).

25If in the data I observe 5 workers flowing from A to B and 10 workers flowing from B to A, then I take
10 + 5 = 15 draws from a binomial distribution, where the probability of choosing A is 0.5. I ask what share of
weighted comparisons the model and the binary comparisons agree on. I repeat this procedure 50 times to generate
a null distribution under the hypothesis of all firms are equally appealing.

26I repeat the procedure described in footnote 25 except that the probability of choosing A is given by
exp(ṼA)

exp(ṼA)+exp(ṼB)
, where exp(ṼA) is what I estimate in the model (and similarly for B) and the probability of choosing

B is the remaining probability.
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3.4 Dispersion in the labor market

There is dispersion in the labor market when measured either in terms of the value that employers

provide to their workers or in terms of earnings (I discuss how I estimate the firm-level earnings in

section 4.) Strikingly, however, there is more dispersion when it is measured in terms of earnings.

This section also shows that patterns of left-shifts in the offer distribution predicted by search

theory are found in both value and earnings space.

Figure 5a provides a new source of evidence that there is equilibrium dispersion. The figure plots

the dispersion in the common values of firms (V e) and the idiosyncratic draw (ι). In a benchmark

frictional model (i.e., Burdett and Mortensen (1998)), workers agree on the ranking of firms and

only voluntarily move towards better firms. All mobility is explained by common firm values and

the model would find no dispersion in ι. Alternatively, in a benchmark neoclassical model in which

firms play no special role (i.e., Topel and Ward (1992)), all mobility is explained by the idiosyncratic

draw and the model would find no dispersion in V e. The data are inconsistent with both extreme

views. The dispersion in the common firm values and the dispersion in the idiosyncratic draws are

similar. Based only on the information in quantities, there is clear evidence that there are good

and bad firms. But these firm-level differences do not fully explain worker choices.

Figure 5b shows that there is less dispersion in values than in earnings. The figure plots the

dispersion in the firm-level earnings (Ψ) and the residual in the earnings equation (r). A comparison

of the two panels makes it clear that the common component is relatively more important in terms

of earnings than in terms of values. This feature indicates that the systematic patterns in mobility

are weaker than the systematic patterns in earnings changes.

Figure 6 shows that the offer distribution is left-shifted relative to the distribution of where

workers are employed, whether this is measured in terms of values (top panel) or earnings (lower

panel). The left shift in the earnings distribution is not mechanical, since the earnings information

is not used in the estimation of the search model. In addition, the figure’s panels compare the

distributions of where workers are hired following nonemployment spells and reallocation shocks.

In specifying the model, I do not allow the reallocated workers to reject offers (though this is not

particularly central to the estimation). It is clear, however, that the reallocated workers on average

end up at better firms than the workers hired from nonemployment. Thus, related to Bowlus and

Vilhuber (2002), who argue that potentially displaced workers treat nonemployment as an outside

option, there is evidence that workers who successfully make employer-to-employer transitions from

contracting firms are more selective than workers who move from nonemployment.

4 Earnings

So far this paper has shown how to estimate the value of each firm on the basis of the choices that

workers make. In this section I turn to estimating the earnings posted by each employer. Section
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5 shows how to combine the values and earnings to decompose the variation in firm-level earnings

into a rents component and a compensating differentials component.

4.1 Estimating earnings that firms post

To measure the earnings offered by firms, I use the following equation for log earnings (known as

the Abowd, Kramarz, and Margolis (1999) decomposition):

ywt︸︷︷︸
log earnings

= αw︸︷︷︸
person effect

+ ΨJ(w,t)︸ ︷︷ ︸
firm effect

+ x′wtβ︸ ︷︷ ︸
covariates

+ rwt︸︷︷︸
residual/error term

, (14)

where ywt is log earnings of person w at time t, αw is a person fixed effect, ΨJ(w,t) is the firm fixed

effect at the employer j where worker w is employed at time t (denoted by J(w, t)), and r is an

error term. Canonically, x is a set of covariates including higher-order polynomial terms in age.27

Once I use the search model to selection-correct the equation, the firm effects in equation

(14), Ψ, are the model-consistent notion of earnings, where the Ψ is the same firm-level earnings as

discussed in section 1. The firm effects are identified by workers who switch firms. As such, the firm

effects remove a time-invariant worker effect and, therefore, capture the earnings at a firm shared

by all workers.28 The one conceptual difference from the search model is that the search model

contains a theory of the error term, whereas consistent estimation of equation (14) using movers

requires that workers do not move on the basis of the error term. To remedy this inconsistency,

I selection-correct equation (14) by inserting the expected value of the idiosyncratic utility draw

calculated from the search model. Table A10 in Appendix H shows that this does not affect the

firm effects. See Appendix E for details.

Knowledge of the firm effects allows me to quantify the role of firms in earnings using the

following decomposition of the variance of earnings:

Var(ywt)︸ ︷︷ ︸
variance of earnings

= Cov(αw, ywt)︸ ︷︷ ︸
person effect

+ Cov(ΨJ(w,t), ywt)︸ ︷︷ ︸
firm effect

+ Cov(x′wtβ, ywt)︸ ︷︷ ︸
covariates

+ Cov(rwt, ywt)︸ ︷︷ ︸
residual

. (15)

The share of the variance in earnings due to firm effects is given by:

Cov(ΨJ(w,t), ywt)

Var(ywt)
. (16)

Firms play an important role in earnings determination. The third portion of Table 1 performs

27Because I only use seven years of data, the linear terms in the age-wage profile are highly correlated with the
person fixed effects and thus, following Card, Heining, and Kline (2013), are omitted.

28To estimate the firm effects, researchers typically use both employer-to-employer and employer-to-
nonemployment-to-employer movers to estimate the firm effects. Table A10 in Appendix H shows that restricting to
just employer-to-employer transitions barely changes the firm effects (the correlation with the benchmark is 0.96).
As such, I use both types of transitions in my main results.
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the Abowd, Kramarz, and Margolis (1999) decomposition (equation (15)). About 22-23% of the

variance of earnings is explained by employer-level heterogeneity.29

4.2 Earnings cuts are an important feature of the data

This section shows that seemingly voluntary cuts in earnings are widespread, are captured by the

firm effects, and are not offset by future earnings increases. Besides emphasizing the prevalence

of earnings cuts, this section serves two broader purposes in the paper. First, once selection-

corrected, the model of the labor market underlying the Abowd, Kramarz, and Margolis (1999)

earnings decomposition is the same as the model of the labor market reflected in the benchmark

search model used in this paper. Since utility is unobserved while earnings are observed, there are

more ways to test this model of the labor market using the earnings data than using the choice

data. Second, by documenting that changes in firm effects are related to individual-level earnings

changes and that such earnings cuts are widespread, this section begins to build the empirical case

that something besides the pursuit of higher pay explains some employer-to-employer moves. In

section 5, I directly relate the average direction of mobility in the labor market to the average

pattern in earnings changes and develop a formal apparatus to interpret systematic patterns of

moves to lower-paying firms as indicative of compensating differentials.

Individual-level earnings cuts are widespread in the data. Table 3 shows that 42% of transitions

between annual dominant employers take earnings cuts. Even after restricting to endogenous

transitions employer-to-employer transitions, 37% of these transitions take earnings cuts.30 Hence,

many employer-to-employer transitions cannot be explained by pursuit of higher-pay. By revealed

preference, there must be some good nonearnings characteristics that justify these earnings cuts.

The nonearnings characteristics, however, might be idiosyncratic to the firm-worker match and

would not generate compensating differentials because such factors are not necessarily priced in the

labor market.

To show that the earnings cuts are related to firm-level characteristics that we expect to be

priced in the labor market, I now show that individual-level earnings cuts are related to firm-level

pay in both probability and magnitude. The firm effects capture the probability of an earnings

cut. Table 3 shows that 52% of the endogenous transitions to lower-paying firms have earnings

cuts, while only 26% of the such transitions to higher-paying firms have earnings cuts. Figure

7 shows this fact graphically. Figure 7a plots the change in firm effects against the probability

29This share is broadly in line with the literature. For example, Card, Heining, and Kline (2013, Table IV) perform
a related decomposition and find that the establishment share is about 20%. Comparing columns (2) and (3) of Table
1 also shows that changing the sample does not affect the decomposition.

30The share of earnings cuts is quantitatively consistent with evidence from survey datasets where researchers are
able to calculate changes in hourly earnings. Jolivet, Postel-Vinay, and Robin (2006, Table 1) find that in the Panel
Study of Income Dynamics 23.1% of job-to-job transitions come with an earnings cut. For the Survey of Income and
Program Participation, Tjaden and Wellschmied (2014, Table 2) find 34%. And for the National Longitudinal Survey
of Youth 1997, Sullivan and To (2014, Table 1) find 36%.
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of taking an earnings cut on an employer-to-employer transition, while Figure 7b shows this for

employer-to-nonemployment-to-employer transitions. The probability of an earnings cut monoton-

ically decreases as workers move to higher-paying firms: from the largest downward moves to the

largest upward moves, the probability of an earnings cut falls from about 80% to 10%.

The firm effects capture the magnitude of the earnings cuts. As emphasized by Chetty, Fried-

man, and Rockoff (2014), a measure of bias in firm effects (or, in their case, teacher value-added)

is to consider the β1 coefficient in the following regression:

individual-level earnings change = β0 + β1firm effect change.

If the firm effects are unbiased, then we expect β1 = 1.31 The x-axis of Figure 8 plots the vigintiles

of changes in firm effects at transitions between annual dominant employers against the average

individual-level change in earnings on these transitions. The solid line plots the best-fitting line

from a regression run on the individual-level data. The thin-dashed line shows the line that would

be expected if the firm effects were unbiased. The two lines are not that far apart. The lower

panel shows that the fit is better in the employer-to-nonemployment-to-employer transitions than

in the employer-to-employer transitions. (For employer-to-employer transitions the slope coefficient

is 0.82; for employer-to-nonemployment-to-employer transitions it is 1.03.)

It is not mechanical that changes in firm effects capture the magnitude of the earnings cuts.

Specifically, this result is not predicted by models where mobility is on the basis of comparative

advantage (e.g., Eeckhout and Kircher (2011), Lopes de Melo (2013) and Hagedorn, Law, and

Manovskii (2014)). A natural concern is that the firm effects summarize the information in the

individual earnings changes, which would suggest that the fit in Figure 8 is mechanical. But two

features of this fit do not occur in data simulated from a model where mobility is on the basis of

comparative advantage. First, in these models there are no earnings cuts, and the individual-level

earnings changes always lie above the x-axis. Second, in these models there is not the approximate

symmetry in earnings changes from moving to a better or a worse firm (Card, Heining, and Kline

(2013, pg. 990) and Card, Cardoso, and Kline (2014, pg. 10) emphasize this symmetry property).

Figure A3 plots the analogous figure to Figure 8 with data simulated from the example production

function in Eeckhout and Kircher (2011). The estimate of β1 is about 0.4, and unlike in the data,

the earnings changes display a v-shape in the firm effects changes.32

31Chetty, Friedman, and Rockoff (2014) perform this exercise using a leave-one-out estimator to eliminate the
mechanical correlation from the fact that the individual test scores are used to estimate the teacher value-added.
In my case, leave-one-out is computationally infeasible, since the process of building the matrices and estimating
the firm effects takes at least an hour. Nevertheless, some evidence that this mechanical effect is unlikely to be
important comes from the fact that the firm effects are very stable when estimating using subgroups. For example,
the correlation between the firm effects estimated separately on men and women is 0.92 and on people aged 18-34
and 35-61 the correlation is 0.86.

32The v-shape comes from earnings increases accruing to workers whose comparative advantage is working at
the worst firms. In Eeckhout and Kircher (2011), there is an absolute ranking of firms and workers in terms of
productivity. Because the opportunity cost of jobs varies as a function of worker and firm types, however, each
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The earnings cuts captured by moving to lower-paying firms are not offset by future earnings

increases. One explanation for earnings cuts is that workers accept cuts in exchange for the pos-

sibility of steeper earnings profiles. Following Abowd, Kramarz, and Margolis (1999), I estimate

firm-specific earnings slopes using the wage growth of the stayers. Figure 9 shows that when work-

ers move to lower-paying firms they do not move to firms offering steeper slopes in earnings (the

coefficient is 0.00). Similarly, the firm effects in the intercept are weakly positively correlated with

the slope when estimated in separate regression (the correlation is 0.02) and only weakly nega-

tively correlated when estimated in the same regression (the correlation is −0.03). These results

are quantitatively different than the leading theory that explains earnings cuts as a function of an

option value of a future increase. I simulate Papp (2013)’s calibration of Cahuc, Postel-Vinay, and

Robin (2006), which matches the share of earnings cuts in the data. In the simulated data, the

correlation between the firm effects in the intercept and the slope is −0.90. This result implies that

earnings cuts are not explained by the possibility of future earnings increases at the same firm.

5 Why do some firms pay so much and some so little?

So far I have shown how to estimate a value of each employer as revealed by worker choices, as

well as the earnings at each firm. This section shows that combining these two measures allows a

decomposition of the variance of firm earnings into a part explained by rents and a part explained by

compensating differentials. Compensating differentials are more important than rents in explaining

why some firms pay so much and some so little.

5.1 Measuring compensating differentials and rents

This section shows that the relationship between the values and earnings that firms post is sufficient

to decompose the variance of earnings into a component explained by compensating differentials

and a component explained by rents.

A firm i posts a combination of earnings and nonpecuniary characteristics that leads to a

firm-wide value. The forward-looking value of being employed at firm i, V e
i , takes the following

additively separable form:

V e
i︸︷︷︸

forward-looking values

= ω︸︷︷︸
value per log dollar

×( Ψi︸︷︷︸
earnings

+ ai︸︷︷︸
amenities/nonpecuniary

), (17)

worker has a unique ranking of firms in terms of pay (i.e., the highest-paying firm for the low-type worker is a
low-type firm, even though the low-type worker would be most productive at the high-type firm). The left-hand side
of the v comes from low-type workers moving to low-type firms. These are firms that are the highest paying for
the low-type workers, and thus they get a pay increase, but are low-paying for most workers. In a model of circular
heterogeneity without absolute advantage like Marimon and Zilibotti (1999), there is no variance in the estimated
firm effects because all firms are equally high- and low-paying for the same number of workers and in the same way.
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where ω is value per log dollar, Ψ is the firm-specific earnings, and ai is the nonpecuniary or amenity

bundle at the firm. There are two related features of how a is defined worth noting. First, the

nonpecuniary bundle is in the same units as earnings. These units make it meaningful to talk about

trading off earnings and the nonpecuniary bundle. Second, because earnings are a flow, a is defined

in flow-equivalent units. Being in flow units means that a captures differences in the riskiness of

firms; for example, in the model there are firm-level differences in the rates of job destruction.

Compensating differentials generate variation in earnings when a worker makes a one-for-one

trade-off between earnings and nonpecuniary characteristics. To see this formally, suppose we

observe a at the firm-level and run a regression Ψ = βa. If a reflects only nonpecuniary character-

istics that generate variation in earnings through compensating differentials, then in equilibrium

we should estimate β̂ = −1, that is, workers are willing to pay one for one unit of the nonpecuniary

bundle.

In contrast, rents generate variation in earnings—resulting in equilibrium dispersion—when

higher-earnings firms are higher-utility firms (this can be an equilibrium outcome because of fric-

tions). This part of earnings reflects rents because in the absence of frictions competitive pressure

would push all firms to offer the same level of utility (but not necessarily the same earnings).

To understand what can be identified using the patterns of utilities and earnings that firms

post, it is helpful to consider the decomposition of the nonpecuniary part of firm value into two

components: a = aRosen + aMortensen.33 The Rosen amenities are priced in the labor market and

generate compensating differentials. In contrast, the Mortensen amenities are not priced in the

labor market and contribute to equilibrium dispersion. For example, many benefits appear to be

positively correlated with earnings. The following result is the basis of how I measure compensating

differentials and rents.

Result 3. Suppose that the utility function is given by equation (17) and that {V e
i }i∈E and {Ψi}i∈E

are known. Then

V ar(aRosen) = (1−R2)V ar(Ψ),

V ar(aMortensen) ∈ [0,∞)

and combining them, we have

V ar(a) ∈ [V ar(Ψ)(1−R2),+∞),

where R2 = Corr(V e,Ψ)2. The willingness to pay for a Rosen amenity is one. The amenities are

33These components are labelled in honor of Rosen (1986) and Mortensen (2003). I could equally name the second
term after Lang and Majumdar (2004) who, like Hwang, Mortensen, and Reed (1998), construct examples in search
environments in which it is an equilibrium for Ψ and a to be perfectly positively correlated. Similarly, I could name
the second term after Pierce (2001), who presents evidence that benefits are positively correlated with earnings.
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related to earnings as follows:

Corr(Ψ, aRosen) = −
√

1−R2, and

Corr(Ψ, aMortensen) =
√
R2.

Bounds on the variance of utility in log dollar units are:

V ar(Ψ + a) ∈ [V ar(Ψ)R2,∞).

Proof. See Appendix A.

I use the result to decompose the variation in firm-level earnings into compensating differentials

and rents. Specifically, the result makes the following accounting identity interpretable:

V ar(Ψ)︸ ︷︷ ︸
variance of firm effects

= R2V ar(Ψ)︸ ︷︷ ︸
rents

+ (1−R2)V ar(Ψ)︸ ︷︷ ︸
compensating differentials

,

where R2 = Corr(V e,Ψ)2. The first term reflects rents because it is the part of the variance of firm

effects that is accounted for by variation in utility in the labor market. The second term reflects

compensating differentials because it is the variance of Rosen amenities.

Because the variance of Mortensen amenities is not identified, there are three interesting quan-

tities that I cannot point identify. The first is the overall variance of nonpecuniary characteristics.

The second is the overall correlation between earnings and nonpecuniary characteristics. And third,

I can only provide a (informative) lower bound on the variance of utility offered by firms.

5.2 Sector-level evidence

This section discusses the utilities and earnings that firms post aggregated to the sector level.34 At

this level of aggregation, we can assess the intuitive plausibility of the results of the model.

Figure 10a shows that there are similarities between these rankings, which provides evidence

of rents. It shows the scatterplot of the sector-level values and earnings, as well as the best-fitting

line. The evidence for rents is that some high-paying sectors are high-utility (or “good”) sectors

and some low-paying sectors are low-utility (or “bad”) sectors. For example, both approaches agree

that hotels/restaurants is a bad sector in which to work. And both approaches agree that utilities

is a good sector in which to work.

That said, there are also differences between these rankings, which provides evidence of com-

pensating differentials. The most striking sector is education. Specifically, among sectors offering

a similar level of utility (equally far out on the x-axis), it is the worst paid, which indicates the

34A sector is a slightly more aggregated than a 2-digit NAICS. Because of disclosure limitations, I cannot report
results about individual firms.
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presence of good nonearnings characteristics. Similarly, public administration is low-paying given

how much utility it offers. In contrast, traditionally blue-collar and male sectors—mining, manu-

facturing, and construction—tend to be quite high-paying for how much utility they offer, which

implies the presence of bad nonpecuniary characteristics.35

Aggregating the similarities and differences between the rankings, the R2 between values and

earnings—on an employment-weighted basis—is 0.45. Thus, 45% of the intersectoral wage structure

is rents and 55% is compensating differentials.

5.3 First-pass answer

In Section 5.1, I showed that a quantitative answer to the question why some firms systematically

pay some workers so much and some so little is provided by computing the R2 between firm-level

earnings and utility. The first row of Table 4 reports that 25% of the variance of firm-level earnings

is related to utility so that compensating differentials account for 75% of the variance of firm-level

earnings.

Figure 10b shows that the relationship between the firm-level values and earnings is approxi-

mately linear. It shows a binned scatterplot of the firm-level values and earnings as well as the line

of best fit on the firm-by-firm data, where I have grouped firms into 20 equal employment-weighted

bins (vigintiles). The approximate linearity of the relationship implies that the correlation (or R2)

captures the relationship.36

Figure 10b also illustrates the identification result. Rents can be seen in the upward slope in

the line of best fit, which shows the variation in firm-level earnings that is reflected in variation

in values. Compensating differentials—or Rosen amenities—are variation in firm-level earnings

holding utility constant. In the figure, this variation is depicted in the red dashed lines that show

plus and minus one standard deviation bands of firm-level earnings holding utility constant. The

firms above the line have relatively bad Rosen amenities and the firms below the line have relatively

good Rosen amenities. In contrast, the fact that the y-axis is in log dollar units, while the x-axis

is in units of the standard deviation of the idiosyncratic utility draw, explains why the Mortensen

amenities are not identified. Mortensen amenities stretch out the x-axis in log dollar units. But the

unit conversion from log dollars to the standard deviation of the idiosyncratic draw is not known,

so this framework does not identify the importance of Mortensen amenities.

35In Sorkin (2015), I explore the implications of patterns like this for gender earnings gap.
36Some readers might wonder how this correlation relates to tabulations showing that workers are more likely to

transition to higher-paying firms than to lower-paying firms as measured by Abowd, Kramarz, and Margolis (1999)
firm effects; see, for example, Card, Heining, and Kline (2012, Appendix Table 3) or Schmutte (2015, Table 3). A
given transition matrix across firm effects is consistent with almost any correlation. The estimation of Ṽ constructs
the ranking that results in the “best-fitting” transition matrix (according to a specific loss function). This best-fitting
transition matrix might be nearly identical to the transition matrix using the firm effects in earnings (in which case
the correlation would be 1), or radically different (in which case the correlation could approach zero; the lower-bound
depends on how well the firm effects in earnings predict mobility patterns). It is also important to note that the
transition matrix (and Ṽ ) only contains information in accepted offers.
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5.4 Addressing measurement error

Measurement error in either earnings or utility leads me to overstate the role of compensating

differentials. Because there is potentially measurement error in both the left-hand-side and the

right-hand-side variables, standard approaches are not applicable. Grouping firms by exogenous

characteristics addresses measurement error. This leads me to revise down the role of compensating

differentials presented in the previous section.

Because I have administrative data, the main source of measurement error is the fact that the

firm-level values and earnings are estimated. In particular, for consistent estimates of the R2, I

need a law of large numbers to obtain within each firm so that the estimates of firm-level earnings

and values have converged. At smaller firms, the values and earnings are less precisely estimated.

Figure 11a shows that at smaller firms the correlation between values and earnings is lower and

thus suggests the importance of measurement error. I sort firms on the basis of firm size and then

group firms into 20 bins, with each bin representing the same number of person-years (so that the

bins on the left-hand side of the graph have many more firms than the bins on the right-hand side).

Within each bin, I compute the correlation between the values and earnings. Consistent with the

importance of measurement error, the R2 rises rapidly as I consider larger firms and then is flat

among firms with between about 50 and 1, 800 workers per year (log size of 4 to 7.5). Inconsistent

with the law of large numbers logic, for the biggest firms in the dataset the correlation then starts

rising again. The interpretation of this finding is simply that compensating differentials are less

prevalent among larger firms than smaller firms.

To address the possibility of measurement error in both the earnings and utility, I group firms

by characteristics that predict both earnings and nonpecuniary characteristics, and then ask how

related are the group-level averages. A limitation of this approach is that the within-group rela-

tionship is open to interpretation: an imperfect relationship might reflect measurement error or the

role of nonpecuniary characteristics. As such, I offer bounds motivated by the observation in Figure

11a that the looser relationship at the smaller firms is due to measurement error. See Appendix F

for a formal discussion.

To find grouping characteristics, I appeal to three literatures. First, the spatial equilibrium lit-

erature (e.g., Roback (1982)) argues that location-level differences in earnings reflect nonpecuniary

characteristics in the form of higher house prices or other amenities such as weather. As such, I

ask how related are county-level means of earnings and utilities. Second, the inter-industry-wage

differential literature (e.g., Krueger and Summers (1988)) argues that there is important industry-

level variation in earnings that reflects rents in the labor market. As such, I ask how related are

earnings and utilities at the industry level.37 Finally, I appeal to the firm-size wage differential

literature (e.g., Brown and Medoff (1989)) and group firms by size. I use the same 20 bins of firms

37The reason to remove county-level means first is that industry composition is a feature of a place (i.e., Beaudry,
Green, and Sand (2012)).
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sorted on the basis of firm size discussed previously.

Table A9 in Appendix H shows that these groupings together explain about 60% of the variance

of firm-level earnings.38 Unconditionally, about 12% of the variance of earnings is at the county-

level, about 50% is at the 4-digit industry level and 3% is based on firm-size categories. These

groupings explain a similar share of the variance of the firm-level values.39

Table 4 presents the main results of this paper, that about a third (31%) of the variance of

firm-level earnings is accounted for by rents, and the remaining two-thirds is accounted for by

compensating differentials. To get there, I first extract the signal in each of the grouping variables

and then aggregate. Specifically, to extract the signal, I compute the group-level mean of both

the earnings and utilities, compute the R2 between them, and then subtract off these group-level

means to have only within-group variation. For the county grouping, about 12% of the variance in

earnings is between-county. Consistent with the Roback (1982) model, the between-county variation

in earnings is only loosely related to utility: the R2 is 0.04. Thus, the location grouping says that

0.12×0.04 ≈ 0.01 of the overall variance of firm-level earnings is due to rents and 0.12×0.96 ≈ 0.11

is due to compensating differentials.

The remaining two grouping variables are industry and size. Industries account for about half

the variance of earnings. Industry-level variation in earnings is more tightly linked to utility than

county-level variation: about a third of the industry-level variation is related to utility. The final

grouping variable is firm size. After removing the location- and industry-level means, firm size

accounts for 1% share of the variance of earnings, and this variation is very weakly related to

firm-level values.

After having removed the signal in the grouping variables, I am left with the within-industry,

net-of-location and net-of-firm-size variation in earnings and utility, which includes measurement

error, so I present bounds. This component accounts for about 40% of the variance of firm-level

earnings. Figure 11b shows how the R2 varies by firm size bin, after having removed the common

component. As expected, because I have extracted much of the signal in the values and earnings,

the R2 is now lower in all size bins and it takes longer for the R2 to flatten out. This means that we

expect measurement error to be more important in this residual component of earnings and utility.

An upper bound on the contribution of compensating differentials comes from assuming that there

is no measurement error in this component, so the R2 reflects the true relationship. To get a lower

bound, I take the maximum value of the R2 in the figure (in the largest firm size category). To get

my preferred estimate, I take the average of the “flat” portion of the figure where the asymptote

suggests that measurement error is not driving estimates.

Even at the lower bound, compensating differentials account for a majority of the firm-level

38Table A8 in Appendix H shows that there are many employer-to-employer transitions across these boundaries.
39Table A9 in Appendix H also displays these statistics for single-units. There is a concern that geography is

ambiguous for multi-units. Because multi-unit status is correlated with industry and size, the single-unit numbers
differ for reasons beyond measurement issues.
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variation in earnings. These three options result in a range for the contribution of compensating

differentials to the variance of firm-level earnings of 56% to 72%, with a preferred estimate of 69%.

Appendix G re-estimates the model on subgroups defined by age and gender. The central find-

ing of the paper is robust within each subgroup—though compensating differentials are much more

important in explaining earnings dispersion among older workers than younger workers. This ap-

pendix also shows that firm values estimated industry-by-industry or location-by-location are quite

similar to the values estimated also using the between-industry and between-location variation.

6 Discussion and implications

6.1 Compensating differentials

This paper finds that compensating differentials explain about 15% of the variance of individual-

level earnings in the U.S. economy.40 While one should interpret this point estimate cautiously

given the numerous strong assumptions taken to reach it, the take-away is that compensating

differentials are important in explaining the variance of firm-level earnings. The feature of the data

that points to this finding is that there are systematic patterns of workers moving to lower-paying

firms. Moreover, the intuitive plausibility of this interpretation is supported by the sector-level

analysis.

The importance of compensating differentials contrasts with the conventional wisdom summa-

rized by Hornstein, Krusell, and Violante (2011, pg. 2883) that they do “not show too much

promise” in explaining earnings dispersion. While the literature estimating willingness to pay for

particular amenities has had some successes studying very narrow slices of the labor market—for

example, there is evidence that compensating differentials explain the large earnings gaps between

private sector and nonprofit lawyers (Goddeeris (1988) and Golden (2014))—it has not found ro-

bust evidence that compensating differentials are important in explaining earnings determination

in the labor market as a whole.41

There are three assumptions typical in the one-amenity-at-a-time compensating differentials

literature that might help explain why it has struggled to find evidence for compensating differen-

tials. The first assumption is that, in the language of Section 5, the amenity is a Rosen amenity

and priced in the labor market rather than a Mortensen amenity, which is positively related to

earnings and is itself a source of dispersion in job value. Based on the evidence in Pierce (2001),

however, some well-studied amenities such as employer benefits (i.e. health insurance) are more

40This number comes from the following calculation. According to Table 1, firms account for 22% of the variance
of earnings. According to Table 4, 69% of the variance of firm-level earnings is compensating differentials. And
0.22× 0.69 = 0.15.

41Bonhomme and Jolivet (2009, pg. 763, note 2) summarize the literature as follows: “the general picture of the
literature based on hedonic regressions is rather inconclusive.”
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like Mortensen amenities than Rosen amenities.42 The second assumption is that firms compensate

workers for particular amenities through pay, rather than through other amenities. The fact that

this literature has studied more than one amenity suggests that there is scope for this assumption

not to hold. The third assumption is that the researcher knows what workers value in a firm, and

can accurately measure it. A benefit of the revealed preference approach is that it considers the

entire bundle of amenities as perceived and valued by workers.

Since this paper identifies compensating differentials through patterns of moving to lower-paying

firms, one may wonder why previous literature documenting the large number of voluntary earnings

cuts had not been interpreted as evidence of the importance of compensating differentials. The

reason is that this paper operates at the firm level rather than the individual level. The intuition of

the identification result in Section 5 is that compensating differentials are identified when there is

behavior that is not explained by earnings. At the firm level, this definition is reasonable because

we expect persistent characteristics of a firm that are valued by all workers to be priced in the

market. At the individual level, however, this definition is not reasonable. Some of the behavior

that is not explained by earnings might reflect individual-level idiosyncrasies—such as a worker

sharing a hobby with a boss—that is unlikely to be taken into account when wages are set. Indeed,

this paper allows for individual-level idiosyncrasies through the idiosyncratic utility draw, ι, and

choices on the basis of ι are not attributed to compensating differentials.

To illustrate the fact that the literature has been justified in not taking individual-level earnings

cuts as evidence of compensating differentials, I compute the relationship between pay and behavior

implied by the estimates in Hall and Mueller (2013) and Sullivan and To (2014). Both papers

estimate search models similar to the one in this paper using individual-level survey data. And both

papers emphasize the intuition that voluntary earnings cuts—or rejecting higher-paying offers—

implies that by revealed preference amenities are important.43 I take the preferred estimates from

these papers and compute the implied relationship between behavior and pay.44 For the Hall and

Mueller (2013) estimates, pay can only explain 8% of the variation in utility at the individual level.

Sullivan and To (2014) allow for three types. For these types, pay can only explain 12% (type I),

21% (type 2), and 28% (type 3) of the variation in utility at the individual level.45 Hence, relative

to my estimate that variation in pay can explain about 31% of variation in behavior (value) at the

firm level, using the individual-level earnings cut intuition would find a larger role for compensating

42Dey and Flinn (2005) model the positive correlation between health insurance and wages as the result of a
treatment effect of health insurance on productivity.

43Becker (2011) and Nunn (2013) also use individual-level survey data, but estimate richer models.
44I take the preferred estimates from Hall and Mueller (2013) and Sullivan and To (2014) and simulate the steady

state distribution of matches. Within each simulated match, I compute utility and earnings. I then compute the R2

between utility and earnings (see Appendix I for details).
45The respective population proportions are 0.14, 0.50, and 0.36. One important feature of Sullivan and To (2014)

is that they use a sample of unmarried men, who never attended college and are 26 or younger. Based on Table A12,
this a group for which it appears equilibrium dispersion is likely to be more important in explaining the variance of
earnings (i.e., my preferred estimate for this group is that compensating differentials’ share is 0.46).
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differentials, and this likely reflects idiosyncratic factors that we do not expect to be priced in the

labor market.

Taber and Vejlin (2013) is the only other paper I am aware of that estimates the role of com-

pensating differentials using revealed preference at the firm level. Their paper answers a different

question related to the role of nonpecuniary characteristics than this paper. The counterfactual

calculation in Section 6.4 answers the question: what would the variance of earnings be if we priced

the part of nonpecuniary characteristics that is priced in earnings? The counterfactual calculation

in Taber and Vejlin (2013) related to the role of nonpecuniary characteristics answers this question:

what would the variance of earnings be if people valued only money?46 The answers to these two

questions have no mechanical relationship. In addition, this paper develops a methodology that

allows for firm-level estimates of earnings and amenities, while Taber and Vejlin (2013) rely on

more aggregated features of the data.

6.2 Rents

This paper provides two new sources of evidence on the importance of rents in the labor market,

and frictional models more generally. The first source of evidence is systematic patterns of worker

mobility across firms. Systematic patterns of worker mobility are a core prediction of the Burdett

and Mortensen (1998) model. In this model, search frictions support an equilibrium with disper-

sion where some firms offer low levels of utility (labelled pay in the model) and some offer high

levels. Workers climb the implied job ladder through employer-to-employer transitions. Despite

the centrality of this job ladder to search models, this paper is novel in showing how to uncover

the job ladder from worker behavior, rather than assuming that it is indexed by pay or some

other observable firm-level characteristic. And by comparing the dispersion in the idiosyncratic

draws to the common firm-values, this paper also quantifies the importance of differences between

firms in explaining mobility. Specifically, the common component has about equal variance to the

idiosyncratic component.

The second source of evidence is that the higher-value firms are also, on average, the higher-

paying firms. This source of evidence is related to a long tradition in labor economics that compared

industry-level variation in quit rates to industry-level variation in pay. Papers in this tradition have

argued that the positive relationship provided evidence that (at least some of) the inter-industry

wage structure reflected rents (see, for example, Ulman (1965, Table III) and Krueger and Summers

(1988, Table IX)). The measure of firm-level pay I use, which uses the Abowd, Kramarz, and

Margolis (1999) decomposition, can be viewed as the modern version of the inter-industry wage

46Taber and Vejlin (2013) compare the variance of earnings in two steady states. In the first steady state, workers
move on the basis of the estimated total job value, which includes nonpecuniary characteristics. In the second steady
state, they “turn off” the nonpecuniary characteristics and workers move on the basis of the estimated earnings in
each job—that is, they do not price out the nonpecuniary characteristics for the same reason that I cannot identify
the variance of all nonpecuniary characteristics.
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differential literature by documenting that there are systematic differences in firm-level pay even

after removing person fixed effects. Similarly, the estimated search model in this paper can be

viewed as the modern version of a quit rate in documenting systematic patterns in choices.

6.3 Ability of search models to match earnings dispersion

This paper finds that search frictions cannot explain all firm-level earnings dispersion. This message

is consistent with Hornstein, Krusell, and Violante (2011). They argue that benchmark search

models cannot rationalize the extent of earnings dispersion—measured as the residual in a Mincerian

regression—in the labor market. Their observation is that unemployed workers find jobs quickly—

which suggests that workers do not face a large amount of dispersion in job value in the offer

distribution since otherwise they would wait for a better offer.

By focusing on the behavior of employed workers, rather than unemployed workers, this paper

provides a complementary source of evidence to Hornstein, Krusell, and Violante (2011) that rents

do not explain all earnings dispersion. The key evidence is systematic patterns of employed workers

making employer-to-employer transitions to lower-paying firms. This finding indicates that a large

portion of measured earnings dispersion is not treated by workers as reflecting dispersion in value.

I interpret this finding as evidence for compensating differentials. In addition, this paper focuses on

the firm-level part of the variance of earnings. This part of earnings variation controls for person

fixed effects and thus is more likely to reflect frictions than the Mincerian residual.

Hornstein, Krusell, and Violante (2011) argue that search models that explain earnings disper-

sion typically imply implausibly low values of unemployment. Because utility is only measured up

to an additive constant, I cannot compare the value of nonemployment to the average value of a

job. A statistic about the value of nonemployment that I can compare to other estimates is the

share of offers accepted among the unemployed. Hall and Mueller (2013, pg. 12) report that in

their sample of job seekers in New Jersey collecting unemployment insurance, unemployed workers

accept 71.5% of offers. I estimate that the nonemployed accept 72.5% of offers, which provides

evidence that my estimate of the value of nonemployment is plausible.

6.4 Inequality

This section considers the consequences for earnings inequality of pricing the aRosen portion of non-

pecuniary characteristics (this leaves the aMortensen portion unpriced). Eliminating compensating

differentials would reduce earnings inequality.

Theoretically, the effect on inequality of pricing out the aRosen component is ambiguous and

depends on the correlation between nonpecuniary characteristics and overall earnings. To see

how eliminating compensating differentials could decrease inequality, consider an educator and a

miner. They both receive the same utility from their jobs, but the miner receives more monetary

compensation than the educator because the miner’s job is relatively dangerous, while the educator’s
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job is relatively meaningful. As a result, there is substantial earnings inequality: the miner is highly

paid, and the Educator is poorly paid. Equalizing the pleasantness of their work leads them to both

be equally well-paid, so earnings inequality—or the variance of earnings—decreases. In contrast,

to see how eliminating compensating differentials could increase inequality, consider the professor

(of economics) and the miner. Even given their large differences in nonearnings compensation, the

professor is still better paid than the miner. Equalizing the pleasantness of their work leads the

difference in their earnings to be more dramatic and increases earnings inequality.

To measure the effect on inequality of pricing out aRosen, I use the identification result in section

5.1. Capturing the dispersion in utility, V e takes into account the good and bad amenities reflected

in arosen. Pricing out aRosen means that the variance of utility in log dollar units is given by

the lower bound in result 3. Hence, I replace the firm-level earnings, Ψ, with the firm-level pure

rent component, which is proportional to V e.47 Then I recompute the variance of individual-level

earnings. To illustrate what drives the counterfactual, I do this in stages, where I sequentially price

out location, industry, etc.

At my central estimate of the division of firm-level earnings into rents and compensating dif-

ferentials (see Table 4), Table 5 shows that removing amenities and compensating workers would

reduce inequality. About half of the effect occurs at the industry level.

This counterfactual has surprising impacts on the structure of earnings. Figure 12 plots the ac-

tual distribution of earnings and the counterfactual distribution at my central estimate. Inequality

is reduced in the counterfactual relative to the data primarily by shifting in the lower tail of the

distribution. This is not what we would expect from the patterns of sorting workers to firms. Figure

12b shows a naive counterfactual. To compute this counterfactual, I multiply the firm effects by

1−R2 and recompute the variance of earnings. Relative to the data, the naive counterfactual shifts

in both the lower and the upper tail of the income distribution. As documented in the last row of

Panel A of Table 5, this has a much larger effect on the variance of earnings than what I estimate.

The reason for this surprise is that, as shown in Panel B of Table 5, while the earnings potential of

workers is positively correlated with rents, it is negatively correlated with aRosen amenities.

7 Conclusion

This paper exploits the intuition that workers move towards firms with higher value to estimate

the revealed value of essentially every firm in the U.S. economy. It then combines this value with

earnings data to measure the relative role of rents and compensating differentials in explaining why

some firms pay so much and some so little. The paper finds evidence for rents to the extent that

workers move towards higher-paying firms, while it finds evidence for compensating differentials to

47Specifically, I normalize the variance of V e so that it is in log dollar units. Let V ar(Ψ) be the variance of the firm

effects in earnings, V ar(V e) be the variance of values, and R2 = Corr(Ψ, V e)2. Then the constant is
√

V ar(Ψ)
V ar(V e)

R2.
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the extent that workers move towards lower-paying firms. Overall, the paper finds novel evidence

for both compensating differentials and rents, but compensating differentials are more important

than rents in explaining the variance in firm-level pay. The rankings of sectors are plausible, as is

the implied distribution of compensating differentials.

This paper demonstrates that there is much to be learned from studying the “quantity” dimension—

how people do and do not flow across firms—of matched employer-employee data. For example,

in Sorkin (2015) I explore the gender earnings gap: namely, over 20% of the gender earnings gap

is due to men being in higher-paying firms (and industries) than women. Similarly, the findings

in Appendix G suggests that there are interesting differences by age. The firm-level value that

summarizes the central tendency of worker flows also suggests a new way of studying the direction

of reallocation in the labor market, a question which has recently received attention because of the

work of Moscarini and Postel-Vinay (2013). More broadly, the core economic and computational

insight of this paper could be fleshed out in different product-demand-type contexts. Specifically,

this paper emphasizes that there is lots of identifying information in switching behavior and has

developed a technique that is computationally feasible when there are a large number of options.

This could be applied in a variety of other settings—for example, to study the value of locations

and products (see also Bils (2009)).
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Table 1: Summary statistics and the variance of earnings

All Connected S. Connected S. Connected
by EE by EE by EE
and ENE (restrictions)

(1) (2) (3) (4)

Sample size
People-years 504, 945, 000 500, 584, 000 470, 387, 000 456, 746, 000
People 105, 921, 000 104, 778, 000 100, 547, 000 98,821,000
Employers 6, 155, 000 5, 258, 000 1, 971, 000 1, 528, 000
Summary statistics
Mean log earnings 10.43 10.43 10.45 10.45
Variance of log earnings 0.70 0.70 0.69 0.68
Share of variance of earnings explained by each parameter set
Employers N/A 0.23 0.22 N/A
People N/A 0.54 0.55 N/A
Covariates N/A 0.11 0.11 N/A
Overall fit of AKM decomposition
R2 N/A 0.88 0.88 N/A
Adj. R2 N/A 0.85 0.85 N/A

Notes: Sample counts are rounded to the nearest thousand. The data is at an annual frequency.
There is one observation per person per year. The observation is the job from which a person made
the most money, but only if she made at least $3, 250 (in $2011). Earnings are annualized. The
table includes person-years in which on December 31 of the year the person was aged 18-61 (inclu-
sive). The extra restrictions in the final column are that an employer have non-missing industry
information, hire a worker on an exogenous employer-to-employer transition, and hire a worker from
nonemployment. AKM is the Abowd, Kramarz, and Margolis (1999) decomposition; see equation
(14). EE is employer-to-employer and ENE is employer-to-nonemployment-to-employer.
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Table 2: Transition probabilities and model parameters

Symbol Description Value

Overall employer-to-employer Transition Probability 0.10
Overall employer-to-nonemployment Transition Probability 0.15
employer-to-employer Share of Transitions 0.40

Pr(displacement | employer-to-employer) 0.26
Pr(displacement | employer-to-nonemployment) 0.34
Pr(displacement | employer-to-employer & contracting) 0.48
Pr(displacement | employer-to-nonemployment & contracting) 0.56

δ Exogenous employer-to-nonemployment probability 0.05
ρ Exogenous employer-to-employer probability 0.03
λ1 Probability of offer on-the-job 0.20

Notes: All probabilities and parameters are annual. The sample for the transition probabilities is
column (1) of Table 1). A worker only counts as separating if she appears again in the dataset.
The sample for estimating λ1 and below is column (4) of Table 1. The ρ is related to the calculated
probability of making an exogenous employer-to-employer transition by (1 − δ)ρ. λ1 is estimated
from the model.
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Table 3: Earnings cuts are common and correlated at the firm level

Pr(y ↓) All ENE EE EE (weighted)

Unconditional 0.42 0.47 0.38 0.37
When moving to a
...higher paying firm 0.29 0.33 0.26 0.26
...lower paying firm 0.58 0.62 0.52 0.52

Notes: This table summarizes transitions for a worker who had a different dominant employer in
consecutive years. The pay of a firm is defined by its firm effect. EE is employer-to-employer
and ENE is employer-to-nonemployment-to-employer. The weight is the endogenous weight on the
transition.
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Table 4: Why do some firms pay so much and some so little?

Share of the variance
of firm-level earnings

Share of (1) explained
by firm-level utility

Share of the variance of firm-
level earnings explained by:
Rents Compensating

differentials
(1) (2) (3) (4)

All 1.00 0.25 0.25 0.75

County 0.12 0.04 0.01 0.11
4-digit industry (1− .12)× 0.54 = 0.47 0.45 0.21 0.26
Size (1− .12− .47)×0.04 =

0.01
0.02 0.00 0.01

Resid. (v1: upper) 0.39 0.15 0.06 0.33
Resid. (v2: preferred) (see previous row) 0.24 0.09 0.30
Resid. (v3: lower) (see previous row) 0.55 0.22 0.18

Total (v1) 0.28 0.72
Total (v2) 0.31 0.69
Total (v3) 0.44 0.56

Notes: This table uses firm effects estimated in the set of firms strongly connected by employer-to-employer transitions. Column
(1) reports an order-dependent decomposition of the firm effects into a county, industry, size, and residual component. The first
row reports the share of the variance of the firm effects that is explained by a set of county fixed effects. The second row removes
county-means from the firm fixed effects and reports the share of the variance of firm fixed effects net-of-county-means that is
explained by a set of 4-digit industry fixed effects. The third row removes the industry fixed effects and reports the share of the
variance accounted for by firm size categories. The next three rows report the decomposition of the remaining share of the variance.
Column (2) reports the R2 on the firm-level wage against the firm-level utility at each level of aggregation. Version 1 is the actual
relationship on the residual; version 2 assumes that the relationship is the same as on the flat part of Figure 11b; and version 3
assumes that it is the maximum value in Figure 11b. Column (3) = Column (1) × Column (2) and is the share of the variance
of firm-level earnings that is related to utility. Column (4) = Column (1) × (1- Column (2)) and is the share of the variance of
firm-level earnings that is unrelated to utility. The total rows sum up the four components. The total (v1) and the all correlations
differ because of cross-terms. Calculations may not exactly reproduce because of rounding.
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Table 5: Implications for inequality

Panel A. Counterfactuals
Scenario Variance of earnings Change relative to data

(1) (2)

Data 0.68 N/A
Price location 0.66 -3%
...and industry 0.62 -9%
...and size 0.61 -10%
...and scaled residual 0.59 -14%

Remove firm effects 0.48 -30%
“Naive” 0.53 -23%

Panel B. Correlations
Earnings minus firm effects Rents Amenities

Earnings minus firm effects 1 0.29 -0.07
Rents 1 0.08
Amenities 1

Notes: This table shows how pricing nonearnings characteristics affects the variance of earnings.
Panel A shows the variance of earnings in the data and in four counterfactuals. The first coun-
terfactual equalizes the nonearnings aspects of locations. The subsequent rows show the effect of
sequentially equalizing the nonearnings aspects by industry, firm size, and the residual (the re-
maining variance in firm-level earnings net of location, industry, and size). Column (1) reports the
variance of log annualized earnings. Column (2) reports the percent change relative to the data.
Panel B shows the relationship between earnings minus firm effects (i.e., yw,t −ΨJ(w,t)), rents (the
scaled version of the V e), and amenities (the gap between the scaled version of V e and Ψ). The
sample is the person-years in column (4) of Table 1.
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Figure 1: Constructing exogenous rates

(a) Quarterly probabilities

excess due to firm-level shock

expected anyway

(b) Exogenous weights

δ

ρ

Notes: These figures shows the data used to construct the exogenous weights for employer-to-
employer (EE) and employer-to-nonemployer (EN) transitions. The probabilities and growth rates
are quarterly. The probabilities are computed in one percentage point wide bins of employer growth
rates. The figure plots a five-bin moving average. The exogenous weight is excess

excess+expected . At an
expanding employer, the exogenous weight is zero by construction.



Figure 2: The “slippery ladder”: exogenous shocks by firm value

Notes: This figure sorts firms into 20 bins on the basis of firm-value. Within each bin, I compute the
average probability of each kind of exogenous separation shock by summing across the exogenous
weights, which are constructed using the variation depicted in Figure 1. EE is employer-to-employer
and EN is employer-to-nonemployment.
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Figure 3: Endogenous employer-to-employer and employer-to-nonemployment probabilities by firm
value

(a) Employer-to-employer

(b) Employer-to-nonemployment

Notes: This figure sorts firms into 20 bins on the basis of firm-value. For each firm, I compute the
model-implied probability of an endogenous employer-to-employer and employer-to-nonemployment
transition. I then take the person-year-weighted average of the model and data within each bin.
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Figure 4: The model returns a different answer than a binary comparison

A

B
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1

4
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M =

0 7 1
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S =

2 0 0
0 7 0
0 0 5



S−1M =

0 7
2

1
2

0 0 4
7

2
5 0 0



exp(Ṽ ) =

0.614
0.140
0.246


Notes: Given M , the matrix S is defined as follows: entry Sii =

∑
jMji (the ith column sum),

while the off-diagonal entries are zero. Hence S−1M divides the ith row of M by the ith column sum
of M (this means that S−1M is not a transition matrix). exp(Ṽ ) is the solution to the following
equation: exp(Ṽ ) = S−1Mexp(Ṽ ).
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Figure 5: Dispersion in the labor market

(a) Values

(b) Earnings

Notes: Both distributions are normalized so that the median value is zero.
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Figure 6: Distributions

(a) Values

(b) Earnings

Notes: This figure plots the dispersion in the firm-level values (top panel) and earnings (bottom
panel) in four distributions: the offer distribution, the distribution of where hires from nonem-
ployment accept offers, the distribution of where displaced workers making employer-to-employer
transitions accept offers, and finally the distribution among the employed workers.
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Figure 7: Change in firm pay related to probability of an earnings cut

(a) Employer-to-employer

(b) Employer-to-nonemployment-to-employer

Notes: This figure considers the sample of workers who switch annual dominant jobs between
consecutive years. The earnings considered are the earnings in the last year at the previous job
and the earnings in the first year at the new job.
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Figure 8: Change in firm pay related to magnitude of earnings change

(a) Employer-to-employer

(b) Employer-to-nonemployment-to-employer

Notes: This figure considers the sample of workers who switch annual dominant jobs between
consecutive years. I have sorted the job changers into 20 bins on the basis of the change in the firm
effects. The circles plot the bin means. The solid line plots the best-fitting line estimated based on
the micro-data. The dashed red line plots the 45 degree line. The coefficient in the upper panel is
0.82, and the coefficient in the bottom panel is 1.03 (the standard errors are essentially zero).
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Figure 9: Change in firm pay is not related to change in slope of earnings

(a) Employer-to-employer

(b) Employer-to-nonemployment-to-employer

Notes: This figure considers the sample of workers who switch annual dominant jobs between
consecutive years. I have sorted the job changers into 20 bins on the basis of the change in the firm
effects. The circles plot the bin means. The slope of firm-level pay is estimated using the earnings
changes of the stayers. The solid line plots the best-fitting line estimated based on the micro-data.
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Figure 10: Relationship between values and earnings

(a) Sector level

admin/support/waste

manufacturing

construction

mining

hotels/restaurants

education

utilities

public admin

arts/ent./rec.

retail trade
other services

agriculture

real estate
health care

transport/warehousing

management

finance and insurance

wholesale trade

prof/scientific/tech. service
information

(b) Overall

Notes: The top panel of this figure plots the sector-level means of the earnings and values. The
solid black line plots the regression line run at the sector level and weighting by the number of
person-years represented by each sector. The R2 is 0.45. The bottom panel sorts firms on the basis
of firm-level values. The circles plot 20 bins with the same number of person-years, while the solid
line plots the regression line estimated on the firm-level data. The red line shows plus and minus
one standard deviation of the firm-level earnings within each value bin. The R2 is 0.25.



Figure 11: Relationship between R2 and firm size

(a) All

measurement
error

asymptote something else

(b) Residual

measurement
error

asymptote

something else

Notes: This figure sorts firms on the basis of firm size into 20 bins with the same number of person-
years. The upper panel plots the R2 between the “raw” firm-level values and earnings computed
bin by bin. The bottom panel plots the R2 on the residual firm-level values and earnings, where I
have removed the county, industry and size means from the earnings and the values.



Figure 12: Counterfactual inequality

(a) Counterfactual

(b) “Naive” counterfactual

Notes: The top panel of this figure plots the distribution of income in the data and in a counter-
factual where I use my estimates of the firm-level values to price out compensating differentials.
The bottom panel considers a “naive” counterfactual where I deflate all the firm components of
earnings by a constant fraction and then recompute income.
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A Appendix: Omitted Proofs

Proof of Result 1

Notational/definitional preliminaries: This follows the presentation in Minc (1988) of stan-
dard graph theory definitions. Let M be a matrix, where entry Mij measures flows from employer
j to employer i. Note that all entries in M are by construction nonnegative: the entries are either
zeros, or positive values. Let E be a set (of employers) labelled from 1...n. Let A be a set of ordered
pairs of elements of E . The pair D = (E , A) is a directed graph. E is the set of vertices, and the
elements of A are the arcs of D, which represent directed flows between employers. A sequence
of arcs (i, t1)(t1, t2)...(tm−2, tm−1)(tm−1, j) is a path connecting j to i. The adjacency matrix of a
directed graph is the (0, 1) matrix whose (i, j) entry is 1 if and only if (i, j) is an arc of D. An
adjacency matrix is associated with a nonnegative matrix M if it has the same zero pattern as M .
The directed graph is strongly connected if for any pair of distinct vertices i and j there is a path in
D connecting i to j and j to i. The directed graph is connected if for any pair of distinct vertices
i and j there is a path in D connecting i to j or a path connecting j to i.

Proof. Observe that if M is strongly connected, then every column sum is nonzero so that the
adjacency matrix associated with M is the same as the adjacency matrix associated with S−1M.

By Minc (1988), chapter 4, theorem 3.2,] a nonnegative matrix is irreducible if and only if
the associated directed graph is strongly connected. By Minc (1988), chapter 1, theorem 4.4,
an irreducible matrix has exactly one eigenvector in En (the simplex). If M represents a set
of strongly connected firms then these two theorems (often jointly called the Perron-Frobenius
theorem) guarantee the existence of a unique solution of the form:

S−1Mexp(Ṽ ) = λexp(Ṽ ),

where all the entries in exp(Ṽ ) are of the same sign and when we take the positive version, λ > 0.
All that remains to show is that λ = 1.
Consider the jth row of S−1Mexp(Ṽ ) = λexp(Ṽ ). Let ej be the basis vector; that is, it is a zero

vector with 1 in the jth row.

[S−1Mexp(Ṽ )]j = [λexp(Ṽ )]j , (A1)

eTj Mexp(Ṽ )

||Mej ||1
= λeTj exp(Ṽ ), (A2)

where || · ||1 is the l1 norm of a matrix so for an arbitrary matrix A we have ||A||1 =
∑

i

∑
j |aij |.

Note that ||Mej ||1 is a scalar.
Because M is a nonnegative matrix, we can rewrite the l1 norm as a dot product with a vector

of ones. Specifically, let 1 be a column vector of 1s:

||Mej ||1 = 1TMej . (A3)
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Rearrange:

eTj Mexp(Ṽ )

||Mej ||1
= λeTj exp(Ṽ ), (A4)

eTj Mexp(Ṽ )

1TMej
= λeTj exp(Ṽ ), (A5)

eTj Mexp(Ṽ ) = λ1TMeje
T
j exp(Ṽ ). (A6)

Now sum over the rows: ∑
j

eTj Mexp(Ṽ ) =
∑
j

λ1TMeje
T
j exp(Ṽ ), (A7)

∑
j

eTj Mexp(Ṽ ) = λ
∑
j

1TMeje
T
j exp(Ṽ ), (A8)

1TMexp(Ṽ ) = λ
∑
j

1TMeje
T
j exp(Ṽ ), (A9)

1TMexp(Ṽ ) = λ1TM
∑
j

eje
T
j exp(Ṽ ), (A10)

1TMexp(Ṽ ) = λ1TMexp(Ṽ ). (A11)

Hence, λ = 1.

Proof of Result 2

Proof. The proof shows that the diagonal elements cancel out. First, use the identity from (11):

exp(Ṽi)
∑

j′∈E+n

Mj′i =
∑
j∈E+n

Mijexp(Ṽj).

Expand to write the diagonal elements explicitly:

exp(Ṽi)Mii + exp(Ṽi)
∑

j′∈E+n\{i}

Mj′i =
∑

j 6=i∈E+n\{i}

Mijexp(Ṽj) + exp(Ṽi)Mii.

Then cancel the diagonal terms to show that (11) holds with arbitrary diagonal elements:

exp(Ṽi)
∑

j′∈E+n\{i}

Mj′i =
∑

j 6=i∈E+n\{i}

Mijexp(Ṽj).
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Proof of Result 3

Preliminaries: It is helpful to first have explicit expressions for a number of quantities. Write the
R2 between Ψ and V in terms of the known variable V and the unknown variable a:

R2 =
Cov(Ψ, V )2

V ar(Ψ)V ar(V )
(A12)

=
Cov(Ψ, α(Ψ + a))2

V ar(Ψ)V ar(α(Ψ + a))
(A13)

=
α2Cov(Ψ, (Ψ + a))2

α2V ar(Ψ)V ar((Ψ + a))
(A14)

=
[V ar(Ψ) + Cov(Ψ, a)]2

V ar(Ψ)[V ar(Ψ) + V ar(a) + 2Cov(Ψ, a)]
. (A15)

It is also helpful to write V ar(a) in terms of one unknown quantity by rearranging equation (A15):

R2[V ar(Ψ)2 + V ar(Ψ)V ar(a) + 2V ar(Ψ)Cov(Ψ, a)] = V ar(Ψ)2 + 2V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2,

(A16)

R2V ar(Ψ)V ar(a) = (1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2,
(A17)

V ar(a) =
(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

R2V ar(Ψ)
.

(A18)

The following is a useful expression for Corr(Ψ, a):

Corr(Ψ, a) =
Cov(Ψ, a)√
V ar(a)V ar(Ψ)

, (A19)

=
Cov(Ψ, a)√

(1−R2)V ar(Ψ)2+2(1−R2)V ar(Ψ)Cov(Ψ,a)+Cov(Ψ,a)2

R2V ar(Ψ)
V ar(Ψ)

, (A20)

=
√
R2

Cov(Ψ, a)√
(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

. (A21)

Proof. A lower bound on V ar(a): To minimize V ar(a), start with the expression for V ar(a)
(equation (A18)) in terms of Cov(Ψ, a) and take the first order condition with respect to Cov(Ψ, a):

∂V ar(a)

∂Cov(Ψ, a)
=

2(1−R2)V ar(Ψ) + 2Cov(Ψ, a)

R2V ar(Ψ)
(A22)

0 =
2(1−R2)V ar(Ψ) + 2Cov(Ψ, a)

R2V ar(Ψ)
(A23)

Cov(Ψ, a) = −(1−R2)V ar(Ψ). (A24)

The second order condition is 2
R2V ar(Ψ)

, which is positive. Substitute this into the expression for
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V ar(a) (equation (A18)) to get that the minimum value is given by:

V ar(a) =
(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)(−(1−R2)V ar(Ψ)) + (−(1−R2)V ar(Ψ))2

R2V ar(Ψ)
(A25)

= V ar(Ψ)(1−R2). (A26)

Compute the correlation between Ψ and a at this lower bound:

Corr(Ψ, a) =
Cov(Ψ, a)√
V ar(a)V ar(Ψ)

(A27)

=
−(1−R2)V ar(Ψ)√

V ar(Ψ)(1−R2)V ar(Ψ)
(A28)

= −
√

1−R2. (A29)

And compute the variance of utility in log dollar units:

V ar(Ψ + a) = V ar(Ψ) + V ar(a) + 2Cov(Ψ, a) (A30)

= V ar(Ψ) + V ar(Ψ)(1−R2)− 2(1−R2)V ar(Ψ) (A31)

= R2V ar(Ψ). (A32)

An upper bound on V ar(a): Take the limit of the expression for for V ar(a) (equation (A18)):

lim
Cov(Ψ,a)→∞

(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

R2V ar(Ψ)
=∞. (A33)

Note that this implies that V ar(a) goes to infinity with the square of Cov(Ψ, a), which is why the
R2 expression remains finite.

What is Corr(Ψ, a) in this case?

lim
Cov(Ψ,a)→∞

Corr(Ψ, a) = lim
Cov(Ψ,a)→∞

√
R2

Cov(Ψ, a)√
(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

(A34)

=
√
R2 (A35)

= Corr(Ψ, V ). (A36)

And:

V ar(Ψ + a)→∞. (A37)

Rosen vs. Mortensen amenities: To decompose the a term into Rosen and Mortensen
amenities, note that the values for the Rosen amenities correspond to the lower bounds in these
results.

The willingness to pay for a Rosen amenity is one. Consider β̂ estimated from Ψ = βaRosen.
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Then β̂ = Cov(Ψ,aRosen)
V ar(aRosen) = −(1−R2)V ar(Ψ)

(1−R2)V ar(Ψ)
= −1.

B Appendix: Description of estimating the model

With N employers, the model depends on the following parameters:

• N × {fi, gi, V e(vi), ρi, δi} = 5N,

• {W,λ1, V
n} = 3,

for a total of 5N + 3 parameters. In the model, there are three additional parameters, λ0, U , and
β. It turns out that I do not need to know these parameters to estimate the parts of the model that
I want to estimate. (If I wanted to estimate b or vi I would need to know these three parameters).

I use 5N + 4 moments. In particular, N × {foi , gi, Ṽi, ρi, δi} = 5N , and W is also observed
(foi is the “observed” share of hires from nonemployment and is defined more formally in Section
B.2). The three remaining moments are Ṽn, the probability of making an endogenous employer −
to − employer transition (equation (A50)), and a moment that relates the employers that hire
workers from nonemployment to the value of nonemployment (equation (A43)). Intuitively, the
value of nonemployment, V n, is increasing in the probability of making a nonemployment-to-
employment transition, while the probability of an outside offer λ1 is increasing in the probability
of an endogenous employer − to − employer transition. The overidentification comes in the fact
that Ṽn also contains information about the value of nonemployment.

I now present the steps for estimating the model, which outlines both the equations I need
to determine the parameters as well as the solution algorithm. There are two groups of steps:
calibration steps and moment matching steps.

B.1 Data and calibration steps

Step 1: The relative size of employers (gi) and the number of workers (W ) are summary statistics
of the data. This gives N + 1 parameters.
Step 2: Get a firm-specific estimate of the δi and the ρi. Implement the method discussed in section
1.2.1 to measure displaced workers. This gives the matrix of mobility that reflects preferences, or
M . Aggregating the displaced mobility by source relative to the number of workers gives the
probability of job destruction shocks (δi) and the probability of reallocation shocks ((1 − δi)ρi).
This step gives 2N parameters.

B.2 Moment matching steps

Define foi to be the share of workers hired from nonemployment that are hired by firm i, or:

foi ≡
fi

exp(V e(vi))
exp(V e(vi))+exp(V n)∑

i′∈E fi′
exp(V e(vi′ ))

exp(V e(vi′ ))+exp(V
n)

λ0U

λ0U
=

Min∑
j∈EMjn

. (A38)

62



The denominator is the share of offers accepted by nonemployed workers. This equation only
identifies fi up to scale.48 Hence, I use the natural normalization

∑
i∈E fi = 1.

Define C1 to be the share of offers that are accepted from nonemployment, or:

C1 ≡
∑
i′∈E

fi′
exp(V e(vi′))

exp(V e(vi′)) + exp(V n)
, (A39)

so that foi can be written more compactly as

foi =
fi

exp(V e(vi))
exp(V e(vi))+exp(V n)

C1
. (A40)

Use a grid-search to find a value for λ1 (the arrival rate of offers) that minimizes the gap between
the probability of an employer-to-employer transition in the data and the model. The reason to
use grid-search is that the function from a guess of λ1 to a new value of λ1 implied by the following
steps is not a contraction mapping (nor is it guaranteed that the model can exactly reproduce the
employer-to-employer transition probability in the data).
Step 1: Solve the following equations, where I maintain the convention of data or variables whose
values are known by a given step are on the left-hand side, while unknowns are on the right-hand
side. In the following equation, gi and foi are known directly from data, δi and ρi are estimated
based on the displaced workers,49 and Ṽi is estimated based on the matrix of moves across firms:

giexp(Ṽi)

foi
(1− δi)(1− ρi) = gi

fiexp(V
e(vi))

gi(1− δi)(1− ρi)
C1

1

fi

exp(V e(vi)) + exp(V n)

exp(V e(vi))
(1− δi)(1− ρi)

(A41)

= C1[exp(V e(vi)) + exp(V n)]. (A42)

In the next equation, W is data, Min is known from the matrix of moves, λ1 is from the calibration
step, and exp(Ṽn) is estimated from the matrix of moves:

1

1− λ1

1

W

∑
i∈E

Minexp(Ṽn) =
1

1− λ1

1

W

∑
i∈E

λ0Ufi
exp(V e(vi))

exp(V n) + exp(V e(vi))

(1− λ1)Wexp(V n)

λ0U

(A43)

=
1

1− λ1
(1− λ1)exp(V n)

∑
i∈E

fi
exp(V e(vi))

exp(V n) + exp(V e(vi))
(A44)

= exp(V n)C1. (A45)

Step 2: Given a value of λ1, do the following:

• Combining equations (A42) and (A45), give the following two terms: C1exp(V
e(vi)) and

C1exp(V
n).

48For all α,
fi

exp(V e(ln vi))
exp(V e(ln vi))+exp(V u)∑

i′∈E fi′
exp(V e(ln v

i′ ))
exp(V e(ln v

i′ ))+exp(V u)

=
αfi

exp(V e(ln vi))
exp(V e(ln vi))+exp(V u)∑

i′∈E αfi′
exp(V e(ln v

i′ ))
exp(V e(ln v

i′ ))+exp(V u)

.

49In practice, I used the person-year-weighted average value of (1− δi)(1− ρi).
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• Rewrite Equation (A39) by multiplying by C1
C1

and rearranging:

foi = fi
exp(V e(vi))

exp(V e(vi)) + exp(V n)

1

C1
(A46)

= fi
C1exp(V

e(vi))

C1exp(V e(vi)) + C1exp(V n)

1

C1
(A47)

foi
C1exp(V

e(vi)) + C1exp(V
n)

C1exp(V e(vi))
=

fi
C1
. (A48)

In this equation, the terms on the left-hand side are known from step 1, so this step gives fi
C1
.

• Now that fi
C1

is known, solve for C1 by using the normalization
∑

i∈E fi = 1 (note that C1

contains fi, so the scale transformation cancels out.50).

∑
i∈E

fi
C1

=

∑
i∈E fi

C1
=

1

C1
. (A49)

Now that C1 is known and from equation (A48) fi
C1

is known, it is possible to solve for fi,

since fi
C1

is known from equation (A48).

• Knowledge of C1 gives exp(V n) and exp(V e(vi)), via equations (A42) and (A45).

This step produces the following 2N + 1 parameters: {fi, exp(V e(vi)), exp(V
n)}. In combination

with the calibration step, this gives 5N + 3 parameters.
Step 3: Given the parameters of the model, compute the probability of an “endogenous” employer-
to-employer transition:

λ1

∑
i

gi(1− δi)(1− ρi)
∑
j

fj
exp(V e

j )

exp(V e
j ) + exp(V e

i )
. (A50)

To make this computationally feasible, group firms into 1, 000 categories on the basis of the firm
values (V e).

C Appendix: Constructing datasets

C.1 Annual dataset

I follow Abowd, Lengermann, and McKinney (2003) to construct the dataset to estimate the
earnings decomposition. I depart from them to define employment in a way that is consistent
with how employment is defined to construct employer-to-employer flows, to follow more recent
literature in imposing age restrictions, and to follow more recent literature in dropping jobs with
very low earnings.

For the purposes of estimating the earnings decomposition, the annual dominant employer is
the employer from which the worker had the highest earnings in the calendar year. This employer is

50 Define f̂i = αfi and let Ĉ1 be the C1 constructed using f̂i. Then f̂i
Ĉ1

= fi
C1

= αfi∑
i′∈E αfi′

exp(V e(v
i′ ))

exp(V e(v
i′ ))+exp(V n)
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chosen from the employers from which the worker had received earnings for two or more consecutive
quarters within the calendar year; the reason to make this restriction is to allow me to code tran-
sitions between employers as employer-to-employer or employer-to-nonemployment-to-employer.51

In this set of jobs, the annual dominant employer is the one with the highest total earnings in the
calendar year.

To construct annualized earnings, for each quarter within a year I first identify the nature
of the worker’s attachment to the employer. Specifically, code quarter t of earnings into one of
the following two mutually exclusive categories: full-quarter (if earnings from the employer are in
quarters t− 1, t and t+ 1) or continuous (if earnings are in quarters t− 1 and t or in t and t+ 1).
Annualize these earnings as follows. First, if the worker had any quarters of full-quarter earnings,
take the average of these quarters and multiply by 4 to get an annualized salary. Second, if a the
worker did not have full-quarter earnings and has any quarters of continuous earnings, take the
average of these and multiply by 8 to get an annualized salary. The justification for this procedure is
that if a worker is present in only two consecutive quarters and if employment duration is uniformly
distributed then on average the earnings represent 1

2 a quarter’s work, while if a worker is present
in both adjacent quarters then the earnings reflect a full quarter’s work.52 Then take the log of
these earnings.

I then make two additional sample restrictions. First, I keep workers aged 18-61 (on December
31st of the year), inclusive. This is an attempt to avoid issues with retirement. This age restriction
is similar to, e.g., Card, Heining, and Kline (2013) (20-60 in Germany) and Taber and Vejlin (2013)
(19-55 in Denmark), though Abowd, Lengermann, and McKinney (2003) do not report imposing
any age restriction. Second, following Card, Heining, and Kline (2013) I drop observations with
annualized earnings of less than $3,250 in 2011:IV dollars.53

I use this dataset to construct three employer-level characteristics. The first one is average
annual employment (based on employment as defined earlier in this section). The second one is
average age of these workers. Finally, I construct the average log annualized earnings of workers.
I also include industry (four-digit NAICS codes), location (county), and whether the employer is a
multi-unit.

I now summarize how the various sample restrictions affect the same size. Table A1 in Appendix
H shows that there are about 650 million person-employer-years before imposing an earnings test,
614 million after imposing an earnings test, and 505 million after going down to one observation
per person per year. This means that after dropping the low-earnings jobs, there are an average
of 1.2 employers per person per year.54 Table A2 shows the distribution of the number of jobs per

51This eliminates quarters of employment that Abowd, Lengermann, and McKinney (2003, pg. 15-16) term
“discontinuous,” that is, where a worker is observed in neither adjacent quarter. Abowd, Lengermann, and McKinney
(2003, pg. 15-16) report that such discontinuous quarters of employment accounted for 5 percent of person-year
observations in their final dataset. Second, it eliminates “continuous” quarters of employment where the first quarter
of the match is quarter IV within the year, and the second quarter is quarter I of the following year. Under
the assumption that continuous quarters are uniformly distributed within the year, this eliminates 1

8
of continuous

workers. Abowd, Lengermann, and McKinney (2003, pg. 15-16) report that continuous quarters account for 11
percent of observations in their final dataset, so this eliminates about 1.4 percent of observations.

52In the small number of cases where a worker had forward-looking continuous employment in quarter IV as well as
another quarter of continuous employment at the same employer, I included this quarter in the earnings calculation.

53Card, Heining, and Kline (2013) drop daily wages of less than 10 euros. 10 euros × ≈ 1.3 euros per dollar ×250
days per year= 3,250.

54For Germany, Card, Heining, and Kline (2013, Appendix Table 1a, row 5) find 1.10 employers per person per
year, and this number is stable from 1985 through 2009.
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year in row 2 of Table A1.
Table A3 shows that on the full annual dataset, 91% share of person-year observations are

full-quarter and 9% are continuous.55 Table A4 shows the distribution of the number of years
per person. About 40% of the people are in the dataset for all 7 years, and only 13% are in the
dataset for only a single year. Table A5 shows that there is a substantial amount of mobility in
this sample: half of the workers have two or more employers. Table A6 shows that about 10% of
person-employer matches (or 30% of person-years) last for the entire span of my data. However,
almost half of matches (20% of person-years) only last for a single year.

C.2 Quarterly dataset

I build on ideas developed in Bjelland et al. (2011) and Hyatt et al. (2014). Specifically, the
procedure of restricting to jobs with two quarters of earnings and using overlapping quarters of
earnings to label an employer-to-employer transition comes from Bjelland et al. (2011, pg. 496,
equation 2). The idea of using earnings in the two quarters to select the dominant job is found in
Hyatt et al. (2014, pg. 3).

For the purposes of measuring flows, the quarterly dominant employer in quarter t is the em-
ployer from which the worker had the highest earnings summing over quarter t and quarter t− 1.
This job is chosen from among the employers where the worker had positive earnings in both quarter
t and quarter t − 1. To count as employment, the earnings must pass the the same earnings test
as for the annual dataset.56

For the person-quarters that remain after the earnings test, the goal is to select a single
employer—the quarterly dominant employer. The quarterly dominant employer is the employer
from which the worker has the most total earnings summing across t − 1 and t. There is one
exception to this selection rule. If a worker has earnings from her annual dominant employer in
quarters t−1 and t, then this employer is the quarterly dominant employer regardless of whether it
is the employer with the most total earnings summing across t−1 and t. The reason for prioritizing
the annual dominant job is that I want to use this quarterly dataset to code transitions between
annual dominant jobs so it is important that they appear in the quarterly dataset.

If a worker has different quarterly dominant employers in quarter t and quarter t+ 1, then this
worker had earnings from both employers in quarter t and I label the worker as having undergone
an employer-to-employer transition in quarter t. If a worker has no dominant employer in quarter
t + 1, then, with one exception highlighted a little later in this section, I consider that worker to
have been nonemployed in quarter t = 1, so I label the transition from the quarter t dominant
employer as a transition into nonemployment.57.58

I depart from prior work to address the possibility that workers move on the seam between

55Abowd, Lengermann, and McKinney (2003, pg. 15-16) find 84% are full-quarter, 11% are continuous, and 5%
are discontinuous.

56Sum together the two quarters of earnings and multiply by 4. If the earnings are below $3,250, then drop the
person-employer match. Multiplying by 4 is justified if one assumes that each quarter is a continuous quarter of
employment. The assumption that this is a continuous quarter of employment does lead to more jobs being included
than the annual dataset; specifically, if a job is actually full-quarter, then the annualized earnings treating it as full
quarter can be lower than the annualized earnings assuming it is a continuous quarter.

57Similarly, Burgess, Lane, and Stevens (2000) drop matches that only last a single quarter.
58This definition of a transition into nonemployment will pick up very few recalls as employer-to-nonemployment-

to-employer transitions. The reason is that even if a worker is nonemployed awaiting recall for 13 weeks, the probability
that I record a quarter with zero earnings from her employer is less than 10% ( 1

13
).
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two quarters (Hyatt and McEntarfer (2012) emphasize that on some outcomes these transitions
look like employer-to-employer moves). To make this concrete, suppose that I observe a worker at
firm A in quarter t − 2 and t − 1 and at firm B in t and t + 1. Then the definitions developed
previously say that in quarter t − 1 firm A is the dominant employer and in quarter t + 1 firm
B is the dominant employer. But in quarter t the worker had no dominant employer because it
was not the second consecutive quarter of any employment relationship. So the transition from A
to B was an employer-to-nonemployment-to-employer transition. It might be, however, that the
worker’s last day at A was the last day of quarter t− 1 and her first day at B was the first day of
quarter t, so this was actually an employer-to-employer transition. The way I attempt to capture
these transitions is to use the stability of earnings across quarters to suggest that a worker was
probably employed for the full quarter in both quarters. So, if the earnings from firm A in quarters
t − 2 and t − 1 are within 5% of each other (using quarter t − 1 earnings as the denominator),
then this employer is the dominant employer in quarter t. This then allows me code the transition
from A to B as employer-to-employer. Table A7 shows that this correction accounts for 3.5% of
the employer-to-employer transitions in my dataset.

The final result is a dataset that at the quarterly level says where the person was employed
and, if this is a new job, says whether the worker came to this job directly from another job, or
had an intervening spell of nonemployment.

C.3 Using the quarterly dataset to construct exogenous weights

I use the quarterly dataset to construct the exogenous weights. I proceed in the following steps:

1. Using the definition of employed explained in the previous section, construct employer size in
each quarter.

2. Compute quarter-to-quarter employer growth rates (the growth rate in quarter t is the change
in employment from t to t+ 1).

3. Label worker separations from the employer in quarter t as either employer-to-employer or
employer-to-nonemployment using the definitions in the previous section.

4. Compute the probability of each separation type (employer-to-employer and employer-to-
nonemployment) within size-demographic-growth rate bin.

5. Finally, the exogenoust weight is one minus the probability of the separation divided by the
probability of the separation occuring at an expanding employer.59

I use the following employer size bins by number of workers in that quarter: 1-4, 5-9, 10-24, 25-49,
50-99, 100-249, 250+. I create a different number of growth bins by each employer size. Specifically,
I use the following number of growth bins per size category: 2, 3, 5, 9, 11, 16, 26. One bin is always
the expanding employers, and the remaining bins are equally-weighted by person-quarter bins
among contracting employers. I create 40 distinct group workers by demographic characteristics
denoted by d (20 equally-sized age bins for men, and 20 for women).

59In the case where this is less than 0, I set this to 0.
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C.4 Combining the quarterly and annual datasets

The goal of combining the datasets is twofold: first, to use the detail of the quarterly dataset to label
each transition between annual dominant employers as an employer-to-employer or an employer-
to-nonemployment-to-employer transition and second, to find out the growth rate at the annual
dominant employer in the quarter that the worker separated in order to construct the endogenous
weight as discussed in section 1.2.1.

To label the transition as employer-to-employer or employer-to-nonemployment-to-employer, I
proceed as follows. First, identify consecutive observations where a worker has a different annual
dominant employer; to be concrete, suppose that the worker’s annual dominant employer is A in
2002 and B in 2003.60 Second, look at the quarterly dataset and find the last quarter that the
worker is employed at A (this might be in 2002 or 2003). Third, look at the quarterly dataset
and find the first quarter that the worker is employed at B (this might be in 2002 or 2003). If
the last quarter at A and first quarter at B are adjacent, then there was an overlapping quarter of
earnings and I label this an employer-to-employer transition. If not, then typically I label this an
employer-to-nonemployment-to-employer transition. The exception to labelling the transition an
employer-to-nonemployment-to-employer transition is if the worker made an employer-to-employer
move through some third (and possibly fourth or fifth) employer en route to moving from A to B.
Suppose, for example, that the worker makes the following transitions (where EE is employer-to-

employer and ENE is employer-to-nonemployment-to-employer): A
EE−−→ C

EE−−→ B. Because the
worker only made employer-to-employer transitions between A and B, I label this an employer-
to-employer transition between annual dominant employers. Alternatively, suppose that I observe

A
EE−−→ C

ENE−−−→ B. Then I label the transition between annual dominant employers an employer-
to-nonemployment-to-employer transition.

To assign the endogenous weights, I proceed as follows. First, I use the quarterly dataset to
identify the quarter in which the worker separated from her annual dominant employer. Second,
I use the quarterly dataset to identify whether the worker separated in an employer-to-employer
or an employer-to-nonemployment way. Third, I use the quarterly dataset to measure how much
the employer grew in the quarter the worker was separating; i.e., if quarter t is the last quarter
the worker was employed, then I compute the change in employment at the employer from quarter
t to t + 1. Finally, I compute the firm size in quarter t and worker demographics to merge on
the relevant endogenous weight using a) firm characteristics, b) worker characteristics, c) firm
growth rate, and d) nature of separation (employer-to-employer or employer-to-nonemployment)
as merging variables. A transition from nonemployment always gets an endogenous weight of 1.61

If a worker never has another employer, then I do not attempt to label this transition. For
example, if a worker has a dominant employer in 2006 and no dominant employer in 2007, then I
do not record a separation in 2006. The reason is that this could occur for any number of reasons:
1) a worker ages out of my age range, 2) a worker moves out of my states, or 3) a worker leaves
the labor force. For the purposes of computing transition probabilities, I remove these observations

60It is possible that a worker only appears in the annual dataset in nonconsecutive years—say, 2002 and 2004. In
this case, the procedure ends up labelling the transition an employer-to-nonemployment-to-employer.

61In the case of multiple transitions between annual dominant jobs, I proceed as follows. In a case such as

A
EE−−→ C

EE−−→ B, I compute the endogenous weight for the A → C and C → B transitions and take the geometric

average. In a case such as A
EE−−→ C

ENE−−−→ B, I take the geometric average of the A→ C and C → nonemployment
transitions for the endogenous weight on the separation from A to nonemployment; I then assign an endogenous
weight of 1 to the nonemployment-to-employer transition.
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from the denominator (that is, where the last year of a dominant employer is not the final year
in the dataset). So the denominator for separation probabilities removes the last year where the
worker has a dominant employer whether this is the last year in the dataset or before then (e.g., for
a worker I see in 2004 and 2005, I do not count the 2005 separation in my separation probabilities).
Similarly, when I compute g—share of employment—I do not include the final worker-specific year
(rather than taking out the last calendar year).

To compute δ and ρ, I compute the probability that each transition was exogenous (one minus
the endogenous weight). I then sum up the exogenous transitions over all transitions in the annual
dataset and compute the relevant probabilities.

C.5 Constructing model-relevant objects

Total employment (W ) and employer share of total employment (g): To use a common
notion of employer size across all calculations, in the interval 2001-2007 (inclusive), I use all data
except for the final person-year observation. This is so that I can compute separation probabilities
for all person-years used to measure g. This means I use data from the period 2001-2006 to create
the measure of employer size, but I might not count a particular person-year in g if this person
never appears again.

Number of hires from nonemployment, and share of hires from nonemployment
(fno): To alleviate concerns that hires from nonemployment simply reflect migrants or labor market
entrants, I only count workers as hired from nonemployment if I previously saw them employed
in my data, and I labelled their previous transition an employment-to-nonemployment transition.
Hence, I use hiring data from the period 2002-2007 (inclusive), except that I omit hires where the
person was never previously employed in my data.

Exogenous job destruction and job reallocation shocks (δ, ρ): For each transition
recorded in the annual dataset, I assign it a probability of being endogenous from the quarterly
dataset (based on the worker’s age and gender, the employer size, and whether the employer
was growing or shrinking (and by how much) in the quarter). I then take the total number of
separations of each kind (employer − to − employer and employer − to − nonemployment) and
compare it to the sum of the endogenous transition probabilities. The total number of exogenous
employer − to− employer transitions divided by total employment (W ) is (1− δ)ρ;62 the number
of exogenous employer − to− nonemployment transitions divided by W is δ.

D Appendix: Computational details

Solving for the Abowd, Kramarz, and Margolis (1999) decomposition can only be done in the
connected set of firms. Similarly, the model can only be estimated in the strongly connected set of
firms.

To estimate the Abowd, Kramarz, and Margolis (1999) decomposition, I built on the code
provided by Card, Heining, and Kline (2013). To identify the strongly connected set of firms, I
use David Gleich’s open source Matlab implementation of a depth-first search algorithm as part of
the package Matlab BGL. To estimate the decomposition, I use Matlab’s built-in preconditioned
conjugate gradient function (pcg), with an incomplete Cholesky preconditioner and a tolerance of
0.01. For an extensive discussion of conjugate gradient, as well as the benefits of preconditioning,

62The 1− δ appears because of timing assumptions in the model.
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see Trefethen and Bau (1997) (especially Lectures 38 and 40). Despite the fact that my dataset is
larger than that used by Card, Heining, and Kline (2013), I do not resort to a two-step estimation
procedure of estimating the firm effects on the sample of movers. At least with my data and
resources, the computational bottleneck was computing X ′X. To get around this, I split X into 3
pieces and computed X ′X in 9 pieces.

To estimate the eigenvector, I use Matlab’s built-in eigenvector solver that allows the researcher
to specify the number of eigenvectors to solve for (eigs, rather than eig) (My own implementation
of the power method yielded numerically identical answers.)

E Appendix: Selection-correcting the earnings

I selection-correct the earnings equation by combining the proportionality assumption and the
results of the search model. That is, I add the expectation of the error term from the search model
to the earnings equation. In the first period of a worker’s employment relationship, this expectation
depends on the identity of her prior firm in her first year at each firm. That is, suppose a worker
moves from firm 2 to firm 1 then E[ι1|V e

1 + ι1 > V e
2 + ι2] = E[ι1|ι1 − ι2 > V e

2 − V e
1 ]. In the second

and subsequent years, this selection term for a worker at employer i is

E[ι|V e
i , not move] =

∑
E−i,n Pr(offer from j and not move)E[ι|offer from j and not move]∑

E−i,n Pr(offer from j and not move)
. (A51)

For a worker at i, these terms—when involving other firms—are:

Pr(offer from j and not move) = λ1fj
exp(V e

i )

exp(V e
j ) + exp(V e

i )
, (A52)

E[ι|offer from j and not move] = γ − log

(
exp(V e

i )

exp(V e
j ) + exp(V e

i )

)
. (A53)

For a worker at i, these terms are (when involving nonemployment):

Pr(offer from nonemp and not move) = (1− λ1)
exp(V e

i )

exp(V n) + exp(V e
i )
, (A54)

E[ι|offer from nonemp and not move] = γ − log

(
exp(V e

i )

exp(V n) + exp(V e
i )

)
. (A55)

In implementation there are a couple issues. First, for the first year that a worker appears
in the dataset I do not know which selection correction term to apply; that is, it might be that
the worker showed up from another firm, or it might be that the worker had already been there.
To address this, I assume that all such observations are in the second or subsequent years of the
employment relationship. Second, there are firms that I cannot estimate the revealed value of,
even though I can estimate the value of the firm in the earnings equation (these are firms in the
strongly connected set for which I cannot estimate either f or g). For the purposes of the selection
correction, I assume that g

f = 1 and therefore use the mobility relevant value. Third, to speed up
computation, I discretize the firms into 1, 000 equally-sized (in terms of person-years) bins and use
the bin means to compute the selection correction.
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F Appendix: Measurement error

This appendix states formal conditions under which the grouping strategy leads to a consistent
estimate of the correlation between firm-level values and earnings. I state results with a single
grouping characteristic. The extension to grouping sequentially is straightforward.

F.1 Preliminaries

Consider one grouping characteristic, g, which might be location, industry, or size. Formally, let
{Ω1, ...ΩG} be mutually exclusive sets of firms. This grouping partitions the set of firms. Earnings
at firm i are:

Ψi = Ψg + Ψ̃i + εΨi , (A56)

where Ψg is the group-level component, Ψ̃i is the firm-level component, and εΨi is mean zero
measurement error. Implicit in this notation is the fact that each firm i belongs to a unique group
g. Similarly, the value at firm i is given by (where I suppress the e subscript from the text for
simplicity):

Vi = Vg + Ṽi + εVi . (A57)

I now state assumptions on how the terms relate.
Assumptions: The assumptions are about the mean value of the non-group-level components:

1. E[Ψ̃i + εΨi |i ∈ Ωg] = 0.

2. E[Ṽi + εVi |i ∈ Ωg] = 0.

The economic content of these assumptions are that grouping characteristics are exogenous.
These assumptions would be violated if firms see Ψi and then decide which group to choose, since
g would be related to the error term. The statistical content of these assumptions are relatively
mild. For example, they allow for the variance of the measurement error to depend on the grouping
characteristic (i.e., when I group by size, it allows for the smaller firms to have higher variance). It
also allows the measurement error to be correlated with the firm-specific component.

F.2 Estimation with one characteristic

With one characteristic, I can estimate the group-level components by the group-level means and
then compute the relationship between the two.

71



For earnings,

lim
Ng→∞

Ê[Ψg] = lim
Ng→∞

1

Ng

∑
i∈Ωg

Ψi (A58)

= lim
Ng→∞

1

Ng

∑
i∈Ωg

[
Ψg + Ψ̃i + εΨi

]
(A59)

= E[Ψg + Ψ̃i + εΨi |i ∈ Ωg] (A60)

= Ψg + E[Ψ̃i + εΨi |i ∈ Ωg] (A61)

= Ψg, (A62)

where the second line is a definition, the third is a law of large numbers, the fourth is a result of
Ψg being nonstochastic once g is fixed, and the last line is by assumption.

Similarly, I can estimate Vg by the group level mean.
Then as the number of firms within each group grows large, I get a consistent estimate of

Corr(Ψ, V ).
The limitation of this strategy is that if the grouping characteristics capture relatively little of

the variance of the Ψ and V , then this is not particularly informative.

G Appendix: Subgroup results

This appendix reestimates the model on subgroups defined by age and gender. The central finding
of the paper is robust within each subgroup. The assumption of homogeneity in the baseline
results do not do too much damage to the data, since splitting the data along these dimensions of
observable heterogeneity does not change the main finding.

I split the sample by men and women, as well as into “young” (18-34) and “old” workers (35-
61). (I choose the age split so that each age range contains about half of the employer-to-employer
transitions in the data.) By subgroup, I reestimate the whole model, the earnings decomposition
and the comparison between them.

Table A11 in Appendix H shows that firms matter in explaining earnings inequality within
each subgroup. It reports sample sizes and variance decompositions by subgroup in the set of
firms strongly connected by employer-to-employer transitions made by that subgroup. For ease of
comparison, I reproduce in the first column of Table A11 column (3) of Table 1, which reports the
decomposition for the whole sample. Table A11 shows that firms explain a similar amount of the
variance of earnings among men as among women, and this is very similar to the overall number.
That said, there are more interesting patterns by age: firms explain more of the variance among
young workers than among old workers.

Panel A of Table A12 in Appendix H shows that compensating differentials are an important
part of the explanation for the role of firms in earnings inequality within each subgroup. The table
reports the explanatory power of compensating differentials within each subgroup. The numbers
are constructed in an identical way to the bottom panel of Table 4. For ease of comparison, I
reproduce in the first row the numbers for the overall sample. Compensating differentials are
slightly more important for explaining between-women inequality than between-men inequality. As
with earnings inequality, the more striking difference is that compensating differentials are much
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more important for old workers than for young workers.63

Panel B of Table A12 reports the results of a conceptually distinct robustness exercise and
shows that aggregating across industries and locations does not do too much damage to the data.
One might be concerned that by treating all states in my sample as an integrated labor market I
do important damage to the data. To assuage this concern, I reestimate the firm-level accepted-
offer-relevant values (Ṽ ) using only accepted offers within a particular state. State by state I
then compute the correlation with the benchmark accepted-offer-relevant-firm-level values that
also use the across-state moves. Finally, I aggregate the correlations across all states weighting
by the number of person-years. Panel B of Table A12 shows that the correlation between the two
measures is 0.97. That is, the accepted offers across states do not dramatically affect the estimates
(but using these accepted offers allows me to compare utilities across counties).

At the firm level, one might also prefer to focus on within-industry moves based on the idea
that perhaps across sector moves are not well described by a search model. The second column
of Panel B in Table A12 reports a sector-by-sector analysis that is identical to the state-by-state
analysis. I find a correlation for the within-sector accepted-offer-relevant values and the benchmark
accepted-offer-relevant-values of 0.76. Of course, I rely on precisely these across-sector moves to
value sectors as reported in Figure 10a.

H Appendix: Additional tables and figures

Table A1: Constructing Sample of Dominant Jobs

Number Unique People Unique Employers
(1) (2) (3)

Person-employer-year pre-earnings test 650, 288, 000 108, 002, 000 6, 688, 000
Person-employer-year post-earnings test 613, 341, 000 105, 921, 000 6, 511, 000
Person-years 504, 945, 000 105, 921, 000 6, 155, 000

Notes: All counts are rounded to the nearest thousand. Row 2 divided by row 3 is 1.215. The
first row shows the total number of person-year-employer observations that are continuous quarter
or full-quarter among workers in the relevant age range. The second row shows the number of
person-year-employer observations where the person’s dominant job in the particular year passes
an earnings test. The third row goes down to the unique employer that provides the worker’s
“dominant” job, or the employer from which the worker made the most in the calendar year.

63Understanding why patterns look different for young and old workers is an interesting topic for future research.
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Table A2: Distribution of jobs per person per year

Number of person-years

1 413, 553, 000
2 77, 735, 000
3 11, 611, 000

4+ 2, 047, 000

Notes: All counts are rounded to the nearest thousand. This table deconstructs the gap between
row 2 and row 3 in Table A1. The column sum is row 3 in Table A1. This shows among workers
in the sample of workers with dominant jobs the distribution of the number of continuous and
full-quarter jobs in a year.

Table A3: Type of earnings in the annual dominant job dataset

Type of earnings Number of person-years

Full quarter 458, 017, 000
Continuous quarter 46, 928, 000

Continuous quarter share 0.093

Notes: All counts are rounded to the nearest thousand. The column sum is the number of person-
years in row 3 in Table A1. A worker is employed full-quarter in quarter t if she has earnings from
her employer in quarter t and quarters t − 1 and t + 1. A worker is comployed in a continuous
quarter way in quarter t if she has earnings from her employer in quarter t and quarter t − 1 or
quarter t+ 1.

Table A4: Number of years per person

Number of people Share

1 14,041,000 0.133
2 11,422,000 0.108
3 9,873,000 0.093
4 9,111,000 0.086
5 8,963,000 0.085
6 10,396,000 0.098
7 42,115,000 0.398

Notes: All counts are rounded to the nearest thousand. The column sum is the number of unique
people in row 3 in Table A1.
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Table A5: Dominant employers per person

Number of dominant employers Number of people Share of people

1 52,938,000 0.500
2 27,228,000 0.257
3 14,945,000 0.141
4 7,157,000 0.068
5 2,764,000 0.026
6 771,000 0.007
7 118,000 0.001

Notes: All counts are rounded to the nearest thousand. The column sum is the number of unique
people in row 3 in Table A1.

Table A6: Number of years per match

Years per match Matches (person-employers) Share of matches Share of person-years

1 93,327,000 0.466 0.185
2 39,176,000 0.196 0.155
3 19,842,000 0.099 0.118
4 12,295,000 0.061 0.097
5 8,573,000 0.043 0.085
6 6,745,000 0.034 0.080
7 20,175,000 0.101 0.280

Notes: All counts are rounded to the nearest thousand. The column sum in the first column is the
number of matches and is approximately 200,000,000, which is between the number of unique people
and the number of person-years. The next column shows the distribution by share of matches. The
last column shows the distribution of person-years.

Table A7: Composition of separations in the quarterly dataset

Type of transition Definition Number

employer-to-nonemployment Standard 131,621,000
employer-to-employer Standard 76,152,000
employer-to-employer New 2,680,000

employer-to-employer transition share 0.375
New definition share 0.035
Total separations 210,453,000

Notes: All counts are rounded to the nearest thousand. The dataset is the quarterly dataset,
so it includes some workers not in the annual dataset. The standard definition uses overlapping
quarters to measure employer-to-employer transitions. The new definition uses stability of earnings
to measure employer-to-employer transitions.
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Table A8: Workers frequently move across industries and locations

Moves with EE and ENE EE (endog) EE (all) Single-Unit Only?
different...

State 0.12 0.10 0.10
County 0.65 0.64 0.63
Sector 0.65 0.61 0.60
4-digit industry 0.81 0.79 0.78

State 0.12 0.10 0.10 X
County 0.56 0.53 0.52 X
Sector 0.60 0.56 0.56 X
4-digit industry 0.77 0.74 0.73 X

Notes: This table reports the share of annual moves that cross geographic and industry bound-
aries. The bottom panel reports the moves that are between single-unit employers. EE moves are
employer-to-employer moves and ENE moves are employer-to-nonemployment-to-employment.

Table A9: Variance decompositions of earnings and utility

Dummy set Log Earnings Firm-level earnings (Ψ) Firm-level utility (V e)

State 0.03 0.06 0.02
County 0.10 0.12 0.05
Sector 0.40 0.37 0.42
3-digit industry 0.51 0.46 0.49
4-digit industry 0.57 0.52 0.56
Size groups 0.03 0.03 0.03

Single-units only

State 0.03 0.05 0.01
County 0.12 0.13 0.04
4-digit industry 0.51 0.45 0.40
Size groups 0.06 0.06 0.08

Notes: The sample is column (4) in Table 1.
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Table A10: Relationship between alternative firm effects

S. Conn Selec. Corr. EE Movers EE Receive EE Send S. Conn Slope
(w/slope)

(1) (2) (3) (4) (5) (6) (7)

(1) S. Connected by EE 1 1.00 0.96 0.91 0.91 1.00 0.02
(2) Selection Corrected 1 0.96 0.91 0.91 1.00 0.02
(3) EE Movers only 1 0.95 0.94 0.95 0.03
(4) EE Receive 1 0.85 0.91 0.07
(5) EE Send 1 0.91 -0.03
(6) S. Connected by EE 1 -0.03
(with slope)
(7) Slope 1

Notes: This table shows correlations between firm effects estimated using different samples and different identifying variation. EE
stands for employer-to-employer. Column (1) is the benchmark firm effect estimated in the set of firms strongly connected by
employer-to-employer transitions, which is identified by both employer-to-employer and employer-to-nonemployment-to-employer
movers. Column (2) adds the selection correction from the structural model to the mobility equation. Column (3) estimates firm
effects using only workers who make employer-to-employer transitions and only the person-years at the firms that these workers
either leave or join. Hence, firm effects are identified using only employer-to-employer moves. Column (4) and (5) are estimated
in a single regression. These firm effects are identified by the workers making employer-to-employer transitions, but allows for
separate effects at the firm-level for a sending and receiving firm. These provide an additional test of the symmetry assumption
reflected in the Abowd, Kramarz and Margolis (1999) decomposition. Columns (6) and (7) are estimated in a single regression.
Column (6) is the firm effect, and column (7) is the slope effect. I can only estimate a slope in earnings at firms that have workers
that stay for two or more years. This restriction limits the sample to 98.4% of firms representing 99.9% of person-years.
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Table A11: Variance decomposition of earnings by subgroup

Strongly connected by employer-to-employer
All Men Women Old Young

(35-61) (18-34)
(1) (2) (3) (4) (5)

Sample size
People-years 470,387,000 233,475,000 223,113,000 271,736,000 181,222,000
People 100,547,000 50,474,000 47,918,000 58,402,000 49,053,000
Employers 1,971,000 1,279,000 1,237,000 1,260,000 1,353,000
Summary statistics
Mean log earnings 10.45 10.62 10.27 10.66 10.14
Variance of log earnings 0.69 0.69 0.61 0.62 0.61
Share of variance of earnings explained by each parameter set
Employers 0.22 0.22 0.23 0.20 0.27
People 0.55 0.55 0.54 0.71 0.63
Covariates 0.11 0.13 0.11 -0.01 -0.04
Overall fit of AKM decomposition
R2 0.88 0.89 0.87 0.90 0.85
Adj. R2 0.85 0.86 0.83 0.87 0.79

Notes: Sample counts are rounded to the nearest thousand. Column (1) reproduces column (3)
from Table 1. The data is at an annual frequency. There is one observation per person per year.
The observation is the job from which a person made the most money, but only if she made at
least $3, 250 (in $2011). The table includes person-years in which on December 31 of the year the
person was 18-61 (inclusive). AKM stands for Abowd, Kramarz, and Margolis (1999).
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Table A12: Why do some firms pay so much and some so little? Subgroups

Panel A. Compensating differentials’ share
Group All

(1) All 0.25
(2) Men 0.31
(3) Women 0.21
(4) Old (35-61) 0.10
(5) Young (18-34) 0.36

B. Correlations by firm characteristics:
State Sector

Corr(Ṽ ,Ṽ x by x) 0.97 0.76

Notes: Panel A reports results analogous to Table 4. Row (1) reproduces results from the first row
in column (4) in Table 4. The state-by-state exercise in Panel B contains 94.1% of the employers
in column (3) of Table 1, which represent 99.3% of the person-years. The sector-by-sector exercise
in Panel B contains 45.4% of the employers and 89.2% of the person-years.
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Figure A1: Endogenous employer-to-employer and employer-to-nonemployment probabilities by
firm growth rate

(a) Employer-to-employer

(b) Employer-to-nonemployment

Notes: These figures plot the model-implied firm-specific endogenous employer-to-nonemployment
and employer-to-employer probabilities, as well as these probabilities in the data as a function of
firm-growth. Firm growth is growth from 2001 through 2007. To construct the figure, I sort firms
into 20 equal person-sized year bins on the basis of firm-growth. To be consistent with the axes in
figure 1a, this figure only displays seventeen bins.



Figure A2: States used in analysis

Notes: The states in blue are used in the analysis.

Figure A3: Change in firm effect does not predict magnitude of earnings change in a matching
model

Notes: This figure is based on simulating the example production function in Eeckhout and Kircher
(2011) and is constructed in a manner analogous to Figure 8.
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I Appendix: Simulating models using individual data

I.1 Hall and Mueller (2013)

I simulate using the parameter values in the κ = 0 column of Hall and Mueller (2013, pg. 20, Table
2). To simplify matters, I remove the standard deviation of personal productivity and the reference
value of nonwage value (σx and n̄). The only relevant equation is then the mass balance equation:

G(v) =
λF (v)u

(1− u)[λ(1− F (v)) + s]
, (A63)

where G is the distribution of job value in the employed distribution, F is the distribution of job
values in the accepted offer distribution, u is the unemployment rate, s is the job destruction rate,
and λ is the arrival rate of offers on and off the job. v = y + n, or job value is the sum of earnings
and nonpecuniary characteristics. The parameter values I use are in the following table.

Parameter Explanation Value Notes

µy mean of offers 0.37 (or 2.75-2.38)
σy stdev of wage 0.304 in F
σn stdev of non-wage value 0.882 in F
λ offer arrival rate on/off job 0.058
s job destruction rate 0.0041

u = s
λ+s u/e rate 0.0660

The key parameters are σy and σn. The Hall and Mueller (2013) estimates imply more variance in
the value of nonpecuniary characteristics than earnings. I consider a million draws from the offer
distribution and use equation (A63) to compute the steady state distribution. I then compute the
R2 between y and v in G.

I.2 Sullivan and To (2014)

The key mass balance equation in Sullivan and To (2014) is:

G(v) =
λuF (v)Pr(v > U∗)u+ λleF (v)Pr(v > U∗)(1− u)

[λe(1− F (v))Pr(v > U∗)(1− u) + (1− u)s+ λleF (v)Pr(v > U∗)(1− u)]
, (A64)

where Pr(v > U∗) is the probability that the offer exceeds the reservation utility, λu is arrival
probability of an offer when unemployed, and λe is the arrival probability of an offer when employed,
λle is the reallocation shock (and I have changed some notation). Sullivan and To (2014) allow for
unobserved heterogeneity and fit three types. The following table reports the values I use and is
taken from Sullivan and To (2014, pg. 489, Table 2, specification 1). (The bottom two rows are
computed as a function of the rest of the table.)
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Parameter Explanation Type 1 Type 2 Type 3

σy stdev of wage in F 0.3435 0.3435 0.3435
σn stdev of non-wage value in F 0.3908 0.3908 0.3908
µy mean wage of offers 1.1774 1.7252 2.1766
U∗ reservation utility 1.8163 1.8948 1.9869
λu offer while unemp 0.9198 0.6299 0.1421
λe offer while emp 0.4214 0.5348 0.0365
λle reallocation 0.2545 0.0214 0.0016
s job destruction rate 0.0905 0.0529 0.0345

Pr(v > U∗) prob. of accepting an offer 0.1098 0.3726 0.6416
u = s

λuPr(v>U∗)+s
u/e rate 0.4726 0.1839 0.2745
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