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Abstract 

 

This paper documents and characterizes the time-varying structure of U.S. and international asset co-
movements. It draws attention to the fact that while some of the time variation could be genuine, the 
sampling uncertainty and time series properties of the series can distort significantly the underlying 
signal dynamics. Proper transformation of the asset prices prior to extraction of common components 
is crucial for the validity and the robustness of the analysis. Frequency of the data also plays a role in 
the effectiveness of risk identification. We discuss some recent examples that illustrate the pitfalls 
from drawing conclusions from local trends of asset prices. On a more constructive side, we find that 
the U.S. main asset classes and the major international stock indices share a factor that is closely related 
to the business cycle. At even lower frequency, the common asset co-movement appears to be driven 
by demographic trends.    
 
 
 
Keywords: Cross-asset, within-asset and international asset co-movements; Rolling correlation; Time-
variability; Persistence; Higher moments; Tail and asymmetric dependence; Risk factors; Sampling 
frequency. 
 

 

JEL Classification : G13, G14, G17 

  

                                                           
* Research Department, Federal Reserve Bank of Atlanta, 1000 Peachtree Street, N.E., Atlanta, GA 30309-4470; email: 
nikolay.gospodinov@atl.frb.org. This paper is prepared for the 22nd Annual Financial Markets Conference, “Managing 
Global Financial Risks: Shifting Sands and Shock Waves” (May 7–9, 2017). I would like to thank Richard Crump, Paula 
Tkac, and Larry Wall for helpful comments and suggestions. The views expressed here are the author’s and not necessarily 
those of the Federal Reserve Bank of Atlanta or the Federal Reserve System. 



1 
 

1. Introduction 

Identifying and quantifying the underlying co-movements in financial data have important 

implications for asset allocation, portfolio valuation, regulatory enforcement, and policy analysis. Since 

the 2008 financial crisis, there have been several episodes when the correlations between different 

asset classes were elevated but dropped off quickly afterwards and exhibited substantial variability.  

For example, the prevailing view in the last few years is of an increased correlation across asset classes; 

that is, the “risk-on/risk-off” view of markets. Is this due to fundamental or transient (technical) 

factors? Can we reliably isolate, in real time, the underlying source of risk from data and estimation 

noise? Is the observed time-variability of these co-movements a true property of the data-generating 

process or a symptom of misspecification that arises from omitted common factors and higher-

moment distributional features? 

To answer these questions, it is desirable first to document and characterize the main regularities in 

the asset co-movements across asset classes over time. While the scope of our empirical analysis is 

limited to some frequently studied co-movements within and across asset classes, we still attempt to 

provide some arguments about possible sources of common variation in asset returns, emphasize 

some pitfalls in commonly used measures of these co-movements, and discuss the challenges of 

measuring statistically the shifts of the distribution at various frequencies. The underlying sources of 

common asset variations can be crudely classified into long-run, transient, and spurious factors. The 

long-run (fundamental) sources of risk include structural macroeconomic and demographic factors at 

business-cycle or even lower frequency. The transient factors are roughly interpreted as fluctuations 

prompted by macro, political, and market-structure (technical) events that can force medium-term 

asset reallocations and rotations and induce movements in the asset risk premia. Finally, the short-

term co-movements can arise from unanticipated (oil supply, for example) shocks or data noise. The 

data noise and finite samples can generate possible spurious co-movements and observational 

equivalence between the different factors, which renders a sharp distinction between the underlying 

sources of risk almost infeasible. Despite these limitations, it is often tempting to ascribe 

“fundamental” structure to some of the observed short-term movements as illustrated by some 

examples discussed in this paper.    

The discussion in the paper will be focused around several general observations. First, if there is robust 

evidence that the asset co-movements are genuinely time-varying, then it would be useful to identify 
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the source of this common variation. Market participants have suggested several sources of common 

variation: regulatory changes and reduced market liquidity in some markets, correlated arbitrage, 

growth of passive investment funds, particular investment strategies, and algorithmic trading, among 

others. The heightened interdependence within and between asset classes can have important 

implications for policymakers and can make the diversification and hedging implementation 

increasingly challenging. On the one hand, the strengthened asset co-movements open up the 

possibility of systematic market risk (such as concerns about the destabilizing effects of the “taper 

tantrum” in 2013) and the proper calibration of monetary policy to economic conditions. On the other 

hand, if monetary policy is a driver of the correlation change, then it is important to understand how 

monetary policy decisions (and especially surprises) will affect markets; for example, how quantitative 

easing could influence long-term bond and other asset prices. Identifying the sources of this increased 

dependence in the joint distribution of asset returns may shed light on how to adapt to this shifting 

and potentially unstable landscape. 

Second, it should be acknowledged that another possibility for the increased time variation, and 

potential instability, in the correlations across asset classes could be purely statistical due to the 

limitations of the modeling framework and the use of second-moment measures.1 We argue in the 

paper that particular attention should be paid to the sampling frequency and estimation uncertainty 

associated with computing moments of the distribution, the effect of persistence on correlation-type 

measures of co-movement, and differences in the correlation measures across different parts of the 

distribution. While most drawbacks of the standard measures of co-movements are thoroughly 

discussed and documented in the literature, they are often downplayed, due to their computational 

and interpretational convenience, by practitioners. In this respect, it is surprising how 

underappreciated the sampling and estimation uncertainty could be in forming investment and policy 

decisions based on nonrobust measures of second-moment variation. As a result, there is a tendency 

to over-analyze some high-frequency movements and attribute them to a particular underlying signal 

without taking fully into account the data noise and estimation uncertainty. Unlike high-frequency co-

movements that are largely elusive and fairly transitory, low-frequency analysis provides a more robust 

and reliable way to evaluate these dependencies and suggests that the asset common variation appears 

                                                           
1 There is a large and well-developed literature in financial econometrics on estimating dynamics conditional correlation 
models (see Engle, 2002, for example). To avoid technical details, we do not discuss this literature here. However, some 
of the remarks that we provide for time-varying correlations apply to this literature as well. For some caveats about 
dynamics conditional correlation models, see Caporin and McAleer (2013). 
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to exhibit more stable relationships with macroeconomic and slowly moving demographic factors at 

business-cycle or longer duration.  

Third, the increased time variation in the correlations across asset classes could well be statistical and 

arise purely from limitations of the modeling and conceptual framework and the use of second-

moment measures. There is now overwhelming evidence that higher moments of asset returns exhibit 

features that cannot be reconciled with the dominating asset-pricing and portfolio-allocation models 

in the academic literature, and the difference between the model-implied statistics and their empirical 

counterparts is  “anomalously” or “puzzlingly” large. For example, if sources of risk exhibit differential 

impacts on the shape of the asset distribution over time (either by fattening the tail risk or shifting the 

tail risk from one side of the distribution to the other), the information reflected in the second 

moments will be incomplete and potentially misleading as it may exhibit substantial time variability 

even when the underlying population correlations are constant. More broadly, if we seek to understand 

how investors assess risk and reallocate their portfolios in response to the changing distribution of 

asset returns and how their actions may themselves help to shape this distribution, more general 

dependence measures—that reflect and summarize the information in the whole distribution—are 

therefore necessary for identifying the underlying risk factors. The modern portfolio and asset-pricing 

theory can then be modified accordingly to reflect this higher-order moment information.2 

In light of these remarks, it is prudent to approach the analysis of asset co-movements by explicitly 

acknowledging the model and estimation uncertainty surrounding all investment and asset-allocation 

decisions. Since all financial models are constructed to approximate a complex reality, they are 

inherently misspecified. This is often done intentionally, as parsimonious models draw only partial or 

incomplete maps of the latent objects of interest either to emphasize particular aspects or because the 

underlying structure is completely unknown. How large is the effect of this model misspecification on 

the quantity of interest (for example, portfolio weights, stochastic discount factor) is an empirical 

question. It appears that most of the anomalous and puzzling results in economics and finance tend 

to diminish in importance when the prevalent analytical framework, based on linearity and multivariate 

normality, is relaxed. Furthermore, while there is suggestive evidence of an increased asset-class 

interdependence and a shifting market landscape, the exact source of this structural change (correlated 

arbitrage, interdependencies, trading strategies, passive investment, algorithmic trading) is difficult to 

                                                           
2 Embrechts et al. (2002) provide a comprehensive discussion on the properties and pitfalls of correlation for measuring 
general dependence. 
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pin down due to short samples, noisy data, and estimation uncertainty. Finally, since the object of 

interest is often the joint distribution of all assets under consideration, more general and robust 

measures of dependence, that embed information in the shape (asymmetry, tails) of this distribution, 

are highly desirable, even though they suffer from similar drawbacks (noisiness and large estimation 

uncertainty) as the correlation measure. 

We approach this problem from an empirical perspective since economic theory provides only limited 

guidance on the fundamental sources of time-varying co-movements across asset classes. There is a 

well-established literature that studies the large directional swings in the covariance between U.S. bond 

and stock returns in the post-World War II period. For instance, it is a stylized fact that this correlation 

was largely positive between 1953 and the late 1990s but then turned negative, especially during the 

2001 and 2007–09 recessions, with bonds providing a hedge against equity and macroeconomic risks. 

Baele at al. (2010), Campbell et al. (2015), David and Veronesi (2016), and Song (2017), among others, 

propose models that better fit the observed dynamics of the correlation between bond and stock 

returns. However, developing a unifying framework for modeling jointly several major asset classes 

(stocks, government bonds, corporate bonds, commodities, currencies) proves to be prohibitively 

difficult. Cochrane (2015) identified the question “Once we find the factor structure in bonds, what 

is the factor structure of expected returns across asset classes?” as one of the “bigger” questions facing 

financial economics. On that note, dimension reduction techniques such as factor analysis prove to 

be useful tools for summarizing the common variation across asset markets. Identifying the main 

sources of risk via the estimated factors is of fundamental importance not only for guiding investment 

decisions but also for monitoring financial stability, stress testing, and more.  

While distinguishing among fundamental, transitory, and spurious sources of risk proves empirically 

difficult, we find clear evidence of long-run co-movements at business-cycle or even lower frequency. 

There is a reasonable basis for tying these co-movements to macroeconomic fundamentals and 

demographic factors. While there is also some evidence of co-movement at the shorter end,  one 

needs to be careful in analyzing this evidence as there are several sources of possible error that make 

the competing hypotheses observationally equivalent. These short-term co-movements, which force 

asset reallocations and induce temporary co-movements in the asset-risk premia, tend to be more 

unstable. Nevertheless, there is a tendency to ascribe more fundamental structure to these variations, 

which warns against overreliance on various nonrobust measures of co-movement that are routinely 

used for portfolio allocation, evaluation of asset–pricing models, and factor investing.  
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The rest of the paper is organized as follows. Section 2 provides a motivating example that exposes 

the potential challenges and biases when analyzing co-movements based on recent local-trend, high-

frequency data. Section 3 discusses a few statistical problems that could affect the reliability of rolling 

second-moment measures of dependence. In particular, we discuss the effects of the persistence of 

the individual series, the estimation and sampling uncertainty, and the sensitivity of these measures to 

changes in the higher moments of the distribution. Section 4 attempts to extract the common price 

variation across asset classes and relates them to business cycle fluctuations and longer-run 

demographic trends. This allows us to draw some tentative conclusions about these co-movements 

based on future projections of these business and demographic cycles. Section 5 offers some 

concluding remarks.   

 

2. An Illustrative Example: Oil Price Co-movements  

From the beginning of 2014 to the middle of 2016, the price of crude oil dropped by more than 50 

percent, a drop that was accompanied by a substantially elevated correlation between oil price and 

several other asset classes. This unusually high correlation attracted the attention of market analysts 

for at least two main reasons. First, this co-movement significantly restricted the set of diversification 

and hedging opportunities in the market. Second, oil prices as the driving factor behind the asset co-

movements on a more sustained basis may pose risks to the stability of the financial system given the 

highly volatile nature of commodity prices, with their larger exposure to geopolitical risk, supply 

disruptions, and more.3 

Figure 1 plots the dynamics of several asset prices—5-year, 5-year forward breakeven inflation from 

Treasury Inflation-Protected Securities (TIPS) and Treasury prices, U.S. dollar index (DAX), and one-

year changes in the S&P 500 index, and Barclays high yields index—versus the log oil price from the 

beginning of 2014 to the end of February 2017. Ending in May 2016, the series (or some 

transformations of them) are plotted as solid lines to illustrate the seemingly tight relationship between 

the oil price and other asset prices that was widely documented and discussed by pundits and the 

media at that time. In contrast, the dashed lines after May 2016 tend to suggest that this relationship 

has substantially weakened.  

                                                           
3 The median values of the option-implied volatility indices OVX and VIX (for oil prices and S&P 500, respectively) since 
the beginning of 2014 (2015) are 37.78 (42.28) and 14.12 (14.48). 
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Figure 1. Oil price dynamics against (1) 5-year, 5-year forward breakeven inflation; (2) U.S. dollar index 
(DXY); (3) percent changes in S&P 500 index from a year ago; and (4) Barclays high yield index. The 
solid lines denote the dynamics of each series from January 2014 to May 2016, and the dashed lines 
represent the period June 2016 to February 2017. 

 

Was this co-movement due to fundamental common factor/information driving all these variables 

(global demand shock, for example), or was it caused by transitory (market-specific) factors reflected 

only in the asset risk premia?  While seeking answers to these questions, we want to emphasize some 

statistical features—such as the possibility of spurious time variability due to persistence (trending 

behavior) of the variables over this particular period or sensitivity to movements in other parts 

(skewness, tails) of the joint or marginal distributions—that are often overlooked by practitioners. 

To gain a better understanding of these issues, we focus on the relationship between breakeven 

inflation (BEI), embedded in nominal and inflation-protected securities, and oil prices from the 
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beginning of 2014 to the middle of 2016. During this particular period, both oil prices and BEI 

exhibited a downward trend, and this strong correlation was largely attributed to the effect of oil prices 

on inflation expectations. This interpretation was challenged on several grounds (see, for example, 

Gospodinov, Tkac, and Wei, 2016). First, BEI is not a clean measure of inflation expectations as it 

also contains other, unobservable components such as liquidity and risk premium. Second, it is 

somewhat counterintuitive for the day-to-day (transitory) variations in oil prices to affect inflation 

expectations 5 to 10 years out. Finally, both variables are highly persistent and the sample correlation 

may provide a spurious signal of a relationship between the two variables. 

A proper decomposition of the observable BEI into its latent components (see Gospodinov and Wei, 

2015) reveals the following. Despite the wide variations in BEI, long-term inflation expectations 

appear to be stable and uncorrelated with oil prices. A large portion of the low-frequency variation in 

BEI can be attributed to the inflation risk premium. But most of the high-frequency variation in the 

recent dynamics of BEI can be attributed to a “liquidity” premium. This “liquidity” factor captures a 

wide range of market-related factors such as seasonal carry, deflation floor, limits to arbitrage, tenor-

specific liquidity, redemptions, reallocations, and hedging in the TIPS market following an oil price 

drop or global financial turbulence. For example, an event that drives flight-to-quality into nominal 

Treasuries and/or forced sales of TIPS leads to a lower BEI without any change in inflation 

expectations. 

Figure 2 shows that almost all of the recent correlation between BEI and oil prices is being picked up 

by the “liquidity” premium. As shown above, other asset classes (stock prices, high-yield bonds, 

municipal bonds, exchange rate) have also exhibited an elevated correlation with oil prices during this 

period. If genuine, it is useful to determine if this is due to a global demand driver, correlated risk, or 

market specificities (such as forced de-risking and liquidations, reallocations, flight-to-safety, or 

covering hedges). 
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Figure 2. Time plot of weekly TIPS liquidity premium with oil prices and oil option-implied (OVX) 
volatility  

 

For example, numerous studies have documented the existence of persistent mispricing in various 

asset markets. It is conjectured that common factors could drive this mispricing and the resulting 

arbitrage. Brunnermeier and Pedersen (2009) argue that availability of funding may have liquidity 

effects on asset prices. Also, if capital returns slowly to the fixed-income funds following a period of 

flat performance, then the arbitrage in various fixed-income markets (corporate, CDS, Treasury, TIPS) 

can exhibit commonalities (Fleckenstein, Longstaff, and Lustig, 2014). Finally, the macroeconomic 

environment after the financial crisis may also have contributed to the strengthened asset co-

movements. For instance, Datta et al. (2017) provide evidence that oil and equity returns have become 

more responsive to macroeconomic news during the zero lower bound period.4 

While this and other (more direct or anecdotal) evidence on the 2014–16 episode suggests that the co-

movement of various asset prices and oil price can be attributed to market-structure factors, the next 

section attempts to raise the awareness that a part of this co-movement can be purely coincidental or 

unreliable. In particular, we explore the role of persistence of the series under considerations, 

estimation, and sampling uncertainty, as well as the potential limitations of second-moment based 

measures of co-movement to represent accurately changes in the joint distribution of interest. 

 

                                                           
4 There is also evidence that the transmission mechanism of propagating the oil shocks through the US economic system 
has changed due to the increased role of domestic oil production (Baumeister and Kilian, 2016). 
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3. Statistical Challenges for Measuring Asset Co-movements 

3.1 Persistence and Measures of Co-movement 

As illustrated above, the co-movement across asset classes is often analyzed using (commodity, for 

example) prices and yields. While commodity prices and bond yields are usually modeled as mean-

reverting processes, they are strongly persistent with a very slow mean reversion. Because the high 

persistence generates local trends, these local trends can induce spurious correlation even when the 

underlying processes are completely unrelated to each other. Furthermore, even when the processes 

are genuinely related, the serial correlation present in prices or yields can obfuscate the underlying 

relationship if the serial correlation is not properly taken into account. 

To illustrate the latter point, we examine the leverage effect (the negative relationship between stock 

prices and volatility) that occupies a prominent place in financial economics and econometrics. Figure 

3 plots the time series dynamics of the S&P 500 (SPX) and VIX indices (implied by options written 

on SPX) from January 2000 to February 2017.  

 

Figure 3. Time series dynamics of SPX and VIX indices 
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While the negative relationship is evident during several episodes of sharp stock declines, there are 

periods (the beginning of the sample as well as the 2012–16 period) when any possible co-movement 

may be masked by the trending behavior of the SPX index.  

Figure 4 below suggests that the 120-day sample correlation between the SPX and VIX (blue line) is 

highly volatile with even positive values over some sub-samples. It is tempting to conjecture that 

removing the local trends in the SPX index by transforming it to SPX log returns may stabilize and 

uncover better the leverage effect. The red line in figure 4 reveals that this transformation reduces the 

variability of the sample correlation coefficient, but it leads to a severely biased measure that 

underestimates significantly the negative co-movement between the SPX and VIX. This is due to the 

fact that the SPX returns and the VIX index are highly unbalanced in terms of their statistical 

properties, since the former is an uncorrelated (or only weakly correlated) process and the latter is a 

highly persistent and bounded variable.    

 

Figure 4. 120-day correlation between SPX and VIX 
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To render the statistical properties of both series similar, we compute the log changes of the VIX 

index. Figure 4 plots the 120-day rolling correlation5 of SPX returns and VIX changes in yellow. In 

fact, this is akin to the way the leverage effect is modeled in financial econometrics. The correlation 

now is much more stable and averages around -0.8, which is the magnitude of the leverage effect that 

is typically estimated in the empirical literature. Note that some of the variability in the rolling 

correlation coefficient can be attributed to overlapping estimation uncertainty as discussed below.  

To illustrate the point that the observed correlation may be spurious, we generate data from two 

uncorrelated, near-unit root processes (that match the persistence in bond yields and oil prices) and 

plot in figure 5 one realized sample path of the two processes. The unconditional correlation between 

the two series is 0.36 with an even stronger correlation over sub-samples that arises from “common” 

local trending behavior. Any observed commonality is completely spurious, as the two series are 

generated as independent of each other.  

 

Figure 5. Time plot of two independent highly persistent processes 

                                                           
5 In this paper, we use Spearman’s (rank) correlation instead of the standard Pearson’s correlation coefficient. This choice 
is dictated by the robustness properties of the rank correlation. Also, when appropriate, we computed the correlation 
coefficient using standardized returns using a GARCH(1,1) model for estimating the conditional variance of returns. The 
results were very similar and are not reported, unless specified otherwise.   
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This should serve as a warning sign in analyzing and justifying observed co-movements of highly 

persistent processes. It also suggests that one should avoid computing correlations in levels and 

analyze instead the transformed series after the persistence is removed. This is the approach that we 

follow in the rest of the paper. 

 

3.2 Time Variability and Estimation Uncertainty 

The last decade has witnessed a proliferation of passive investment funds. Since 2005, the share of 

S&P 500 ownership of passive mutual funds and exchange-traded funds (ETF) increased from 4.6 

percent to 11.6 percent (Wall Street Journal, October 2016) while the share of active mutual funds and 

ETFs remained flat around 17 percent. This same period has been characterized by an increased 

correlation among U.S. equities due to convergence of equity betas of individual stocks. Passive 

investing is believed to have benefited and possibly contributed to this empirical regularity, although 

this relationship is confounded by other factors that include proliferation of electronic and algorithmic 

trading, globalization, unconventional monetary policy, and reduced market liquidity arising from 

regulatory changes in the developed countries. This type of observation is typically made based on 

computing some time-varying correlation coefficient and following its dynamics over time.    

Figure 6 presents the 60-day and 120-day rolling correlations between large-cap (S&P 100) and small-

cap (S&P 600) returns from January 2000 to February 2017. The figure reveals substantial variability 

in these correlation coefficients with occasional sharp upward and downward turns (for example, the 

one that occurred in the beginning of this year) that could affect directly the inflow or outflow of 

funds and performance of passive and active investment strategies. What is less discussed, however, 

is the substantial estimation uncertainty surrounding these estimates. There are two main sources of 

this uncertainty. First, it is the length of the sample and the sampling frequency, as short samples and 

high frequency data may be preferred to ensure that the recent momentum in the series is followed 

nearly in real time. Second, rolling correlations involve overlapping observations and a large estimation 

error can be accumulated and amplified and, combined with the short sample size, can persist.6 

                                                           
6 Rolling estimators can also be interpreted as nonparametric estimators (Ang and Kristensen, 2012; Adrian et al., 2015) 
with a slow rate of convergence and larger variability.  
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Figure 6. Rolling correlations of S&P 100 and S&P 600 (small cap) returns 

 

It is instructive to investigate further how much of the time variation of the rolling correlation 

coefficient can be attributed to estimation and sampling uncertainty. For this purpose, we generate 

artificial data that is calibrated to the actual data by matching the sample size, estimated means, 

unconditional covariance, and conditional variances of the S&P 100 and S&P 600 returns. The 

standardized returns are drawn from a bivariate t-distribution with varying tail thickness (a degree of 

freedom parameter that is drawn from a uniform distribution on the interval [4, 13]) but a constant 

correlation parameter. Figure 7 plots the 60-day and 120-day rolling correlations for the simulated 

data. Interestingly, these correlations exhibit similar time variation as the correlations in figure 6 even 

though the true correlation is constant. Part of this variation is due to changes in the tails of the 

distribution, arising from the time-specific degrees of freedom parameter of the t-distribution, but 

most of the variation is a result of overlapping estimation uncertainty. While this is only suggestive, it 

warns against overreliance (without properly taking into account the estimation uncertainty) on rolling 

estimation that is routinely used for portfolio allocation, evaluation of asset-pricing models, and factor 

investing (for a recent example, see Asness et al., 2017). 
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Figure 7. Rolling correlations for simulated returns data 

 

DeMiguel et al. (2009) have demonstrated that the estimation imprecision may adversely affect asset 

allocation decisions. We mimic their argument by computing out-of-sample Sharpe ratios from an 

optimal mean-variance portfolio with estimated weights7 and the naïve portfolio with equal (1/N, 

where N is the number of assets) weights. The asset returns, which are also used later in this paper, 

are for four major U.S. asset classes—– S&P 500 index (SPX) returns, Bloomberg Barclays Treasury 

total returns, Goldman Sachs commodity index (GSCI) returns, and USD index (DXY) returns—as 

well as five international equity indices (converted in USD)—S&P 500 (SPX), FTSE 100 (UKX), 

Nikkei 225 (NKY), DAX, and MSCI emergent markets (MXEF) index. The data are daily from 

January 2000 to February 2017. We use a rolling window sample of 500 daily observations for 

estimation of the weights for the mean-variance problem. These estimated weights, as well as the fixed 

                                                           
7 The recent literature has suggested various ways to sharpen the estimation of the portfolio weights under the mean-

variance risk measure. Another way is to replace the expectation bounded risk (such as the mean-variance risk measure) with 
a more robust, which takes explicitly into account the tails of the distribution, coherent risk measure such as the conditional 
value-at-risk (Assa and Gospodinov, 2014). Coherent risk measures are tightly linked to the Choquet expected utility, 
which can distort the probability of different events by assigning, for example, larger weights to less favorable events and 
smaller weights to more favorable ones (see Bassett et al., 2004). 
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1/N weights, are then interacted with the next-day return and these out-of-sample returns are used to 

compute the corresponding Sharpe ratio. The Sharpe ratios for the U.S. across-asset portfolio are 

0.205 for the equal-weight and 0.160 for the mean-variance portfolio, with the difference being 

statistically significant at the 5 percent significance level (p-value of 0.028). For the international 

portfolio, the Sharpe ratios are 0.274 for the U.S. across-asset portfolio and 0.261 for the international 

portfolio, with the difference between the Sharpe ratios being statistically insignificant. This is in line 

with the results in DeMiguel et al. (2009) showing the effects of estimation error on optimal portfolio 

allocation.8 

Summarizing the time variation of the correlation structure of more than two asset returns, which is 

the case for the two portfolios considered above, is not as trivial as the bivariate correlation coefficient. 

To do this, we construct a distance that measures similarities between two correlation matrices over 

different time periods. Let P  denote the correlation matrix of asset returns for the period t  to Pt 

, and R  denote the correlation matrix of asset returns for the period Pt   to RPt  . Then, we 

compute the correlation matrix distance (Herdin et al., 2005) as 

 
 

 

where )(tr  is the trace operator and   denotes the Frobenius norm. This distance metric takes values 

between zero (when the two correlation matrices are equal) and one. In what follows, we set 240P  

and 120R .  

The left panel of figure 8 plots the time variability of the correlation matrix for the four U.S. asset 

returns. While there was a change in the correlation matrix during the 2007–09 recession, the largest 

jump occurred in 2013. For the sake of comparison, the right panel of figure 8 presents the correlation 

matrix distance computed from 2-, 5-, 10- and 30-year bond yield changes (intentionally plotted on 

the same scale as the right graph). Due to the tight restrictions imposed by the term structure of 

interest rates, the bond correlation matrix exhibits very little time variation.   

                                                           
8 It may be useful to remind the readers that any asset return can be decomposed (by identity) as the product of its sign 
and its absolute value (Anatolyev and Gospodinov, 2010, 2015). If the commonality is primarily in the sign (directional) 
changes across assets but not in the volatility, then this could be another reason why the fixed-weight portfolio may 
dominate the mean-variance optimization. 
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Figure 8. Time-varying changes in the correlation matrix distance measure of U.S. asset classes (left) 
and bond returns (right) 

 

In summary, one should exercise caution when the analysis is based on rolling correlations with a 

relatively short sample window, as seemingly pronounced time variability can be due to estimation 

and data noise.  

 

3.3 Robustness and Sensitivity to Time-Variability in Higher Moments 

It is well known that the unconditional marginal and joint distributions of financial asset returns have 

pronounced non-Gaussian features. As we argued in the previous section, part of the observed time 

variability in the second-moment statistics (covariance, correlation) can be attributed to movements 

in the higher moments of the distribution if the latter are ignored and not adequately modeled. Later 

in this section, we discuss a more holistic (information-theoretic) approach to studying dependence 

across assets that incorporates information in the whole distribution. 

Before we do this, we adopt a simpler, more descriptive method for characterizing the dependence in 

different parts of the distribution. It has been documented (Ang and Chen, 2002; Longin and Solnik, 

2001; Karolyi and Stulz, 1996; among others) that the correlations increase, often dramatically, during 

extreme downward market movements. These increased correlations diminish the benefits of 



17 
 

portfolio diversification and hedging, especially in situations when they are needed the most.9 More 

generally, we would like to compute robust dependence measures along the quantiles of the 

distribution, including the tails. Let txr ,  and tyr ,  ( Tt ,...,1 ) denote the ranks of the pair of 

(standardized) asset returns x  and y . Using this notation, Spearman’s rank correlation is defined as 

),( ,, tytx rrCorr . The sample quantile dependence at quantile   is constructed as (Patton, 2013) 
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where I  is the indicator function. This definition can be easily modified to quantile or exceedance 

correlations based on the Spearman’s rank correlation. 

Figure 9 plots the quantile dependence between four international stock returns (FTSE, NKY, DAX 

and MSCI emerging markets) and the S&P 500. The computation is based on standardized daily 

returns for the period January 2000–February 2017. For these stock returns, there is no pronounced 

dependence asymmetry in the tails of the distribution. The dependence is largest in the middle of the 

distribution and drops off in the tails. If the interest lies in a particular quantile of the distribution, the 

quantile dependence can be computed over a rolling window and supplement the information for the 

time-varying pair-wise correlation coefficients. The quantile (exceedance) correlation is characterized 

by similar level and pattern. 

 

                                                           
9 For some drawbacks and biases in evaluating and testing the change in the correlation during market turmoil, which is 
accompanied with elevated asset volatility, see Boyer et al. (1999), Campbell et al. (2008), and Forbes and Rigobon (2002). 
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Figure 9. Quantile dependence between international stock returns (FTSE, NKY, DAX and MSCI 
emerging markets (MFEX)) and the S&P500 for the period January 2000 – February 2017 

 

Computing general dependence measures, instead of correlation coefficients, could help us to gain 

some understanding of the level of dependence and the stability of the relationship between the 

different asset classes. This has implications for the approach to asset allocation and evaluation of 

systemic risk. In what follows, we focus on pair-wise or bivariate dependence and co-movement. One 

approach to studying the dependence between two random variables x  and y  is to resort to Sklar’s 

theorem, which states that there exists a unique copula C  with dependence parameter   such that 

the joint distribution ),( yxF  of the two variables can be expressed as 

),),(),((),( yHxGCyxF   

 where )(xG  and )(yH  are continuous marginal distributions. When )),(),(( 11

2 yxC 

  , 

where   and 2  denote the marginal and bivariate Gaussian cumulative distribution functions, then 

  becomes the standard correlation coefficient. Other choices of a copula function are also possible.  

A more general approach to modeling dependence is based on the generalized contrast or maximum 
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entropy principle. Let P  and Q  be two probability measures; for example, two probability measures 

associated with two asset returns or the physical and risk-neutral probability measures. One way to 

measure the divergence between the two measures (Csiszár, 1972) is to solve the following 

optimization problem 

,),( dQ
dQ

dP
QPD 
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
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where ),0[: R  is a convex, continuously differentiable function such that  0)1()1(  . 

The measure D  is nonnegative and 0),( QPD  if and only if the two measures coincide, QP  . 

The function   is often assumed to belong to the Cressie-Read (1984) divergence family 
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One celebrated member of this divergence family is the Kullback-Leibler divergence, which is 

obtained by setting 0  and takes the form 

.0for  1)ln()(  aaaaa  

 

To illustrate the usefulness of this approach, suppose that 
e

iR  denotes the excess return on the risky 

asset i  ( Ni ,...,1 ), P  signifies the data-generating measure, and Q  is the risk-neutral measure. The 

risk-neutral measure Q  with minimal entropy relative to the physical measure P  can be obtained as 

the solution to the problem (Stutzer, 1995) 
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The solution Q  gives rise to the following density 
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One interesting observation is that )][exp(ln 1
e

ii

N
i Rw E  is the cumulant-generating function of 

e

ii

N
i Rw 1 , which characterizes all the information in the distribution of the excess returns. When 

excess returns are assumed to be multivariate normal, all cumulants beyond the first two cumulants 

are zero and the above optimization problem collapses to the usual mean-variance portfolio problem 

wRCovwwRw ee

www N

][5.0][argmin
),...,( 1
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

 E , 

which admits the closed-form solution ][][ 1 ee RRCovw E  . Substituting for w , the relative 

entropy bound collapses to the scaled Hansen-Jagannathan (1991) bound ][][][5.0 1 eee RRCovR EE   

which in the case of one asset becomes the squared Sharpe ratio of this asset return. Some numerical 

calculations suggest that a large part of the entropy is accounted for by the higher-than-second 

cumulants that arise from the non-Gaussianity of the excess return data. Thus, ignoring these higher 

moments in measuring entropy and dependence will result in a significant misspecification and 

spurious dynamics in the first two moments. Once higher moments and more general loss/risk 

functions are allowed for, most “anomalies” and “puzzles” tend to diminish in terms of magnitude 

and economic significance.  

A more convenient measure of general dependence between two asset returns is based on the 

Hellinger distance measure obtained (up to a scale) from the Cressie-Read family of divergence 

measures above by setting 2/1 .10 Let ),( yxf  be the joint density and )()( yhxg   be the 

product of the marginal densities of the asset returns x  and y . In this case, the Hellinger dependence 

measure is given by 

  .)()(),(
2

1 2

dxdyyhxgyxfDh    

If x  and y  are independent, )()(),( yhxgyxf   and 0hD ; otherwise 0hD . Conveniently, 

when  x  and y   are bivariate normally distributed, 0hD  if  0   and 1hD  if  1||  , where  

  again denotes the correlation coefficient. Finally, the Hellinger distance is directly related to the 

copula (Granger, Maasoumi, and Racine, 2004) 

,)],(1[ 2/1 dudvvucDh    

                                                           
10 Unlike the other measures in the Cressie-Read divergence family, the Hellinger distance is a proper measure of 
distance since it is positive and symmetric, and it satisfies the triangular inequality. 
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where vuvuCvuc  /),(),( 22/1  and )(C  is the copula function introduced above.  

This dependency measure can be easily accommodated to account for time variation and asymmetric 

dependence (Jiang, Wu, and Zhou, 2016). While we do not provide empirical results based on the 

Hellinger measure in this paper, we recommend that the statistics discussed in this section be used to 

augment the standard procedures based on second-moment information. We refer the interested 

reader to Gospodinov and Maasoumi (2017) for an application of this general approach to aggregating 

information from potentially misspecified asset-pricing models.  

 

4. Risk Factor Extraction 

It is widely believed that financial asset returns contain a small low-frequency, persistent component; 

see, for example, Bansal and Yaron (2004) for the role of long-run risks in explaining the equity 

premium puzzle. Despite its theoretical appeal, the empirical evidence on the existence of such long-

run components is rather weak, as the observed asset returns do not appear to exhibit any persistence. 

The potential explanation for this tension between theory and empirics is that the underlying slow-

moving component is overwhelmed by higher frequency noise and volatility, and quantifying its 

impact and empirical detection prove challenging using only time series data on intrinsically more 

volatile asset returns. However, provided that this trend component is common across assets, one 

could use a cross-section of asset returns and estimate their common variation by the method of 

principal components. Thus, cross-sectional information can be useful to extract more precise signals 

about common variation and factors. 

Unlike the correlation and dependence measures discussed in Section 3 that apply largely to pair-wise 

relationships and can exhibit some idiosyncrasies, principal components and factor analysis are a 

convenient tool to summarize the co-movements in a large cross-section of asset returns. Another 

advantage of this approach is that the precision of the estimation increases with the dimension of the 

asset returns included in the analysis. Below, we attempt to isolate common low-frequency movements 

in asset returns and relate them to some macroeconomic and demographic factors. 

 

4.1 Business Cycle Co-movements 

Here, we follow Bai and Ng (2004) by estimating the common factor from returns and then integrate 
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the process to obtain the common stochastic trend component.11 This method guards against the 

possibility of spurious trends and is particularly effective when the number of assets is large. An 

alternative approach is to model the common variation in asset prices through cointegrating vectors. 

Given the differences in the persistence of the individual series in levels and the lack of robustness of 

the co-integration approach to deviations from the exact unit root for each process (Elliott, 1998), we 

have adopted the principal component estimation of Bai and Ng (2004). 

We first analyze the factor structure in the four U.S. asset classes considered in Section 3: S&P 500 

index (SPX), Bloomberg Barclays Treasury total return index, Goldman Sachs commodity index 

(GSCI), and USD index (DXY). All series are daily returns for the period January 2000–February 

2017. The common factor is estimated from these returns by the method of principal components, 

and figure 10 plots the integrated and linearly detrended process.  

 

Figure 10. Left: Common variation across asset classes with shaded areas representing NBER-dated 
recessions. Right: R2 from projecting individual asset returns on the common factor 

 

The estimated factor exhibits sharp decreases during recessions, with the drop during the 2007–09 

recession being particularly pronounced. The factor also appears to exhibit some higher-frequency 

cycles, but they are more difficult to identify. The right panel in figure 10 reports the R2 from projecting 

the individual asset returns on the common factor. The largest loading on the factor is for the S&P 

500 index, although bonds and commodity prices also contribute significantly to the common factor 

variation.  

                                                           
11 The integrated process is linearly detrended and demeaned. 
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It would be interesting to see if this common variation is specific to the United States or if it reflects 

some global factor as well. For this purpose, we compute the common factor from international stock 

returns on S&P 500, FTSE in UK, Nikkei in Japan (NKY), DAX in Germany, and MSCI emerging 

markets index (MXEF) in both USD and local currency. Figure 11 plots the common factors.  

Interestingly, these returns share very similar dynamics with the U.S. common factor. Moreover, the 

largest contributors to these dynamics are FTSE, DAX, and MXEF and not S&P 500. Consistent with 

figure 9, Nikkei appears to have a large idiosyncratic component. Also in line with figure 10 where 

DXY exhibits little correlation with the common factor, the common variation in USD and local 

currency is fairly similar. The results in figures 9 and 11 suggest a substantial integration of the 

international equity markets in the post-2000 period that is accompanied with a decline in the benefits 

from global diversification (see also Cotter et al., 2016).12     

  

Figure 11. Left: Common variation in international stock returns with shaded areas representing 
NBER-dated recessions. Right: R2 from projecting individual stock returns on the common factor 

 

Despite the fairly short time span of the data, it would be instructive to relate more convincingly this 

common variation with some underlying macroeconomic signal or risk factor. To provide some 

suggestive evidence, figure 12 presents the Atlanta Fed/New York Fed turning point indicator of the 

labor market,13 along with the Chicago Fed national activity index (CFNAI). The labor market 

indicator is computed from vintage data and is available “almost” in real time. It is particularly useful 

                                                           
12 Pukthuanthong and Roll (2009) provide an insightful analysis on the flaws of correlation as a measure of global market 
integration. Instead, they recommend the use of global factor exposure for gauging financial market integration. 

13 This is based on ongoing joint work with Richard Crump and Ayşegül Şahin from the Federal Reserve Bank of New 
York. 
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for monitoring since it is a one-sided filter with no distortionary effects on the cyclical dynamics. The 

CFNAI series is relatively noisy and is constructed with data that are released with a delay. While the 

smoothing in the Atlanta Fed/New York Fed indicator induces a phase shift in the series, it provides 

a much improved estimate of the turning points and the local trends in the underlying signal.  

 

Figure 12. Chicago Fed national activity index (CFNAI) and AtlFed/NYFed labor market indicator. 
Shaded areas are NBER-dated recessions 

 

There are a couple of observations that warrant some remarks. First, the smoothed labor market 

indicator identifies the turning points of the business cycle in advance, dating the recessions and the 

expansions, which would be of great value to policymakers. The noisy monthly reports in the data-

dependent policy or the volatile asset dynamics in asset allocation can be supplemented and validated 

with this lower-frequency, local-trend information. Moreover, it is striking how closely the smoothed 

labor indicator underlies the dynamics of the common variation in asset returns, suggesting the 

presence of a strong business cycle component in both domestic and global financial asset prices. 

Pinning down these business cycle components in asset prices has some important implications for 

medium-term investment and policy decisions. For example, this information can be used in preparing 
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supervisory scenarios for annual stress tests by the Federal Reserve. More specifically, a factor-

augmented vector autoregressive model, with an asset-pricing factor estimated as above, can be used 

to generate conditional forecast paths (see Waggoner and Zha, 1999), under various scenarios, for the 

variables of interest. Incorporating this asset-pricing factor, using both domestic and international 

data, should further improve the fit of the model and the accuracy of the conditional forecasts.  

 

4.2 Long Cycles: Low Frequency Information in Demographic Variables 

In this section, we investigate if there is any other common variation in asset prices—and stock prices 

in particular—at even lower frequency than that of the business cycle. Recent literature has established 

the usefulness of low-frequency demographic variables for long-horizon stock market returns. This is 

because savings rates, and possibly risk preferences, vary substantially over the life cycle, with savings 

rates peaking in middle age and then being drawn down in old age. These savings directly impact the 

pool of funds available for investment in the stock market. In fact, they may explain and predict some 

of the very persistent, low-frequency movements in stock market valuation ratios, such as the dividend 

or earnings price ratios. 

To try to address this issue, we use annual data for the period 1946–2015 for the S&P 500 returns, 

returns on long-term and intermediate-term U.S. government bonds, changes in S&P 500 price-

dividend ratio, changes in S&P 500 dividend yield, and changes in S&P 500 earnings-price ratio.14 The 

data for the government bond returns are from Ibbotson Associates and the stock price data are from 

Robert Shiller’s and Amit Goyal’s websites. 

We also collect annual demographic data from the Census Bureau and construct the variable middle-

young (MY) ratio as the ratio of middle-aged (40–49) and young (20–29) cohorts. In addition to the 

historical data, the Census Bureau provides projections until 2060. Figure 13 plots the smoothed 

common factor estimated from the asset returns, as described in the previous section, along with the 

middle-young ratio.  

                                                           
14 More specifically, dividends and earnings are 12-month moving sums. The dividend-price and earnings-price ratios are 

constructed as the difference between the log of dividends (earnings) and log of prices. The dividend yield is the difference 
between the log of dividends and log of lagged prices. Due to the near-unit root behavior of these series, we work with 
their first differences. 
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Figure 13. Common factor in asset returns and middle-young ratio 

 

During the 1946–2015 period, the long-cycle factor in asset returns seems to co-move closely with the 

demographic trend, with a common trough in the early 1980s and a common peak in the early 2000s. 

This is consistent with other results in the literature on the relationship of the demographic variables 

with stock valuation ratios (Favero et al., 2011) and interest rates (Favero et al., 2016).  

A unique feature of the demographic variables is that their low frequency trends can be projected with 

reasonable accuracy decades into the future. The projections of the MY ratio by the Census Bureau 

until 2040 (represented on the graph with a dashed line) thus facilitate the forecasting of both the 

market valuations and the small low-frequency component of market returns. The MY ratio is 

projected to fall until 2020, which implies a downward pressure on the stock valuation ratios and 

interest rates due to demographic factors. After 2020, the MY ratio starts to increase again until 2040, 

when it reaches a new peak. It is expected that during this period, the downward pressure on valuation 

ratios and interest rates from demographics is diminished and even reversed. 
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It is instructive to discuss further the implications of the demographic-trend projections on long-

horizon forecasting for stock returns and valuation ratios.15 The literature has explored many 

predictors for asset returns, with varying and often debated success (for a comprehensive review, see 

Goyal and Welch, 2008). However, the future trajectory of most predictors is itself highly uncertain, 

making them less useful for longer-term forecasts. Also, the innovations from the predictive regression 

for stock returns and the dynamic model for the predictor are often strongly correlated. For example, 

when the lagged dividend-price (dp) ratio is used as a predictor, this correlation is -0.95 implying that 

a fall (rise) in the dp ratio is associated with positive (negative) returns. But this strong 

contemporaneous relationship between stock returns and dp cannot be exploited for prediction 

without knowledge of the future values of dp. 

Demographic variables allow us to address both of these shortcomings. With the Census Bureau 

projections for the MY ratio, we can construct recursive forecasts for dp that could be included in the 

predictive regression for future stock returns. Some tentative findings from this exercise can be 

summarized as follows. The model suggests that near-term returns are expected to be low by historical 

standards until 2020 due to the projected fall of the MY ratio. After 2020, the MY ratio rises again, 

with more middle-aged savers putting upward pressure on stock prices. Thus, after 2020, the long-

term stock returns are projected to increase again but settle at a level that is lower than the historical 

average over the last 70 years.  

While these projections reflect pure demographic information16 and are only suggestive about the 

future long-term path of U.S. stock returns, they conform to a broader set of arguments put forward 

in the literature. A consensus is now emerging that the changing demographic structure in the 

developed economies has contributed to the recent decline in the equilibrium real interest rates 

(Gagnon et al., 2016). Historically, periods of low real interest rates17 are associated with lower asset 

returns in the next five years (Dimson et al., 2013). These lower expected returns then pose a direct 

risk to institutional investors with long-term commitments. 

 

                                                           
15 This is based on ongoing work with Alex Maynard (University of Guelph) and Elena Pesavento (Emory University). 
16 We acknowledge that the middle-young ratio could be just a convenient proxy for other slowly moving socioeconomic 
and political factors such as safety-net development and political polarization. Also, the demographic projections are based 
on assumptions about future immigration dynamics, which are influenced by policy decisions.  

17 It should be noted that most of the previous episodes of low real interest rates were due to above-average inflation 
instead of low nominal interest rates, as in the years after the 2007–09 recession. 
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5. Concluding Remarks 

This paper discussed and summarized some issues arising in the analysis of asset co-movements for 

the purposes of asset allocation and portfolio diversification, as well as macroeconomic and macro-

prudential policy. One of the main findings that emerges from this review is that a judiciously 

performed factor analysis appears to identify a common variation across domestic and international 

asset classes at business and longer cycles. While the reported evidence is only tentative, a more 

comprehensive empirical analysis with a larger cross-section of U.S. and international asset returns 

would shed further light on the important sources of risks across asset classes, the integration of the 

global markets, and their implications for diversification, re-allocation and policy analysis. Attaching a 

risk factor interpretation to short- and medium-term co-movements appears to be more difficult due 

to some statistical challenges in analyzing the data. Explicitly acknowledging the estimation and model 

uncertainty as well as shifting the focus to more general measures of dependence would robustify the 

decision-making process and reduce the risk of false positives/negatives in signal extraction and 

performance evaluation.  

One interesting topic that was omitted from the discussion is the increased importance of factor 

(“smart beta”) investing. Studying more formally the dependence structure of these investment factors 

and evaluating their performance using rigorous statistical criteria is an area of ongoing research. While 

most of this research has focused on equities, constructing factors across divergent asset classes 

enhances the ability of capturing multiple sources of systematic risk that are difficult to identify and 

estimate statistically. Thus, a sufficient heterogeneity of spread factors across asset classes could 

potentially span the underlying factor space (Roll, 2013) and contribute beneficially to risk 

diversification and financial system stability. 
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