Al in the Enterprise

John P. Cunningham, Ph.D.
Associate Professor, Columbia University
Department of Statistics and Data Science Institute

07 May 2018

Topics

Context

Al as a technology and ecosystem

Al as a driver of enterprise value

Summary

Outline

Context

Al as a technology and ecosystem

Al as a driver of enterprise value

Summary

Context

In academia

- ▶ Professor at Columbia, Fellow at Cambridge, in statistics/machine learning
- ▶ PhD at Stanford, BS Dartmouth, in EE and CS
- ► Research: AI/ML algorithms, applications to biosciences/industry

Context

In academia

- ▶ Professor at Columbia, Fellow at Cambridge, in statistics/machine learning
- PhD at Stanford, BS Dartmouth, in EE and CS
- ► Research: AI/ML algorithms, applications to biosciences/industry

In industry

- Board/advisor to AI companies and traditional businesses deploying AI
- Advisor to VC/PE on AI deals, market, tech
- ► Formerly worked at Morgan Stanley, Cisco Systems

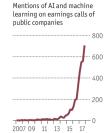
Context

In academia

- Professor at Columbia, Fellow at Cambridge, in statistics/machine learning
- PhD at Stanford, BS Dartmouth, in EE and CS
- Research: AI/ML algorithms, applications to biosciences/industry

In industry

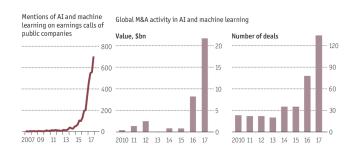
- ▶ Board/advisor to AI companies and traditional businesses deploying AI
- Advisor to VC/PE on AI deals, market, tech
- ► Formerly worked at Morgan Stanley, Cisco Systems


Orientation

- ► Al as a shovel-ready, targeted technology vs. Al futurism
- Particularly interested in AI impact on enterprise value and cost structures
- Disclaimer: financial interest in some companies mentioned herein

Al hype and value

► Much attention...


► Much hype...

Al hype and value

▶ Much attention...

► Much hype...

Al hype and value

Much attention...

Much hype...

Potential economic-value creation from AI in the next 20 years

► Even the most conservative views claim \$100bn's-trn's impact in the coming decade.

Al offers fundamental value reminiscent of last tech cycle... and with correspondingly ambitious forecasts:

Al offers fundamental value reminiscent of last tech cycle... and with correspondingly ambitious forecasts:

- ▶ labor productivity $\uparrow 1\%$
- ▶ +2.3mm jobs, -1.8mm
- ► +\$1-3Trn enterprise value
- ▶ +\$10's Bn rev per sector
- ► -\$10's Bn costs per sector

ML/Al impact			
	Low	Base	High
Labor hours reduction (mn)	(1,571)	(2,969)	(4,714)
Reduction	-0.5%	-1%	-1.5%
2025 Labor hours (mn)	312,693	311,295	309,550
2025 GDP (\$bn)	25,034	25,034	25,034
Labor productivity	80.1	80.4	80.9
yoy growth (%)	1.8%	2.2%	2.8%
Improvement (bps)	51	97	154

retail, finance, healthcare, energy, agriculture, resources,...

 $[\mathsf{Gartner},\ \mathsf{McKinsey},\ \mathsf{Goldman}\ \mathsf{Sachs}]$

Al offers fundamental value reminiscent of last tech cycle... and with correspondingly ambitious forecasts:

- ▶ labor productivity $\uparrow 1\%$
- ► +2.3mm jobs, -1.8mm
- ► +\$1-3Trn enterprise value
- ▶ +\$10's Bn rev per sector
- ▶ -\$10's Bn costs per sector

80.1 1.8%	80.4 2.2%	80.9 2.8%
80.1	80.4	80.9
80.1	80.4	80.9
25,034	25,034	25,03
312,693	311,295	309,55
-0.5%	-1%	-1.5%
(1,571)	(2,969)	(4,714
Low	Base	High
	(1,571) -0.5% 312,693	(1,571) (2,969) -0.5% -1% 312,693 311,295

retail, finance, healthcare, energy, agriculture, resources,...

[Gartner, McKinsey, Goldman Sachs]

Of course serious costs and regulatory issues go hand in hand:

- monopolization
- workforce displacement
- privacy

Al offers fundamental value reminiscent of last tech cycle... and with correspondingly ambitious forecasts:

- ▶ labor productivity $\uparrow 1\%$
- ► +2.3mm jobs, -1.8mm
- ► +\$1-3Trn enterprise value
- ► +\$10's Bn rev per sector
- ► −\$10's Bn costs per sector

	Low	Base	High
Labor hours reduction (mn)	(1,571)	(2,969)	(4,714
Reduction	-0.5%	-1%	-1.5%
2025 Labor hours (mn)	312,693	311,295	309,55
2025 GDP (\$bn)	25,034	25,034	25,03
Labor productivity	80.1	80.4	80.9
yoy growth (%)	1.8%	2.2%	2.8%
Improvement (bps)	51	97	154

retail, finance, healthcare, energy, agriculture, resources,...

[Gartner, McKinsey, Goldman Sachs]

Of course serious costs and regulatory issues go hand in hand:

- monopolization
- workforce displacement
- privacy

Goal: understand AI ecosystem and how enterprises can capture this upcycle

Outline

Context

Al as a technology and ecosystem

Al as a driver of enterprise value

Summary

► Technical resource consolidated among FAANG + BAT "AI majors"

► Technical resource consolidated among FAANG + BAT "AI majors"

- ▶ Al startup landscape is robust, but most successes are acquihire exits
 - "Acquihires go for \$5-10MM per AI PhD" → priced out for most sectors

► Technical resource consolidated among FAANG + BAT "AI majors"

- ▶ Al startup landscape is robust, but most successes are acquihire exits
 - "Acquihires go for \$5-10MM per AI PhD" \rightarrow priced out for most sectors
- Notable misses leave unclear differentiation for IT services/consultancies

IBM pitched its Watson supercomputer as a revolution in cancer care. It's nowhere close

MD Anderson Benches IBM Watson In Setback For Artificial Intelligence In Medicine

GE TOOK TWO-MONTH "TIME OUT" THIS YEAR TO FIX PROBLEMS WITH ITS PREDIX SOFTWARE

► Technical resource consolidated among FAANG + BAT "AI majors"

- ▶ Al startup landscape is robust, but most successes are acquihire exits
 - "Acquihires go for \$5-10MM per AI PhD" → priced out for most sectors
- ▶ Notable misses leave unclear differentiation for IT services/consultancies

IBM pitched its Watson supercomputer as a revolution in cancer care. It's nowhere close

MD Anderson Benches IBM Watson In Setback For Artificial Intelligence In Medicine

GE TOOK TWO-MONTH "TIME OUT" THIS YEAR TO FIX PROBLEMS WITH ITS PREDIX SOFTWARE

Open source has commoditized/democratized the technical stack

► Technical resource consolidated among FAANG + BAT "AI majors"

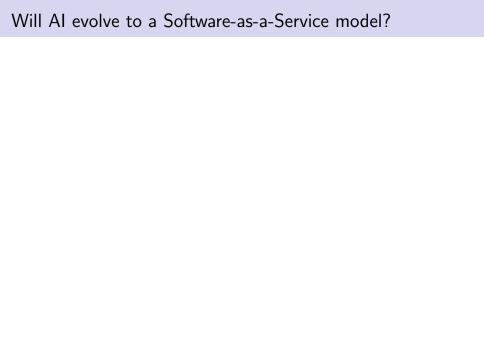
- ▶ Al startup landscape is robust, but most successes are acquihire exits
 - "Acquihires go for \$5-10MM per AI PhD" \rightarrow priced out for most sectors
- ▶ Notable misses leave unclear differentiation for IT services/consultancies

IBM pitched its Watson supercomputer as a revolution in cancer care. It's nowhere close

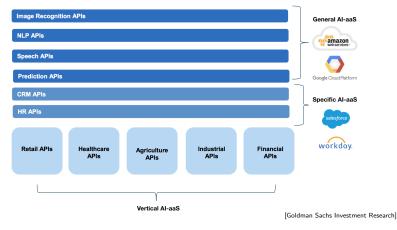
MD Anderson Benches IBM Watson In Setback For Artificial Intelligence In Medicine

GE TOOK TWO-MONTH "TIME OUT" THIS YEAR TO FIX PROBLEMS WITH ITS PREDIX SOFTWARE

Open source has commoditized/democratized the technical stack

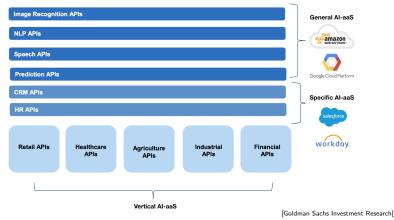


▶ Result: a very different technology ecosystem vs 20 years ago



Will Al evolve to a Software-as-a-Service model?

► Current state of market: broad Platform-as-a-Service, not AlaaS

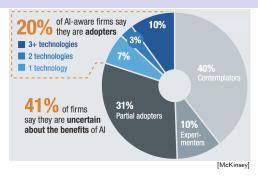

Will Al evolve to a Software-as-a-Service model?

Current state of market: broad Platform-as-a-Service, not AlaaS

Will AI evolve to a Software-as-a-Service model?

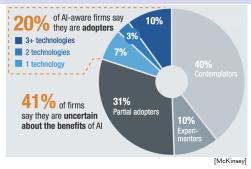
Current state of market: broad Platform-as-a-Service, not AlaaS

- Vertical AlaaS:
 - Unclear if/when API value will outgrow strategic value of proprietary data
 - ▶ Possible exception: data platforms in finance, energy, etc.


Bloomberg

Result: lumpy AI ecosystem

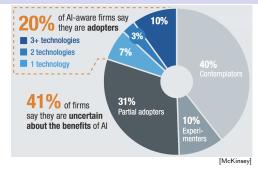
Ecosystem (and hype) \rightarrow


- Al adoption is low
- path to AI is confused
- opportunity still huge

Result: lumpy AI ecosystem

Ecosystem (and hype) \rightarrow

- Al adoption is low
- path to AI is confused
- opportunity still huge


Path forward solvable for teams willing to consider new models:

- Scope value-centric opportunity
 - ▶ leverage proprietary data → primary defensible advantage
 - targeted scientific and technical advisory/implementation
 - senior ownership/evangelism

Result: lumpy AI ecosystem

Ecosystem (and hype) \rightarrow

- ► Al adoption is low
- path to AI is confused
- opportunity still huge

Path forward solvable for teams willing to consider new models:

- Scope value-centric opportunity
 - ▶ leverage proprietary data → primary defensible advantage
 - targeted scientific and technical advisory/implementation
 - senior ownership/evangelism
- Upskill and bootstrap software engineering resources
 - commoditized technical stack lowers point of entry for capable dev teams
 - buy/build once problem is well scoped and economics are understood

Outline

Context

Al as a technology and ecosystem

Al as a driver of enterprise value

Summary

How AI adds value to busineses

Strategic intelligence

adtech/personalization, trading/decision making,...

Capital efficiencies

customer/retail interactions, logistics, diagnostics...

How AI adds value to busineses

Strategic intelligence

adtech/personalization, trading/decision making,...

Capital efficiencies

customer/retail interactions, logistics, diagnostics...

Risk mitigation

insurance, credit, fraud, cyberthreat,...

Optimization of value-centric processes

core machinery, skill enhancement, precision control,...

How AI adds value to busineses

Strategic intelligence

adtech/personalization, trading/decision making,...

Capital efficiencies

customer/retail interactions, logistics, diagnostics...

Risk mitigation

insurance, credit, fraud, cyberthreat,...

Optimization of value-centric processes

core machinery, skill enhancement, precision control,...

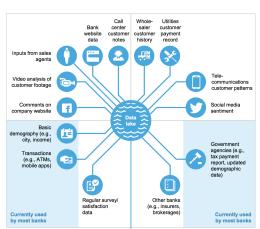
Key themes:

- ► Core opportunity is in **proprietary data that is core to enterprise value**
- ► Al requires rationalizing a business problem as a quantitative objective

Data upvalues customers or improves core value-based decisions

▶ Retail, adtech have led

Data upvalues customers or improves core value-based decisions


- ▶ Retail, adtech have led
- ► Healthcare forecasts: \$2-10Trn Al impact

Data upvalues customers or improves core value-based decisions

- ► Retail, adtech have led
- ► Healthcare forecasts: \$2-10Trn Al impact
- (fundamental to quant finance for decades)

Data upvalues customers or improves core value-based decisions

- ▶ Retail, adtech have led
- ► Healthcare forecasts: \$2-10Trn Al impact
- (fundamental to quant finance for decades)
- Retail/commercial fintech coming...

[McKinsey Global Institute]

Capital efficiencies

Classic role of technology in administrative and low-skill work replacement

Automation: factories, trucking,...

Capital efficiencies

Classic role of technology in administrative and low-skill work replacement

- Automation: factories, trucking,...
- ► Back office administration

Capital efficiencies

Classic role of technology in administrative and low-skill work replacement

- Automation: factories, trucking,...
- ▶ Back office administration
- Mitigate rising costs of compliance and regulation?

Capital efficiencies

Classic role of technology in administrative and low-skill work replacement

- Automation: factories, trucking,...
- ▶ Back office administration
- Mitigate rising costs of compliance and regulation?
- Healthcare example: low-skill data processing functions highly vulnerable

Health Information Technicians (HIT)	<u> </u>
US Median annual pay	\$51,636
Number of jobs in US	218,776
US Annual cost (\$mn)	\$11,297
US healthcare spend (\$mn)	\$2,998,469
Global healthcare spend (\$mn)	\$7,536,116
US share	40%
Global HIT cost (\$mn)	\$28,392

[Goldman Sachs Investment Research]

Capital efficiencies

Classic role of technology in administrative and low-skill work replacement

- Automation: factories, trucking,...
- ▶ Back office administration
- Mitigate rising costs of compliance and regulation?
- Healthcare example: low-skill data processing functions highly vulnerable

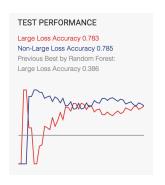
US Median annual pay	\$51,636
Number of jobs in US	218,776
US Annual cost (\$mn)	\$11,297
US healthcare spend (\$mn)	\$2,998,469
Global healthcare spend (\$mn)	\$7,536,116
US share	409
Global HIT cost (\$mn)	\$28,39

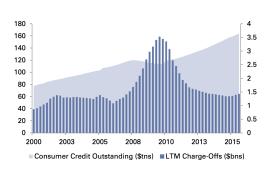
[Goldman Sachs Investment Research]

History \rightarrow new functions will replace, others will remain protected

▶ Those interested might read Frey and Osborne (2017), The future of employment: how susceptible are jobs to computerisation?

Risk mitigation


AI/ML offer as much to understanding variability as to mean performance


▶ Large-loss insurance estimates across automotive, health,...

Risk mitigation

AI/ML offer as much to understanding variability as to mean performance

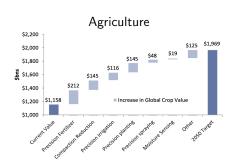
- ▶ Large-loss insurance estimates across automotive, health,...
- ► Example: consumer credit charge-offs around \$60Bn annually; estimates for reductions up to 10-25% in coming 5-10 years.

Understand core-value processes as rational functions to be optimized

Understand core-value processes as rational functions to be optimized

▶ Complex, interacting systems are the norm across many sectors

Understand core-value processes as rational functions to be optimized


- ▶ Complex, interacting systems are the norm across many sectors
- ▶ Not big data: parameter spaces are large, data days are small

Understand core-value processes as rational functions to be optimized

- Complex, interacting systems are the norm across many sectors
- ▶ Not big data: parameter spaces are large, data days are small
- ▶ Taylor scientific management has compartmentalized function
 - $lackbox{ o}$ docal optimality, global suboptimality

Understand core-value processes as rational functions to be optimized

- ▶ Complex, interacting systems are the norm across many sectors
- ▶ Not big data: parameter spaces are large, data days are small
- ▶ Taylor scientific management has compartmentalized function
 - → local optimality, global suboptimality
- ▶ Editorial comment: least discussed but most impactful opportunity for AI

Mining and Resources

Outline

Context

Al as a technology and ecosystem

Al as a driver of enterprise value

Summary

Conclusion

- ▶ Al will continue to drive major change across the economy
- Enterprises access this value via:
 - capital efficiency
 - strategic intelligence
 - optimization of value-centric processes
 - ▶ risk mitigation
- Building capabilities requires nimble teams, and offers outsized ROI

Thank you

John P. Cunningham jpc2181@columbia.edu