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Abstract
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platforms, and highlight their roles on endogenous user adoption. Tokens intermediate

transactions on decentralized networks, and their trading creates an inter-temporal

complementarity among users, generating a feedback loop between token valuation

and platform adoption. Consequently, tokens capitalize future platform growth, ac-

celerate adoption, and reduce user-base volatility. Equilibrium token price increases

non-linearly in platform productivity, user heterogeneity, and endogenous network size.

The model also produces explosive growth of user base after an initial period of dor-

mant adoption, accompanied by a run-up of token price volatility. We further discuss

how our framework can be used to discuss cryptocurrency supply, token competition,
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1 Introduction

Blockchain-based cryptocurrencies and tokens have taken the world by storm. Accord-

ing to CoinMarketCap.com, the entire cryptocurrency market capitalization has also grown

from around US$20 billion to around US$600 billion over last year, with active trading and

uses; virtually unknown a year ago, initial coin offerings (ICOs) have also attracted more

attention than the conventional IPOs, raising 3.5 billion in more than 200 deals in 2017

alone, according to CoinSchedule. In order to draw a line between reckless speculation and

financial innovation, and understand how tokens should be regulated, it is important to first

understand how cryptocurrencies or tokens (henceforth generically referred to as “token”)

derive value and the roles they play in the development and adoption of the virtual economy.

To this end, we develop the first dynamic model of a virtual economy with endogenous

user adoption and native tokens that facilitate transactions and business operations. We

anchor token valuation on the fundamental productivity of the (blockchain-based) platform,

and demonstrate how tokens derive value as an exchangeable asset with limited supply that

users hold to derive utility available solely on the platform. We then pin down the dynamics

of token price as the solution to a second-order ODE. We are also the first to highlight two

important roles of tokens in business development (fundraising included). First, because the

expected price appreciation makes it an attractive to hold tokens, early users can capitalize

future growth of the platform, leading to accelerated adoption. Second, the expected price

appreciation diminishes as the platform technology matures and more users adopt, which

moderates the volatility of user base due to productivity shocks through endogenous token

price changes.

Specifically, we consider a continuous-time economy with a continuum of agents who

differ in their needs to conduct transactions on the blockchain. We broadly interpret trans-

action as including not only typical money transfer (e.g., on the Bitcoin blockchain) but also

signing smart contracts (e.g., on the Ethereum blockchain). Accordingly, we model agents’

gain from blockchain transaction as a flow utility that depends on agent-specific transaction

needs, the size of blockchain community, and the current productivity of blockchain platform

(“productivity” broadly interpreted) that loads on exogenous shocks. Very importantly, the

larger the community is, the more surplus can be realized through trades among agents on

the blockchain (i.e., higher flow utility of tokens). Exogenous shocks to productivity can be
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broadly interpreted as shocks to the general usefulness of the platform, technological changes,

or regulatory shocks such as the ban on cryptocurrency trading by several governments.

In our model, agents make a two-step decision: (1) whether to incur a participation cost

to meet potential trade counterparties (i.e., to join the community); (2) how many tokens

to hold, which depends on both blockchain trade surplus (“transaction motive”) and the

expected future token price (“investment motive”). A key innovation of our model is that

not only does one user’s adoption exhibit externality on others, but the investment motive

also introduces an inter-temporal complementarity in user base. We model productivity as

a geometric Brownian motion, thus exogenous shocks have permanent impact on the level

of productivity. A positive shock to platform productivity directly increases the user base

today due to the higher flow utility of holding tokens. Furthermore, agents now expect more

users to join the community in the future, which leads to a stronger future demand for tokens

and thus token price appreciation. This investment motive creates a stronger demand for

tokens today and greater adoption. Our model highlights this indirect feedback effect that

arises because token price reflects agents’ expectation of future popularity of the platform.

We characterize the non-degenerate Markov equilibrium with platform productivity as

the state variable, and derives the token valuation as the solution to a second-order ordinary

differential equation. Akin to many equilibrium models that feature interaction between

financial markets and the real economy, the financial side of our model is the endogenous

price of tokens, whereas the real side is the size of user base that determines the benefits (the

utility flow) of agents who trade on the blockchain. Token price affects user adoption through

the expected price appreciation, while user base affects token price through its impact on

flow utility and agents’ token demand. This mutual feedback naturally triggers a question:

how a platform with embedded tokens differs from one without?

We therefore compare the endogenous S-curve of adoption of a platform with embedded

tokens to one without tokens (where agents use dollars or other media of exchange). Both

platforms have exactly the same process of productivity growth. We find that without

tokens, user adoption is below the first-best level which entails full adoption as long as the

platform productivity is above an initial threshold. Tokens can improve welfare because the

user base grows faster and reaches full adoption faster. This result derives from that token

price reflects agents’ expectation of future popularity of the platform, thus the investment
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motive induces more agents to join the platform. That said, a caveat against tokens is that

non-fundamental driven expected price appreciation can lead to over-adoption in the early

stage of the platform, not to mention that tokens can accelerate the demise of a bad platform

whose productivity drifts downward (as agents forecast a smaller user base in the future,

they shun away from holding tokens with expected price depreciation). In sum, embedding

tokens on a platform front-loads the prospect of platform, so depending on the expectation

of fundamentals (i.e., productivity in our model), it can accelerate adoption or precipitate

abandonment.

Furthermore, we show that introducing tokens can reduce user base volatility, making it

less sensitive to productivity shocks. The key driver is again the agents’ investment motive—

their decision to participate depends on their expectation of future token price appreciation.

Consider a negative shock that reduces the flow utility, and thus user adoption. This direct

negative effect is mitigated by an indirect effect through token price: A lower adoption now

means more agents can be brought onto the platform in future. Agents’ expected stronger

token price appreciation therefore induces them to adopt and hold tokens. Similarly, a

positive productivity shock increases adoption by increasing the flow utility. However, as

the pool of potential newcomers shrinks, the expected token price appreciation declines,

discouraging agents from joining the platform and holding tokens.

Having clarified the roles of tokens analytically, we fully solve the Markovian equilibrium,

and calibrate our model to existing data. Our quantitative exercise shows that the mechanism

in our model indeed induces a form of inter-temporal complementarity in user base, which

leads to tokens accelerating adoption and reducing user base volatility. The exercise also

helps understand several empirical patterns in token price: the endogenous user adoption

can generate run-ups in token valuation and volatility.

Finally, we extend our model along several dimensions. Specifically, we demonstrate how

endogenizing productivity growth can further strengthen the economic channels we highlight,

how time-varying systematic risk of tokens can produce a sharp rise and fall of token price

under rational expectations, and how our model can be used to analyze cryptocurrency

competition and the design of state-contingent token supply.

Overall, our model sheds light on the pricing of cryptocurrencies and tokens in peer-to-
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peer networks that include but is not restricted to permissioned and permissionless blockchains.1

Many digital currencies and tokens, payment-focused or not, have been introduced and asso-

ciated with platforms and virtual economies: Linden dollar for the game Second Life, WoW

Gold for the game World of Warcraft, Facebook Credits, Q-coins for Tencent QQ, Amazon

coins, to name a few.2 Our model offers a pricing formula and reveals how introducing native

tokens benefits users and accelerates adoption. While the Blockchain technology certainly

gives platforms unprecedented flexibility and commitment power in introducing native to-

kens and designing their attributes, our model potentially applies to other trusted platforms

or virtual systems such as email protocols and online social network, and adds new insights

to asset pricing and macro models with network externality.

Literature Review. Our paper foremost contributes to the emerging literature on blockchains

and cryptocurrencies. Among early studies, Cong and He (2018) examine informational is-

sues in generating decentralized consensus, with implications on industrial organization;

Biais, Bisiere, Bouvard, and Casamatta (2017) and Saleh (2017) analyze the mining or mint-

ing games through Proof-of-Work and Proof-of-Stake; Easley, O’Hara, and Basu (2017),

Huberman, Leshno, and Moallemi (2017), and Cong, He, and Li (2018) study the miners’

market in terms of compensation, organization, and micro-structure; Harvey (2016) briefly

surveys the mechanics and applications of crypto-finance; Yermack (2017) and Cao, Cong,

and Yang (2018) evaluates the potential impacts of the technology on corporate governance

and financial reporting.

To be clear, the concepts of digital currency and distributed ledger have been separately

developed earlier and Nakamoto’s innovation lies in combining them to enable large-scale

application (Narayanan and Clark (2017)): embedding a native currency into a blockchain

system helps incentivize record-keepers (e.g., miners in protocols using proof-of-work) of

decentralized consensus, which in turn prevents double-spending (Nakamoto (2008)). Our

paper emphasizes the impact of introducing native tokens on the incentives of users to adopt.

1To be precise, the networks in question should be viewed as complete networks with economy of scale,
which is different from incomplete networks that many recent studies focus on (e.g., Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012)).

2Even before the heated debate on cryptocurrencies, economists, and commentators were already raising
questions such as “Could a gigantic nonsovereign like Facebook someday launch a real currency to compete
with the dollar, euro, yen and the like?” (Yglesias (2012)). Gans and Halaburda (2015) provides an insightful
introduction on how payment systems and platforms are related.
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Specifically, we focus on the valuation of cryptocurrencies and tokens under endogenous

user adoption in a dynamic framework that highlights inter-temporal feedback effects. In

contrast, other models in the literature are static. For example, Gans and Halaburda (2015)

is among the earliest studies on platform-specific virtual currencies and users’ network effects.

Ciaian, Rajcaniova, and Kancs (2016) test quantity theory of money using Bitcoin data as-

suming exogenous user demand for Bitcoins. Fernández-Villaverde and Sanches (2016) and

Gandal and Halaburda (2014) consider the competition among alternative cryptocurrencies.

Pagnotta and Buraschi (2018) studies the pricing of Bitcoins under exogenous network and

adoption. Closer to our paper is Athey, Parashkevov, Sarukkai, and Xia (2016) that empha-

sizes agents’ dynamic learning on a binary technology quality and decision to use bitcoins

for money transfer, but does not model blockchain productivity and user-base externality.

Several contemporaneous models analyze cryptocurrencies in the context of initial coin

offerings (ICOs). Li and Mann (2018) demonstrate that staged coin offerings mitigate coor-

dination issues; Sockin and Xiong (2018) study how households first purchase an indivisible

cryptocurrency which serves as membership certificate that enables them to match and trade

in a second period; Catalini and Gans (2018) study entrepreneurs’ discretionary pricing to

ensure the value of crypto-tokens issued to fund start-ups; Chod and Lyandres (2018) discuss

the risk diversification benefit of ICOs; most recently, Bakos and Halaburda (2018) compare

the adoption acceleration benefit of tokens we highlight with traditional user subsidy through

VC capital.

We differ in our emphasis of the role of crypto-tokens as media of exchange in decen-

tralized virtual economy, and their effects on endogenous user adoption.3 We differ also

in allowing agent heterogeneity and divisible holdings of tokens, and uniquely pining down

the non-degenerate dynamics of token valuation and user adoption.4 Unlike many studies

focusing on permissionless blockchains maintained by decentralized miners, our framework

does not rely on the specific mechanism for consensus generation, and consequently applies

equally to permissioned blockchains or platforms owned by trusted third parties with net-

3Also related are discussions on the design of cryptocurrencies/tokens and platforms, such as Gans and
Halaburda (2015), Halaburda and Sarvary (2016), Chiu and Wong (2015), and Chiu and Koeppl (2017).
Our framework can directly tie the protocol-based design on supplies to valuation and adoption, enabling us
to evaluate various design objectives.

4Bakos and Halaburda (2018) also discuss user adoption, but in a setting without technological uncertainty
or user heterogeneity. Like Sockin and Xiong (2018), the model features a two-period set-up in which tokens
serve as platform membership.
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work effect of user adoption.

We organize the remainder of the article as follows. Section 2 sets up the model and

characterizes the dynamic equilibrium. Section 3 performs quantitative analysis and dis-

cusses model implications. Section 4 contains extensions and further discussions. Section 5

provides further institutional background on crypto-currency and crypto-tokens. Section 6

concludes.

2 A Dynamic Model of Adoption and Valuation

Many features in our model are motivated by stylized facts about existing platforms,

blockchains, and crypto-tokens. We refer to interested readers to Section 5 for a brief intro-

duction and the institutional background.

2.1 Setup

Consider a continuous-time economy with a unit measure of agents. Generic goods serve

as numeraire (“dollar”). We work under the risk-neutral measure, and discuss agents’ risk

aversion and the physical measure for calibration and risk premium in Section 3.1.

Our model of cryptocurrency or crypto-tokens (generically referred to as “token”) starts

with an exogenous process of the productivity of blockchain platform for peer-to-peer trans-

actions, a geometric Brownian motion

dAt
At

= µAdt+ σAdZA
t . (1)

At represents the quality or usefulness of blockchain platform. We focus on the case of a

promising yet risky platform, i.e., µA > 0 and σA > 0. While pure technological shocks

in cryptography or consensus algorithms obviously affect At, systematic shifts in user pref-

erences, regulatory changes, creative platform use, and complementary innovations can all

play a role.5 We later discuss in Section 4.1 how At can also depend on the user base.

5For example, the effectiveness of the blockchain technology – provision of decentralized consensus – is
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Agent i ∈ [0, 1] obtains a flow of utility or “trade surplus” by holding certain medium of

exchange—typically native notkens—for peer-to-peer transactions on this platform. Let xi,t

denote the value of holdings in terms of the numeraire, the trade surplus in reduced-form

is,6

x1−α
i,t (NtAte

ui)α dt. (2)

The medium of exchange can be the numeraire itself (i.e., dollar) or the embedded native

token. In the latter case,

xi,t = Ptki,t, (3)

where Pt is the unit price of token in terms of the numeraire and ki,t is the units of token.

The trade surplus depends on the common productivity At, the idiosyncratic productivity

ui, and noticeably the user base Nt—the total measure of agents that decide to join the

blockchain network (i.e., xi,t > 0). Introducing Nt into the trade surplus captures the net-

work externality among users, consistent with the evidence on social interaction and market

participation in Hong, Kubik, and Stein (2004). For example, it reflects the ease to find

trading or contracting counterparties in a large community. Alternatively, we could intro-

duce total volume, which would not affect the economic channels we focus on—endogenous

network effect, both contemporaneous and inter-temporal.

User type ui captures the heterogeneity in agents’ needs to transact on the blockchain.

The interpretation depends how we understand the blockchain trade surplus. For example,

if the trade surplus comes from a payment blockchain (e.g., Bitcoin and Ripple), a high value

of ui reflects agent i’s urge to conduct a transaction on the platform, be it an international

remittance or a purchase of illegal drugs; if the trade surplus arises from smart contracting

affected by the protocol design and participants’ behavior. Biais, Bisiere, Bouvard, and Casamatta (2017)
study the stability of consensus, while Cong and He (2018) relate the quality of blockchain platform to
miner/keeper activities. On the regulatory side, the Bitcoin platform became popular as a venue to transfer
capital overseas in Greece during the country’s financial distress in 2015. Interests rose quickly amidst fears
of capital controls (Lee and Martin (2018)). On the other extreme of regulatory impact, in 2017 and 2018,
China and Korea have introduced various measures to limit cryptocurrency trading and usages, which are
widely considered as a negative shock to the Bitcoin platform.

6The multiplicative specification is for analytical convenience. Note that trivially, zero adoption is al-
ways an equilibrium. Our focus is therefore on the non-degenerate equilibrium with positive adoption.
Alternatively, we can rule out the degenerate equilibrium using a different functional form of trade surplus:
(Ptki,t)

1−α
(Ate

ui)
α
dt + (Ptki,t)

1−α
Nα
t dt, i.e., with Nt entering the surplus in an additive form. Under

this specification, there are always participating agents whose ui is high enough. We can also show that
our results are qualitatively robust to alternative specifications that feature decreasing total return i.e.,
(xi,t)

1−α−γ
(NtAte

ui)
α

with γ > 0. Results are available upon request.
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for business operations that are only possible on the blockchain (e.g., Ethereum), ui then

reflects the productivity of such entrepreneurial projects; if the trade surplus derives from

decentralized computation (e.g., Dfinity) or data storage (e.g., Filecoin), ui reflects the need

for secure and fast access to computing power and data. Such heterogeneity renders the

determination of user base non-trivial. Let G (u) denote the cumulative probability distri-

bution of ui in the cross section (and g (u) the density).7 For simplicity, we require g (u)

to be continuously differentiable over its support [U,U ], where U < 0 and U > 0 could be

negative infinity and infinity. In the case of Normal distribution, g (u) =
√

1
2πθ2

e−
u2

2θ2 .

To join the platform and obtain this trade surplus, an agent incurs a flow cost φdt,

which can be cognitive in nature. For example, transacting on the platform takes effort and

attention. That said, agents can easily abstain from participating in the ecosystem any time

and save the cost, reflecting the reality that joining or leaving an online platform is rather

frictionless. Agents with very high ui finds it profitable to join the platform, while agents

with very low ui does not. For these reasons and modeling convenience, we assume φ > 0,

although one could alternatively allow negative idiosyncratic preference to endogenize the

adoption threshold.

Finally, we assume that agents do not face financial constraints and do not default, so

they may borrow or lend, as much as they like, at the risk-free rate rdt. Abstracting away

financial frictions distinguishes and highlights our theoretical contributions.

2.2 Token-based Equilibrium

In what follows, we focus on the joint dynamics of token valuation and user adoption on

platforms requiring native tokens as the medium of exchange. Later to highlight the role of

tokens on user adoption, we compare the equilibrium to an equilibrium without native tokens.

7We note that time variation in agents’ type can be accommodated. For example, we can set let ui,t
follow a Ornstein-Uhlenbeck process

dui,t = −µUui,tdt+ σUdZUi,t,

where ZUi,t is an idiosyncratic, standard Brownian motion, and µU and σU are common among agents. By
setting the initial cross-sectional distribution to be the stationary distribution of the corresponding Fokker–

Planck equation g (u) =
√

1
2πθ2 e

− u2

2θ2 , where θ = σU√
2µU

captures the effective heterogeneity of agents (the

ratio of user heterogeneity scaled by the rate of mean reversion), we obtain exactly the same aggregate
dynamics (e.g., token price and adoption) as the one with time-invariant type, provided dZUi,t is perfectly
insured among agents.
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We also remind the readers that the flow utility can only be realized on the platform. This

is consistent with the fact that most blockchain platforms serve unique purposes: Bitcoin

facilitates anonymous and international transactions; Filecoin allows P2P storage-sharing;

Ethereum enables smart contracting. We discuss platform competition in Section 4.3.

Agents’ objective function. Let yi,t denote agent i’s cumulative profits from blockchain

activities. Agent i then maximizes life-time utility under the risk-neutral measure,

E
[∫ ∞

t=0

e−rtdyi,t

]
. (4)

In addition to the typical “convenience yield” associated with currencies and commodi-

ties, providing services on blockchain platforms and conducting business through smart con-

tracts typically requires holding or locking up certain amounts of native tokens. Technical

limitations of decentralized ledgers also necessitate token holding. We provide institutional

details and examples in Section 5.

In line with these considerations, agents must hold tokens for at least an instant to

derive utility flow. This holding period is important because it exposes users to token price

fluctuation over dt, so that users of the platform care not only the surplus from conducting

trade with peer users but also the future token price, which in turn depends on further user

base.

In equilibrium, agents take as given the equilibrium price dynamics, which we conjecture

to be a diffusion process,

dPt = Ptµ
P
t dt+ Ptσ

P
t dZ

A
t . (5)

We confirm the conjecture once we clear the token market and define the Markov equilibrium.

Throughout the paper, we use capital letters for aggregate and price variables that individuals

take as given, and lower-case letters for individual-level variables.

Individual optimization. Without financial constraint, agents can borrow and lend at the

risk free rate. Their maximization problems reduces to maximizing profit flow at each t, i.e.,
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dyi,t = max

{
0, max

ki,t>0

[
(Ptki,t)

1−α (NtAte
ui)α dt

blockchain trade surplus

+ ki,tEt [dPt]
price change

− φdt
participation cost

− Ptki,trdt
financing cost

]}
,

(6)

where the outer “max” operator reflects agent i’s freedom to leave the platform and obtain

zero profit, and the inner “max” operator reflects agent i’s choice of optimal operation scale.

We apply the conditional expectation operator, Et [·] to token price change, by referring to

the the risk-neutrality in the life-time utility (Equation (4)), and using the law of iterated

expectation. Under the conjecture of price dynamics,

Et [dPt] = Ptµ
P
t dt. (7)

Conditional on joining the platform, agent i chooses the optimal token holdings, k∗i,t, by

the first order condition,

(1− α)

(
NtAte

ui

Ptk∗i,t

)α
+ µPt = r, (8)

that is the sum of marginal production on the platform and expected token price change

equals r. Rearranging the equation, we have the following lemma for optimal token holdings.

Lemma 1 (Optimal Token Holdings). At time t, agent i holds k∗i,t units of tokens if she

participates, where

k∗i,t =
NtAte

ui

Pt

(
1− α
r − µPt

) 1
α

. (9)

It has the following properties: (1) k∗i,t increases in Nt. (2) k∗i,t decreases in token price Pt.

(3) k∗i,t increases in At and ui. (4) k∗i,t increases in the expected token price change, µPt .

Agents hold more token when the common productivity or their agent-specific transaction

need is high, and also when the community is larger because it is easier to conduct trades

in the ecosystem. Equation (9) also reflects an investment motive to hold tokens, that is ki,t

increases in the expected token price appreciation, µPt .

Substituting k∗i,t into the profit function, we solve the maximized profits (conditional on
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agent i joining the platform),

NtAte
uiα

(
1− α
r − µPt

) 1−α
α

− φ. (10)

Apparently, agent i chooses to hold tokens (i.e., join the platform) if the expression is non-

negative. Taking logarithm of it, we solve ut, the user participation threshold.

Lemma 2 (Adoption Threshold). Agent i joins the token-based platform if ui ≥ ut, where

ut , u
(
Nt;At, µ

P
t

)
= − ln (Nt) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

)
. (11)

ut decreases in At, Nt, and µPt .

ut is decreasing in At because a more productive platform attracts more users. ut also

decreases in Nt because individuals’ profits from platform activities increases in the current

size of user base. We aggregate individuals’ adoption decision to obtain the size of user base:

Nt = 1−G (ut) . (12)

Interestingly, adoption threshold decreases if agents expect token price to increase more

(i.e., higher µPt ), as the next proposition reveals.

Proposition 1 (Endogenous User Base). ∃ A such that given µPt and At > A, there

exists a non-degenerate solution to Equations (11) and (12). If G(·) and g(·) have increasing

hazard rate, the non-degenerate solution is unique.8 Importantly, Nt is increasing in µPt .

Given the common productivity At and agents’ expected price appreciation µPt , we note

that zero adoption is always a solution: the trade surplus is zero when Nt = 0, and the total

token return is less than r under the risk-neutral measure, so agents refrain from holding

tokens. one may suspect that there are multiple values of Nt that satisfy Equations (11)

and (12). To get the intuition for existence and uniqueness, consider the properties of a

response function R
(
n;At, µ

P
t

)
that maps a hypothetical value of Nt, say n, to the measure

8Increasing hazard rate means g(u)
1−G(u) is increasing in u, which is equivalent to 1−G(u) being log-concave.

This is a standard assumption in the mechanism design literature to avoid the technically complicated
“ironing” of virtual values.
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Figure 1: Determining User Base.

of agents who choose to join the community after knowing Nt = n. As depicted in Figure

1, the response curve originates from zero. If At > A, then the response function is above

the 45o line at some n ∈ (0, 1). But we know R
(
1;At, µ

P
t

)
≤ 1, therefore the response curve

crosses the 45o line at least once in the range of (0, 1]. We show in the appendix that the

monotone hazard rate implies the g(u) is well-behaved that the response curve crosses the

45o line exactly once, which pins down the unique Nt. Importantly, a higher µPt shifts the

response curve upwards, resulting in a bigger Nt of user adoption.

Token Pricing Formula. We now provide the token pricing formula under endogenous

adoption, which nests several valuation ingredients salient among practitioners. Define the

participants’ aggregate transaction need as

St :=

∫ U

ut

eug (u) du, (13)

where g (u) is then the density function of ui. St is the integral of eui of participating agents.
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We consider a fixed supply of tokens, M .9 The market clearing condition is

M =

∫
ui≥ut

ki,tdi, (14)

Substituting in agents’ optimal token holdings, we have the following proposition.

Proposition 2 (Token Pricing Formula). The token-market clearing condition offers a

token price formula:

Pt =
NtStAt
M

(
1− α
r − µPt

) 1
α

. (15)

The token price increases in Nt, the size of blockchain user base – the larger the ecosystem

is, the higher trade surplus individual participants can realize by holding tokens, and stronger

the token demand. Our model contributes to the literature of asset pricing by providing a

theoretical foundation for the commonly used valuation-to-user base ratio in the technology

industry, especially popular for valuing firms and platforms whose customer base feed on

endogenous network effects. Here, the P-N ratio increases in the blockchain productivity,

expected price appreciation, and network participants’ aggregate transaction need, while

decreases in token supply M . It is worth emphasizing that the asset we price is a blockchain

token, not equity stakes of firms. The formula reflects certain observations by practitioners,

such as incorporating DAA (daily active addresses) and NVT Ratio (market cap to daily

transaction volume) in token valuation framework, but instead of heuristically aggregating

such inputs into a pricing formula, we solve an equilibrium with both endogenous token

pricing and adoption.10

Solving the Markov Equilibrium. The token pricing formula suggests that there exists

a Markov equilibrium with At being the only aggregate state variable.

Definition 1 (Equilibrium). For any initial value of A0, the distribution of idiosyncratic

productivity ui given by the density function g (u), and any endowments of token holdings

9This is consistent with many ICOs that fix the supply of tokens. Because resources for business operations
on-chain are all discussed in real terms, we can simply normalize M to one due to money neutrality.

10See, for example, Today’s Crypto Asset Valuation Frameworks by Ashley Lannquist at Blockchain at
Berkeley and Haas FinTech.
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among the agents, {ki,0, i ∈ [0, 1]}, such that

M =

∫
i∈[0,1]

ki,0di,

a Markov equilibrium with state variable At is described by the stochastic processes of agents’

choices and token price on the filtered probability space generated by Brownian motion {ZA
t , t ≥

0} under the risk-neutral measure, such that

(1) Agents know and take as given the process of token price;

(2) Agents optimally choose consumption, and token and off-blockchain investments;

(3) Token price adjusts to clear the token market as in Proposition 2;

(4) All variables are functions of At that follows an autonomous law of motion given by

Equation (1) that maps any path of shocks {Zs, s ≥ t} to the current state At.

This conjecture of Markov equilibrium with state variable At is consistent with the equi-

librium conditions. For example, by Itô’s lemma, µPt is equal to
(
dPt/Pt
dAt/At

)
µA+ 1

2
d2Pt/Pt
dA2

t /A
2
t

(
σA
)2

,

which is a univariate function of At in the Markov equilibrium. From Proposition 1, we can

solve ut and Nt, which only depends on At and µPt , and thus, are also univariate functions

of At. Hence, all the endogenous aggregate variables only depend on the state variable At.

So far, we have shown that once the token pricing function P (At) is known, we can solve

for µPt using Itô’s lemma, and then, the optimal token holdings, k∗i,t using Equation (9).

From Proposition 1, we solve for the user base, Nt, and the lower bound of participants’

idiosyncratic productivity, ut. Substituting these variables into the token pricing formula

(Equation (15)), we have the right-hand side depends only on At, P (At), and the first and

second derivatives of P (At) through µPt . Therefore, rearranging the token pricing formula,

we have a second-order ordinary differential equation (“ODE”) for P (At):(
σA
)2

2

d2Pt/Pt
dA2

t/A
2
t

+ µA
(
dPt/Pt
dAt/At

)
+ (1− α)

(
NtStAt
MPt

)α
− r = 0. (16)
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By imposing proper boundary conditions, we can solve for P (At).
11 The first is

lim
At→0

P (At) = 0, (17)

so that when the platform is not productive any more, token price collapses to zero , ruling

out pure speculation (µP → r) when At → 0. The second involves that as At increases,

token price after full adoption (Nt = 1) behaves according to

P (At) =
SAt
M

(
1− α
r − µA

) 1
α

, (18)

where recall that the constant S ≡
∫ U
U
eug (u) du is the participants’ aggregate need for trade.

Note that (18) solves the (2) when Nt ≥ 1, and is essentially the “Gordon Growth Formula”

in our setting. For any finite U , we require value matching and smooth pasting to rule out

arbitrage. In other words, A∗ and P (A∗) are endogenously determined by

P (A∗) = P (A∗) and P ′(A∗) = P
′
(A∗) (19)

When U = −∞, we simply explore the asymptotic behavior of the economy. When At

approaches infinity, Nt approaches one and ut approaches −∞, then the natural asymptote

of P (At) is:

lim
At→+∞

P (At)− P (At) = 0, (20)

The asymptote not only satisfies the token pricing formula for At → ∞, but also has Pt

purely driven by At in the sense that with full adoption (N = 1), σPt = σA (i.e., no excess

volatility).

The lower boundary (17) determines the level of price in the region of interest (Nt < 1),

while the upper boundary (19) or (20) specifies the long-term dynamics of price. Together,

they rule out the degenerate equilibrium of P (At) = 0 for any At > 0.12 Similar to Brun-

11The existence of ODE requires a unique mapping from At, P (At), and P ′ (At) to P ′′ (At). The question
is: given At and Pt, can we uniquely solve µPt using the token pricing formula? Since ut decreases in µPt
(and Nt increases in µPt ), the right-hand side of the token market clearing condition increases in µPt , so we
can uniquely pin down µPt given At and Pt.

12Ruling out such a degenerate equilibrium is non-trivial because the dollar value of tokens, i.e., Ptki,t,
enters into the trade surplus, so when Pt = 0, the “cash flow” (i.e., trade surplus) of token is zero. However,
given Equation (20), agents expect token price to be positive in the far future where At is sufficiently large.
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nermeier and Sannikov (2014), we characterize the equilibrium that is Markov in the state

variable At.

Proposition 3 (Markov Equilibrium). Given the boundary conditions described in (17)

and (19), there exists a unique Markov equilibrium with At as the state variable for any

finite lower bound U of user type.13 Equation (9) solves participants’ optimal token holdings

k∗i,t given the token price function P (At), and Proposition 1 solves the user base Nt and the

threshold of adoption ut. The token price is then the unique solution to the second-order

ordinary differential equation (15) in Proposition 2.

In the appendix we show that our ODE (15) satisfies all the regularity conditions for us

to apply an argument similar in spirit to that in the Picard-Lindelof Theorem for initial value

problems, in order to obtain uniqueness for our boundary value problem (Jackson (1968)).

The existence of a unique equilibrium distinguishes our paper from studies such as Sockin

and Xiong (2018) that focus on equilibrium multiplicity, and allows us to highlight dynamics

of adoption and valuation.

Figure 2 summarizes the key economic mechanism that follows from all the results thus

far, where the blue, black, and red arrows show respectively the user-base externality, the

transaction motive of token holdings, and the investment motive of token holdings.

2.3 The Impact of Tokens on Adoption

We next investigate the role of tokens in users’ dynamic adoption. To proceed, let us

consider an alternative setup where agents can conduct businesses and enjoy the trade surplus

on the same blockchain platform without holding tokens, but use dollar, the numeraire, as

Hence reasoning backward instant by instant, token price stays positive so that arbitrage opportunities (i.e.,
a jump of token price from zero to positive within an instant of dt) do not exist. More rigorously, given
Equation (20) and P (At) > 0, for a sufficiently small ε, there exists a sufficiently large A (ε) such that P (At)
is within the ε-neighborhood of P (At) (and thus, positive) for any At > A (ε). We can also rule out the
equilibrium of Pt = 0 by setting the trade surplus as a function of ki,t instead of Ptki,t, and our results are
qualitatively robust under this alternative setup.

13We note that the second-order ODE (15) is non-linear, U being finite is a sufficient condition for the
boundary conditions (17) and (20) to guarantee a unique solution (Jackson (1968)). When U = −∞, the
solution is likely still unique, but the proof is beyond this paper. Moreover, taking finite U is not an issue
for all practical purposes and quantitative analysis, because any numerical procedure has to approach full
adoption at finite values of At, and we do not think there are agents who are infinitely averse towards the
platform in real life.
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Present Future

date t date t+ dt date t+ 2dt ...

Positive shock (permanent effect)

Productivity At ↑

Token flow utility ↑

User base Nt ↑

Productivity At+dt ↑

Token flow utility ↑

User base Nt+dt ↑

Token price Pt+dt ↑

Productivity At+2dt ↑

Token flow utility ↑

User base Nt+2dt ↑

Token price Pt+2dt ↑

Figure 2: The Economic Mechanism in a Nutshell. The green arrows point to the increases of the
current and future (expected) levels of productivity A, which lead to higher flow utilities of tokens, and in
turn, larger user bases N as highlighted by the black arrows. The blue arrows show that increases in user
base result in even higher flow utility due to the contemporaneous network externality. Finally, more users
push up the token prices P in future dates, which feed into a current expectation of token price appreciation,
leading to greater current adoption.

the medium of exchange. Here, the only difference from the token-based equilibrium is that

agents’ profits are not exposed to the token price fluctuation:

dyi,t = max

{
0, max

xi,t>0

[
(xi,t)

1−α (NtAte
ui)α dt

blockchain trade surplus

− φdt
participation cost

− xi,trdt
financing cost

]}
. (21)

Conditional on joining the platform (i.e., xi,t > 0), the first order condition for xi,t is

(1− α)

(
NtAte

ui

xi,t

)α
= r. (22)

Rearranging the equation, we have the following lemma on optimal operation scale.

Lemma 3 (Optimal Scale without Token). At time t, agent i’s optimal level of wealth

held on the platform without token is given by

x∗i,t = NtAte
ui

(
1− α
r

) 1
α

(23)
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which increases in Nt, At, and ui.

Substituting x∗i,t into the profit function, we have the maximized profit (conditional on

joining the platform) equal to

NtAte
uiα

(
1− α
r

) 1−α
α

− φ. (24)

An agent joins the platform only if the maximized profits are positive. Taking logarithm of

Equation (24), we have the following lemma of adoption threshold.

Lemma 4 (Adoption Threshold without Token). Agent i joins the platform without

token if ui ≥ uNTt , where

uNTt = − ln (Nt) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r

)
, (25)

and the superscript “NT” is for “no tokens”. uNTt decreases in At and Nt.

We can aggregate individuals’ adoption decision,

NNT
t = 1−G

(
uNTt

)
. (26)

Equations (25) and (26) jointly determine uNTt and NNT
t .

Token Acceleration of Adoption. We next prove an important result on how introducing

tokens can accelerate adoption.

Proposition 4 (Adoption Level).

When µA > 0, NNT
t is always smaller than Nt for t > 0, where Nt is given in Proposition

1; when µA < 0, the result is the opposite.

In other words, users adopt more with tokens when they believe the platform productivity

is improving. We note that having no tokens is equivalent to setting µPt to zero in Proposition

1. Introducing tokens adds an investment motive to agents’ adoption decision through the

expectation of token appreciation, which is in turn driven by the growth of At. This channel

speeds up user-base expansion. We can also entertain the flip side of this effect: when At

18



is expected to deteriorate (e.g., due to µA < 0), the associated token depreciation (µPt < 0)

accelerates the collapse of user base and the demise of the platform. Our quantitative analysis

focuses on the case where µA > 0.

Note that in the system without token, transactions are settled on dollars, and we simplify

the analysis by assuming that the price of dollar in goods is fixed at one. In reality, the value

of dollar declines over time due to inflation, which is likely to strengthen the token effect

by adding a dollar depreciation term in Equation (25). It is true that non-blockchain-based

transferable participation rights may serve a similar function in accelerating adoption, but

it is the significant reduction in transaction cost, reliance on trusted third parties, and the

growth in crypto-awareness and popularity brought forth by the blockchain technology that

catalyzed the qualitative change in practice.

Token Reduction of User Base Volatility. Without native tokens, agents’ decision

to participate is purely driven by the current level of blockchain productivity At and their

idiosyncratic transaction needs ui. Therefore, the user base Nt varies only with At, and its

volatility is tied to the exogenous volatility of blockchain productivity. Introducing tokens

also changes the volatility of Nt through the fluctuation of the expected price change, because

now, agents’ decision to participate also depends on µPt .

To derive the dynamics of Nt, we first conjecture that Nt follows a diffusion process in

equilibrium

dNt = µNt dt+ σNt dZ
A
t . (27)

Strictly speaking, Nt follows a reflected (or “regulated”) diffusion process that is bounded

below at zero and bounded above at one, so we study the interior behavior of Nt. In the

appendix, we solve the volatility of Nt for the case without token and the one with token.

The following proposition summarizes the results.

Proposition 5 (User Base Volatility). In an economy without tokens, the diffusion of

dNt is

σNt =

(
g
(
uNTt

)
1− g (uNTt ) /NNT

t

)
σA. (28)
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In an economy with tokens, the diffusion of dNt is

σNt =

(
g (ut)

1− g (ut) /Nt

)[
σA +

(
1− α
α

)(
σµ

P

t

r − µPt

)]
, (29)

where, σµ
P

t is the diffusion of µPt in its law of motion,

dµPt = µµ
P

t dt+ σµ
P

t dZA
t . (30)

Comparing Equations (28) and (29), we see that introducing tokens could alter the volatil-

ity dynamics of user base through the fluctuation of expected token price change, i.e., σµ
P

t .

A priori, having a native token may either amplify or dampen the shock effect on the the

user base, depending on the sign of σµ
P

t . By Itô lemma, σµ
P

t =
dµPt
dAt

σAAt, so the sign of σµ
P

t

depends on whether µPt increases or decreases in At.

We note that µPt weakly decreases in At (and thus, σµ
P

t < 0), precisely because of the

endogenous user adoption. Consider an increase in At, which corresponds to an increase

in Nt, reducing potential newcomers to join the community in future. Recall that token

price appreciation is driven by the future increase in both At and Nt, so when there is less

potential for Nt to grow, the expected token price appreciation, i.e., µPt , declines. Because

µPt decreasing in At, introducing token can reduce the conditional volatility of user base.

That said, because uNTt and ut could differ in general, there could be regions where the

conditional volatility of user base is higher when token is introduced. In our calibration

later, we find that the region of intermediate adoption whereby tokens reduce user base

volatility is significant.

Given the roles of the tokens, entrepreneurs may want to introduce them in a platform.

For example, suppose the platform can collect a fee of φ from the users, greater adoption

would increase the revenue of the platform. One way to kill two birds with one stone is

to issue tokens to early investors through ICOs which brings in capital for developing the

platform as well. Then through retaining some tokens, the early investors and entrepreneurs

can also enjoy the token price appreciation. Our on-going work and Bakos and Halaburda

(2018) explore such strategic considerations of the entrepreneurs and platforms designers.
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2.4 Tokenized, Tokenless, and First-best Economy

Given the roles of the tokens, entrepreneurs may want to introduce them in a platform.

For example, suppose the platform can collect a fee of φ from the users, greater adoption

would increase the revenue of the platform. One way to kill two birds with one stone is to issue

tokens to early investors through ICOs which brings in capital for developing the platform

as well. Then through retaining some tokens, the early investors and entrepreneurs can also

enjoy the token price appreciation. Our model thus provide one rationale for introducing

tokens in startup platforms. Our on-going work explore such strategic considerations of the

entrepreneurs and platforms designers.

While tokens may benefit entrepreneurs who care about user adoption, are they always

welfare improving? To answer this question, let us consider a planner’s problem. Since there

is a buyer and a seller to any trading of media of exchange, what matters for welfare is the

amount of resources allocated to the blockchain platform. Given a user base Nt, the socially

optimal amount of capital an adopted user i allocates onto the blockchain is

x∗i,t = NtAte
ui

(
1− α
r

) 1
α

. (31)

Let Ut denote the set of user base with measure Nt. Then the total welfare flow (if positive)

with user base Nt is

∫
i∈Ut

[
αNtAte

ui

(
1− α
r

) 1−α
α

− φ
]
di = Nt

[
α

(
1− α
r

) 1−α
α

At

∫
i∈Ut

euidi− φ
]

(32)

To maximize the total welfare flow, Ut should include the agents with higher ui and therefore

should follow a threshold cutoff, i.e., Ut(u) = {i : ui ≥ u} for some u ≥ U . Therefore, we

should set Nt = 1 to maximize (31); if the optimized (31) is negative, then zero adoption

would be optimal. The switching from zero adoption to full adoption happens at

AFB = φ

[
α

(
1− α
r

) 1−α
α
∫ U

u=U

eug(u)du

]−1

(33)

When
∫ U
u=U

eug(u)du < ∞, welfare maximization has a bang-bang solution, requiring full-
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adoption if A ≥ AFB and zero adoption otherwise. It is straight forward to check that

AFB ≤ ATokenless, where ATokenless is the A in Proposition (1) with µP = 0. The adoption

acceleration of token can potentially improve welfare by bring the outcome closer to first-

best. That said, if µP is too big, it is possible A(µP ) < AFB: when agents are counting

on the appreciation of token price, they could over-adopt relative to the first-best outcome.

Therefore, when the platform productivity is smaller than AFB, adoption acceleration is

welfare-destroying.

3 Quantitative Analysis

3.1 The Physical Measure and Calibration

Risk Aversion and SDF. So far we have worked under the risk-neutral measure. To relate

our model to data and to understand the returns of cryptocurrencies and crypto-tokens, we

introduce agents’ risk aversion and discuss price and adoption dynamics under the physical

measure. To this end, we assume that agents’ risk preference is given by a stochastic discount

factor (“SDF”) Λ satisfying
dΛt

Λt

= −rdt− ηdẐΛ
t , (34)

where r is the risk-free rate and η is the price of risk for systematic shock ẐΛ
t under the

physical measure.14 Let dZA
t denote the SDF shock under the risk-neutral measure. Using

the Girsanov Theorem, we have

dZΛ
t = dẐΛ + ηdt. (35)

Throughout this paper, we use “̂ ” indicate the physical measure. A unique SDF gives the

price of Arrow-Debreu securities in each state of the world (a complete market).

Let ρ denote the instantaneous correlation between the SDF shock and the blockchain

productivity shock. The usefulness of a particular platform evolves with the economy, as

agents discover new ways to utilize the technology, which in turn depends on the progress

of complementary technologies. As aforementioned, macro and regulatory events affect the

14Chen (2010) shows that the SDF in the form of Equation (34) can be generated from a consumption-based
asset pricing model.
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usage of a blockchain platform. The crypto beta from ρ is priced under the physical measure,

generating a link between token price fluctuation and expected return.

Under the physical measure, At has the following law of motion, dAt = µ̂AAtdt +

σAAtdẐ
A
t , where using Girsanov Theorem, we know that µ̂A is equal to µA + ηρσA, and dẐA

t

is the Brownian productivity shock under the physical measure, given by dẐA
t = dZA

t −ηρdt.

Calibration. We now calibrate our model under the physical measure, and analyze the

equilibrium outcome quantitatively. Our calibration is guided by the growth of token price

and blockchain user base in the period from July 2010 and April 2018. In the model, since we

fix the supply of tokens at M , the variation of token price Pt drives that of market capitaliza-

tion (i.e., PtM). We map the dynamics of Pt to that of the aggregate market capitalization

of 16 major cryptocurrencies.15 Since we study a representative token economy, we choose

to focus on the aggregate token valuation that averages out idiosyncratic movements due to

specificalities of token protocols and highlights the common feature, which is decentralized

ledger or computing platform powered by the blockchain technology.

Accordingly, we collect the number of active user addresses for major cryptocurrencies,

and map the aggregate number to Nt in our model. Since the beginning month of our sample

is unlikely to be the initial date of blockchain application to peer-to-peer platform, we choose

to map the maximum number of active addresses, which was achieved in December 2017, to

Nt = 0.5 in our model, and scale the number of active addresses in other months. As a result,

we focus on the model performances in the states where Nt ∈ [N, 0.5], i.e., the early stage of

adoption. N will be explained later together with Figure 4. We take a Normal distribution

for ui with g (u) =
√

1
2πθ2

e−
u2

2θ2 , and adjust parameters so that the model generates the

following patterns in data: (1) the growth of Nt over time; (2) the evolution of the growth

rate of Nt; (3) the co-movement between Pt and Nt; (4) the dynamics of user base volatility.

We later juxtapose our model-generated results along these dimensions together with the

data.

The key parameters for the equilibrium dynamics of Nt and Pt are µA, σA, α, and θ. First,

15We include all cryptocurrencies with complete market cap and active address information on bitin-
focharts.com, namely, AUR (Auroracoin), BCH (Bitcoin Cash), BLK (BlackCoin), BTC (Bitcoin), BTG
(Bitcoin Gold), DASH (Dashcoin), DOGE (DOGEcoin), ETC (Ethereum Classic), ETH (Ethereum), FTC
(Feathercoin), LTC (Litecoin), NMC (Namecoin), NVC (Novacoin), PPC (Peercoin), RDD (Reddcoin), VTC
(Vertcoin). They represent more than 2/3 of the entire crypto market.
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σA and µA determines the time scale of this economy under the physical measure, i.e. how

fast Nt and Pt grows, by pinning down the growth rate of At. The instantaneous expected

growth rate of At is µ̂A = µA+ηρσA. η is set to 1, roughly in line with the maximum Sharpe

ratio given by the efficient frontier of U.S. stock market. ρ is set to 1, a conservative value

relative to the beta of technology sector (Pástor and Veronesi (2009)).

σA is set to 200%, which contributes most to At’s growth rate under the physical measure

and the growth of Nt. As previously discussed, our interpretation of At emphasizes the gen-

eral usefulness of blockchain platform rather than narrowly defined technological progress.

The type of activities on blockchain depends on the progress of complementary and compet-

ing technologies, government regulations, and critically, users’ creativity and perception of

the technology, suggesting a fast yet volatile growth of At. Given this annual growth rate of

At, Nt the sample span of approximately eight years implies the growth of Nt from 0.0001

(i.e., N) to 0.5, which corresponds to the growth of normalized number of addresses in data.

We set one unit of time to be one year, and r = 5%. Because Pt converges to a multiple

of At, µ
P
t converges to µA. Under the risk-neutral measure, the expected token price change

has to be lower than r (otherwise agents invest as much as they can in tokens), so we set

µA equal to 2%. The gap between µA and r determines how widely µPt varies, which will

be explained in detail with Figure 5, so we use the volatility of percentage change of user

addresses to discipline the choice of this parameter. Specifically, we map the data moment

to average σNt /Nt in the states where Nt ∈ [N, 0.5].

While σA pins down the growth rate of Nt, θ is responsible for the curvature of its growth

path. In data, user-base growth rate rises over time, which will be shown to be qualitatively

consistent with the model dynamics (i.e., a S-shaped development of Nt). To quantitatively

match this pattern, we set θ = 10/
√

2 (i.e., a cross-section variance of 50 for ui).

Parameter α governs the co-movement between Nt and Pt. We can think of token as an

asset that pays a flow dividend (i.e., the blockchain trade surplus). α governs the decreasing

return to Nt in the user-surplus flow. Therefore, a higher value of α increases the co-

movement between Pt and Nt through a cash flow channel. We set α to 0.3 so that the

model generates the joint dynamics of Pt and Nt in the states where Nt ∈ [N, 0.5].

The remaining parameters do not affect much the equilibrium dynamics. Recall that φ

is the cost of joining the blockchain community, measured in goods. We set φ equal to 1
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Table 1: Calibration
Parameter Value Model Data

Panel A: Key Parameters
(1) σA 200% Growth rate of Nt Growth of user address

(2) θ 10/
√

2 Curvature of Nt growth Curvature of user-address curve
(3) α 0.3 Comovement: Nt & Pt User address & crypto market cap

(4) µA 2%
σNt
Nt

, vol. of Nt % change Vol. of user-address % change

Panel B: Other Parameters
(5) φ 1 Scaling effect on At
(6) M 1 billion Monetary Neutrality
(7) ρ 1 Shock correlation: SDF & At
(8) r 5% Risk-free rate
(9) η 1 Price of risk

as a reference point for other parameters. We set M , the supply of tokens, to 10 billion.

Our model features monetary neutrality, that is the equilibrium outcome stays the same, for

instance, if M is doubled and Pt halved.

3.2 Dynamic Adoption and Token Valuation

Token Price. The token price is solved as a function of blockchain productivity At. The

left panel of Figure 3 plots dPt/dAt against ln (At). The curve starts at At = 1e − 21 (i.e.,

ln (At) = −48.35), a number that we choose to be close to zero, i.e., the left boundary. The

curve ends at At = 1e8 (i.e., ln (At) = 18.42), a sufficiently large number such that beyond

this point, P (At) and its asymptote P (At) become indistinguishable, as shown in the left

panel of 3 (the convergence of derivative). Another message from the left panel is that over

time, token price becomes increasingly sensitive to the variation in At. When the user base is

small, token price is less responsive to the growth of At, because At is multiplied by Nt when

entering into the blockchain trade surplus. As At grows and Nt approaches 1, Pt becomes

more sensitive to At.

The right panel of Figure 3 plots the logarithm of token price against the size of user

base, both being functions of At in the Markov equilibrium. This graph is particularly

interesting because it directly links token price to various stages of adoption in equilibrium.

On a logarithm scale, token price increases fast with adoption in the early stage, and then
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De-meaned Ln Market Cap
vs. Normalized # Addresses

Figure 3: Dependence of Token Price on Blockchain Productivity and User Base.

gradually rises with user base, but when the system has accumulated a critical mass of users,

the increase of token price speeds up and converges to its long-run path. More generally,

token price could have exponential growth with respect to the user base, an important

implication for trading cryptocurrencies. The comovement of Pt and Nt matches well the

pattern in data, for which we only observe the early stage of adoption. Next, we will explore

more in detail the dynamics of user adoption.

User Base. The solid line in Figure 4 plots the user base Nt against the logarithm of

At. The curve exhibits S-shaped development. When the blockchain technology is not so

efficient, the growth of user base in response to technological progress is small. But as Nt

increases, the growth of user base feeds on itself – the more agents join the ecosystem, the

higher surplus it is from trading on the blockchain. As a result, the growth of Nt speeds up

in the interim range of blockchain productivity. User adoption eventually slows down when

the pool of newcomers get exhausted. This model does not feature population growth, on

the basis that population growth relative to changes in At is small.

Both the growth rate and curvature of Nt over time match well the pattern in data.

As previously discussed, we map the highest number of user addresses (December 2017) to

Nt = 0.5, and record its corresponding value of ln (At) in our model. We scale the number of
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Data: Normalized # Addresses

Figure 4: Dependence of User Base on Blockchain Productivity

addresses in other months by that of December 2017. With December 2017 as the reference

point, we calculate the corresponding value of ln (At) for each observation by applying the

annualized growth rate of 202% to the value of ln (At) in December 2017. The leftmost state

that maps to the data has Nt = N = 0.0001.

Figure 4 also compares the user adoption with and without tokens or blockchain native

tokens. The former strictly dominates the latter. The two eventually converge to one as At

grows. Next, we explain in detail such comparison.

3.3 The Impact of Introducing Tokens on Adoption

When token is introduced as the required medium of exchange on a platform, its market

price reflects agents’ anticipation of future technological progress and user adoption, which

translates into the expected token price appreciation. Tokens therefore accelerates adoption

because agents join the community not only to enjoy the trade surplus but also the return

from rising token price.

The Adoption Acceleration Effect. Comparing users’ adoption decision in Proposition 1

and 4, the only difference is that without tokens, the price appreciation term, i.e., µPt , drops

out in the lower bound of idiosyncratic productivity. Therefore, in states where µPt > 0, a

blockchain system with tokens has a larger community. The intuition is simply that agents
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hold tokens to enjoy not only the trade surplus (“utility purchase”) uniquely available on-

chain, but also the token price appreciation (“investment purchase”). In a system without

tokens, the investment-driven demand is shut down.

Intuitively, if At is expected to grow fast (for example, due to a larger and positive µA),

µPt tends to be positive. Therefore, by introducing a native token that is required to be the

medium of exchange, a blockchain system can capitalize future productivity growth in token

price, and thereby accelerate adoption. This is the growth effect of introducing tokens in

promising platforms (large and positive µA).

In essence, token enables a feedback loop reflecting the inter-temporal complementarity

of user base. By capitalizing future productivity growth and popularity (i.e., large N),

token induces faster adoption in the early stage. As the user base is expected to expand

fast, token price is expected to appreciate because the flow surplus is expected to be higher

for all participants and the demand for tokens expected to be higher. The expected price

appreciation feeds into a stronger investment-driven demand for tokens.

We note that a predetermined token supply schedule is important. If token supply can

arbitrarily increase ex post, then the expected token price appreciation is delinked from

the technological progress. Predeterminancy or commitment can only be credibly achieved

through the decentralized consensus mechanism empowered by the blockchain technology. In

contrast, traditional monetary policy has commitment problem – monetary authority cannot

commit not to supply more money when its currency value is relatively high.

The Volatility Reduction Effect. As we discussed following Proposition 5, introducing

tokens also changes the volatility of Nt through the fluctuation of the expected price change,

because now, agents’ decision to participate also depends on µPt . Now we numerically analyze

how introducing tokens reduces the volatility of user base.

The left panel of Figure 5 plots σNt , and compares the cases with and without token

across different stages of adoption. Apparently, introducing token reduces the volatility of

Nt. Both curves starts at zero and ends at zero, consistent with the S-shaped development

in Figure 4 where both curves starts flat and ends flat. This volatility reduction effect is

more prominent in the early stage of development when At and Nt are low. Note that σNt

can be slightly higher when token is introduced because the first brackets in Equations (28)

and (29) can differ due to the difference between uNTt and ut even for the same value of Nt.
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Figure 5: Volatility of User Base.

The right panel of Figure 5 plots µPt against ln (At), showing their negative relation that

causes σµ
P

t < 0, which generates the volatility reduction effect. The intuition behind was

explained following Proposition 5. When At is low and Nt is low, token price is expected to

increase fast reflecting both the future growth of At and Nt. As At and Nt grow, the pool

of newcomers is getting exhausted and there is less potential for Nt to growth. As a result,

the expected token appreciation declines, and agents are less willing to join the community

and hold tokens. Consider a positive shock to At (i.e., dAt > 0), this negative impact on

Nt through the expected token appreciation counteracts the direct positive impact on Nt

through a higher trade surplus, making Nt less responsive to dAt than the case without

tokens. Similarly, following a negative shock to At (i.e., dAt < 0), the trade surplus declines,

but µPt increases, which induces more agents to hold tokens than the case without tokens.

The figure also implies a negative time-series correlation between Nt and µPt , which is

to be distinguished from the partial equilibrium comparative statics in Proposition 1. As

more and more people adopt, the investment motive declines because the contemporaneous

adopter demand dominates and is priced in.
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Figure 6: Token Price-to-Blockchain Productivity Ratio and Volatility.

3.4 The Impact of Endogenous Adoption on Token Price

The Run-up of Token Price Volatility. The dynamics of user adoption in turn affects

the volatility of token price. When φ = 0, agents’ decision to participate becomes irrelevant.

Every agent participates, so Nt = 1, and token price is given by Equation (18) and the ratio

of Pt to At is a constant. Therefore, the diffusion of token price, i.e., σPt , is equal to σA.

A key theme of this paper is the endogenous dynamics of user adoption. When φ > 0, the

ratio of Pt to At depends on the ut, the threshold value of agent-specific needs for blockchain

transactions, above which an agent participates. The variation of Nt feeds into Pt/At, and

therefore, amplifies the volatility of token price beyond σA, the level of volatility when the

issue of user adoption is irrelevant.

The left panel of Figure 6 plots Pt/At. As shown in Equation (15), this ratio follows

closely the dynamics of Nt shown in Figure 4, but is steeper in the early stage (i.e., low At

region). The right panel of Figure 6 plots the ratio of token price volatility to σA, which

eventually converges to 1 as Nt approaches one and Pt approaches its asymptote. At its

height, endogenous user adoption amplifies token price volatility (or instantaneous standard

deviation, to be precise) by 1.4%, but the excess volatility eventually declines with further

adoption. We remind the reader that the result obtains under the premise that token price is
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purely driven by the fundamental productivity and there is no token/platform competition

as described in Section 4.3. The large volatility observed in practice is likely due to platform

competition and non-fundamental-based speculations.

What is interesting is the qualitative implications: as a new platform is gradually adopted,

one may observe dormant token price variation, followed by a volatility run-up before the

eventual stabilization. A key result of this paper is this the mutual effect between Nt and Pt

in both growth and volatility. Especially in the early stage of adoption, user participation

amplifies the growth and volatility of token price, while at the same time, is being affected by

agents’ expectation of future token price appreciation and the volatility of such expectation.

Risk and Return under the Physical Measure The expected token price appreciation

under the physical measure is

µ̂Pt = µPt + ηρσPt . (36)

The covariance between token price change and SDF shock, i.e., ρσPt , is priced at η. If

the shock to blockchain productivity is orthogonal to SDF shock (ρ = 0), then µ̂Pt = µPt .

Next, we graphically illustrate how risk premium varies across different stages of platform

development. Figure 7 plots the token risk premium, i.e., µ̂Pt −r, under the physical measure

against ln (At). As At increases, the risk-neutral drift of token price (µPt ) declines, while the

volatility (σPt ) follows a hump-shaped curve, which dominates the dynamics of risk premium.

Our risk premium of 200% is higher than the average annual return to the cryptocurrency

portfolio in our sample (27%). The main reason is the decline of cryptocurrency market value

in 2018. In the next section, we discuss an extension of the model that features time-varying

token beta, which may generate such a decline and a risk premium more in line with data.

4 Discussion and Extension

4.1 Endogenous Growth: from User Base to Productivity

In this paper, our primary focus is on the endogenous and joint dynamics of token price

and user base. Through token price that reflects agents expectation, the popularity of a

platform in the future increases the present user base. Our analysis thus far has taken the

blockchain productivity process as exogenous. In reality, many token and cryptocurrency

31



Figure 7: Expected Capital Gain under the Physical Measure.

applications feature an endogenous response of platform productivity to the variation of user

base.

A defining feature of blockchain technology is the provision of consensus on decentralized

ledgers. In a “proof-of-stake” system, the consensus is more robust when the user base is large

and dispersed because no single party is likely to hold a majority of stake; in a “proof-of-work”

system, more miners potentially deliver faster and more reliable confirmation of transactions,

and miners’ participation in turn depends on the size of user base through the associated

media coverage (attention in general), transaction fees, and token price. More broadly, At

represents the general usefulness of the platform. When more users participate, more types

of activities can be done on the blockchain. Moreover, a greater user base potentially directs

greater resources and research into the blockchain community, accelerating the technological

progress.

The endogeneity of blockchain productivity and its dependence on the user base highlight

the decentralized nature of this new technology. To reflect this fact and discuss its theoretical

implications related to the growth and volatility amplification effects, we modify the process

of At as follows:
dAt
At

=
(
µA0 + µA1 Nt

)
dt+ σAdZt. (37)

By inspection of Equation (2), the definition of trade surplus, it seems that At and Nt are
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not separately identified from the perspective of individual users, because either of the two

is simply part of the marginal productivity. However, this argument ignores the fact that by

feeding Nt into the process of At, the growth rate of At is no longer i.i.d.

Consider the case where dµA (Nt) /dNt > 0. A higher level of Nt now induces faster

growth of At, which leads to a higher level of Nt in the future. Similarly, a lower current level

of Nt translates into a downward shifting of the path of Nt going forward. In other words,

the endogenous growth of At induces persistence in Nt. In our benchmark setting, Nt is reset

every instant, depending on the exogenous level of At. Yet, here path dependence arises,

which tends to amplify both the growth and unconditional volatility of Nt by accumulating

and propagating shocks to At. A formal analysis of this extension is certainly important in

the light of improving quantitative performances of the model.

Another way to achieve such path dependence is to assume that agents’ decision to join

the community or quit incurs an adjustment cost, so Nt becomes the other aggregate state

variable, just as in macroeconomic models where capital stock becomes an aggregate state

variable when investment is subject to adjustment cost. However, this specification does not

capture the endogenous growth of At.

4.2 New Economy, Token Beta, and “Bubble”

So far, we have fixed the correlation between SDF shock and shock to At as a constant.

Yet as a blockchain platform or the general technology gains popularity, eases, its token is

becoming a systematic asset. Pástor and Veronesi (2009) emphasize that the beta of new

technology tends to increases as it becomes mainstream and well adopted. Here, we allow

the correlation between SDF and At to depend on Nt, and study its implications on token

price. Specifically, we decompose the technological shock into two components under the

physical measure,

dẐt = ρ (Nt) dẐ
Λ
t +

√
1− ρ (Nt)

2dẐI
t , (38)

where the standard Brownian shock, dẐI , is independent from the SDF shock, dẐΛ
t . There-

fore, the correlation between technological shock and SDF shock is ρ (Nt), where we assume

dρ/dNt > 0, that is the blockchain productivity shock becomes increasingly systematic as
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the user base grows. Under the risk-neutral measure, we have

dAt
At

=
[
µ̂A − ηρ (Nt)σ

A
]
dt+ σAdZt, (39)

so the risk-neutral, expected growth rate of At is µ̂A− ηρ (Nt)σ
A, which now declines in Nt.

Therefore, as At grows, there are two opposing forces that drive Pt. On the one hand,

the mechanisms that increase Pt are still there: when At directly increases the flow utility

of token, or indirectly through Nt, token price increases. On the other hand, through the

increase of Nt, the expected growth of At under the risk-neutral measure declines, which

pushes Pt down. If our previous mechanisms work in the early stage of adoption while the

channel of Nt-dependent token beta dominates in the later stage of adoption, what we shall

see in the equilibrium will be a bubble-like behavior – Pt rises initially, and later as Nt rises,

Pt declines because the risk-neutral expectation of At growth declines.

We complement Pástor and Veronesi (2009) in that our model allows the increase in the

correlation between the SDF and At to be purely driven by user base without relying on

learning. Admittedly, this depends on the specific functional form of ρ (Nt). The learning

mechanism in Pástor and Veronesi (2009) may serve as a micro-foundation, and there could

be other channels that the user base affects the correlation between blockchain technological

shock and SDF shock.16

4.3 Alternative Tokens and Reflecting Boundary

Many blockchain platforms accommodate not only their native tokens but also other

cryptocurrencies. For example, any ERC-20 compatible cryptocurrencies are accepted on

Ethereum.17 To address this issue, we may consider an alternative upper boundary of At.

Define ψ as the cost of creating a new cryptocurrency that is perfect substitute with the token

we study because it functions on the same blockchain and therefore faces the same common

blockchain productivity and agent-specific trade needs. This creates a reflecting boundary

16Pástor and Veronesi (2009) discusses network effect in Appendix B, but does not model agent hetero-
geneity, and thus does not produce endogenous gradual adoption of the new technology (the adoption there
is either now or all at a later time).

17ERC-20 defines a common list of rules for all tokens or cryptocurrencies should follow on the Ethereum
blockchain.
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at A characterized by a value-matching condition and a smooth-pasting condition:

P
(
A
)

= ψ and P ′
(
A
)

= 0. (40)

When token price increases to ψ, entrepreneurs outside of the model will develop a new

cryptocurrency that is compatible with the rules of our blockchain system. So, the price

level never increases beyond this value. Because it is a reflecting boundary, we need to

rule out jumps of token prices, so the first derivative of P (At) must be zero. Again we

have exactly three boundary conditions for a second-order ODE and an endogenous upper

boundary that uniquely pins down the solution.

Similarly, we may consider potential competing blockchain systems, and interpret ψ as

the cost of creating a new blockchain system and its native token, which together constitute

a perfect substitute for our current system. This creates the same reflecting boundary for

token price. When token price increases to ψ, entrepreneurs outside of the model will build

a new system.

Proposition 6 (Alternative Boundary). The upper boundary condition is given by Equa-

tion (40) in the two following cases: (1) the blockchain system accepts alternative tokens or

cryptocurrencies that can be developed at a unit cost of ψ; (2) an alternative blockchain sys-

tem that is a perfect substitute of the current system can be developed at a cost of ψ per unit

of its native tokens.

While our framework accommodates the effect of competition, a careful analysis of crypto

industrial organization certainly requires more ingredients, especially those that can distin-

guish between the entry of multiple cryptocurrencies into one blockchain system and com-

peting blockchain systems. Related is the impact of one platform using another platform’s

native tokens. We explore these issues in on-going research.

4.4 Token Supply Schedule

In practice, many cryptocurrencies and tokens feature an increasing supply over time (for

example, Bitcoin) or state-contingent supply in order to stabilize token price (for example,

Basecoin). Our framework can be modified to accommodate this feature, and thus, serve

as a platform for experimenting the impact of token supply on user base growth and token
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price stability. For example, we may consider the law of motion of token supply M given by

an exogenous stochastic process, for example, as follows

dMt = µM (Mt, Nt) dt+ σM (Mt, Nt) dZ
A
t . (41)

A new Markov equilibrium features two aggregate state variable, At and Mt.

An alternative formulation is to consider Poisson-arriving incremental of M , which closely

resemble the Bitcoin supply schedule. This formulation has the analytical advantage that

equilibria between two Poisson arrivals still have only one state variable At. We can solve

the model in a backward induction fashion, starting from the asymptotic future where token

supply has plateaued and moving back sequentially in the Poisson time given the value

function from the previous step.

As in many macroeconomic models, our framework features monetary neutrality: dou-

bling the token supply from now on simply reduces token price by half and does not impact

any real variables. However, neutrality is only achieved if the change of token supply is

implemented uniformly and proportionally for any time going forward. If token supply is

adjusted on a contingent basis, agents’ expectation of token price appreciation will be af-

fected, through which supply adjustments influence user base, token demand, and the total

trade surplus realized on the platform.

Finally, we emphasize that to achieve the desirable effects of a token supply schedule, the

schedule must be implemented automatically without centralized third-party interventions,

so that dispersed agents take the supply process as given when making decisions. Such

commitment to rules and protocols highlights a key difference between cryptocurrency sup-

ply and money supply by governments – through the discipline of decentralized consensus,

blockchain developers can commit to a token supply schedule. A clearly defined mandate for

central bankers (e.g., inflation and employment targeting) reflects the push for commitment

to a state-contingent monetary policy, but in reality, discretions abound, especially in the

face of unforeseeable events and political regime transitions.
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5 Institutional Background

In this section, we describe the development of the blockchain technology, and then clarify

various concepts associated with cryptocurrency, which are not mutually exclusive and are

starting to be used interchangeably. Importantly, we highlight two salient features shared

among the majority of cryptocurrencies, crypto-tokens, and platform currencies: first, they

are used as media of exchange by design (“token embedding”); second, their typical appli-

cation scenarios exhibit some forms of network effect (“user-base externality”).

Blockchain, Cryptocurrency, and Token. The advances in FinTech and sharing econ-

omy is largely driven by the increasing preference for forming peer-to-peer connections that

are instantaneous and open, which is transforming how people interact, work together, con-

sume and produce. Blockchain-based applications are part of an attempt to create a financial

architecture to reorganize the society into a set of networks of human interactions, allowing

peers unknown to and distant from one another to interact, transact, and contract without

relying a centralized trusted third party. The technology is believed to potentially avoid

single point of failure and even reduce concentration of market power, but still face many

challenging issues.18

Even though not always necessarily required, a majority of blockchain applications entail

the use of cryptocurrencies and tokens. Cryptocurrencies are cryptography-secured digital or

virtual currencies. Bitcoin represents the first widely-adopted decentralized cryptocurrency,

and popularized the concept.19 Besides Bitcoin, over 1000 different “altcoins” (stand for for

alternative cryptocurrency coins, alternative to Bitcoin) have been introduced over the past

few years and many central banks are actively exploring the area for retail and payment

systems.20 Many altcoins such as Litecoin and Dogecoin are variants (forks) from Bitcoin,

18Although Bank of England governor Mark Carney dismissed Bitcoin as an alternative currency, he
recognized that the blockchain technology benefits data management by improving resilience by “eliminating
central points of failure” and enhancing transparency and auditability while expanding what he called the
use of “straight-through processes” including with smart contracts. In particular, “Crypto-assets help point
the way to the future of money”. See, e.g., beat.10ztalk.com. For various applications of the technology, we
refer the readers to Harvey (2016) and Yermack (2017), and for smart contracting, Cong and He (2018).

19Many retailers in Japan already accept Bitcoins (e.g., Holden and Subrahmanyam (2017)), not to mention
that many ICOs are paid using Bitcoins.

20For example, People’s Bank of China aims to develop a digital currency system; Bank of Canada and
Monetary Authority of Singapore use blockchain for interbank payment systems; Deutsche Bundesbank
works on prototype of blockchain-based settlement systems for financial assets; in a controversial move, the

37

https://beat.10ztalk.com/2018/03/02/bank-of-englands-mark-carney-says-cryptos-point-the-way-to-the-future-of-money/


with mofidications to the original open-sourced protocol to enable new features. Others such

as Ethereum and Ripple created their own Blockchain and protocol to support the native

currency. Cryptocurrencies are typically regarded as payment-focused and primarily associ-

ated with their own independent blockchain. In these payment and settlement applications

as exemplified by Bitcoin and Ripple, cryptocurrencies obviously act as media of exchange

on their respective blockchain platforms.

Meanwhile, Blockchain-based crypto-tokens have also gained popularity. In what is

known as Initial Coin Offerings (ICO), entrepreneurs sell “tokens” or “AppCoins” to dis-

persed investors around the globe.21 Tokens are representations of claims on issuers’ cash-

flow, rights to redeem issuers’ products and services, or media of exchange among blockchain

users. They usually operate on top of an existing blockchain infrastructure to facilitates the

creation of decentralized applications.22

However, it is far from clear how cryptocurrencies and tokens derive values and how they

should be adopted given their large volatilities. Consequently, there lacks no critics of the

development of cryptocurrency, at least Bitcoin, in both the industry and academia.23 ICOs

are also facing quagmires regarding its legitimacy and distinction from security issuance.24

In the recent hearing on Capital Markets, Securities, and Investment Wednesday, March 14,

2018, the regulators also appear rather divided on the future of cryptocurrencies, digital

currencies, ICOs, and Blockchain development.

Obviously, some tokens derive their value from the company’s future cashflow, and thus,

serve a function similar to securities (thus termed “security tokens”). The vast majority

of ICOs that launched in 2016 and 2017 were “utility tokens”, which include many of the

highest-profile projects: Filecoin, Golem, 0x, Civic, Raiden, Basic Attention Token (BAT),

government of Venezuela became the first federal government to issue digital currency and announced on
Feb 20, 2018 the presale of its “petro” cryptocurrency — an oil-backed token as a form of legal tender that
can be used to pay taxes, fees and other public needs.

21While the first ICO in 2013 raised a meager $ 500k and sporadic activities over the next two years.
2016 saw 46 ICOs raising about $ 100m and according to CoinSchedule, in 2017 there were 235 Initial Coin
Offerings. The year-end totals came in over $3 billion raised in ICO. In August, 2017, OmiseGO (OMG) and
Qtum passed a US$1 billion market cap today, according to coinmarketcap.com, to become the first ERC20
tokens built on the Ethereum network and sold via an ICO to reach the unicorn status.

22By “on top of” a blockchain, we mean that one can use smart contract templates, for example on the
Ethereum or Waves platform, to create tokens for particular applications, without having to create or modify
codes from other blockchain protocols.

23Rogoff (2017) and Shiller (2017) are notable representatives, although Cochrane argues otherwise in The
Grumpy Economist, Nov 20, 2017.

24See, for example, “Token Resistance,” The Economist, November 11th, 2017.
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and more. As we illustrate using some of the aforementioned tokens shortly, utility tokens

are often the required media of exchange among users for certain products or services, or

represent certain opportunities to provide blockchain services for profit as in the case of

“stake tokens”. Precisely here lies the key innovation of the blockchain technology: allowing

peer-to-peer interactions in decentralized networks, as opposed to designing and auctioning

coupons issued by centralized product/service providers – an old phenomenon economists

understand relatively well (e.g., pay-in-kind crowdfunding).25

In this paper, we focus on the common features shared by cryptocurrencies and utility

tokens that serve essentially the role of media of exchange among blockchain users. We thus

use “tokens”, “cryptocurrencies”, etc., interchangeably and often collectively refer to them

as “tokens”. Next, we highlight these unique features of the blockchain technology that

distinguishes the economics of introducing and valuing tokens from what we already know

in the literature of monetary economics and asset pricing.

Token Embedding. Many blockchain-based decentralized networks introduce native cur-

rencies – a phenomenon we call “token embedding”. In the following, we elaborate on the

rationales behind such phenomenon and relate them to the issue of money velocity, motivat-

ing our formal analysis in Section 2.

First, in the virtual economy, potential users are likely from around the globe, using fiat

money issued by and subject to specific countries’ legal and economic influences. Transacting

in a uniform currency is simply more convenient, free from the transaction costs of currency

exchange. For example, it is cheaper to make international payments and settlements using

Ripples (XRP) on the Ripple network. Even though Ethereum platform allows other App-

Coins and cryptocurrencies (provided that they are ERC-20 compatible), many transactions

and fundraising activities are still carried out using Ethers (ETH) because of its convenience

and popularity (i.e., widely accepted by Ethereum users).

Second, from a theoretical perspective, it is advantageous to adopt a standard unit of

account in the ecosystem because it mitigates the risks of asset-liability mismatches when

they are denominated in different units of account (Doepke and Schneider (2017)). This is

25Media often analogizes utility tokens to “corporate coupons”, which allow consumers to redeem products
or services from the service provider. Although some tokens are indeed corporate coupons, it is thus far
neglected that the majority of them are not. Not only the valuation framework differs, but the legal and
regulatory implications differ as well.
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particularly relevant on a blockchain platform designed for smart contracting. Some argue

that the lack of trust in an online space, very much due to the anonymity of participants,

implies that trade has to be quid pro quo, so a means of payment is required (Kiyotaki and

Wright (1989)).

Then why not just use US dollars or other existing currencies as settlement media? This

leads to the third rationale: native currency helps to incentivize miners, validators, and

users to contribute to the stability, functionality (provision of decentralized consensus), and

prosperity of the ecosystem (Nakamoto (2008)). For example, for blockchain applications

where decentralized consensus is achieved through the mechanism of “proof-of-stake”, the

ownership of native currency entitles platform users to be the consensus generator/recorder;

for blockchains relying on “proof-of-work” such as Bitcoins and Filecoins, native tokens are

used to reward miners for block creations in the consensus processes; moreover, to profit from

providing validation services, OmiseGo tokens (OMG) are required as proof of stakes on the

OmiseGo blockchain. If a blockchain application is developed without a native currency, then

the incentive of users is no longer directly linked to the platform in question. Practitioners

are very well aware of this issue, as Strategic Coin explains in its BAT token launch research

report.26

Fourth, introducing native currency allows the issuer to collect seigniorage, especially

through ICOs (e.g., Canidio (2018)). In contrast to sovereigns who cannot easily commit

to a money supply rule, blockchain developers can commit to an algorithmic rule of token

supply to generate scarcity. Provided that users need to hold tokens to transact on the

platform, a positive token price can arise in an equilibrium, and such value is collected by

the developers at ICO, reflecting a form of monopoly rent – the fact that users can only

conduct some activities on a particular blockchain platform translates into a high price of

its native currency, and more ICO revenues to the developer.

These rationales motivate us to focus on platforms with native tokens. But we still need

to ask why cryptocurrency may have a determinant value in the first place. In principle, if one

wants to transact on a blockchain platform, one can exchange dollars for its native currency,

and make a transfer on the blockchain, and then immediately, the payee may exchange the

26BAT serves as a medium exchange between users, advertisers, and publishers who participate in the
Brave browser ecosystem. Advertisers purchase ads using BAT tokens, which are then distributed among
both publishers and browser users as compensation for hosting the ads and viewing them, respectively.
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native currency back into dollars. If the whole process happens instantaneously, i.e., the

velocity of native currency is infinite, then there does not exist a net demand for native

currency, so there exists an equilibrium of zero dollar price and equilibria with any positive

level of price of native currency. Therefore, we need to pin down a positive demand, so that

with a algorithmically controlled supply, token price can be determined. This brings us to

the second aspect of token embedding: agents actually need to hold the medium of exchange

to profit from on-chain activities. This is indeed the case in practice for at least three reasons,

in addition to the obvious practical concern that converting between the native token and

other fiat money have high fixed costs—a concept similar to convenience yield of currencies

and commodities.

First, a demand may arise because decentralized miners or service providers (“keepers”)

may have to hold the native currencies to earn the right to serve the system. Proof-of-

Stake protocols typically fall in this category. These tokens are sometimes referred to as

work tokens or staking tokens, and notable implementations include Keep (off-chain private

computation), Filecoin (distributed file storage), Truebit (off-chain computation), Livepeer

(distributed video encoding), and Gems (decentralized mechanical Turk). To enforce some

sort of mechanism to penalize workers who fail to perform their job to some pre-specified

standard, work tokens have to be held. For example, in Filecoin, service providers contractu-

ally commit to storing some data with 24/7 access and some minimum bandwidth guarantee

for a specified period of time. During the contract term, service providers must “escrow”

some number of Filecoin, which can be automatically slashed (taken away) should they fail

to perform the service. Staking tokens in OmiseGo are also emerging, where locking up

tokens in a smart contract allows a user to access the market place.

Second, blockchains enable the use of smart contracts (Cong and He (2018)). Though not

yet widely implemented, smart contracts may involve automated transfers for contingencies

specified over an extended period of time, effectively requiring escrowing the tokens.27 In

other words, agents hold cryptocurrency as collateral. While this is similar to the traditional

third-party escrow accounts, what it implies is that the tokens are locked up with at least

one contracting party.

27Balvers and McDonald (2017) also argues that automated collateral in terms of tokens can help stabilize
the purchasing power of cryptocurrency, a point very related to our emphasize on a positive crytocurrency
demand.
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Third, there are technical and legal limits on how quickly transactions can be validated

and accepted. While many protocols such as the Lightening Network and Ethereum process

transactions significantly faster than Bitcoin (seconds versus 10-11 minutes), the decentral-

ized nature of the validation means it always takes some amount of time to ensure robustness

and synchronization of the consensus. During such confirmation time, cryptocurrency can-

not be liquidated by either party of the transfer. For example, a coinbase account requires

at least three confirmations—blocks added subsequently—before a transaction shows up

and become spendable. Related is the traditional anti-money-laundering practice where one

party of the transaction needs to show the funding source and prove it has been in the ac-

count for a certain period of time, as seen for example in the KYC (know-your-customer)

process for investing in the pre-sale of Dfinity tokens.

Next, we discuss user-base externality, another key feature of decentralized network that

our model captures.

User-Base Externality. User-base externality has been well recognized as one of the

defining features of P2P platforms, sharing economy, and various decentralized systems.

When more people join the platform, individuals enjoy more surplus through interacting

with other users because it is easier to find a trade partner. “Trade” here can be very general,

encompassing selling products and services and signing a long-term financing contracts. The

utility of using cryptocurrencies and crypto-tokens obviously goes up when more people use

the blockchain platform.28 Moreover, UnikoinGold on Unikrn (decentralized token for betting

on e-sports and gambling) and Augur (decentralized prediction market) are examples showing

that achieving a critical mass is crucial in platform business (e.g., Evans and Schmalensee

(2010)).

That said, existing discussions on user-base externality are often static, leaving out inter-

temporal effects that can be even more important. The fact that a larger user base today

helps improve the technology tomorrow, and a larger anticipated user base tomorrow en-

courages greater investments today are examples of how user-base externality can play an

28According to CoinSchedule, 34.5% of the ICO-financed projects over the past two years focus on infras-
tructure. While the other top categories included trading and investing at 13.7%, finance at 10.2%, payments
at 7.8%, data storage also at 7.8%, and drugs and healthcare at 5.5%, amongst dozens of other industry
categories. Regardless the ICO category, these projects share user-base externality as a common attribute,
and in terms of user adoption, exhibit a S-shaped development curve – the growth of user base feeds on
itself.
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inter-temporal role. Filecoin the data storage network, Dfinity the decentralized computa-

tion infrastructure, marketplace such as overstock (and its ICO), and infrastructure projects

such as Ethereum and LITEX all exhibit user-base externality in both contemporaneous and

inter-temporal fashions, as our model highlight.

Commons and Assets with Network Effect. Given token embedding and user-base

externality, tokens essentially constitute an asset that delivers owners “dividends” (in terms

of user surplus) which increase in the scale of the platform. This type of assets are not

restricted to tokens or blockchains. Network effect or user-base externality is prevalent

and particularly important in the early stage of adoption for social networks and payment

networks such as Facebook, Twitter, YouTube, WeChat, and PayPal. Other examples of

such assets include membership of clubs with benefits growing in the network size, and

collectibles of limited edition for sports teams.

As such, the insights gleaned from our model may apply to platform currencies in general,

such as those used in interactive online games (e.g., World of Warcraft), virtual worlds (e.g.,

Second Life), and social networks (e.g., Facebook). Our findings also help inform what

is likely to happen for other sharing economy applications such as UBER and AirBnB to

introduce native tokens. In fact, consistent with our model, when Tencent QQ introduced

Q-coin, a case to which our model is applicable, many users and merchants quickly started

accepting them even outside the QQ platform (mapped to increase in system trade surplus

in our model), tremendously accelerating adoption and token price appreciation.29

At a holistic level, this type of asset is important in the creation of commons that un-

derly modern life. TCP/IP, HTTP, GPS, and the English language are some early exam-

ples.30 Instead of having government or private firms facilitating the building of commons,

blockchains offer new possibilities and as we show earlier, token embedding plays important

roles in growing commons.

29Annual trading volume reached billions of RMB in late 2000s and the government has to intervene. See
articles China bars use of virtual money for trading in real goods and QQ: China’s New Coin of the Realm?
(WSJ). Halaburda and Sarvary (2016) provide comprehensive discussions on various platform currencies.

30Alex Tabarrok gives a nice treatise on the concept in Economics, Web/Tech June 4, 2018, “Blockchains
and the Opportunity of the Commons.
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6 Conclusion

This paper provides the first dynamic pricing model of cryptocurrencies and tokens,

taking into consideration the user-base externality and endogenous adoption. Our model

highlights a key benefit of introducing cryptocurrencies and crypto-tokens on blockchain

platforms: when agents expect future technology or productivity progress, token price ap-

preciation induces more agents to join the platform by serving as an attractive investment. In

other words, token capitalizes future growth and speeds up user adoption, which is welfare-

enhancing. Tokens can also reduce user base volatility. We characterize the inter-temporal

feedback mechanism and show it leads to an S-shaped adoption curve in equilibrium, and

token price dynamics crucially depend on the platform productivity, endogenous user adop-

tion, and user heterogeneity. More generally, our framework can be applied to dynamic

pricing of assets associated with a platform or system with network externality.
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Appendix - Proofs

A1. Proof of Proposition 1

Figure 1 illustrates the equilibrium determination given At and µPt , which we take as

a snapshot of the dynamic equilibrium with time-varying productivity and expectation of

price change. Obviously the response function is

R
(
n;At, µ

P
t

)
= 1−G

(
u
(
n;At, µ

P
t

))
. (42)

The equilibrium Nt is the intersection of the 45o line and the response curve. Define A(n)

to be the unique solution to

1−G
(
− ln (n) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
= n, ∀n ∈ (ε,Nt). (43)

for some N ∈ (0, 1). Then by the Least-Upper-Bound-Property of real numbers, {A(n), n ∈
(0, 1)} has an infimum, which we denote by A. When At > A, there is an n ∈ (0, 1) such

at the LHS of (49) is greater than the RHS, i.e., the response curve is above the 45o line.

Combined with the fact that R
(
n;At, µ

P
t

)
is continuous and R

(
1;At, µ

P
t

)
≤ 1, and that he

response curve is continuous in [0, 1], we conclude that the response curve crosses the 45o

line at least once by the Intermediate Value Theorem.

Next, given g(u)
1−G(u)

is increasing, we show that the response curve crosses the 45o line

exactly once. First note that R
(
n;At, µ

P
t

)
− n either has positive derivative or negative

derivative at n = 0. If it has positive derivative, then suppose as n increases, the first time

the response curve crosses the 45o at n′. Then the derivative of R
(
n;At, µ

P
t

)
− n must be

weakly negative at n′, i.e.,

g
(
u
(
n′;At, µ

P
t

))
≤ n′ = R

(
n′;At, µ

P
t

)
= 1−G

(
u
(
n′;At, µ

P
t

))
(44)

now suppose the response curve next crosses the 45o line from below at n
′′
> n′. Then the
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derivative of R
(
n;At, µ

P
t

)
− n at n′′ is

g
(
u
(
n′′;At, µ

P
t

))
n′′

− 1 =
g
(
u
(
n′′;At, µ

P
t

))
1−G (u (n′′;At, µPt ))

− 1 (45)

<
g
(
u
(
n′;At, µ

P
t

))
1−G (u (n′;At, µPt ))

− 1 (46)

=
g
(
u
(
n′;At, µ

P
t

))
n′

− 1 (47)

< 0 (48)

where the first inequality comes from the monotone hazard rate and the fact that u
(
n;At, µ

P
t

)
is decreasing in n for n ∈ [ε, 1 + ε], and the second inequality follows from (44). This contra-

dicts the presumption that the response curve reaches the 45o line from below. Therefore,

we conclude there is a unique equilibrium adoption level n.

Now if R
(
n;At, µ

P
t

)
− n has negative derivative at n = 0, then simply taking n′ = 0

in the above argument, and again we arrive at the conclusion that there cannot be another

intersection at n′′ > n′. In sum, either we only have a degenerate Nt = 0 in equilibrium, or

we have exactly one Nt > 0 in equilibrium.

Finally, to show that a non-degenerate equilibrium Nt is increasing in µPt , consider µ̃Pt >

µPt . Suppose the contrary that in equilibrium Ñt ≤ Nt.

Given an equilibrium Nt, the response function satisfies that

1−G
(
− ln (n) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
> n, ∀n ∈ (0, Nt). (49)

We know that

Ñt = 1−G
(
u
(
Ñt;At, µ̃

P
t

))
= 1−G

(
− ln

(
Ñt

)
+ ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µ̃Pt

))
> 1−G

(
− ln

(
Ñt

)
+ ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
> Ñt, (50)

where the first inequality uses µ̃Pt > µPt and the second inequality uses the fact that Ñt ≤ Nt
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and (49). This contradiction implies that the equilibrium Nt has to be increasing in µPt .

A2. Proof of Proposition 3

From Equation (15), d2Pt
dA2

t
is Lipschitz continuous in dPt

dAt
, and we can verify that for finite

U , the problem of solving the ODE (15) under the boundary conditions (17) and the value

matching part of (19) at A∗ satisfies all the regularity conditions in Theorems 4.17 and 4.18

in Jackson (1968). Therefore according to the theorems, there is a unique solution, which

in turn implies that our boundary-value problem has a unique solution. As a remark, when

U = −∞, full adoption only happens when At → ∞ in (20). We conjecture the solution is

still unique, but the proof is beyond this paper.

A3. Proof of Proposition 5

First, we consider the case without token. Using Itô’s lemma, we can differentiate Equa-

tion (26), and then, by matching coefficients with Equation (27), we can derive the expres-

sions for µNt and σNt :

dNt = −g
(
uNTt

)
duNTt − 1

2
g′
(
uNTt

) 〈
duNTt , duNTt

〉
, (51)

where
〈
duNTt , duNTt

〉
is the quadratic variation of duNTt . Using Itô’s lemma, we differentiate

Equation (25)

duNTt = − 1

Nt

dNt +
1

2N2
t

〈dNt, dNt〉 −
1

At
dAt +

1

2A2
t

〈dAt, dAt〉

= −
(
µNt
Nt

−
(
σNt
)2

2N2
t

+ µA −
(
σA
)2

2

)
dt−

(
σNt
Nt

+ σA
)
dZA

t (52)

Substituting this dynamics into Equation (51), we have

dNt =

[
g
(
uNTt

)(µNt
Nt

−
(
σNt
)2

2N2
t

+ µA −
(
σA
)2

2

)
− 1

2
g′
(
uNTt

)(σNt
Nt

+ σA
)2
]
dt

+ g
(
uNTt

)(σNt
Nt

+ σA
)
dZA

t , (53)
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By matching coefficients on dZA
t with Equation (27), we can solve σNt .

Next, we consider the case with token. Once token is introduced, Nt depends on the

expected token price appreciation µPt . which is also a univariate function of state variable

At because by Itô’s lemma, µPt is equal to
(
dPt/Pt
dAt/At

)
µA + 1

2
d2Pt/Pt
dA2

t /A
2
t

(
σA
)2

. In equilibrium, its

law of motion is given by a diffusion process

dµPt = µµ
P

t dt+ σµ
P

t dZA
t . (54)

Now, the dynamics of ut becomes

dut =− 1

Nt

dNt +
1

2N2
t

〈dNt, dNt〉 −
1

At
dAt +

1

2A2
t

〈dAt, dAt〉

−
(

1− α
α

)(
1

r − µPt

)
dµPt −

(
1− α
α

)(
1

2 (r − µPt )
2

)〈
dµPt , dµ

P
t

〉
(55)

Let σut denote the diffusion of ut. By collecting the coefficients on dZA
t in Equation (55), we

have

σut = −σ
N
t

Nt

− σA −
(

1− α
α

)(
σµ

P

t

r − µPt

)
, (56)

which, in comparison with Equation (52), contains an extra term that reflects the volatility

of expected token price change. Note that, similar to Equation (51), we have

dNt = −g (ut) dut −
1

2
g′ (ut) 〈dut, dut〉 , (57)

so the diffusion of Nt is −g (ut)σ
u
t . Matching it with the conjectured diffusion coefficient σNt

gives σNt .

48



References

Acemoglu, Daron, Vasco M Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi, 2012, The
network origins of aggregate fluctuations, Econometrica 80, 1977–2016.

Athey, Susan, Ivo Parashkevov, Vishnu Sarukkai, and Jing Xia, 2016, Bitcoin pricing, adoption,
and usage: Theory and evidence, Working Paper.

Bakos, Yannis, and Hanna Halaburda, 2018, The role of cryptographic tokens and icos in fostering
platform adoption, .

Balvers, Ronald J, and Bill McDonald, 2017, Designing a global digital currency, Working Paper.

Biais, Bruno, Christophe Bisiere, Matthieu Bouvard, and Catherine Casamatta, 2017, The
blockchain fold theorem, Preliminary Work in Progress.

Brunnermeier, Markus K, and Yuliy Sannikov, 2014, A macroeconomic model with a financial
sector, American Economic Review 104, 379–421.

Canidio, Andrea, 2018, Financial incentives for open source development: the case of blockchain, .

Cao, Sean, Lin William Cong, and Baozhong Yang, 2018, Financial reporting and blockchains:
Collaborative auditing, mis-statements, and regulation, Working Paper.

Catalini, Christian, and Joshua S Gans, 2018, Initial coin offerings and the value of crypto tokens,
Discussion paper, National Bureau of Economic Research.

Chen, Hui, 2010, Macroeconomic conditions and the puzzles of credit spreads and capital structure,
The Journal of Finance 65, 2171–2212.

Chiu, Jonathan, and Thorsten V Koeppl, 2017, The economics of cryptocurrencies–bitcoin and
beyond, Working Paper.

Chiu, Jonathan, and Tsz-Nga Wong, 2015, On the essentiality of e-money, Discussion paper, Bank
of Canada Staff Working Paper.

Chod, Jiri, and Evgeny Lyandres, 2018, A theory of icos: Diversification, agency, and information
asymmetry, .

Ciaian, Pavel, Miroslava Rajcaniova, and dArtis Kancs, 2016, The economics of bitcoin price for-
mation, Applied Economics 48, 1799–1815.

Cong, Lin William, and Zhiguo He, 2018, Blockchain disruption and smart contracts, Forthcoming,
Review of Financial Studies.

, and Jiasun Li, 2018, Decentralized mining in centralized pools, Working Paper.

Doepke, Matthias, and Martin Schneider, 2017, Money as a unit of account, Econometrica 85,
1537–1574.

Easley, David, Maureen O’Hara, and Soumya Basu, 2017, From mining to markets: The evolution
of bitcoin transaction fees, Working Paper.

Evans, David S, and Richard Schmalensee, 2010, Failure to launch: Critical mass in platform
businesses, Review of Network Economics 9.

49
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