Discussion of Poeschl and Zhang "Bank Capital Regulation and Endogenous Shadow Banking Crises"

Francesco Ferrante

Federal Reserve Board¹

Federal Reserve Day Ahead Conference on Financial Markets and Institutions January 3 2019

Francesco Ferrante (FRB)

Overview of GKP Papers

Model based on several papers by Gertler, Kiyotaki and Prestipino (GKP)

Image: Image:

Overview of GKP Papers

Model based on several papers by Gertler, Kiyotaki and Prestipino (GKP)

- GK 2015 (AER)-(Perfect Foresight):
 - DSGE model to study macro effects of bank runs
 - Runs unanticipated or following ad hoc sunspot probability function

Model based on several papers by Gertler, Kiyotaki and Prestipino (GKP)

- GK 2015 (AER)-(Perfect Foresight):
 - DSGE model to study macro effects of bank runs
 - Runs unanticipated or following ad hoc sunspot probability function
- **2** GKP 2016a (Macro Handbook)-(Perfect Foresight):
 - DSGE model with runs on shadow banks
 - Anticipated runs with reduced form sunspot probability function

Model based on several papers by Gertler, Kiyotaki and Prestipino (GKP)

- GK 2015 (AER)-(Perfect Foresight):
 - DSGE model to study macro effects of bank runs
 - Runs unanticipated or following ad hoc sunspot probability function
- Q GKP 2016a (Macro Handbook)-(Perfect Foresight):
 - DSGE model with runs on shadow banks
 - Anticipated runs with reduced form sunspot probability function
- 6 GKP 2016b (AER,P&P)-(Global):
 - Model with occasional constraints and endogenous run probability
 - Fluctuations in run prob. driven by fundamentals
- GKP 2018 (WP)-(Global):
 - quantitative New-Keynesian DSGE model, endogenous run prob.
 - model matches business cycles, Great Recession, and boom-busts

Model based on several papers by Gertler, Kiyotaki and Prestipino (GKP)

- GK 2015 (AER)-(Perfect Foresight):
 - DSGE model to study macro effects of bank runs
 - Runs unanticipated or following ad hoc sunspot probability function
- Q GKP 2016a (Macro Handbook)-(Perfect Foresight):
 - DSGE model with runs on shadow banks
 - Anticipated runs with reduced form sunspot probability function
- **GKP 2016b (AER,P&P)-(Global)**:
 - Model with occasional constraints and endogenous run probability
 - Fluctuations in run prob. driven by fundamentals
- GKP 2018 (WP)-(Global):
 - quantitative New-Keynesian DSGE model, endogenous run prob.
 - model matches business cycles, Great Recession, and boom-busts

Paper by Poeschl and Zhang (2018) combines 2 and 3

- Same setup of GKP (2016a)
 - Capital can be held by 3 agents with **different efficiency**: households (high inefficiency), retail banks (RB) (medium inefficiency), shadow banks (SB) (no inefficiency)
 - Financial structure: Households lend to RBs who lend to SBs
 - Agency problem limits borrowing and introduce **role for banks' net worths** as relevant state variables
 - Run on SBs: equilibrium with **RBs not rolling over SBs debt** and absorbing their capital

- Same setup of GKP (2016a)
 - Capital can be held by 3 agents with different efficiency: households (high inefficiency), retail banks (RB) (medium inefficiency), shadow banks (SB) (no inefficiency)
 - Financial structure: Households lend to RBs who lend to SBs
 - Agency problem limits borrowing and introduce **role for banks' net worths** as relevant state variables
 - Run on SBs: equilibrium with **RBs not rolling over SBs debt** and absorbing their capital
- New elements introduced by Poeschl and Zhang (2018) (PZ):
 - Capital accumulation
 - ② Global solution
 - Endogenous run probability
 - Additional regulatory constraints on banks' leverage

MAIN RESULTS:

- Paper focuses on run externality: agents don't internalize impact on run probability
- Paper quantifies welfare cost of runs on SBs: mainly come from expectation of run episodes
- A tighter regulatory leverage constraint on RBs
 - Decreases run probability (p^R) despite two opposing forces
 - Better capitalized RBs can absorb more capital from SBs in run equilibrium $\Rightarrow p^{R}\downarrow$
 - SB leverage increases (spillover effect) $\Rightarrow p^R \uparrow$
 - Outside of run this policy decreases the capital stock
 - Total effect on welfare is negative
- A tighter leverage constraint on **BOTH** RBs and SBs
 - Can eliminate spillover effect and decrease further p^R
 - Causes even larger welfare losses

• Very relevant and ambitious paper: interaction between RBs regulatory constraint, SBs leverage and run probability is novel

- Very relevant and ambitious paper: interaction between RBs regulatory constraint, SBs leverage and run probability is novel
- Main Comments
 - Run probability and exogenous shocks
 - Assumptions on sunspot probability and default cost might not be best way to model endogenous run probability
 - Would like to learn more about financial amplification in the model
 - 2 MacroPru experiments
 - It would be great if authors could find a policy that reduces run occurrence AND improves welfare
 - Analize alternative types of MacroPru policies

In GKP 2016b and GKP 2018 the endogenous run probability works as follows:

• The recovery rate on bank lending is

$$x_t^*(Z_t) = rac{R_{A,t}^*(Z_t)}{R_t} rac{\phi_{t-1}}{\phi_{t-1}-1}$$

where ϕ is leverage and Z_t are real shocks (TFP or capital quality)

- Define \bar{Z}_t such that $x_t^*(\bar{Z}_t) = 1$
- A run equilibrium exists iff $x_t^*(Z_t) < 1$ that is iff $Z_t < \overline{Z}_t$
- A run occurs if a run equilibrium exists AND a sunspot occurs (wprob χ)
- Expected probability of run at time t+1 is given by

$$E_t(p_{t+1}^R) = \chi \cdot prob[Z_{t+1} < \bar{Z}_{t+1} | Z_t]$$

- p_t^R driven by changes in probability of existence of run equilibrium
- Run lasts only one period

Endogenous Run Probability in PZ

In Poeschl and Zhang (2018)

• RBs recovery rate conditional on SBs default is given by

$$\tilde{x}_{t}^{*}(Z_{t},\xi) = \frac{\xi}{R_{A,t}(Z_{t})} \frac{\phi_{t-1}^{S}}{R_{t}} \frac{\phi_{t-1}^{S}}{\phi_{t-1}^{S}-1} = \xi x_{t}^{*}(Z_{t})$$

where ξ is default cost

- PZ assume a run equilibrium exists whenever $\tilde{x}_t^*(Z_t,\xi) < 1$
- A run occurs if a run equilibrium exists AND a sunspot occurs
- Sunspot probability follows $g(\tilde{x}_t^*)$ with $g(\tilde{x}_t^*)' < 0$ (similar to in GKP 2016a)
- Expected probability of run at time t+1 is given by

$$E_t(p_{t+1}^R) = E_t[g(\tilde{x}_{t+1}^*)\mathbb{1}(E_t(\tilde{x}_{t+1}^*) < 1)]$$

- p_t^R mainly driven by changes in sunspot probability
- Run equilibrium persists with probability π

Possible issues with default cost ξ

- Default cost does not imply any resource cost ⇒ it implies a transfer from RBs to HHs during a run. Is this realistic?
- Why does run equilibrium existence depend on x̃(Z_t, ξ) rather than x_t(Z_t)? Does this mean that banks default even if they would have resources to pay back borrowers?

Possible issues with default cost ξ

- Default cost does not imply any resource cost ⇒ it implies a transfer from RBs to HHs during a run. Is this realistic?
- Why does run equilibrium existence depend on x̃(Z_t, ξ) rather than x_t(Z_t)? Does this mean that banks default even if they would have resources to pay back borrowers?

SUGGESTION: Why not use same approach of GKP 2018 ?

- Drop default cost (and π)
- Run probability link to fundamentals is more intuitive
- Possible problem: in current model TFP shock might not generate enough amplification and endogenous fluctuations in x_t and p^R
- ξ and π might be needed to generate meaningful impact of SB runs

Financial Amplification in the Model

How strong is endogenous amplification in no-run equilibrium?

- Key to understand how leverage and x_t move with standard shocks
- Without fixed capital usually TFP causes small movements in asset prices and bank net worth
- In previous version of paper financial crises much less persistent than data
- It would be useful to see some IRFs for financial crises

Financial Amplification in the Model

How strong is endogenous amplification in no-run equilibrium?

- Key to understand how leverage and x_t move with standard shocks
- Without fixed capital usually TFP causes small movements in asset prices and bank net worth
- In previous version of paper financial crises much less persistent than data
- It would be useful to see some IRFs for financial crises

SUGGESTION Make sure you have amplification in No-Run equilibrium:

- Use capital quality shock
- Introduce nominal rigidities

Macroprudential Policies

- Model features several externalities \Rightarrow competitive equilibrium is inefficient
- However computing optimal policy is extremely challenging
- Authors' approach: consider simple rule for RBs leverage

$$\phi_t^R = \frac{Q_t k_t + \gamma b_t^R}{n_t^R} \le \min(\hat{\phi}_t^R, \bar{\phi}_t^R)$$

where $\hat{\phi}_t^R$ is leverage in comp. eq., and $\bar{\phi}_t^R = \frac{\hat{\phi}_t^R}{1+\tau_t}$

- \Rightarrow regulatory constraint always binding if $au_t > 0$
- Tricky part with simple rules: finding one that improves welfare
- In the model this type of MacroPru does not improve welfare
 - Decline in capital out of run states more than compensate decline in p_t^R

MY SUGGESTIONS:

() Make current regulatory constraint contingent on n_t^R

- Assume that $\bar{\phi}^R$ kicks in only when $n_t^R > \bar{n^R}$
- Consider occasionally binding constraints: regulation active only when incentive constraint not binding (high n_t^R)

MY SUGGESTIONS:

() Make current regulatory constraint contingent on n_t^R

- Assume that $\bar{\phi}^R$ kicks in only when $n_t^R > \bar{n^R}$
- Consider occasionally binding constraints: regulation active only when incentive constraint not binding (high n_t^R)
- 2 Alternative rule targeted at risk weight on b_t^R
 - Current rule weights b_t^R as in competitive equilibrium (γ)
 - Might look at rule curtailing lending to SBs more directly
 - Maybe use tax on lending to SBs ?

$$\frac{Q_t k_t + \gamma (1 + \tau^b_t) b^R_t}{n^R_t} \leq \hat{\phi}^R_t$$

- Very interesting paper: novel tradeoffs linked to increasing RBs capital buffers
- Paper can be improved in two dimensions
 - Modify endogenous run probability
 - Experiment alternative policies to try to obtain welfare gains

In older version of paper financial crises much less persistent than data

	Schularick and Taylor (2012)			Model		
	0 yr	0-1yr	0-2yr	0 yr	0-1yr	0-2yr
real GDP real Investment Bank Assets	-2.02% -3.45% -1.89%	-4.46% -12.45% -6.98%	-6.3% -19.9% -7.7%	-1.89% -8.32% -3.69%	-1.46% -6.15% -2.89%	-1.16% -4.69% -2.21%

Table 2: Untargeted financial crisis moments.

3

Image: A mathematical states and a mathem