Discussion of "Collateral Runs" by Sebastian Infante and Alexandros Vardoulakis

Lixin Huang Georgia State University

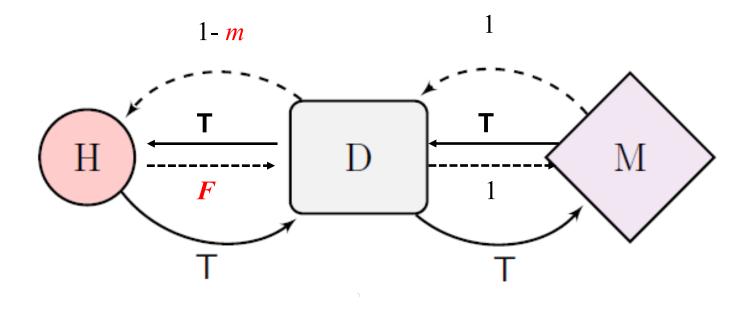
2019 Atlanta Fed Day Ahead Conference January 3, 2019

Summary

- A model of collateral runs
 - The dealer who lends cash to hedge funds engages in risky investments.
 - When the dealer's balance sheet deteriorates, hedge funds refuse to roll over repo contracts.
 - The authors characterizes conditions under which a unique threshold equilibrium exists.

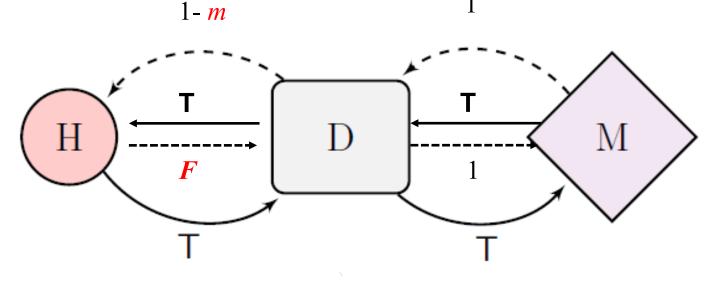
- An interesting paper.
- It needs to be more reader-friendly.
- Comparison with a one-period model illustrates the paper's strengths and weaknesses.

A One-period Model



• By assuming that the money market fund is extremely risk averse, there is no spill-over effect.

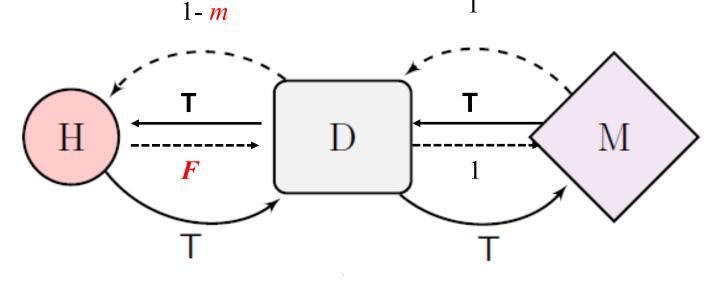
A One-period Model



1

- F = (1 m) (1 + r) > 1 m: F + m > 1
- The dealer invests *m* in a risky asset
- The dealer's equity is $m\tilde{R} + F 1$

A One-period Model



- If $m\tilde{R} + F 1 < 0$, then the dealer is insolvent.
- It is assumed that M has seniority over H, then H suffers.

- Both *m* and *F* are endogenous.
- It is not obvious why:

♦ *F* < 1

* The dealer has to invest everything in the risky asset; if the dealer invests a fraction α of *m* in the risky asset, then the dealer's equity becomes $\alpha m \tilde{R} + (1 - \alpha)m + F - 1$

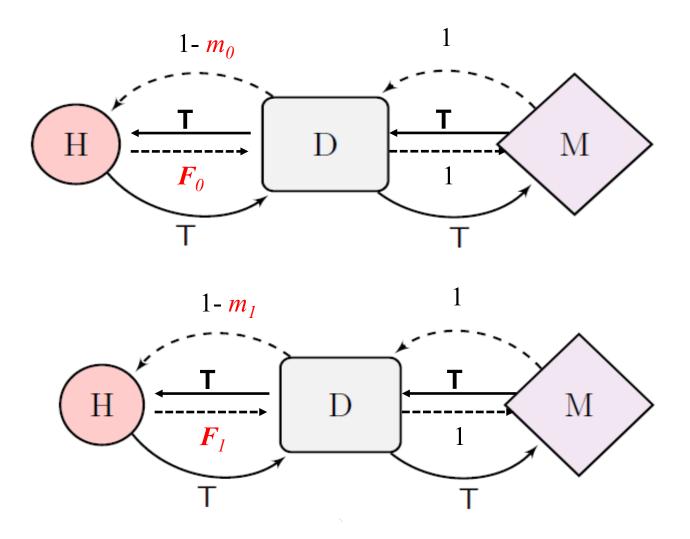
- The dealer is assumed to be risk-averse. If the dealer is sufficiently risk-averse, then the dealer is going to choose a very small α to make sure $(1 \alpha)m + F > 1$.
- Consider U'(0)= ∞ .

- In the good state, $R=R^U$, hedge funds get *T* back by paying *F*
- In the bad state, $R=R^D$, hedge funds lose *T*
- The authors assume that hedge funds receive a nonpecuniary value by owning *T*.
- How to interpret the non-pecuniary value ?

Equilibrium

- Equilibrium depends on the distribution of R.
- If the probability of R^U is high enough, then hedge funds want to borrow from the dealer.
- If the probability of R^U is low enough, then hedge funds refuse to borrow from the dealer.
- A typical borrower moral hazard problem.

A Two-period Model



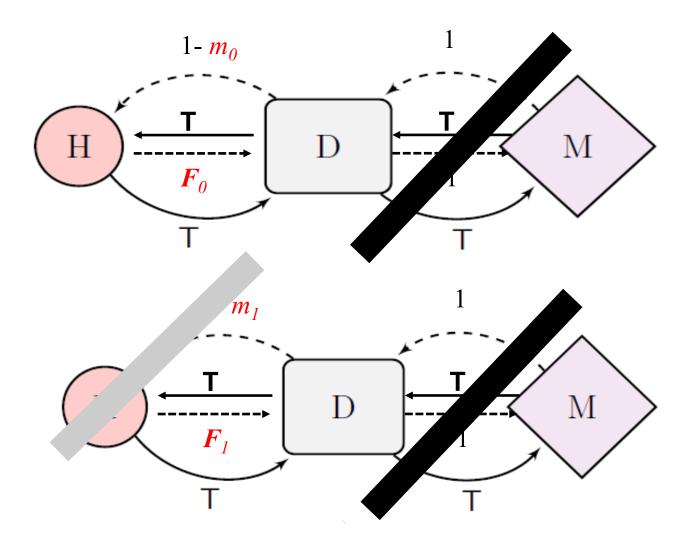
- At the end of period 1, $\xi \lambda m_0 \tilde{R} + (1 \mu)m_1 + F_0 1$
- At the end of period 2, $(1-\xi)m_0\tilde{R} + \{\xi\lambda m_0\tilde{R} +$

Hence, the dealer chooses $\{\Delta m_0, \Delta m_1, \Delta F_0, \Delta F_1, \theta^*\}$ to maximize (27)

- Why not a long term repo?
- The second period's repo contract should be conditional on the outcome and the available information at the end of the first period.
- If the dealer and hedge funds can agree on m_1 and $F_{1,}$ then it is a long-term contract that does not allow renegotiation, but gives borrowers the option to quit.

- If (m_1, F_1) are unconditional, then the difference between a one-period model and a two-period model is insignificant.

A Two-period Model



Proposition 2. For $\underline{\lambda R^U} > 2$, $\underline{R^D} < \underline{\eta R^U}/(\underline{\eta + R^U})$, and <u>dealer's risk-aversion not sufficiently low</u>, there exist optimal contracting terms $\Delta m_t(\theta^*)$ and $\Delta F_t(\theta^*)$ under which hedge funds adopt a threshold strategy θ^* .

Corollary 2. For $R^D = 0$, $\lambda R^U \in \left(2, \frac{4+8\sqrt{2}}{7}\right)$, and <u>risk neutral dealer</u>, there exist optimal contracting terms

$$\Delta m_0(\theta^*) = \frac{\theta^*(\eta - 1)}{\eta g(\theta^*) \left(1 - \ln\left(\frac{\lambda \overline{R}_{\theta}}{g(\theta)}\right) \right)}, \quad \Delta m_1(\theta^*) = g(\theta^*) \Delta m_0(\theta^*)$$
$$\Delta F_0(\theta^*) = -g(\theta^*) \Delta m_0(\theta^*), \qquad \Delta F_1(\theta^*) = 0$$

under which hedge funds adopt a threshold strategy θ^* that solves,

$$2\left(1-\theta^*-3\theta^{*2}+\theta^*(1+\theta^*)\frac{\lambda\overline{R}_{\theta^*}}{g(\theta^*)}\right) = \ln\left(\frac{\lambda\overline{R}_{\theta^*}}{g(\theta^*)}\right)\left(1-\theta^*-4\theta^{*2}+\theta^*(1+\theta^*)\frac{\lambda\overline{R}_{\theta^*}}{g(\theta^*)}\right)$$

with $\frac{\partial \theta^*}{\partial R^U} < 0.$

Conclusion

- A very good paper on a very important topic
- The dynamics could be enriched and refined to make the paper stronger