The Welfare Effects of Bank Liquidity and Capital Requirements

Skander Van den Heuvel^{*}

Federal Reserve Board

FEDERAL RESERVE "DAY AHEAD" CONFERENCE ON FINANCIAL MARKETS AND INSTITUTIONS

Federal Reserve Bank of Atlanta, January 3, 2019

* The views expressed here do not necessarily represent the views of the Federal Reserve Board or its staff.

Introduction

Financial crisis spurred crucial regulatory reforms, including Basel III.

- Stronger capital requirements
- New liquidity requirements

Goal: Make banks and the financial system safer, limiting negative externalities from bank failures.

Is it enough? Too much? There is an ongoing debate. E.g.

- Some favor much higher capital requirements (e.g. Admati and Hellwig)
- Others have argued for versions of "narrow banking" (e.g. Cochrane, Friedman)
 O Similar to a 100% liquidity requirement

Introduction

Debate in large part reflects disagreement about the existence and magnitude of social costs of capital and liquidity requirements.

Possible cost – reduced (net) liquidity creation.

Key idea: High-quality liquid assets are in limited supply and have important alternative uses.

o E.g. Krishnamurthy and Vissing-Jorgenson (2012), Greenwood, Hanson and Stein (2015).

Introduction

This paper –

• Examines the welfare costs and benefits of:

 ${\rm o}$ bank liquidity requirements and

o bank capital requirements

• Quantifies their welfare costs through a sufficient statistics approach.

Quantitative general equilibrium analysis

• Extends previous work on capital requirements (Van den Heuvel, 2008)

1. Basic Model

Households

Households value liquidity:

u(c,d,b)

- Derived utility function; Feenstra (1985).
- Increasing and concave
- Flexibility will let the data speak

Households

Infinite horizon, no aggregate uncertainty \rightarrow Perfect foresight problem.

$$\max_{\substack{\{c_t, d_t, e_t, b_t\}_{t=0}^{\infty} \\ s.t.}} \sum_{t=0}^{\infty} \beta^t u(c_t, d_t, b_t)} \\ s.t. \quad d_{t+1} + b_{t+1} + e_{t+1} + c_t = w_t 1 + R_t^D d_t + R_t^B b_t + R_t^E e_t - T_t \\ (c) \qquad R_t^E = \left(\beta u_c(c_t, d_t, b_t) / u_c(c_{t-1}, d_{t-1}, b_{t-1})\right)^{-1}$$

(d)
$$R_t^E - R_t^D = \frac{u_d(c_t, d_t, d_t)}{u_c(c_t, d_t)}$$

: convenience yield on deposits

(b)
$$R_t^E - R_t^B = \frac{u_b(c_t, d_t, b_t)}{u_c(c_t, d_t, b_t)}$$

: convenience yield on Treasuries

Banks

Lt	Loans	D_t	Deposits
B _t	Bonds	Et	Equity

Liquidity Requirement:

$$B_t \geq \lambda D_t$$

Capital Requirement: $E_t \ge \gamma L_t$ (risk-based)

Bank maximizes shareholder value.

• Competitive banking: R^L , R^B , R^D , R^E given

Additional assumptions to generate benefits of regulation:

Deposit Insurance / government guarantees

 \rightarrow Moral hazard of excessive risk taking. Two risk choices:

1. Credit risk: excessively risky lending practices

2. Liquidity risk: insufficient liquid assets

Deposit Insurance / government guarantees

 \rightarrow Moral hazard of excessive risk taking. Two risk choices:

1. *Credit risk*: excessively risky lending practices

Capital requirement solves this, together with bank supervision, through "skin-in-the-game".

$$\gamma \ge \phi_{\varepsilon} \overline{\sigma} / R^{E}$$

(IC1)

 $\circ \overline{\sigma}$: ability of banks to hide excessively risky loans from supervision \circ Liquidity regulation does not ameliorate this problem.

Bank size is not fixed so increase in *B* does not imply a decrease in *L*.

Deposit Insurance / government guarantees

 \rightarrow Moral hazard of excessive risk taking. Two risk choices:

- 2. *Liquidity risk*: insufficient liquid assets
 - Small probability (1 p) of liquidity stress: Fraction *w* of depositors withdraws early.
 - Liquidity stress results in bank failure if B < wD.
 - Bank goes into resolution with social costs that may exceed the private loss

Bank will choose a prudent liquidity risk profile ($B \ge wD$) if

$$\gamma\left(\frac{1-p}{p}\right) \ge (1-\gamma)\left(\frac{w}{1-w} - \frac{\lambda}{1-\lambda}\right)(R^D - R^B) \tag{IC2}$$

A sufficient condition is: $\lambda \ge w$.

Liquidity requirement and capital requirement can each mitigate the moral hazard of liquidity risk, but the liquidity requirement is more direct and efficient.

- \rightarrow Division of Labor:
 - Capital regulation for solvency risk
 - Liquidity regulation for liquidity risk.

Banks: Illustration of welfare implications

Banks: Illustration of welfare implications

Summary of Bank's Problem (no excessive risk)

L_t	Loans	D_t	Deposits
$B_t \geq \lambda D_t$	Bonds	$E_t \geq \gamma L_t$	Equity

All-in cost of funding loans with deposits:

$$\tilde{R}^{D}(\lambda) \equiv R^{D} + \frac{\lambda}{1-\lambda}(R^{D} - R^{B})$$

With (IC1) and (IC2), solution's zero-profit condition:

 $R^{L} = \gamma R^{E} + (1 - \gamma) \tilde{R}^{D}(\lambda)$

A finite solution requires: $R^B \leq R^D \leq R^L \leq R^E$.

1. Liquidity requirements binds if and only if $R^B < R^D$ (will be relaxed)

2. Capital requirement binds if and only if $R^E > \tilde{R}^D(\lambda)$

Equilibrium with capital and liquidity regulation

- Capital requirement typically binds due to convenience yield on deposits.
- Liquidity requirement may or may not bind, depending on relative convenience yields of bank deposits and government bonds.

Equilibrium with capital and liquidity regulation

- Capital requirement typically binds due to convenience yield on deposits.
- Liquidity requirement may or may not bind, depending on relative convenience yields of bank deposits and government bonds.
- Investment is affected by *both* the capital requirement and the liquidity requirement, if binding. ($R^L = \gamma R^E + (1 \gamma) \tilde{R}^D(\lambda)$).

Equilibrium with capital and liquidity regulation

- Capital requirement typically binds due to convenience yield on deposits.
- Liquidity requirement may or may not bind, depending on relative convenience yields of bank deposits and government bonds.
- Investment is affected by *both* the capital requirement and the liquidity requirement, if binding. ($R^L = \gamma R^E + (1 \gamma) \tilde{R}^D(\lambda)$).
- Introducing binding liquidity regulation leads **government bonds** to flow out of the nonbank sector, so their convenience yield $R^E R^B$ rises.
- Adding a larger liquidity requirement → can lead to disintermediation or non-bank intermediation: Shadow banking?

o More likely if the demand for safe, liquid assets is high relative to the supply.

2. Gross Welfare Cost of the Policy Tools

Welfare Cost of the Liquidity Requirement

If the economy is in steady state in the current period and IC1 and IC2 hold, then the marginal welfare cost of a permanent increase in λ is:

$$v_{LIQ} = \frac{d}{c} \left(R^D - R^B \right) (1 - \lambda)^{-1}$$

- As a first-order approximation, the welfare loss from $\Delta \lambda$ is equivalent to a permanent relative loss in consumption of $v_{LIO} \Delta \lambda$.
- Takes into account gains and losses associated with move to a new steady state.
- Revealed preference logic + competitive banking.

Welfare Cost of the Capital Requirement

Under the same assumptions, the marginal welfare cost of a permanent increase in γ is:

$$v_{CAP} = \frac{L}{c} \Big(R^E - \tilde{R}^D(\lambda) \Big)$$

Recall
$$\tilde{R}^{D}(\lambda) \equiv R^{D} + \frac{\lambda}{1-\lambda}(R^{D} - R^{B})$$

3. Costly Financial Intermediation

So far we have assumed that no resource costs are involved with financial intermediation.

• For 86-13, net noninterest costs are 1.3% of total assets.

Before measuring costs, extend model:

Bank pays noninterest cost: g(D, L)

g is increasing, convex, constant returns to scale.

Dividends = max(0, $(R_t^L + \sigma_t \varepsilon)L_t + R_t^B B_t - R_t^D D_t - g(D_t, L_t))$

Gross Welfare Costs with Costly Intermediation

Marginal welfare costs of increasing λ and γ with costly financial intermediation:

$$v_{LIQ} = \frac{d}{c} \left(R^D + g_D(d, L) - R^B \right) (1 - \lambda)^{-1}$$

$$v_{CAP} = \frac{L}{c} \left(R^E - \tilde{R}^D(\lambda) - (1 - \lambda)^{-1} g_D(d, L) \right)$$

4. Measurement of the Welfare Cost

Historical Statistics on Banking - U.S. commercial banks (1986 – 2016).

- From 1986-2000, Treasuries/Assets exceed 1 percent \rightarrow Use this period to estimate g_D through the condition: $R^B = R^D + g_D \rightarrow g_D = 1.22\%$
- Alternative estimate based Hanson, Schleifer, Stein, Vishny (2015): $g_D = 0.81\%$
- Use 2001-2007 to estimate average returns and ratios.
 - Treasuries < 1% of assets
 - Provides an estimate of the cost of a liquidity requirement for a period when it would likely have been binding.
 - Current environment: high level of reserves could reflect phase-in of LCR, or could mean that a modest liquidity requirement entails little *immediate* economic costs.

U.S. Treasuries and excess reserves held by U.S. depository institutions

Note: For years 1984-1988, U.S. Treasuries data is for commercial banks only. Starting in 1989, U.S. Treasuries series includes both commercial banks and savings institutions. Source: FDIC Historical Statistics on Banking and Federal Reserve H.3 Release.

Measurement of the Welfare Cost: Liquidity

d = Total Deposits

d/c = 0.67

- *c* = Personal Consumption Expenditures
- $R^{D} = (\text{Interest on Total Deposits}) / (\text{Total Deposits}) = 2.04\%$ $\text{Including marginal noninterest cost: } R^{D} + g_{D} = 3.26\%$ $R^{B} = 3 \text{-month Treasury yield} = 2.80\%$ $\lambda = \text{liquidity requirement} = 0$

$$v_{LIQ} = \frac{d}{c} \left(R^D + g_D - R^B \right) (1 - \lambda)^{-1}$$

= 0.67 × (0.0326 - 0.0280) × 1 = 0.0031

Measurement of the Welfare Cost: Liquidity

Interpretation of $v_{LIQ} = 0.003$.

- The gross welfare cost of imposing a 10 percent liquidity requirement is equivalent to a **permanent loss in consumption of** $v_{LIQ} \times 0.1 \times 100\% = 0.031\%$.
- About \$3.5 billion per year.
- With HSSV-based estimate ($g_D = 0.81\%$): welfare cost = 0.003%.

Measurement of the Welfare Cost: Capital

A risk-adjusted measure of the required return on equity is needed.

I use the required return on **subordinated bank debt**.

- Sub-debt counts towards regulatory capital, within certain limits.
- Defaults on bank sub-debt have been rare.

Limits:

- Part of tier 2 capital
- Until recently, limited to at most 50% of tier 1 capital.
- Same tax treatment as deposits

The required return on sub-debt may be less than the risk-adjusted pre-tax required return on regular bank equity.

 \rightarrow conservative measure.

Measurement of the Welfare Cost: Capital

Sample: 1993-2010

= Total Assets – (Treasuries + Ex. Reserves) L = Personal Consumption Expenditures С R^{E} = (Interest on Subordinated debt) / (Sub-debt) R^{D} = (Interest on Total Deposits) / (Total Deposits) Including marginal noninterest cost: $R^D + g_D$

$$v_{CAP} = \frac{L}{c} \Big(R^E - (R^D + g_D) \Big) (1 - \lambda)^{-1}$$

= 0.96 × 0.0180 × (1 - 0)^{-1} = 0.017

$$L/c = 0.96$$

Measurement of the Welfare Cost: Capital

Interpretation of $v_{CAP} = 0.017$.

- The gross welfare cost of increasing capital requirements by 10 percentage points is equivalent to a **permanent loss in consumption of** $v \times 0.1 \times 100\% = 0.17\%$.
- About \$20 billion per year.
- With HSSV-based estimate ($g_D = 0.81\%$): welfare cost = 0.21%.

Measurement of the Welfare Cost: Summary

Conclusions

Liquidity and capital requirements reduce the ability of banks to create net liquidity in equilibrium and impact investment and economic activity.

- Cost of *capital* requirement scales with the *convenience yield on bank deposits*
- Cost of *liquidity* requirement scales with the *difference in the convenience yields* on HQLA assets and on bank deposits (adjusted for noninterest costs)

Quantitative result: Welfare cost of liquidity requirement is modest and much lower than the welfare cost of similarly-sized capital requirements.

Financial stability benefits of liquidity requirements are narrower than capital, yet liquidity regulation is part of the optimal policy mix \rightarrow division of labor:

- Capital regulation addresses credit risk;
- Liquidity regulation addresses liquidity risk.