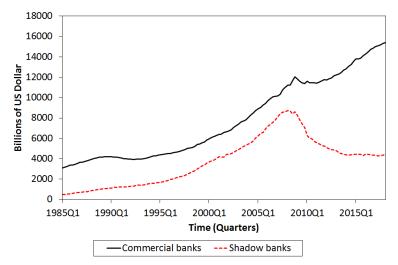
Bank Capital Regulation and Endogenous Shadow Banking Crises

Johannes Poeschl¹ Xue Zhang²

¹Danmarks Nationalbank

²KBC


Federal Reserve Day Ahead Conference January 2019

Any views expressed in this presentation are our own and do not reflect those of Danmarks Nationalbank or KBC.

Deeeek	J Zhong
FUESCI	nl, Zhang

Shadow Banks

Shadow banking sector: large and crisis-prone

Total financial assets of retail and shadow banks. Constructed as in Adrian

Shadow Banks

and Shin (2011). Source: Financial Accounts of the U.S.

Poeschl, Zhang

Day Ahead Conference 2019 2 / 33

New challenges for bank regulators

- Systemic shadow banking crises
 - How costly are shadow banking crises?
 - Can capital requirements on traditional (retail) banks mitigate shadow banking crises?
- Interlinkages between retail and shadow banks
 - Do spillover effects mitigate the effectiveness of bank capital requirements?

This paper: Quantitative model addressing these new challenges

The main findings in a nutshell

Shadow banking crises are rare, but costly

- Eliminating banking crises: welfare gain of 1.7 percent
- 80 percent of the welfare gain: elimination of bank run fears
- e Higher retail bank capital requirements, fewer shadow banking crises
 - Traditional (retail) banks: Smaller fire sale discounts
- Novel spillover effect of retail bank capital requirements
 - Reduction of bank run fears relaxes shadow bank leverage constraint

(Non-exhaustive) literature review

Shadow Banks:

Gennaioli, Shleifer, and Vishny (2013), Plantin (2014), **Gertler, Kiyotaki, and Prestipino (2016)**, Huang (2018), Moreira and Savov (2017), **Begenau and Landvoigt (2017)**, Meeks, Nelson, and Alessandri (2017), Farhi and Tirole (2017), Ferrante (2018)...

Banking crises in macroeconomic models:

Gertler and Kiyotaki (2013), Garcia-Macia and Villacorta (2016), Gertler, Kiyotaki, and Prestipino (2017) Boissay, Collard, and Smets (2016), Paul (2018) ...

This paper

Endogenous & anticipated shadow banking crises

+ endogenous wholesale funding market

 \Rightarrow New spillover effect of retail bank capital requirements

Agenda

Introduction

- 4 Eliminating Shadow Banking Crises
- 5 Effects of Retail Bank Capital Requirements

6) Conclusion

Agents

Model follows Gertler et al. (2016)

- Time $t = 0, \dots, \infty$
- Banks
 - Retail banks R, shadow banks S
 - issue deposits, lend on retail funding market, borrow & lend on wholesale funding market
 - ▶ differ by exit probability $\sigma^R < \sigma^S$ and investment inefficiency $\eta^R > \eta^S = 0$
- Households H
 - Lend on retail funding market, save in deposits
 - Own all banks and firms
 - Inefficient investors: $\eta^H \gg \eta^R$
- Firms
 - Consumption goods producers
 - Capital goods producers

Banks' objective function

Banks of type J maximize payouts to households

$$\mathbb{E}_{0}\left[\sum_{t=0}^{\infty} \Lambda_{0,t} \underbrace{(1-\sigma^{J})^{t-1}\sigma^{J}}_{\text{Probability of}} n_{t}^{J}\right],$$

with net worth n_t^J , stochastic discount factor $\Lambda_{0,t}$, exit probability σ^J

Banks' balance sheet and net worth

• Balance sheet constraint

$$\underbrace{d_{t+1}^{J} + n_{t}^{J}}_{\text{Liabilities + Equity}} = \underbrace{b_{t+1}^{J} + (Q_{t} + f_{t}^{J})a_{t+1}^{J}}_{\text{Assets}}$$

with deposits d_{t+1}^J , wholesale loans b_{t+1}^J , retail loans a_{t+1}^J , capital price Q_t , **retail loan servicing fee** f_t^J (increasing in η^J)

Net worth

$$n_t^J = R_t^A a_t^J + R_t^B b_t^J - R_t^D d_t^J$$

with returns on retail loans R_t^A , on wholesale loans R_t^B , and deposits R_t^D

Financial friction and bank capital structure

Banks can divert

- a fraction ψ of deposit or equity financed retail loans
- a fraction $\psi\gamma$ of wholesale (interbank) loans
- a fraction $\psi\omega$ of wholesale financed retail loans

• Incentive constraint, e.g. for wholesale lenders $(b_{t+1}^J > 0)$:

$$\psi\left[\left(\boldsymbol{Q}_{t}+\boldsymbol{f}_{t}^{J}\right)\boldsymbol{a}_{t+1}^{J}+\gamma\boldsymbol{b}_{t+1}^{J}\right]\leq\boldsymbol{V}_{t}^{J}=\boldsymbol{\Omega}_{t}^{J}\boldsymbol{n}_{t}^{J},$$

with continuation value V_t^J , unit continuation value Ω_t^J

Implies an endogenous upper bound on bank leverage

$$\psi \phi_t^J \leq \Omega_t^J$$

Details - retail banks Y > Details - shadow banks

Bank Default

- We consider only **default on wholesale loans**. Deposits are non-defaultable.
- Insolvent banks liquidate their assets at discount $\xi < 1$
- Recovery value of wholesale creditors:

$$x_t = \xi \frac{R_t^A a_t^J}{R_t^B b_t^J}$$

Bank Regulation

 Regulator can impose a minimum capital requirement, which corresponds to an upper bound on bank leverage φ_t^J:

$$\phi_t^J \leq \bar{\phi}_t^J$$

• $\bar{\phi}_t^J$ is chosen according to a **modified incentive constraint**, e.g. for wholesale lenders

$$\psi \bar{\phi}_t^J (\mathbf{1} + \tau_t^J) \le \Omega_t^J$$

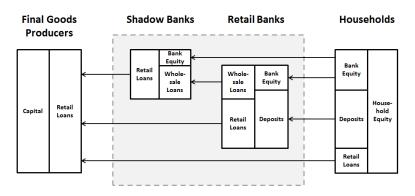
Interpretation: Social cost of bank leverage is by a factor of τ^J_t higher than private cost of leverage (e.g. due to externalities)

Rest of the Model

- Households
 - Consume
 - Supply labor inelastically
 - Invest in deposits and retail loans
 Details
- Final goods producers
 - Use retail loans to purchase capital
 - Transform capital and labor into consumption goods
 - Cobb-Douglas technology
 - Productivity shock Details
- Capital goods producers
 - Transform consumption goods into investment goods

Agenda

Introduction


2 Model

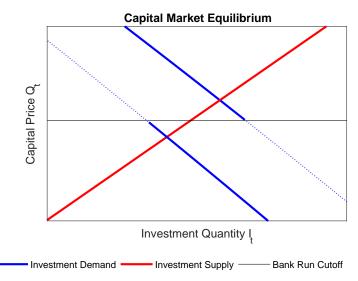
- 4 Eliminating Shadow Banking Crises
- 5 Effects of Retail Bank Capital Requirements

6 Conclusion

Equilibrium flow of funds - model overview

Flow of funds in equilibrium.

Self-fulfilling and systemic bank runs

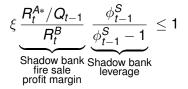

- Systemic shadow bank default reduces the return on retail loans (capital) from R^A_t to R^{A*}_t
- Net worth of incumbent shadow banks $N_t^{S,l}$ increases in the return on retail loans: $\partial N_t^{S,l} / \partial R_t^A > 0$

Two equilibria

- High return on retail loans, solvent shadow banks (normal equilibrium)
- Low return on retail loans, insolvent shadow banks (shadow bank run equilibrium)
- Run equilibrium selected if sunspot $\Xi_t \in \{0, 1\}$ is 1, with

$$\Pr(\Xi_t = 1) = \eta(1 - x_t^*)$$

A situation with two equilibria


Existence condition for two equilibria

• Existence condition for the shadow bank run equilibrium:

$$x_t^* \leq 1 \iff \xi R_t^{A*} A_t^S \leq R_t^B B_t.$$

with fire sale return on retail loans R_t^{A*} , return on wholesale loans R_t^B , liquidation loss ξ

• Can be rewritten as

This condition is not internalized by banks

Poeschl, Zhang

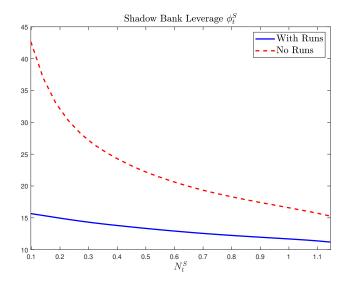
Shadow Banks

Agenda

Introduction

2 Model

4 Eliminating Shadow Banking Crises


5 Effects of Retail Bank Capital Requirements

6 Conclusion

Calibration

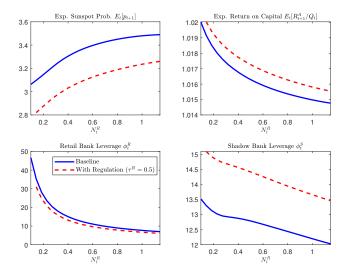
Role	Name	Value	Target or Source	
(a) Technology and Preferences				
Capital share in production	α	0.36	Standard value	
Depreciation Rate	δ	0.025	Standard value	
Risk Aversion	σ	2	Standard value	
Household discount factor	β	0.9902	$R^D - 1 = 4\%$ p.a.	
Capital adjustment cost	θ	10	$\left. \frac{\partial \ln(Q_t)}{\partial \ln(I_t)} \right = 0.25$	
(b) Financial Sector				
Banks' initial equity	v	0.001	Planning horizons of banks	
Diversion benefit of wholesale lending	γ	0.6676	$R^B - R^{\bar{D}} = 0.8\%$ p.a.	
Household capital holding cost	η^H		$R^{K} - R^{D} = 2.4\%$ p.a.	
Retail bank capital holding cost	η^R	0.0071	$R^{K,R} - R^D = 1.2\%$ p.a.	
Retail bank exit rate	σ^R	0.0521	$K^R/K = 0.4$	
Shadow bank exit rate	σ^{S}	0.1273	$K^{S}/K = 0.4$	
Asset diversion share	ψ	0.2154	$\phi^R = 10$	
Diversion benefit of wholesale funding	ώ	0.5130	$\phi^{S} = 20$	
(c) Bank Runs and Stochastic Processes				
Autocorrelation, productivity	ρ^Z	0.9	$\rho(Y_t, Y_{t-1}) = 0.9$	
Standard Deviation, productivity shock	σ^{Z}	0.01	$\sigma(Y_t) = 0.03$	
Loss in Default	ξ	0.9	Retail bank net worth in run -30 %	
Sunspot probability shifter	η	0.25	Crisis freq. of $\approx 0.75\%$ per quarter	
Reentry probability after bank run	π	12/13	Runs last 3.25 yrs on avg	

Shadow bank run risk reduces shadow bank leverage

Eliminating shadow banking crises

	With Runs	No Runs	Only Exp.
Macroeconomic Aggregates			
Mean, Output (Y)	1.088	1.114	1.093
St. Dev., Output (Y)	3.181	3.275	3.192
Financial Sector			
Mean, Retail Bank Leverage (ϕ^R)	10.291	10.019	10.239
Mean, Shadow Bank Leverage (ϕ^{S})	13.444	19.995	13.244
Bank Runs			
Runs per 100 Years	3.100	0.000	0.000
Recovery Rate $(x_t Run_t)$	78.214	-	-
Welfare	0.850	0.865	0.853

Agenda

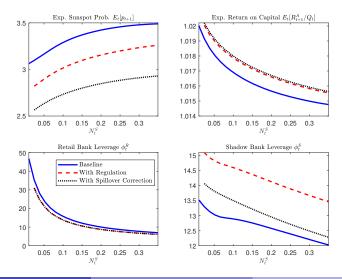

Introduction

2 Model

- 3 Equilibrium
- 4 Eliminating Shadow Banking Crises
- 5 Effects of Retail Bank Capital Requirements

6 Conclusion

Retail CR push fire sale prices up



Effectiveness of retail bank capital requirements

	With Runs		No Runs	
	Baseline	$\tau^{R} = 0.5$	Baseline	$\tau^{R} = 0.5$
Macroeconomic Aggregates				
Mean, Output (Y)	1.088	1.082	1.114	1.101
St. Dev., Output (Y)	3.185	3.204	3.279	3.302
Financial Sector				
Mean, Retail Bank Leverage (ϕ^R)	10.291	8.057	10.019	7.571
Mean, Shadow Bank Leverage (ϕ^{S})	13.444	14.847	19.993	20.820
Bank Runs				
Runs per 100 Years	3.096	2.899	0.000	0.000
Recovery Rate $(x_t Run_t)$	78.212	78.725	-	-
Welfare	0.850	0.848	0.865	0.860

D		
Poesc	nı z	nana
1 0000	, 스	nung

Correcting for the spillover increases the effectiveness of retail CR

Poeschl, Zhang

Correcting for the spillover effect

	With Runs		
	Baseline	Regulation W Spillover	Regulation W/O Spillover
Macroeconomic Aggregates			
Mean, Output (Y)	1.088	1.082	1.079
St. Dev., Output (Y)	3.184	3.202	3.179
Financial Sector			
Mean, Retail Bank Leverage (ϕ^R)	10.291	8.057	8.033
Mean, Shadow Bank Leverage (ϕ^{S})	13.444	14.847	13.436
Bank Runs			
Runs per 100 Years	3.105	2.909	2.630
Recovery Rate $(x_t Run_t)$	78.213	78.728	79.427
Welfare	0.850	0.848	0.846

	Poesc	hl, Z	hang
--	-------	-------	------

Conclusion

- Quantitative nonlinear DSGE model to evaluate effectivness of retail bank capital requirements to reduce shadow banking crises:
 - Endogenous wholesale lending market
 - Endogenous and anticipated shadow bank runs
- Main findings:
 - Shadow bank runs have a large welfare cost, mostly through anticipation effects
 - Retail bank capital requirements can reduce the frequency and severity of shadow bank runs
 - Retail bank CR create a spillover due to a relaxed shadow bank leverage constraint, which mitigates their effectiveness substantially

Appendix

Households

$$\max_{\left\{k_{t+1}^{H}, d_{t+1}^{H}, c_{t}^{H}\right\}} \mathbb{E}_{0}\left[\sum_{t=0}^{\infty} \beta^{t} U(c_{t}^{H})\right]$$

s.t.

$$c_{t}^{H} = n_{t}^{H} - Q_{t}k_{t+1}^{H} - d_{t+1}^{H} - \frac{\eta_{H}}{2} \left(\frac{k_{t+1}^{H}}{K_{t}}\right)^{2} K_{t} + \left(f_{t}^{R} - \frac{\eta_{R}}{2}\frac{k_{t+1}^{R}}{K_{t}}\right) k_{t+1}^{R}$$
$$n_{t}^{H} = \left[r_{t}^{K} + (1 - \delta)Q_{t}\right] k_{t}^{H} + (1 + r_{t}^{D})d_{t}^{H} + W_{t} + \Pi_{t}^{Q}$$

Back

Retail Banks

- Define the value function of a banker as: $V_t^R = \sigma n_t^{R,C} + (1 \sigma) V_t^{R,C}$
- The value function of a continuing banker is given by:

$$V_{t}^{R,C} = \max_{k_{t+1}^{R}, d_{t+1}, b_{t+1}} \beta \mathbb{E}_{t} \left[V_{t+1}^{R} \right]$$

s.t.
$$n_{t}^{R,C} + d_{t+1} = (Q_{t} + f_{t}^{R})k_{t+1}^{R} + b_{t+1}$$

$$\psi((Q_{t} + f_{t}^{R})k_{t+1}^{R} + \gamma b_{t+1}) \leq \beta \mathbb{E}_{t} \left[V_{t+1}^{R} \right]$$

$$n_{t}^{R,C} \geq \Gamma((Q_{t} + f_{t}^{R})k_{t+1}^{R} + \gamma b_{t+1})$$

(Balance Sheet Constraint) (Incentive Constraint) (Bank Capital Requirement)

• where net worth of continuing bank is $n_t^{R,C} = (r_t^K + (1 - \delta)Q_t)k_t^R + R_{t-1}^R b_t - R_t^D d_t.$

• Net worth of all banks:
$$N_t^B = (1 - \sigma)n_t^{R,C} + \sigma\omega K_t$$

Shadow Banks

- Define the value function of a banker as: $V_t^S = \sigma n_t^{S,C} + (1 \sigma) V_t^{S,C}$
- The value function of a continuing banker is given by:

$$\begin{aligned} V_t^{S,C} &= \max_{\substack{k_{t+1}^S, b_{t+1}}} \beta \mathbb{E}_t \left[V_{t+1}^S \right] \\ \text{s.t.} \\ n_t^{S,C} &+ b_{t+1} = Q_t k_{t+1}^S \\ \psi(\omega b_{t+1} + n_t^{S,C}) &\leq \beta \mathbb{E}_t \left[V_{t+1}^S \right] \end{aligned}$$

(Balance Sheet Constraint) (Incentive Constraint)

• where net worth of continuing bank is $n_t^{S,C} = (r_t^{K} + (1 - \delta)Q_t)k_t^{R} + R_{t+1}^{B}b_t - R_t^{D}d_t.$

• Net worth of all banks:
$$N_t^B = (1 - \sigma)n_t^{S,C} + \sigma\omega K_t$$

Back

Production

Final Goods Producers:

$$\max_{K_t,L_t} \left\{ Z_t K_t^{\alpha} L_t^{1-\alpha} - W_t L_t - r_t^K K_t \right\}$$

Capital Goods Producers:

$$\max_{i_t} \left\{ Q_t i_t - i_t - \frac{\theta}{2} \left(\frac{i_t}{K_t} - \delta \right)^2 K_t \right\}$$

FOC:

$$Q_t = 1 + \theta \left(\frac{i_t}{K_t} - \delta\right)$$

Back

- Adrian, T. and H. S. Shin (2011). Chapter 12 Financial Intermediaries and Monetary Economics. In *Handbook of Monetary Economics*, Volume 3, Chapter 12, pp. 601–650. Elsevier Ltd.
- Begenau, J. and T. Landvoigt (2017). Financial Regulation in a Quantitative Model of the Modern Banking System. *Working Paper, Harvard*, 1–53.
- Boissay, F., F. Collard, and F. Smets (2016). Booms and Banking Crises. *Journal of Political Economy* 124(2), 489–538.
- Farhi, E. and J. Tirole (2017). Shadow Banking and the Four Pillars of Traditional Financial Intermediation. *Unpublished Manuscript*.
- Ferrante, F. (2018). A Model of Endogenous Loan Quality and the Collapse of the Shadow Banking System. American Economic Journal: Macroeconomics 10(4), 152–201.
- Garcia-Macia, D. and A. Villacorta (2016). Macroprudential Policy with Liquidity Panics. Technical report.
- Gennaioli, N., A. Shleifer, and R. W. Vishny (2013, aug). A Model of Shadow Banking. *The Journal of Finance 68*(4), 1331–1363.
- Gertler, M. and N. Kiyotaki (2013). Banking, Liquidity and Bank Runs in an Infinite-Horizon Economy. *Working Paper*.

- Gertler, M., N. Kiyotaki, and A. Prestipino (2016). *Wholesale Banking and Bank Runs in Macroeconomic Modelling of Financial Crises* (1 ed.), Volume No. 21892. Elsevier B.V.
- Gertler, M., N. Kiyotaki, and A. Prestipino (2017). A Macroeconomic Model with Financial Panics. *Unpublished Manuscript*.
- Huang, J. (2018). Banking and Shadow Banking. *Journal of Economic Theory 178*, 124–152.
- Meeks, R., B. Nelson, and P. Alessandri (2017). Shadow Banks and Macroeconomic Instability. *Journal of Money, Credit and Banking 49*(7), 1483–1516.
- Moreira, A. and A. Savov (2017). The Macroeconomics of Shadow Banking. *The Journal of Finance 72*(6), 2381–2432.
- Paul, P. (2018). A Macroeconomic Model with Occasional Financial Crises. *Federal Reserve Bank of San Francisco Working Paper*.
- Plantin, G. (2014). Shadow Banking and Bank Capital Regulation. *Review of Financial Studies*.