Short rates and a large balance sheet

Day-ahead conference, Atlanta Fed

Beth Klee and Ed Nosal

January 3, 2019

Federal Reserve Board and Federal Reserve Bank of Atlanta

The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System, the Federal Reserve Bank of Atlanta, or of anyone else associated with the Federal Reserve System.

- 1. Introduction
- 2. Theory
- 3. Empirics
- 4. Conclusion

Introduction

Short rates and a large balance sheet

3

Question:

Why were money markets below the rate paid on reserves?

- "Balance sheet costs"
- "Imperfect competition"

Answer:

Some of both

- Theory: Some modifications to "standard" model show that both are needed to have gaps.
- Empirics: Evidence of balance sheet costs and imperfect competition using a variety of estimation techniques.

Why is this question important?

- Broad economics and finance questions
 - How are money markets organized?
 - Are there implications of non-competitive behavior?
- Implementation questions
 - What could happen as the balance sheet shrinks?
 - $\cdot\,$ Are there implications for monetary policy transmission?
- Regulatory questions
 - Why do "wedges" arise in markets?

Theory

Canonical Poole (1968) model

- Bank's demand for reserves depends on level of required reserves (*RR*), distribution of payment shocks [-*P*, *P*], and Fed's policy rates, *r_{PC}* and *r_{IOR}*
- Fed determines supply of reserves, R_1^S or R_2^S .
- Banks demand funds at rates
 below curve and supply them at rates above.

- Balance sheet costs (BSC) include FDIC fees, various leverage ratios
- Assume $BSC = aR^F$, where $R^F =$ final level of reserve balances
- BSCs affect both borrowers and lenders
 - affects demand curve differently

Balance sheet costs, borrower

"Wedge" at high excess reserve levels reflects increasing probability of borrower expanding balance sheet

Balance sheet costs, lender

"Wedge" at low excess reserve levels reflects decreasing probability of lender expanding balance sheet

Demand correspondence

"Static" view: equilibrium fed funds rate is below the IOR rate

Theory: Perfect competition with active federal funds market

- Under perfect competition: BSCs + FHLBs + FBOs implies $r_{FF}^* \ge r_{IOR}$
- BSCs by themselves cannot explain the first graph

Theory: Necessary conditions for $r_{FF}^* < r_{IOR}$

- Heterogeneous institutions: some earn IOR, some do not
- Abundant reserves held by institutions that earn IOR
- Limited number of counterparties for lenders

Empirics: Industrial organization models of imperfect competition

- Evidence of differential pricing according to lender type or number of counterparties can suggest imperfect competition
- Control for observable factors for prices, quantities
 - $\cdot\,$ Unobserved factors may be proxies for imperfect competition
- Use money fund reform to identify any potential change in competitive structure

Empirics

Sources and sample

Data sources

- Money market rates and quantities (FR2420)
- Bank-level reserve balances
- Bank-level Call Report, FDIC fees

Data sample

- October 2015 to April 2017
- "Trade-level" data: Rate, quantity, borrower, lender
- Borrowers are identified at the individual bank level
- Lenders are identified by category

Federal funds	Eurodollars
Banks	Money market funds
FHLBs	Corporates

- Market-wide rates, balance sheet costs, and counterparties
- Imperfect competition and importance of borrower characteristics for demand
- Imperfect competition, money fund reform, and importance of lender characteristics for supply

Number of transactions=number of counterparties?

Number of transactions can be a proxy for the number of counterparties

	Risk category				Largo institutions	
			111	IV		
Initial base assessment rate	5-9	14	23	35	5-35	
Unsecured debt adjustment	-4.5-0	-5-0	-5-0	-5-0	-5-0	
Brokered deposit adjustment	N/A	0-10	0-10	0-10	0-10	
Total base assessment rate	2.5-9	9-24	18-33	30-45	2.5-45	

Source: FDIC, available at https://www.fdic.gov/deposit/insurance/assessments/proposed.html.

$$r_{jkt} = \alpha G_k + \gamma X_{jt} + \beta R_t + \delta_t + \epsilon_{jkt}$$

where

- r_{jkt} -rate for borrower j from lender k at time t
- G_k lender fixed effects
- X_{jt}- time-varying borrower characteristics (including FDIC fees)
- *R*_t-market-wide rate
- + δ_t -(quarterly) time fixed effect
- ϵ_{jkt} -error term

Market-beta results

	Just repo & bills	Just PCA	Repo & PCA are collinear!
FDIC Fee	0.413**	0.414**	0.414**
	(0.15)	(0.15)	(0.15)
Month-end	-0.0599***	-0.0198***	-0.0218***
	(0.00)	(0.00)	(0.01)
Domestic	0.0250***	0.0250***	0.0251***
	(0.00)	(0.00)	(0.00)
Quarter-end	-0.00176	0.00184	0.00193
	(0.00)	(0.00)	(0.00)
Domestic	-0.0164*	-0.0169*	-0.0169*
	(0.01)	(0.01)	(0.01)
Repo rate	0.0660***		0.0173
	(0.02)		(0.02)
Bill yield	0.0331***		0.0272**
	(0.01)		(0.01)
PC 1		0.00708***	0.00664***
		(0.00)	(0.00)
PC 2		0.00190*	0.00170*
		(0.00)	(0.00)
PC 3		0.00289***	0.00285***
		(0.00)	(0.00)
Repo liabilities	0.0511***	0.0511***	0.0511***
	(0.01)	(0.01)	(0.01)
Transactions	0.000778***	0.000778***	0.000778***
	(0.00)	(0.00)	(0.00)
Constant	0.371***	0.362***	0.363***
	(0.07)	(0.07)	(0.07)
N	54316	54316	54316
adj. R-sq	0.292	0.293	0.293

Demand for "deposits"

A lender k = 1, ..., K is assumed to "demand deposits" from a borrower j = 1, ..., J at time t = 1, ..., T. The (indirect) utility u_{jkt} the lender derives from this transaction is

$$U_{jkt} = \beta^{r} r_{jkt} + \beta^{x} X_{jt} + \delta_{j} + \mu_{k} + \mu_{t} + \epsilon_{jkt}$$

where

- r_{jt} is the rate paid on the transaction
- X_{jt} is a vector of time-varying borrower characteristics
- δ_i is a time-invariant borrower fixed effect
- $\cdot \ \mu_k$ is a time-invariant lender fixed effect
- μ_t is a time fixed effect
- ϵ_{jkt} is a mean zero random disturbance

Assuming the ϵ_{jkt} have a type-I extreme value distribution, we can write

$$s_{jt} = \frac{\exp(\beta^{r}r_{jt} + \beta^{x}X_{jt} + \delta_{j} + \mu_{t})}{\sum_{k=0}^{K}\exp(\beta^{r}r_{jt} + \beta^{x}X_{jt} + \delta_{j} + \mu_{k} + \nu_{t})}$$

Estimating equation, markups and substitution patterns

Estimating equation:

$$\ln(s_{jkt}) = \beta^r r_{jkt} + \beta^x X_{jt} + \delta_j + \mu_t + \epsilon_{jkt},$$

- Instrument rates using "other" rates, costs
- "Imperfect," e.g. Bertrand competition parameters:
 - Own elasticity: $\beta^r s_j (1 s_j)$
 - Markup: $\frac{1}{\beta^r(1-s_i)}$

Supply curve:

$$f_t = r_j + c_j + \frac{1}{\beta^r (1 - s_j)}$$

- Side note: "overly restrictive substitution patterns"
 - Also use random coefficients logit
 - Allows us to differentiate demand by day to capture regulatory costs

	FE (1)	IV, entity (2)	IV, other bank (3)	IV, entity+costs (4)
Deviation from ONRRP rate	4.950***	6.865**	8.525***	7.063**
	(0.770)	(2.557)	(1.671)	(2.164)
Share of liabilities, repo	-1.362*	-1.476*	-1.028	-1.493*
	(0.577)	(0.697)	(0.697)	(0.689)
Change in TGA	0.0724**	0.0745**	0.0831***	0.0747**
	(0.0225)	(0.0230)	(0.0248)	(0.0229)
Month-end	0.330***	0.451**	0.588***	0.463**
	(0.0664)	(0.170)	(0.120)	(0.147)
Month-endXDomestic	-0.0373	-0.0800	-0.136	-0.0848
	(0.0678)	(0.0967)	(0.0970)	(0.0931)
FDIC fee	-1.197	-1.851	-2.360	-1.876
	(1.352)	(1.446)	(1.631)	(1.362)
Constant	-7.349***	-7.507***	-7.538***	-7.528***
	(0.152)	(0.285)	(0.256)	(0.260)
Ν	37351	36827	30551	36827
First-stage F-statistic		77.8	105.1	103.027
Within R-sq	0.138	0.1288	0.1078	0.1265
Between R-sq	0.0002	0.0001	0.0282	0.0001
Overall R-sq	0.0574	0.0653	0.0477	0.0648

* p<0.05,** p<0.01, *** p<0.001

Rate is expressed as deviation from the ON RRP rate. Includes quarterly time controls. Standard errors are clustered at the bank-counterparty-IBF-trade-type level.

Own-elasticity by bank charter types

Random coefficients logit own-elasticities, by selected borrowers

	30-Mar-16				6-Apr-	-16
Bank type	ED	FF	Average	ED	FF	Average
National bank	1.76	1.89	1.81	1.44	1.81	1.60
Non-member bank		0.05	0.05		1.74	1.74
State member bank	1.26	0.22	0.91	1.36	1.17	1.33
FBO	1.09	0.42	0.99	1.39	1.28	1.37
Average	1.21	1.05	1.17	1.38	1.66	1.46

	Average elasticity			
Lender type	30-Mar-16	6-Apr-16		
Money fund	0.85	1.17		
Domestic bank	1.58	1.91		
GSE	0.44	1.44		
Overall	1.17	1.46		

Money fund reform

Index

Use fixed and random effects to explore effect of money fund reform

Returning to our share equation:

$$s_{jt} = \frac{\exp(\beta^{r}r_{jt} + \beta^{x}X_{jt} + \delta_{j} + \mu_{t})}{\sum_{k=0}^{K}\exp(\beta^{r}r_{jt} + \beta^{x}X_{jt} + \delta_{j} + \mu_{k} + \nu_{t})}$$

All else equal: banks can offer lower deposit rates for higher levels of δ_{j}

- · Also use random effect to generate time-varying component
- Egan et al. (2018) call this "productivity"

$$\hat{\delta_{jt}} = \ln(\hat{s_{jkt}}) - \hat{\beta}^r r_{jkt} - \hat{\beta}^x X_{jt} - \hat{\mu}_t$$

Effect of money fund reform

	δ_{jt}
Domestic	0.358***
	(0.0380)
Federal funds	-0.353***
	(0.0350)
Number of transactions	0.0683***
	(0.00103)
After money fund reform	0.0377
	(0.0250)
Federal funds X number of transactions	0.319***
	(0.00653)
Domestic X number of transactions	-0.0170***
	(0.00252)
Federal funds X domestic X number of transactions	-0.317***
	(0.00859)
Federal funds X domestic X after money fund reform X number of transactions	-0.0294**
	(0.00926)
Constant	-0.626***
	(0.0198)
N	18801
adj. R-sq	0.498
Robust standard errors in parentheses	

- Ability to attract counterparties for unobserved reasons may enable borrowing at lower rates.
- Money fund reform had little effect

Conclusion

- Balance sheet costs and imperfect competition are both likely present in money markets.
- Interaction of the two produces observed dynamics
- Caveat: Sample period held total reserve balances, Treasury issuance roughly constant
 - Likely an important direction for new research.