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Abstract

Housing supply elasticities are central parameters required for quantitative analysis ad-

dressing a wide range of questions in urban and real estate economics. Despite huge variation

across neighborhoods within metro areas, researchers often employ metro area level supply

elasticity estimates to analyze neighborhood level phenomena due to lack of neighborhood

level estimates. Moreover, there exists scant quasi-experimental evidence about the compo-

nents of new housing services supply. This paper reports housing supply elasticity estimates

for most U.S. urban neighborhoods and demonstrates the importance of accounting for neigh-

borhood level heterogeneity within metro areas. Supply elasticity estimates for housing ser-

vices are decomposed into those for housing units on newly developed land, already devel-

oped land and the intensive margin of supply. Consistent with housing production function

estimates from the literature, estimated neighborhood level elasticities of the supply of hous-

ing services with respect to price is between 2.5 and 4.3 on average across urban census tracts.

The average price elasticity of quantity of new units supplied is 0.2 to 0.9, with about one-third

of this response due to redevelopment. Supply elasticity increases with CBD distance, in part

because of increasing neighborhood land availability from reductions in the fraction already

developed. Tracts with flat land also exhibit more elastic supply. Conditional on census tract

level measures of land unavailability, analogous metro area measures do not significantly influ-

ence tract level supply estimates. Identification comes from variation in labor demand shocks

to commuting destinations, as aggregated using an urban economic geography model. Aggre-

gation of neighborhood level supply elasticities yields metro area supply elasticities that are

correlated with but smaller than those reported in Saiz (2010).

*We thank Camilo Acosta, Rolando Campusano and Ian Herzog for excellent research assistance.
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1 Introduction

Housing supply conditions vary considerably both between and within urban areas. While the

existing literature documents large differences in housing supply elasticities between cities (Saiz,

2010; Cosman, Davidoff, & Williams, 2018), little empirical evidence exists on how supply elas-

ticities differ within cities as a function of distance to the center, land availability, building den-

sities and zoning restrictions. Knowledge of housing supply elasticities at a microgeographic

scale is central to understanding spatial variation in booms and busts within housing markets

(Glaeser, Gottlieb, & Tobio, 2012; Guerrieri, Hartley, & Hurst, 2013), growth patterns at urban

fringes (Glaeser, Gyourko, & Saks, 2005), consequences of neighborhood specific labor or housing

demand shocks (Calabrese, Epple, & Romano, 2011; Couture, Gaubert, Handbury, & Hurst, 2019)

and implications of place-based policy interventions such as targeted neighborhood investment,

land use restrictions, and transportation infrastructure investments (Busso, Gregory, & Kline, 2013;

Hanson, 2009). The main aim of this study is to empirically characterize housing supply elasticities

for all residential neighborhoods in 306 U.S. metro areas. We also decompose supply responses

of total housing services into units and quality components. Within the units component, we fur-

ther decompose into redevelopment of existing developed areas versus newly developed land.

We demonstrate how housing supply conditions vary by neighborhood location, available land,

topography and regulation. Finally, we consider aggregation of neighborhood housing supply

elasticities to the metro area level. In this aggregation exercise, a number of pitfalls emerge, which

highlight the difficulty of interpreting metro area level elasticities in many contexts.

Average supply elasticity estimates are in the 0.2 to 0.9 range for housing units and in the 2.5

to 4.3 range for housing services across neighborhoods in our data, with about one-third of the

unit supply response coming through land redevelopment. These supply responses grow with

distance from central business districts (CBDs) such that unit and housing services supply elas-

ticites at CBDs are on average 0.2 and 3.8 respectively, growing to 1.5 and 4.3 respectively at urban

fringes. In addition, supply responds in expected directions to the fraction of neighborhood land

area that is already developed and has steep slopes. Tracts in areas with more stringent regula-

tion, as measured by Floor-Area-Ratio restrictions (Brueckner & Singh, 2018), are less responsive

in supply. Resulting estimates range from 0.1 to 1.5 for the 5th and 95th percentile neighborhoods

for unit supply and 2.2 to 5.2 respectively for housing services supply. While we face some sta-
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tistical power constraints for isolating variation in supply elasticities between metros as functions

of land developed fraction, topography, and regulation, we do not find evidence that metro level

factors matter for local supply elasticities conditional on neighborhood topography and land de-

velopment patterns. Using data from the US and Switzerland respectively, Orlando and Redfearn

(2018) and von Ehrlich, Schöni, and Büchler (2018) find even smaller unit supply elasticities at the

municipal level, though these papers also find that supply elasticities increase with CBD distance.

Supply elasticity estimates for housing services are quantitatively consistent with housing pro-

duction function estimates in the literature. These indicate approximately Cobb-Douglas form

with a land share of 0.2-0.35 (Ahlfeldt & McMillen, 2014; Combes, Duranton, & Gobillon, 2019;

Albouy & Ehrlich, 2012), implying housing services supply elasticities of 2-4. Our tract level unit

supply estimates are mostly smaller than those found in Saiz (2010) for the metro level. One rea-

son is that aggregation from micro to macro elasticities incorporates substitution patterns across

neighborhoods in residents’ neighborhood demand system. As neighborhoods become stronger

demand substitutes, a shock affecting (for example) labor market opportunities in one location

affects housing demand in a wider range of areas as households are more willing to substitute

across residential options to take advantage of lower housing prices in some places. This opens

up more opportunities for supply elastic neighborhoods to be included. The result is aggregation

to macro supply elasticities that are greater than tract level elasticities. However, we note that

macro elasticities are specific to the nature of the demand shock. This motivates us to explore

aggregation using estimated demand parameters and shocks generated by a specific place based

policy in an urban market access model similar to that in Tsivanidis (2018) (in progress).

We approach recovery of neighborhood level housing supply elasticities as the fundamentally

reduced form problem of identifying coefficients in regressions of changes in tract level hous-

ing quantities on changes in a tract level house price index. The central challenge is to find

an exogenous source of variation that shifts neighborhood level housing demand but not local

fundamentals including construction costs. This identification challenge is particularly daunting

for recovering within-city supply elasticities, as most shocks that impact housing demand in one

neighborhood would also affect housing demand for nearby neighborhoods, making it difficult

to trace out housing supply in any specific neighborhood. To achieve identification, similar to

Severen (2019) we use Bartik (1991) type labor demand shocks to commuting destinations from
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each residential location as the fundamental source of variation in housing demand shocks, which

feed through the commute time matrix to generate exogenous variation in changes in house prices

in residential locations. These labor demand shocks depend on 1990 industry shares in commut-

ing destinations interacted with national industry-specific employment growth rates after year

2000.

One practical challenge is in how to sensibly aggregate these labor demand shocks across all

commuting destinations from each residential tract. To do this, we follow Tsivanidis (2018) and

nest our reduced form estimation problem in an urban spatial equilibrium model in which resi-

dential demand in neighborhood i depends on “resident market access” (RMAi), a coherent mea-

sure of access to employment from tract i. RMAi amounts to the commute time discounted sum

of employment in each commuting destination from location i. Labor demand shocks in each

potential commuting destination are used to generate a simulated counterpart to the change in

RMAi that, conditional on appropriate controls, is purged of shocks to tract housing productivity

or changes in other unobserved tract level housing supply factors.

Beyond contributing to the housing production function and supply elasticity literatures, we

hope our supply estimates will be useful both for policy evaluation and to help improve under-

standing of patterns of neighborhood change. For example, our micro scale estimates provide

a supply-side explanation for the recent finding that there was more price growth in the center

of metro areas in the 2002-2007 housing boom (Glaeser et al., 2012; Genesove & Han, 2013). On

the other hand, the greater house price fluctuations at metro area edges where housing is the

most land intensive (Zhou & Haurin, 2010) seem most likely driven by demand fluctuations. A

burgeoning literature examines policies and phenomena that only directly impact a few neighbor-

hoods in cities in the context of general equilibrium urban models. These studies typically cali-

brate micro elasticities to macro estimates from the literature. Our evidence shows that this choice

can lead to misleading conclusions about incidence. In particular, landowners in the supply in-

elastic neighborhoods nearer to CBDs may enjoy most of the gains or bear most of the burdens

even if at the metro area level housing supply is elastic. We thus hope that our supply elasticity

estimates are useful for improving quantitative evaluation of various policies that are targeted to

particular neighborhoods.

As an illustrative example, we explore the incidence of the recently implemented Opportunity
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Zone (OZ) program, which was part of the “Tax Cuts and Jobs Act” (TCJA) of 2017. This program

rebates capital gains taxes back to investors for real estate and other investments that occur in cer-

tain low income census tracts. We use our neighborhood level supply elasticity estimates coupled

with structurally estimated housing demand parameters from our economic geography model to

recover the impacts of the OZ program on consumer and producer surplus, and its deadweight

loss at the tract level. Because of such variation in supply elasticities, we find a huge variation

in these impacts across neighborhoods, even within metro areas. In downtown neighborhoods,

where housing supply is relatively inelastic, we show that this program generates large gains for

developers and investors and small gains for households (in progress).

2 Data

For this analysis, we construct a data set that brings together information from a number of differ-

ent sources. Using the Zillow ZTRAX transactions, assessments and historical assessments data

files, we build quality-adjusted house price growth between 2000 and 2010 for census tracts in 306

metro areas using both repeat sales and hedonic approaches. We use the same data sources to

construct a rich set of housing supply measures including changes in housing stocks, new con-

struction, quality-adjusted changes in housing stocks, floorspace, and redevelopment through

both renovation and teardowns, all at the tract level. Local labor demand conditions are mea-

sured using the place of work and journey to work tabulations in the 1990 and 2000 U.S. Censuses

of Population and the 2006 and 2010 LODES data plus census tract aggregate data from 1990-2010.

Finally, we use remote sensing information on land cover in 2001 to measure baseline tract devel-

opment intensity, topography and prevalence of wetlands. All data are keyed to 2000 definition

census tracts, covering 63,897 tracts in 306 metro areas (with some overlap across metros). Below

we describe in more detail how we process each data source.

2.1 Housing Prices

Our primary source for housing data is the Zillow ZTRAX data sets (Zillow, 2017). These come

in the form of files for transactions, most recent assessments before 2017 and prior assessments.

These data cover more of the U.S. over time from 2000 to 2010, going from coverage of at least
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part of 267 metro areas and about two-thirds of sample tracts to the full study area by 2010, with

a few exceptions noted below. Because of incomplete coverage, particularly in year 2000, we

supplement Zillow data with decennial Census data, as is explained in further detail below.

Transactions information is constructed from information in local Recorders of Deeds and in-

cludes the sale price, location and some property attributes. To fill out property attributes, we

merge it with the most recent assessment data. We primarily use this data set to construct price

indexes at the census tract level. For the purpose of building home price indexes, we only use

arm’s length transactions for resale or new construction. This excludes deed transfers involving

non-transactions such as foreclosure by banks or quitclaim deeds. We include all residential units,

including single family houses, semi-detached and condominiums. We consider only homes that

are bought by individual buyers and do not examine institutional buyers. We always exclude

homes that sell more than 9 times over our sample period. Our main use of the ZTRAX data is to

build home price indexes at the census tract level.

A well-known challenge for constructing home price indexes is that homes are heterogeneous

in observed and unobserved attributes. The goal of the indexes is to hold quality constant, elim-

inating all price variation due to differences in attributes. Leveraging the richness of assessment

data on home characteristics, we use census tract-region-year fixed effects aHI
irt from the following

hedonic regression to build our Hedonic Index (HI).

ln Phirtm = aHI
irt + ρHI

m + XhirtmβHI + eHI
hirtm

Here, h indexes homes in census tract i, region r, year t and month m. Xhirtm includes a rich set

of characteristics (including unit type, rooms, bedrooms, kitchens, bathrooms, heating and AC,

elevator, fireplace, water, sewer, roof type, age, floorspace and lot size). Month of sale fixed effects

ρHI
m flexibly account for seasonality in market conditions. Inclusion of controls for region fixed

effects throughout the main empirical analysis below ensures that comparisons are always made

across locations within metro regions. Due to incomplete coverage in the ZTRAX data set and our

inclusion of tracts with at least 10 valid home sales in relevant sample years, this index covers only

about two-thirds of our full tract sample.

To fill out the tract sample with some measure of house prices for 2000 and 2010 and to facilitate

looking at pre-trends, we also build a lower quality hedonic price index using self-reported data

from the 1990 and 2000 Censuses of Housing and the 2008-2012 ACS aggregated to the census
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tract level. These are tract residuals aC
irt from the following cross-sectional regressions estimated

separately for 1990, 2000 and 2010:

ln PC
irt = XC

irtβ
C
t + aC

irt.

Here, PC
irt is the average self-reported value of owner-occupied homes in the tract and included

in XC
irt are fractions of the tract’s owner-occupied units in various building types, with various

numbers of bedrooms, and of various vintages. While it is of lower quality, this index covers all

census tracts in our sample regions.

Hedonic indexes do not account for unobserved heterogeneity in quality across homes. To

account for this, we also use the ZTRAX data set to build a repeat sales index at the tract-year

level. For this index, we exclude any sales fewer than 180 days after the prior sale. Inclusion of

home fixed effects αRS
hir in the following regression purges individual home heterogeneity that is

fixed over time. Tract-year fixed effects aRS
irt from this regression are our repeat sales index.

ln Phirtm = aRS
irt + ρRS

m + αRS
hir + eRS

hirtm,

After homes are renovated, we treat them as new homes for the purpose of constructing this index.

We recognize that this index may suffer from a more biased sample than the hedonic index and

incorporate unwanted capitalization of unobserved home improvements.

The top block in Table 1 presents summary statistics about changes in these three home price

indexes for the primary estimation sample used for the empirical work. The Zillow hedonic price

index growth is 0.89 on average across tracts relative to 0.95 for repeat sales index growth during

the 2000-2006 periods. For 2000-2010, average growth rates are 0.37 and 0.45 respectively, reflect-

ing the 2007-2008 housing market crash. Correlations between the two Zillow indexes is 0.63 for

the 2000-2010 period but the correlation with the growth in the Census price index is only about

0.10 for both Zillow based indexes. Nevertheless, we will see below that all three price indexes

generate similar housing supply elasticity estimates.

2.2 Satellite Data

We use remote sensing information to measure tract level topography and land development in-

tensity. Topography is one of the most important factors influencing construction costs and ulti-
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mately housing supply. Land cover information is used to help determine whether new housing

is built on previously undeveloped land.

We use three remote sensing data sets to obtain land cover and slope. First, the “Scientific In-

vestigations Map 3085” is derived from the US Geological Survey’s National Elevation Database.

The Map 3085 data uses raster information on slope and elevation range for all 30X30 meter land

pixels within a 0.56 km radius (1 sq. km) of each pixel to classify it into one of nine categories that

describe how flat or hilly the surrounding area is. We aggregate these categories into “flat plains”,

“flat non-plains” and “hilly”. Flat plains have a slope of less than 8% in more than half of these

nearby pixels and an elevation range of less than 15 meters in this 1 km sq region. On average

41% of tract land area is flat plains. Flat non-plains have a slope of less than 8% in more than half

of pixels within 1 sq km and a larger elevation range. On average, 45% of tract land area is flat

non-plains. Remaining land is hilly. We take elevation range within 1 km of each pixel directly

from the US Geological Survey National Elevation 1/9-1/3-1-2 arc second Database.

Development costs not only depend on topographical conditions but also the initial developed

state. We construct tract developed fraction from the National Land Cover Database (NLCDB) for

2001 and 2011. In particular, the NLCDB provides for each 30X30 meter cell one of 4 categories of

development (0-19%, 20-49%, 50-79%, 80-100%). We construct the square meters of land in each

tract by density of development and aggregate to impute developed fraction for the land area of

each census tract. The average tract in our sample had 38% of land area developed in 2001 and

39% in 2011.1

We aggregate the resulting tract level data to construct various land unavailability measures

for each metro area. To be consistent with Saiz (2010), we calculate the fraction of area within 50

km of the CBD of each region that is undevelopable due to a steep slope (e.g. mountains), water

or wetlands (e.g. oceans, lakes, etc) and that is developed. We also build variants of these two

measures instead aggregating to the metro area level and within 50% or 100% radii from the CBD

to the furthest tract in the metro area. As these measures are highly correlated, our estimation

results are not sensitive to the choice of aggregation.

1As satellite data has been documented to measure changes in land cover with high error rates ((Torchiana, Rosen-

baum, Scott, & Souza-Rodrigues, n.d.)), we only use levels of this variable in the empirical analysis.
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2.3 Housing Quantities

We construct six measures of housing quantity changes to cover different aspects of supply re-

sponses. As most of the existing literature on housing supply focuses on units in the housing

stock, we begin with this measure. However, we also aim to explicitly measure new construction

and to quality adjust the stock, which the detailed Zillow assessment data allows for. However,

since the Zillow data has incomplete coverage at the beginning of the sample, most of our stock

measures rely on 2000 census data for the base year.

To organize our classification of stock measures, we begin by noting that the total quantity of

efficiency units of housing services in census tract i, He f
i , is the number of housing units Hi times

the average quantity of services provided per housing unit Si. Differentiating, the growth rate in

the quantity of housing services over time can be written as follows:

d ln He f
i =

dHR
i

Hi
+

dHU
i

Hi
+

dHT
i

Hi
+ d ln Si (1)

We separate out our measures of the total change in housing services in tract i into these three

components. New construction is broken into that on existing developed land dHR
i

Hi
and on unde-

veloped land dHU
i

Hi
. We call the former “redevelopment”. The third term is negative and captures

teardowns and the housing units that fully depreciate away. Finally, the intensive margin com-

ponent d ln Si is a residual that includes partial depreciation, remodeling and the quality of new

construction units relative to that for units in the base period.

2.3.1 Housing Units and Total New Construction

The simplest quantity measures are the 1990-2000 and 2000-2010 growth rates in tract level hous-

ing occupied unit stock constructed using the 100% count Decennial Census data dHi
Hi

. We use

occupied units instead of all units to be consistent with Saiz (2010) and because vacant units may

be under-reported or not habitable. While it has the best neighborhood coverage, this measure is

not an ideal new supply measure as it includes teardowns and depreciation.

We separate out new construction dHR
i +dHU

i
Hi

using information on building age in the ACS and

ZTRAX data sets. In the 2008-2012 ACS tract aggregates, we observe the number of units in the

stock built between 2000 and 2009. Following the ZTRAX historical assessment data forward, we
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record the earliest year built after 2000 for every housing unit in the ZTRAX data set.2 Beause of

incomplete ZTRAX coverage in the earlier part of our sample and to be consistent across measures,

we use the occupied housing stock reported in the 2000 census as a base for both measures. As

the ACS is based on a 5% sample of occupied units while ZTRAX in principle covers the universe

of new construction, the ZTRAX measure is more accurate.

Summary statistics for these three measures are presented in the second block of Table 1. Here

we see that for the 2000-20009 calendar years, the average number of new construction units across

tracts in our sample, counted using both the ACS and Zillow data, are very close at about 235,

or about 11 percent growth over the base in 2000. The average census growth number for the

same period, which incorporates fully depreciated or torn down units, is 181 or 7 percent growth.

Pairwise correlations between these three measures are all over 0.91.

2.3.2 Redevelopment New Construction Units

Redevelopment (dHR
i ) is an important component of housing supply, as it may have a different

cost structure than new construction on undeveloped land. Moreover, in cities where building

density is already high, builders can only increase housing supply through redevelopment. Urban

redevelopment can take many forms, including teardowns and infills, which became widespread

during the housing boom of the 2000s. At the peak, the number of demolitions and teardowns

in the Chicago metropolitan area approached 40% of sales in 2005 (McMillen & O’Sullivan, 2013).

In New York City, annual teardown activity increased almost eight-fold from 1994 to 2004 and

peaked in 2005 (Been, Ellen, & Gedal, 2009).

Lacking data on demolition permits or infill construction, we quantify the units built through

redevelopment by imputing the number of units built on already developed land in the calendar

years 2000 through 2009 as follows. We assume that each tract’s stock of units reported in the 2010

census is uniformly spatially distributed across the tract’s developed area as measured using the

2011 satellite data. We subtract off the number of ACS reported new construction units 2000-2009

that is imputed to be on newly developed land using this assumption from 2010/2011 about the

spatial distribution of housing units in each tract. We infer that the remainder of 2000-2009 new

2Some rental buildings only report total square footage and do not break out the number of units. In these cases, we

impute the number of rental units using the average square footage of units in other rental and condominium buildings

of similar size in the tract.
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construction is from redevelopment. If this remainder is negative, we assign 0 units to redevelop-

ment. Our measure indicates that about 40% of new construction in an average tract in our sample

is redevelopment.

2.3.3 Efficiency Units of Housing

In the context of the model developed below, the tract efficiency units of housing services He f
i ,

including the intensive margin of supply, is the most conceptually relevant measure. If recently

built housing units are larger than those built in early 2000s, then using either the difference in

stocks or new construction would underestimate the true housing supply response. Moreover, we

wish to have some way of capturing upgrades to the existing stock.3

We construct two such efficiency units meausres. First, we simply use the total floorspace

of assessed housing units in each tract, as reported in the Zillow Historical Assessments data.

Second, we use the Zillow data to construct a tract level quality-adjusted housing quantity index.

We start by constructing weights for each housing attribute using transactions data from 2006

only. We choose 2006 because this is the first year with near universal coverage in our sample

area. For all census tracts with at least 10 transactions, we estimate coefficients in the following

hedonic regression:

ln Phir = XhirβW + ρW
m + εir + ηhirm

.Here, Xhir includes property age, age squared, floorspace, floorspace squared and home type

dummies and εir are census tract fixed effects. βW is a vector of hedonic weights that indicate the

amount of housing services provided by each attribute in 2006. These attribute prices that are

common across locations and are applied in subsequent years. We take the universe of (assessed)

housing units in each tract and year and calculate He f
hirt = exp(Xhirt β̂

W). The stock of housing

services in tract i at time t is then He f
irt = ∑h He f

hirt. This measure is highly correlated with total

floorspace.

3The challenge of separating between the price of housing per unit and the quality-adjusted amount of housing is

well-established in the housing production literature Ahlfeldt and McMillen (2014); Combes et al. (2019); “Housing

Productivity and the Social Cost of Land-Use Restrictions” (n.d.). As noted in Epple, Gordon, and Sieg (2010), “houses

are viewed as differing only in the quantity of service they provide, with housing service being homogenous and

indivisible.”
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2.3.4 Average Unit Quality

Our final measure of housing quantity change is the (residual) intensive margin of housing sup-

ply holding the number of units fixed d ln Si. Renovation is an important supply substitute for

new construction. Choi, Hong, and Scheinkman (2014) report that American home improvement

expenditures increased from about 1% of gross domestic product (GDP) ($229 billion) in 2003 to

2% of GDP ($326 billion) in 2007.4 Despite its importance, renovation has often been ignored in

the literature on housing supply (DiPasquale, 1999). We capture this important dimension (both

renovation of existing units and upsizing in newly built units) by taking the difference between

the quality-adjusted housing quantity change and the census-measured change in housing units.

That is, d ln Si = d ln He f
i − dlnHi.

2.4 Population, Employment and Commutes

The Census Transportation Planning Package (CTPP) reports tabulations of 1990 and 2000 census

data by residential location, work location and commuting flow. 1990 CTPP geography deter-

mines our study regions. The 1990 CTPP assigns microgeographic units the size of census tracts

or smaller to “regions”, which roughly correspond to metropolitan areas. These regions can over-

lap. Commuting flows and times are reported for pairs of census tracts, traffic analysis zones or

block groups within each region only. Employment by place of work, sex and 18 industry groups

are reported for these same geographic units. For Connecticut and New Jersey, which are fully

contained in one large 1990 CTPP region each, we develop new regions that each have a 25 km

radius around each CBD in each state. We map 1990 CTPP geography to 2000 definition census

tracts by overlaying their digital maps and using land area as allocation weights. The 2000 CTPP

is more spatially comprehensive and thus can be restricted to cover only 1990 region definition

geography. The result is a total of 63,896 2000-definition census tracts in 306 regions.

For most regions, central business district (CBD) locations are taken as the centroid of the set

of census tracts reported as being in the CBD in the 1982 Economic Census. Remaining CBD

assignment is done by eyeballing a location that is near city hall and the most historical bank

4According to Bendimerad (2007), Americans spent $280 billion on home remodeling in 2005, and this number was

projected to increase at 3.7% in real terms by 2015. Plaut and Plaut (2010) further report that almost half of American

home owners made some renovations during 2003-2004.
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branches in the region’s largest city.

Empirical implementation requires information on the commute time between each pair of

census tracts in each region. Because they are based on only a sample and flows of fewer than

5 sampled workers are suppressed, commutes are not observed between about one-half of tract

pairs in 1990 and two-thirds of tract pairs in 2000. To fill in the rest, we develop a forecasting model

based on tract relative locations. In particular, we predict origin-destination commute times using

out of sample predictions from a regression of log travel time on region fixed effects, log travel

distance, log CBD distance of workplace and log CBD distance of residence. See Baum-Snow,

Hartley, and Lee (2019) for details.

For 2006 and 2010, we use the LEHD origin destination employment statistics (LODES) data

to measure employment by place of work. As this data set does not have commute times, we

maintain year 2000 commute times for these later years.

We take census tract aggregates for 1970-2010 from the Neighborhood Change Database sup-

plemented with some Summary Tape File 4 variables from 1980. We use these variables to measure

aggregate outcomes and to control for pre-treatment trends in observables.

2.5 WRLURI and FAR

The Wharton Residential Land Use Regulatory Index (WRLURI) is constructed from a battery of

survey questions sent to a weighted random sample of municipalities nationwide in the US in

year 2005. The index is expressed in population-weighted standard deviation units. While larger

urban municipalities were sampled with higher probability, a large number of smaller suburban

municipalities were also included in the sample. 261 of the 306 regions in our sample have at least

one municipality surveyed. However, the municipality of the CBD is sampled in only 164 of our

sample regions. Overall, our data includes 2,373 municipalities and 30,526 tracts with WRLURI

information.

We incorporate data on Floor Area Ratio (FAR) restrictions on residential development from

the municipalities of Atlanta, Boston, Chicago, Denver, Los Angeles, New York, San Francisco,

and Washington.5 For each residential land parcel, local zoning maps provide the residential FAR.

We use the average of these within each census tract, weighted by parcel area.

5Most of these data were generously provided by Ruchi Singh (Brueckner & Singh, 2018).
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2.6 Estimation Sample

Our analysis requires reliable information on housing quantities. To this end, we only include

census tracts with Zillow unit counts that are close to 2010 100% census counts. In particular,

we exclude all tracts from the estimation sample for which our 2010 Zillow unit stock is more

than 20% above or below the occupied housing stock reported in the 2010 census. Unless the

2000 Zillow stock is within 20% of its 2000 census counterpart, we also exclude tracts in non-

disclosure states for which Zillow reports they have incomplete coverage.6 For these tracts, we

are particularly concerned about under-measurement of 2000-2010 new construction. As a result,

our sample is cut in about half, from 63,896 tracts in 306 regions to 31,242 tracts in 275 regions.

Beyond this initial sample restriction, we lose about 7,000 additional observations because we

lack ZTRAX based price index data for year 2000. Primary estimation sample sizes are reported

in the top two blocks of Table 1.

For building instruments and for structural estimation of the model, we also need information

on labor market opportunities that are relevant to each sample census tract. Because the CTPP

and LODES data sets fully cover our sample area, these data sets do not introduce any sample

constraints for our analysis.

3 Conceptual Framework

The main object of our analysis is to estimate housing supply elasticities that are allowed to differ

flexibly across neighborhoods and regions. While we use the decomposition in (1), developed

further below, to study different components of supply, we intentionally impose as little structure

as possible on the form of the housing supply function.

As such, we focus on estimating γir in the following reduced form expression. Hs
ir denotes any

of the quantity measures listed in (1). Pir is the observed price per unit of housing services in our

data. To accommodate ad-valorem taxes, we can think of the price developers receive per unit of

housing sold Ps
ir as Pir(1− tr). Region fixed effects mr thus capture potential tax wedges and other

6These states are Alaska, Idaho, Kansas, Louisiana, Mississippi, Missouri, Montana, New Mexico, North Dakota,

Texas, Utah, and Wyoming.
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region-specific factors that influence construction costs.

ln Hs
ir = mr + γir ln Pir + uir (2)

In the empirical work, uir includes supply shifters and the error and we allow γir to depend on

tracts’ observed heterogeneity, including initial building density, geographic features and distance

to the central business district. Because of the durability and immobility of housing, (2) is likely

to hold with a greater γir for price growth than for price declines Glaeser and Gyourko (2005).

Largely for this reason, our analysis focuses on demand shocks in the 2000-2006 period. During

this time, price growth was positive in over 98 percent of the tracts in our sample, more so than

for any other time period in our data.

In this section, we first lay out relevant microfoundations for housing supply in our context

and then we lay out the theory behind the procedure we use to construct demand shocks necessary

to pin down consistent estimates of γir.

3.1 A Theory of Neighborhood Housing Supply

While microfoundations are not required to use our supply elasticity results, they do help to un-

derstand magnitudes of our empirical results reported below. Indeed, conceptual development

beyond simple aggregation of individual housing production functions is needed to justify our

differing price elasticity estimates for different components of supply. To fix ideas about what our

different elasticity measures deliver and how to combine them, here we sketch a model of housing

supply to neighborhood i.

We begin with market structure and technology and then add land availability and redevel-

opment constraints. We assume that the amount of housing services on each parcel Si is supplied

by a developer in a perfectly competitive market. Developers combine land and capital with pro-

ductivity that can differ across neighborhoods. Each building site s in neighborhood i has a fixed

lot size Mi and a heterogeneous fixed development cost of fis. fis captures development fees and

permitting costs plus land preparation costs for development, be it demolition and environmental

remediation of existing construction or grading and draining of undeveloped land. The fixed de-

velopment lot size assumption reflects land assembly frictions that are likely to bind over the 5-10

year time horizon that is the focus of our empirical analysis (Brooks & Lutz, 2016). Demand con-

ditions and the cost of capital determine the intensity of new development on any given plot in a
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neighborhood. The price per unit of housing services Pi is the same for all parcels in neighborhood

i.

Following is a representative developer’s profit associated with building on parcel s in neigh-

borhood i.

pro f itis = PiSi(Pi)− fis − C(Si)− p( fis)

Here C(Si) is the variable cost and p( fis) is the endogenous parcel acquisition price. Imposing 0

profits and perfect competition (marginal cost pricing), we have

p( fis) = C(Si)(
d ln C(Si)

d ln S
− 1)− fis.

Because of the fixed lot size, the variable cost function is likely convex and so d ln C
d ln S > 1. The

first term reflects the intuition that higher housing prices imply higher marginal costs and greater

profits absent land costs. The second term reflects capitalization of fixed development cost into

the parcel price.

Consistent with housing production function estimates in the literature, we proceed assuming

Cobb-Douglas production with a land share of α and productivity ρi. This implies a parcel-specific

housing services supply function of Si(Pi) = ρiP
1−α

α
i and that p( fis) = αρiP

1
α

i − fis.7 Si can be

thought of as floorspace installed on a newly developed land parcel in tract i. If the tract has a

high price, the developer may find it optimal to partition that floorspace into multiple units.

Each tract has a CDF of the fixed costs of development Fi(x) that depends on tract character-

istics. Normalizing the opportunity cost per unit of land to 0, this means that the fraction of land

developed in each tract is Fi(αρiP
1
α

i ). The resulting aggregate housing supply function in tract i is:

He f ,s
i = ρiP

1−α
α

i MiFi(αρiP
1
α

i ) (3)

This function reflects the intensive and extensive margin of supply. The first part, ρiP
1−α

α
i , is the

intensity of development on each developed plot. The second part, MiFi(αρiP
1
α

i ), is the total de-

veloped land area in the tract. Differentiating, the implied housing supply elasticity is

d ln He f ,s
i

d ln Pi
=

1− α

α
+

fi(αρiP
1
α

i )

Fi(αρiP
1
α

i )
ρiP

1
α

i , (4)

7ρi = ι
α−1

α (1− α)
1−α

α κ
1
α

i Mi where ι is the cost of capital and κi is tract housing productivity.
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which quantifies the intensive and extensive margin responses respectively. With α estimated to be

about 0.33 in the literature (Combes et al., 2019), this expression reflects a baseline supply elasticity

of about 2 holding the amount of developed land fixed and an additional component reflecting the

extensive margin associated with developing additional land or land redevelopment. For tracts

in which the fixed cost of developing marginal land parcels is higher (the CDF Fi(x) rises more

slowly with x), the extensive margin component of the supply elasticity is smaller.8

Now that we have laid out the basis for intensive and extensive margin responses, we adjust

the model to incorporate all of the margins of response we observe in the data. First, we explicitly

break the extensive margin component into redevelopment (plus teardowns) and development

of undeveloped land. Second, we capture the fact that floor-area ratio (FAR) restrictions may

constrain the quantity of housing services developed per parcel to be below the preferred amount

of ρiP
1−α

α
i . Finally, we consider depreciation and multi-unit buildings.

To capture the idea that redevelopment may be costlier than development of new land, we

decompose Fi(x) into a component for redevelopment and a component for undeveloped land:

Fi(x) = MR
i

Mi
FR

i (x) + MU
i

Mi
FU

i (x), in which we think of FR
i (x) as first-order stochastically dominating

FU
i (x). Since in any initial period, all housing units are on developed land by definition, using the

notation in (1) we have dHR,s
i +dHT,s

i
Hi

=
f R
i (αρi P

1
α

i )

FR
i (αρi P

1
α

i )
ρiP

1
α

i and dHU,s
i

Hi
=

f U
i (αρi P

1
α

i )

FU
i (αρi P

1
α

i )
ρiP

1
α

i . That is, because of

variation in the cost of redevelopment, the supply of redeveloped units (net of teardowns) may

exhibit a different price response to that of new developments on previously undeveloped land.

Extending (4) with the identity (1), we have the following unified decomposition that forms

the basis for our reduced form empirical work.

d ln He f ,s
i

d ln Pi
=

d ln Si

d ln Pi
+

dHR,s
i /Hi

d ln Pi
+

dHT,s
i /Hi

d ln Pi
+

dHU,s
i /Hi

d ln Pi
(5)

The redevelopment elasticity dHR,s
i /Hi

d ln Pi
may be smaller than the other new units elasticity dHU,s

i /Hi
d ln Pi

because of additional teardown and land remediation costs. We assume that variation in depreci-

ation of existing units across tracts in a metro area is unrelated to changes in prices.

We model the tract-level FAR constraint Di as Si(Pi)

Mi
≤ Di. This constraint potentially impacts

8If Fi(x) is distributed Frechet with tract-specific dispersion parameter Ti,
fi(αρi P1/α

i )

Fi(αρi P1/α
i )

= Ti(αρiP
1
α

i )−1−Ti and the

extensive margin component of the supply elasticity is Tiα
−1−Ti ρ−Ti

i P−
Ti
α

i . Here we see explicitly how the extensive

margin of supply may depend on tract topography and developed fraction if Ti depends on these objects.
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both the extensive and intensive margins of development. On the extensive margin, a binding

constraint inhibits some new construction response to a price increase. In addition, a binding FAR

causes the intensive margin response to be 0.9

We recognize that this simple model best describes the construction of single family homes,

or one housing unit per land parcel. This type of construction makes up over 90 percent of new

construction units in our sample area in 2000-2010. However, in some high price areas the inten-

sive margin component d ln Si reflects both space per unit and the number of units in multifamily

dwellings. We ignore depreciation because we think it is unlikely to differ by price changes.

3.2 Housing Demand

We incorporate housing supply conditions that are allowed to differ across locations within cities

into a version of the quantitative urban model developed by Ahlfeldt, Redding, Sturm, and Wolf

(2015) and extended by Tsivanidis (2018). While tracing out housing supply functions is ultimately

about estimating reduced form impacts of housing demand shocks on housing quantities and

prices, this part of the theory is helpful in operationalizing this goal in three ways.

First, the model shows how to leverage variation across space within cities in local labor de-

mand shocks to isolate exogenous variation in housing demand shocks across census tracts. The

model structure facilitates recovery of causal linkages from labor demand shocks to housing de-

mand shocks, as filtered through the commuting time matrix. We show how housing demand

conditions in each census tract i can be summarized through “Resident Market Access” RMAi,

which is the sum of commute time discounted skill prices available to residents of tract i. This

object can be readily calculated with available data on the numbers of workers and residents in

each tract. Shocks to skill prices in commuting destinations are reflected as shocks to RMAi.

Second, the model provides a way to convert the quantity of housing services, which we ob-

serve only noisily, to residential population, which we observe accurately. The cost of relying on

the model to make this conversion for us is that it depends on assumptions about preferences over

housing and requires joint estimation of model parameters that govern labor and population sup-

ply conditions to residential and work locations respectively. For these reasons, we show results

9In particular, with the FAR constraint d ln He f ,s
i

d ln Pi
=

fi(
Mi Di

κi
Pi−ι

[
Di
κi

] 1
1−α Mi)

Fi(
Mi Di

κi
Pi−ι

[
Di
κi

] 1
1−α Mi)

Mi Di
κi

Pi .
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both from the housing market portion of the model, for which we measure housing quantities di-

rectly, and from more complete estimation. Both of these sets of results will use the same sources

of identifying variation. However, even the more isolated housing market estimation results rely

on using the structure of the model to partial out the equilibrium impacts of labor demand shocks

on local prices. Because these shocks impact housing demand conditions in multiple locations

simultaneously, the model is essential for delivering a scaling of relative housing demand shifts

across tracts that result from these shocks. This motivation is line with Monte, Redding, and

Rossi-Hansberg (2018)’s observation that two identical productivity shocks hitting different cities

may impart different treatment effects on city level outcomes because of differences in inter-city

commuting and trade linkages.

Third, the model makes clear the conditions required for census tract level “Bartik” shocks to

represent a valid source of econometric identification. These shocks are calculated by predicting

2000 to 2006 tract level growth in employment by industry using 1990 tract level employment

shares by industry with national industry specific employment growth outside of the metro area

in question. Originally proposed by Bartik (1989, 1991), this source of variation has been used

at the metro area level in Saiz (2010), Notowidgdo (2013) and Diamond (2015) among many oth-

ers. This and Baum-Snow et al. (2019) are among the first papers to use this source of variation

for identification at the sub-metro level of geography. To help us do this in a sensible way, we

explicitly introduce industries k into the model.

Finally, the model provides structure that can be used to aggregate neighborhood housing

supply functions to the metro area given an array of shocks to neighborhood fundamentals and to

perform welfare analysis of place based policies.

3.2.1 Setup

While our main empirical work uses data for 275 metropolitan areas, our empirical focus is on

within-metro area variation in housing supply elasticities. As such, our model is of a single metro

area specified with an eye toward exploiting within metro area variation in labor demand shocks.

The model features a continuum of identical workers indexed by ω who choose residential

tract i, work tract j and industry of work k within the metro area. They receive productivity

shocks zijkω over commute origin-destination and industry triplets and preference shocks viω over
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residential locations. We think of them as first choosing their residential location, anticipating the

distribution of productivity shocks from which they draw, with these shocks only revealed after

committing to a residential location. In practice, the shocks primarily serve to smooth things over

such that the model can generate data in which people with different utility realizations can have

the same expected utility.

The indirect utility person ω receives from living in tract i and commuting to j and working in

industry k is:

vijkω =
viωBizijkωwjk

P1−β
i eκτij

(6)

where Bi is a local amenity, wjk is the price of a unit of skill in commuting destination j and

industry k, Pi is the price of one unit of housing services in i and eκτij is the fraction of time spent

commuting for those living in i and working in j. In the data, we observe the price Pi in year 2000

and beyond and the commuting time τij in 1990 and 2000. The productivity shock zijω is drawn

from the Frechet distribution with shape parameter ε.

Fz(zijkω) = e−z−ε
ijkω , ε > 1 (7)

Following Tsivanidis (2018) and Couture et al. (2019), we also introduce the nested preference

shock over residential locations viω. This shock is also distributed Frechet but with shape param-

eters η and φ. This nested structure allows individuals to have different elasticities of substitution

in demand between neighborhoods within versus between municipalities, where municipalities

are indexed by m and i(m) refers to neighborhood i in municipality m.

Fv(viω) = exp[−∑
m
[∑
i(m)

v−η
iω ]−

φ
η ], φ > 1, η > 1 (8)

Incorporation of this second shock allows the model to generate situations in which people would

choose to reside in tracts with lower expected utilities as calculated based on Bizijkωwjk

P1−β
i eκτij

only. As a

practical matter, it also delivers a convenient expression for mean income net of commuting cost

in each tract, as is derived below. If the distribution functions for the two shocks are identical and

η = φ = ε, the utility shock becomes redundant and this model reduces to one more similar to

that in Ahlfeldt et al. (2015).
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3.2.2 Resident Market Access

The Appendix walks through the model in more detail to show that RMAi ≡ ∑k ∑j
[
wjke−κτij

]ε

is a convenient summary measure of the access to employment opportunities from residential

neighborhood i. In particular, many objects in the model are constant elasticity in RMAi and it

can be readily calculated with available data.

Before the productivity shock is revealed, the expected income (wage net of commuting cost)

yi associated with residing in tract i is

yi = Γ(1− 1
ε
)(RMA)

1
ε
i . (9)

As a result, population supply to tract i is given by

πi = λ[ ∑
i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

]
φ
η−1

(
BiP

β−1
i RMA

1
ε
i

)η

. (10)

This expression reflects the attractiveness of neighborhood i’s amenities and labor market oppor-

tunities, as balanced against its housing cost. This attractiveness is relative to the attractiveness to

other neighborhoods in the municipality m(i), captured by the object inside the summation, and

the overall attractiveness of all neighborhoods in the metro region 1/λ.

Equilibrium commute flows, calculated as πij = πij|iπi, follow a standard gravity equation in

commute time τij.

ln πij = ag
i + bg

j − (κε)τij (11)

That is, a regression of log commute probabilities between each origin-destination pair on origin

and destination fixed effects plus commute time τij recovers an estimate of the parameter bundle

κε.

Labor supply to tract j is given by

Lj = λ ∑
k

[
wε

jk

]
FMAj, (12)

where “Firm Market Access” FMAj is a measure of the access to workers enjoyed by firms in tract

j. Plugging into the definition of RMAi, we have the following system of equations.

FMAj = ∑
i

e−κετij πi

RMAi
(13)
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RMAi = ∑
j

e−κετij Lj

FMAj
(14)

Using data on employment Lj, residents πi, the parameter cluster κε and commute times τij, we

can calculate FMAj and RMAi by solving this system.

RMAi can be readily calculated (jointly with FMAi) using our tract level data on employment,

population, commuting flows and commuting time. We observe spatial distributions of employ-

ment and population in 1990, 2000, 2006 and 2010 and commute flows and times in 1990 and 2000.

We estimate ε̂κ using separate flow-weighted commuting gravity regressions like (11) with origin

and destination fixed effects in 2000 for each metropolitan region.10 Because we do not observe

tract-tract commute times after 2000, we hold commute times constant at 2000 times for the later

years. This yields direct measures of RMAi as in (14) for 2000, 2006 and 2010.

An individual who lives in i and works in j in industry k has housing demand of (1− β)
yi
Pi

from Cobb-Douglas preferences. We assume that all sites in each residential location i are perfect

demand substitutes, justifying the uniform price per unit of housing services Pi. Adding up, the

log aggregate housing demand in tract i is thus

ln He f ,d
i = ln ρHD +

1
ε

ln(RMAi) + ln πi − ln Pi. (15)

This object is expressed in terms of units of housing services. It is increasing in RMA conditional

on population πi because greater RMAi is associated with greater income for tract residents. Con-

ditional on Pi, equilibrium tract residential population πi is also increasing in RMAi, as seen in

(10). Thus, shocks to RMAi result in housing demand shocks. This is the key insight used for

identification in the empirical work.

The reduced form empirical work uses the housing supply equation (2) in tandem with the

housing demand equation formed by substituting (10) into (15). Credible identifying variation in

ln Pi must come from a component of RMAi that is cleansed of variation in housing productivities

and lot sizes. Section 3.4 lays out how we isolate such variation using a simulated version of

RMAi based on Bartik type labor demand shocks in commuting destinations for residents of tract

i.
10Across the 306 regions in our sample, the median estimated elasticity of commuting flow with respect to one-way

commuting minutes in 2000 is -0.04, the minimum is -0.11 and the maximum is -0.01. In addition, estimates of εκ are

about twice as large in big cities like New York and Los Angeles than in small cities like Bryan-College Station, TX. This

reflects the fact that households in bigger cities are willing to travel longer to reach work destinations.
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3.3 Equilibrium

We write down equilibrium conditions primarily with an eye toward showing how to use local

housing demand shocks to identify of tract-specific housing supply elasticities γi. Quantitative

analysis and aggregation at the end of the paper also makes use of the neighborhood demand

system defined by the model. The following equilibrium conditions are useful in this regard as

well.

Combining conditions governing population supply to residential tracts (10), labor supply to

work tracts (12) and imposing housing market clearing yields conditions describing equilibrium

tract population and house prices. Differentiating the population condition over time yields the

following structural equation.

d ln πi =
γi + 1

γi + 1 + η(1− β)

η

ε
(1− 1− β

γi + 1
)d ln RMAi + vπ

m + uπ
i (16)

This equation incorporates an intuitive positive relationship between growth in employment op-

portunities and tract population. This relationship is stronger if housing supply in tract i is more

elastic and/or if there is less dispersion in idiosyncratic preferenes over locations (η is larger).

In this equation, vπ
m is a municipality fixed effect that captures common population trends in all

tracts in municipality m that come through their correlation in neighborhood choices delivered

by the outer nest in preferences over neighborhoods. The error term uπ
i is a function of shocks

to amenities and housing productivity in tract i. Mathematical details are in the appendix. We

use (16) below as a basis for structural estimation of η, recognizing that identifying variation in

d ln RMAi must be uncorrelated with tract level shocks to amenities and housing productivity for

successful identification.

Substituting for (16) in housing demand (15), setting it equal to housing supply (2), solving for

price and differentiating yields the growth rate in tract house price, expressed as follows.

d ln Pi =
1

ε(γi + 1)
+

1
γi + 1 + η(1− β)

η

ε
(1− 1− β

γi + 1
)d ln RMAi + vP

m + uP
i (17)

This equation shows, as is intuitive, that positive shocks to employment opportunities get capital-

ized into home prices. The amount of capitalization is of course decreasing in the housing supply

elasticity γi and in the dispersion of amenity draws within municipality m, an object which is

negatively related to η. Changes in housing productivity, average lot size and the local amenity Bi
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show up in the error term uP
i . Because RMAi itself depends on quantities and prices throughout

the region, it is also a function of these objects. So, to restate, our empirical objective must be to

pick out variation in d ln RMAi that are uncorrelated with local innovations to housing productiv-

ity (costs) and lot sizes.

Finally, the model delivers the following implicit equation which describes the relationship

between change in d ln RMAi and municipality level aggregates of tract population growth d ln πi.

∑
i(m)

si[1 +
φ(1− β)

1 + γi
]d ln πi −Λ− φ

ε ∑
i(m)

[si(1−
1− β

1 + γi
)]d ln RMAi = um (18)

In this equation, si is the base year share of municipality m’s population living in tract i. As φ rises,

dispersion in preferences across municipalities falls. As a result, positive shocks to RMA in any

neighborhoods within m result in more rapid population growth in this municipality. (18) is the

estimation equation we use below to recover estimates of the preference parameter φ.

4 Empirical Implementation

Our main estimation equation amounts to the differenced counterpart to the simple tract level

supply equation (2).

∆ ln Hs
ir = θr + Xirδ + γir∆ ln Pir + ρ̃ir (19)

Observations are for tract i in metro region r. To allow for observed heterogeneity in supply

elasticities, we parameterize γir to depend on metro region and tract-specific observables Z1
r and

Z2
ir.

γir = Z1
r γ1 + Z2

irγ2 (20)

As is detailed in Section 2, these sources of heterogeneity are topography, land use regulation and

regulatory burden.

The first two terms in (19) are included for identification reasons. Fundamental to our empir-

ical strategy is inclusion of metro region fixed effects θr. Their inclusion ensures that we compare

different neighborhoods in the same labor market for identification. Robustness checks include

these fixed effects interacted with 2-2.5 km CBD distance rings. In tract characteristics Xir, our

main specification includes lagged demographic attributes, a quadratic in CBD distance and con-

trols for tract-specific labor demand conditions that we worry may spill over into housing supply
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factors. Our controls for 1990 and 2000 tract demographic characteristics account for potential

influencers of the tract regulatory environment that may be correlated with the instruments we

lay out below. The CBD distance controls holds constant any potential spatial trends in price

growth that are related to costs and are useful given the stronger 2000-2010 labor demand growth

in suburban areas. 1990 and 2000 Census rent and price indexes help to account for decadal mean

reversion in home price growth. Finally, 1990 employment and a tract-specific Bartik labor de-

mand shock for the 2000-2006 (explained below) ensures that our IV implementation is only using

variation from outside of tract ir for identification.

4.1 OLS Results

Table 2 presents basic OLS relationships between our various measures of post-2000 home quan-

tity changes and contemporaneous price growth. Given that the 2007-2010 period saw mostly

declining housing demand and therefore may not be not a good setting for estimating housing

supply, we include a specification that focuses on the 2000-2006 period. In the first row, we see

negative relationships between Census Hedonic price growth and quantity growth. Remaining

rows, which are for our two Zillow price indexes, show small positive coefficients of up to 0.02

for quantity measures in housing units and only up to 0.12 for our quality-adjusted quantity mea-

sure. Such small (or negative) housing supply elasticities seem implausible and help to motivate

our search for more convincing identifying variation in prices.11

The implausibly low relationships between the housing price growth and quantity growth

point to two identification challenges in estimating housing supply. First, neighborhoods that ex-

perience stronger demand shocks may follow with unobserved changes in housing regulation in

part in order to cope with these demand shocks - a classical endogeneity problem discussed ex-

tensively in Davidoff (2016). To the extent that this phenomenon happens dynamically, it could

generate the negative observed relationship between price and quantity growth. If endogenous

positive supply shifts after 2000 loosen housing development restrictions in response to demand

shocks from the 1990s, observed OLS relationships will trace out demand curves and be nega-

tive. Such a story would justify the negative serial correlation in decadal price growth seen in the

11Ouazad and Ranciere (2019) find similarly small OLS relationships between price growth and quantity growth for

the San Francisco metro region.
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data at the tract level. One might also be concerned that positive productivity shocks outside of the

construction sector boost both local housing demand through higher household earnings and con-

struction costs at the same time. The result is inward shifts in housing supply that are correlated

with outward shifts in housing demand. Moreover, our price index measure, while constructed

as carefully as possible, is sure to be a noisy measure of the true price of housing services. Me-

chanical mean reversion in decadal house price growth that could reflect such measurement error

would lead to a classic attenuation bias problem.

The broad message is the possibility for a local unobserved history to drive both relative price

declines and more construction, inducing a downward bias in OLS. Thus a valid identification

strategy needs deal with the classical endogeneity concern of simultaneity in demand and supply

by finding variation in local housing demand shocks across neighborhoods that are similar ex-

ante. To resolve this issue, we must isolate a source of tract-specific housing demand shocks

which are uncorrelated with supply factors. This is the role of our instrument, which we develop

next.

4.2 Instrument Construction

We need a source of identifying variation in home price growth that driven by tract level housing

demand shocks and is unrelated to shocks to local construction costs or housing productivity. To

see where this can come from, consider the following tract level inverse housing demand equation

from the model.

ln Pi = ρ̃HD + φ/η−1
1+η−ηβ ln ∑i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

+ 1
1+η−ηβ

1+η
ε ln(RMAi)

− 1
1+η−ηβ ln Hd,e f

i + η
1+η−ηβ ln Bi The fact that the housing price in tract i is increasing in RMAi

through impacts on housing demand is intuitive. Labor demand conditions relevant to neighbor-

hood i, as summarized in RMAi, represent a key source of variation in house prices. However,

any component of RMAi that is correlated with tract housing productivity is endogenous to hous-

ing supply. Indeed, through its codetermination with FMAi, RMAi depends structurally on tract

population which itself depends on tract housing productivity. As such, we develop instruments

that pick out components of d ln RMAi that are likely orthogonal to shocks to productivity or other

factors that influence local construction costs.

To build instruments, we start with (13) and (14) as a basis for calculating a simulated ver-
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sion of d ln RMAi that plausbily excludes shocks to tract housing productivity and its correlates,

denoted ∆ ln ˜RMAi. This simulated instrument serves a dual purpose. First it is a reduced form

housing demand shock that drives exogenous variation in tract level house price growth, as rep-

resented above. Second, it is a predictor of the structural object d ln RMAi that is unrelated to tract

level shocks to local amenities or housing productivities. The latter use will allow us to recover

estimates of structural parameters.

Instead of using actual employment in all commuting destinations in these calculations, we

use the employment predicted by national growth rates and initial industry composition in each

tract to solve for ˜RMAi, after evenly scaling up the residential population of each tract to maintain

labor market clearing and allowing us to solve jointly for ˜FMAj. For components of instruments,

we impose 1990 commute times and initial employment shares by industry and use estimates of

εκ for 2000. We exclude all tracts within 2 km of origins in order to reduce the likelihood that

nearby industry composition could be related to trends in tract productivity. For example, tracts

near a concentration of construction employment may be subject to secular changes in shocks to

construction productivity that would show up as part of the instrument.

In particular, we calculate the year 2000 component R̃MA
2000
i of our main instrument is calcu-

lated as:

R̃MA
2000
i = ∑

j

e−ε̂κτ90
ij 1(disij > 2km)∑

k
L90

jk [E
2000
r′(j)k/E1990

r′(j)k]

F̃MA
2000
j

(21)

F̃MA
2000
j = ∑

i

e−ε̂κτ90
ij 1(disij > 2km)π90

i

[
∑
j

∑
k

L90
jk [E

2000
r′(j)k/E1990

r′(j)k ]

∑
j

L90
j

]
R̃MA

2000
i

(22)

In these expressions, τ90
ij is the reported or forecast commute time from i to j in the 1990 CTPP. ε̂κ

is estimated separately for each region in year 2000 using gravity regressions of log reported com-

mute flows on commute times and origin plus destination fixed effects using 2000 CTPP data.12

Distances from residential to work locations disij are calculated using tract centroids. Employment

in industry k in work location j, L90
jk , is measured from the 1990 CTPP. E2000

r′(j)k and E2000
r′(j)k are the 2000

and 1990 nationwide employment in industry k excluding the region of tract j, respectively. That

12Details of these estimates are reported in (Baum-Snow et al., 2019).
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is, ∑
k

L90
jk [E

2000
r′(j)k/E1990

r′(j)k] captures the predicted amount of employment that would exist in tract j if

1990 employment by industry grows at national rates to year 2000.
∑
j

∑
k

L90
jk [E

2000
r′(j)k/E1990

r′(j)k ]

∑
j

L90
j

is a constant

that captures the population growth rate needed to match the aggregate simulated employment

in the region in year 2000. The 2006 component of the instrument is calculated analogously, with

E2000
r′(j)k in (21) and (22) replaced by E2006

r′(j)k.

The log difference in R̃MAi for 2000-2006, ∆ ln R̃MAi, is our main instrument for ∆ ln Pi as

measured for both the 2000-2006 and 2000-2010 time periods. We build our instrument for the

2000-2006 period only as this is the time period for which first stage predictive power is strongest,

as we show below.

4.3 Instrument Validity

The fundamental source of identifying variation used is the standard tract level “Bartik” (1991)

type shocks in each employment location, written out as follows.

Bartik jr = ∑
k

Emp90
jk

∑k Emp90
jk
[ln E06

r′(j)k − ln E00
r′(j)k] (23)

A prerequisite for the spatial aggregation of such shocks into ∆ ln ˜RMAi to successfully predict

∆ ln RMAi is for the tract level counterparts to successfully predict tract level employment growth.

We choose this time interval rather than 2000-2010 because of the stronger available identification

during this boom period. The 2006-2010 period was associated with employment declines that are

not well predicted by Bartik instruments.

Table 3 presents evidence that our underlying identifying variation can successfully predict

tract level employment growth. It presents regressions of 2000-2006 or 2000-2010 tract employ-

ment growth in tract jr on Bartik jr and controls for 1990 employment level, past demographic

composition of tract residence, CBD distance and metro region fixed effects. This is a sort of tract

level first stage regression which gets aggregated in the first stage of our main analysis. We control

for past employment to isolate employment growth due only to variation in industry composition.

Past demographic and CBD distance controls account for potentially differing labor supply con-

ditions. Results indicate that we can plausbily isolate labor demand shocks at the tract level. A

one-percentage point increase in the Bartik shock predicts a 0.2% increase in 2000-2006 tract em-
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ployment and a 0.6% increase in 2000-2010 tract employment. Inclusion of 2-2.5 km CBD distance

ring fixed effects interacted with metro region does not affect these conclusions.13

One challenge we face when estimating the housing supply equation is that house price growth

is negatively serially correlated across decades. The first two columns of Table 4 show this pat-

tern. Also note the positive serial correlation in quantity growth, which likely reflects serially

correlated positive demand shocks. Finally, note that quantity growth begets subsequent price

declines. Commensurate with our discussion of the OLS results above, these patterns suggest

that there could be local unobserved history that drives both relative price declines and more con-

struction, inducing a downward bias in an OLS estimation of housing supply. One legitimate

potential concern is that our instrument ∆ ln ˜RMAi may be correlated with such unobserved his-

tory. We hope that results in the final two columns of Table 4 allay such concerns. They show that

1990-2000 price and quantity growth cannot predict subsequent growth in simulated RMA (our

instrument). This suggests that IV estimates are unlikely to suffer from the sort of selection bias

that we discuss above. Moreover, results in Table A1 show that our instrument does not predict

1990-2000 housing price growth for four sets of control variables and it does not predict 1990-2000

quantity growth for our primary specification.

The top left panel in Table 5 presents the relationship between ∆ ln R̃MA and ∆ ln RMA for

2000-2006. It shows significant estimated elasticities of 0.5-0.7 that are robust to the specification

used. This is a necessary prerequisite for ∆ ln R̃MA to predict ∆ ln P in (19) as an instrument.

The next three blocks show first stage relationships between ∆ ln R̃MA and our three primary

measures of ∆ ln P. First stage coefficients are strong and robust to the different specifications used.

With metro area fixed effects, first stage coefficients are not significantly affected by inclusion or

exclusion of lagged demographic and housing market controls, corroborating evidence from Table

4 that they are uncorrelated with these variables. Smaller first stage coefficients for the 2000-2010

relative to the 2000-2006 period reflects the fact that the 2007-2010 period mostly saw housing

market declines.

The bottom two blocks in Table 5 show strongly positive reduced form relationships between

our instrument and 2000-2006 and 2000-2010 Zillow new construction. We note that while these

reduced form quantity responses are slightly larger over this longer time period, the two are not

13Results are also robust to lagging the demographic tract controls by one additional decade.
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significantly different. We retain the longer 2000-2010 time horizon for two reasons. First, we have

higher quality information about some housing quantity measures for 2010 than for 2006. Second,

as discussed further below, the intensive margin responses do change from 2006-2010 and we find

it important to incorporate these into the analysis. Ratios of reduced form to first stage coefficients

from Table 5 preview the full IV results presented in the following section.

Overall, we find that changes in simulated resident market access (∆ ln R̃MA) strongly predict

nearby employment growth, home prices, and thereby housing demand growth. Moreover, they

are not correlated with pre-trends in house prices conditional on appropriate controls. These

findings provide reassuring support for the use of ∆ ln R̃MA as a valid instrument in estimating

housing supply elasticities.

5 Main Results

In this section, we present our main reduced form housing supply estimates, estimating (19) by IV,

and explore their heterogeneity as a function of CBD distance, initial year development intensity,

topography, and regulation.

5.1 Unified Supply Elasticity Estimates

To start, Table 6 presents unified regressions of housing quantity growth on house price growth,

with ∆ ln R̃MA as an instrument for ∆ ln P using the same specification as the OLS regressions

reported in Table 2. To ensure the robustness of the results, we use three measures of house price

growth: hedonic price growth based on the Census data; hedonic price growth based on the Zillow

data; and repeat sales price growth based on the Zillow data. And we show results using just

region fixed effects in Panel A and with region-ring fixed effects in Panel B. As discussed further

in Section 2.3, we also explore seven measures of house quantity changes: 2000-2006 or 2000-

2010 new construction based on the Zillow data; 2000-2009 new construction based on the ACS;

the 2000-2010 change in housing units based on census data; the 2001-2011 increase in floorspace

and quality-adjusted housing units based on Zillow data; 2000-2010 increase in housing units

through redevelopment only based on Zillow and satellite data. The top panel controls for the

metropolitan area fixed effects, while the bottom panel further controls for the CBD distance rings
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within metropolitan area fixed effects. The combination of different price and quantity measures,

along with different fixed effects, yields 40 supply elasticity estimates in total. Equation (5) shows

how to decompose the quality-adjusted elasticity into components.

Before discussing the estimates, we highlight a few observations. First, unlike small and in-

significant estimates from the OLS regressions, the estimated coefficients in Table 6 are positive

across all specifications with magnitudes that are in line with other supply elasticity estimates

from the literature. This is consistent with our narrative that OLS relationships between quantities

and prices in part reflect movement along demand rather than supply curves. Second, estimated

quantity responses to each measure of price changes are not significantly different, though quality

adjusted measures in Columns 5 and 6 have large standard errors. Third, controlling for CBD dis-

tance ring fixed effects interacted with metro area (Panel B) yields similar though somewhat larger

estimates than using metro area fixed effects only. We note that the source of identifying variation

changes when including region-ring fixed effects. In particular, more variation is available within

suburban rings where housing supply elasticities are larger – a result we show explicitly below.

The fact that Table 6 reports local average treatment effects means that these estimates are not nec-

essarily indicative of average supply elasticities across urban tracts nationwide. Indeed, we show

below that average supply elasticities are somewhat larger.

Comparisons of results in Columns 1 and 2 show the utility of allowing for longer adjustment

periods. Over the longer time period, our estimated elasticity of new unit supply with respect

to price more than doubles from 0.2 to 0.5. As seen in Table 5, this is primarily because of the

more attenuated longer run price response, which reflects the 2007-2009 housing bust. Across

the Zillow and ACS measures of unit construction, housing supply elasticity estimates are very

stable (columns 2 and 3). The estimated elasticity for the census change (column 4) is not signifi-

cantly different from the other two, even though this measure incorporates the negative impacts

of teardowns and full depreciation. This indicates that price shocks have little impact on these

two negative margins of response.

In columns 5 and 6, we report quality-adjusted housing supply elasticities for the 2000-2010

period. These estimated elasticities are much larger than the unit supply elasticities shown in

columns 2-4, at 2.6-3.8. Based on these estimates, we conclude that housing quality is an impor-

tant margin of response to price changes. This can come through construction of higher quality
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(larger) new units or the renovation of existing units. Indeed, it is clear that treating housing units

as homogenous misses an important segment of supply and that our supply model reasonably

approximates the intensive margin of supply.14 The implication is that renovations and repairs

are quite elastic with respect to price, contrary to DiPasquale (1999). Comparing the estimated γs

in column 5 with those in column 4, we find that renovation and upsizing account for over 80% of

the total supply increase. While these estimates may seem surprisingly large, they are consistent

with the observations that almost half of American homeowners renovated their homes Plaut and

Plaut (2010) and that total renovation expenses reached $326 billion in 2007 Choi et al. (2014).

Column 7 reports estimated elasticities for the number of new units constructed 2000-2010 on

land that was already developed in 2001. Comparing with results in columns 2 and 3, we find that

at least one-third of newly built homes are through redevelopment of already-developed land,

consistent with the findings in the urban literature that neighborhood renewal is largely driven

by the deterioration and subsequent redevelopment of the existing housing stock (e.g. Rosenthal

(2018); Brueckner and Rosenthal (2009)). The smaller estimated redevelopment elasticity supports

the conjecture that redevelopment is costlier than development of new land.

5.2 Tract Level Heterogeneity

5.2.1 Unit Supply

The local average treatment effect tract-level supply estimates in Table 6 mask substantial variation

across neighborhoods. This section presents how tract-level housing supply elasticities vary as a

function of distance to CBD, land availability, topographical features, and land use regulations.

Table 7 repeats the IV regressions in column 2 of Table 6 Panel A with the addition of a set of

interactions between price growth and tract-level factors that may influence supply. Price growth

is constructed using the repeat sales index for columns 1-6 and the hedonic index for columns

7-12. All specifications include CBD distance, CBD distance squared, an indicator for being over

14Empirical work on the housing production function dates back to Muth (1964). The estimated land share in the

recent literature ranges from 0.10 for Centre County, PA (Yoshida, 2016), to 0.14 for Alleghany County, PA (Epple,

Gordon and Sieg, 2010, to 0.35 for France (Combes et al., 2016), to 1/3 for the U.S. average housing market (ranging

from 0.11 to 0.48 in low to high-value areas, as reported in Albouy and Ehrlich, 2012). Ahlfeldt and McMillen (2014)

provide convincing empirical support for the Cobb-Douglas functional form as a reasonable approximation to the

housing production function.
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two-thirds of the way from the CBD to the region edge and these variables’ interactions with price

growth. CBD distance is measured as the fraction of the way from the CBD to the furthest census

tract in the region from the CBD, running from 0 to 0.66 only. We use this functional form as it fits

the data better than extending CBD distance out beyond 0.66. Our identifying variation is weakest

in CBD distance band 0.66-1, where census tracts are typically very large and there was not a lot

of 1990 employment variation for identification and we found we could only reliably identify

an average tract-level supply elasticity. Overall, results in Table 7 show that there is substantial

within-region variation in local housing supply elasticities. In addition, results across the two

measures of price growth are very consistent.15

Results in column 1 show that estimated housing unit supply elasticities exhibit a monoton-

ically increasing trend with the distance to the city edge at a marginally decreasing rate. At the

CBD, on average, a one percent increase in house price increases the quantity of housing supplied

by only 0.2%. This number increases to 1.0% at halfway to the city edge and 1.2% at 90% of the way

to the city edge. These micro geography level estimates provide a supply-side explanation for the

recent finding of more price growth in the center of metropolitan areas in the latest boom Glaeser

et al. (2012); Yoshida (2016). They are also consistent with the observation that a given common

increase in demand throughout an urban area leads to a relatively smaller price response and

relative greater quantity response the further away from the center one gets Genesove and Han

(2013).

This CBD distance profile depends in part on the fact that land availability increases with CBD

distance. Figure 1 shows that the average tract in our data is almost 60% developed at the CBD but

only 25% developed at the region edge. However, the fraction of tract land that is flat also declines

from 45% to 35% from CBDs to region edges. To see how much these factors matter, Table 7 col-

umn 2 expands the specification in column 1 by adding interactions between ∆ ln P and the 2001

fraction of land developed in each tract, the fraction flat and their interaction. The resulting coeffi-

cient estimates are negative, positve and negative respectively with only slightly attenuated CBD

distance coefficients. To get a sense of magnitudes, all else equal increasing developed fraction by

0.25 (one standard deviation) decreases the quantity of new housing units supplied by 0.2% per

15HI results in Columns 7-12 have a slightly different specification in which CBD distance extends out to the edge of

metros. As a lot of our investigation is about variation as a function of CBD distance, we focus on specifications that

control for region but not region-ring fixed effects.
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1% increase in price at the mean fraction flat of 0.4. However, increasing fraction flat by 0.42 (one

standard deviation) does not increase the supply of new housing units at the mean developed

fraction but increases unit supply by 0.2% per percent increase in price for undeveloped land. The

negative interaction between these two factors indicates that flatness and lack of development are

complements in lowering the cost of new construction. Additional inclusion of elevation range

has no significant estimated impact on supply elasticity.16

We find evidence that the CBD distance effect persists conditional on topography and devel-

oped fraction because regulations ease with CBD distance. With the idea that housing regulations

mostly vary at the municipality level, we control for municipality fixed effects in Table 7 Column

3. Doing so results in attenuation of CBD distance effects by 66-77%. Second, we focus on the 1,512

tracts in 8 cities for which we have FAR information for residentially zoned parcels. Inclusion of

the FAR restriction yields an expected positive interaction coefficient of 0.07. Increasing FAR by 2

(one standard deviation) thus increases the unit supply elasticity by 0.14.17 CBD distance effects

attenuate even more with this specification.18

In column 5, we examine whether the estimates from the main specification in column 2 are

robust to the inclusion of metro-level factors. In particular, we consider the fraction of developed

land and the fraction of area that is lost to hills, water and wetland, both measured within the 50%

of the maximum radius from the city center. With the tract-level factors controlled for, the metro-

level supply conditions are insignificant for repeat sales price growth and implausibly positive

using hedonic adjusted price growth (column 11). However the effects of the tract-level factors

are remarkably consistent and robust.

In column 6, we focus on redevelopment. In particular, we repeat the main specification in

column 2 but with redeveloped units as the dependent variable. These estimates are simply at-

tenuated versions of those in column 2, with this attenuation differing with CBD distance. Con-

ditional on developed fraction and topography, the redevelopment elasticity is about one-quarter

of the full unit supply elasticity on average, and it declines with CBD distance. This is consistent

16Exploration of additional interactions yielded low power and no significant coefficients.
17We also tried interacting various 2006 Wharton Regulation sub-indices measured at the municipality level with

price growth and found no significant effects, though impacts are negative as expected. Loss of about half the sample

may explain the associated large standard errors.
18We have not found plausible instruments for regulatory constraints, though controls for 1990 and 2000 tract level

demographic characteristics may account for key determinants of the regulatory environment (Murphy (2018)).
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with findings in the literature that prime teardowns are near public transportation and traditional

village centers in Chicago Dye and McMillen (2007) and closer to the CBD and the coast in Miami

Munneke and Womack (2015). Households attracted to redeveloped suburban housing can be

quite different from central-city gentrifiers in that the former are likely to value high-quality pub-

lic schools while the latter value new, larger housing relatively close to the CBD Charles (2013).

In addition, land assembly for development may be easier with undeveloped parcels in more

suburban areas. Together, the significant CBD distance effects, both in new construction and

in redevelopment, emphasize the importance of examining housing supply through the lens of

micro-geographic perspectives.

Results using the hedonic index instead, reported in Table 7 Columns 7-12, are very similar to

those for the repeat sales index.

5.2.2 Quality Adjusted Housing Supply

Table 8 focuses on quality-adjusted housing supply responses. Interestingly, CBD distance pat-

terns are no longer evident, as the relevant coefficient estimates are insignificant. Intuitively, in-

tensive margin improvements are mainly capital rather than land intensive, reducing dependence

on land availability conditions and hence CBD distance. For this reason, we exclude CBD dis-

tance effects in our main specification for quality supply, only letting this supply response depend

on initial land development and topographical features. As with the unit supply response, the

quality adjusted supply is more responsive when when there is less developed land and when

there is more flat land in a given tract. These effects represent the aggregation of their respective

effects from unit supply. As noted above, quality-adjusted supply is 7-10 times more price elastic

than is unit supply, though we have large standard errors on our estimates of this type of supply

elasticity. Estimates are remarkably similar for floorspace and our housing quantity index.

5.3 Metro Level Heterogeneity

In Table 9, we examine the role of metro-level supply conditions on local housing supply elas-

ticities. Following Saiz (2010), we construct three measures of metro-level factors: the fraction

of developed land within the 50 km radius from the city centre; the fraction of area that is lost

to hills, water and wetland within the 50 km radius from the city centre; the metropolitan area
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level WRLURI indices. To ensure the robustness of our results, we also reconstruct the first two

variables within the 10 km, 20 km, 10%, 50% and 100% of the maximum radius from the CBD and

for the entire metropolitan area. All results discussed below are consistent across these different

measures.

Column 1 repeats the baseline CBD distance specification in Table 7. In column 2, we add an

interaction between ∆ ln P and the fraction of developed land within the 50 km radius from the

city centre. This coefficient is imprecisely estimated; moreover, the distance coefficients become

more noisy. Depending on the size of a metropolitan area, 50 km might be far outside of the

metropolitan boundary or only cover part of the area. In light of this, Column 3 reports estimates

from a regression that includes an interaction between ∆ ln P and the fraction of developed land

within 50% of the maximum radius from the CBD. This coefficient is again insignificant, although

including this variable does not significantly affect the CBD distance pattern in local supply elas-

ticity. In columns 4 and 5, we run alternative regressions in which ∆ ln P is interacted with the the

fraction of area that is lost to hills, water and wetland within the 50 km radius from the city centre.

In columns 6 and 7, we include both the metro-level initial development condition and metro-

level topographical conditions. Across these specifications, none of the metro-level factors appear

statistically significant in explaining variations in local supply response. In column 8, we control

for an interaction between ∆ ln P and and the metro-level WRLURI. The coefficient is negative

and marginally significant in the top panel, consistent with the expected effects of local regulation

(Saiz, 2010). However, the usual endogeneity concern applies here. In column 9, we include all the

metro-level supply conditions in addition to the CBD distance variables. None of the metro-level

factors appear significant for local supply elasticity.

While the previous housing supply literature has established the importance of the metro-

level topographical features and regulations on the metro-level housing supply, we cannot find

evidence that they explain variation in neighborhood level supply elasticities across metros of dif-

ferent types. We caution that our empirical setting is not well suited for this sort of analysis, as

our identification strategy explicitly compares tracts in the same metro region that receive differ-

ent housing demand shocks. Interactions with metro level factors use between-metro variation

in housing demand shocks for identification, which our empirical setup is not set up to deliver.

As such, it is not surprising that standard errors in Table 9 are large and estimates are imprecise.
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We do not conclude that metro level land availability conditions do not matter for housing sup-

ply in aggregate, as metros with more unavailable land have lower tract level supply elasticities

which aggregate to more inelastic metro level housing supply. We demonstrate this carefully in

the following section. The point remains, however, that when analyzing impacts of a local housing

demand shock or a neighborhood-targeted policy, it is insufficient to use the metro-level supply

elasticity. Instead, neighborhood level supply estimates are needed.

5.4 The Distribution of Tract-Level Supply Elasticities

We use the specifications in Table 7 columns 2 or 8 and 6 or 12 to predict out tract-level total

unit and unit redevelopment supply elasticities respectively for each tract. We use specifications

in Table 8 columns 1, 3, 5 and 7 to predict out quality adjusted supply elasticities. While the

estimation sample for Tables 7 and 8 are limited, we use coefficient estimates to predict supply

elasticities for all census tracts in our data.

Table 10 provides summary statistics of these imputed elasticities. Across all tracts, mean

unit supply elasticities are about 0.8 of which one-quarter is from redevelopment. For quality-

adjusted supply, analogous elasticities are 2.6-4.3 depending on the index used. These objects

have standard deviations of 0.4-0.6 with the most supply elastic tracts having quality-adjusted

elasticities of about 5.2. This dispersion is of similar magnitudes within metro areas. With the

standard deviation of across region mean supply elasticities of only 0.1-0.3, more dispersion in

supply elasticities exists within rather than between metro areas. Therefore, understanding such

within region elasticity is really important. For the mean tract in our data, 77 percent of the total

supply elasticity comes from the intensive margin with the remainder from new unit construction.

We find no role for depreciation and teardowns.

The three metropolitan areas with lowest average tract-level hedonic index based unit supply

elasticities are Jersey City (0.9), Newark (1.0) and Los Angeles (1.0), respectively. On the other

end, the three metropolitan areas with highest average tract-level supply elasticities are Dothan,

AL, Gainesville, FL and Ocala, FL (1.7 each), respectively. For quality-adjusted supply, Newark

(3.6), Jersey City (3.8) and San Diego (3.9) have the lowest average elasticities, with Los Angeles

ranked sixth, while Jacksonville, NC, Florence and Ocala (5.3 each) have the highest. There is large

variation in supply elasticities within metro areas. Within Los Angeles, the unit supply elasticity
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ranges between 0.4 and 2.0 and quality-adjusted supply elasticities range from 3.0 to 5.7. The main

cross-region source of variation in dispersion in supply elasticities comes from the bottom end of

the distribution. In Ocala, unit supply elasticities range from 1.0 and 2.0 with the quality-adjusted

counterpart ranging from 4.4 to 5.6.

Our results indicate the remarkably consistent pattern that local supply elasticities increase

with CBD distance, some of which is attributed to initial development density and topography.

Figure 1 shows that the closer to city centers, there is a higher fraction of flat, plain and developed

land, thereby contributing to the CBD distance gradient for supply elasticity. On average, the

fraction of tract-level developed land ranges from 60% at the CBD to less than 10% at 90 percent

of the way to the city edge. This pattern is consistent with the prediction from a monocentric

model of urban land use that the density of construction declines as one moves away from the

CBD (Duranton and Puga (2015)). Thus areas that are further away from the CBD effectively have

more land in which to deliver housing, permitted both by initial development density and by

topographical conditions. It is therefore tempting to conjecture that the CBD distance pattern in

supply elasticities is mostly explained by the increasing availability of land as one moves away

from the center.

Figure 2 shows how much this is the case. The left panel presents smoothed predictions of

four measures of unit supply and the right panel presents four measures of quality-adjusted sup-

ply based on repeat sales price growth. In the left panel, the flatter curves show the imputed γ

when holding the tract-level fraction of developed land and fraction of flat and plain land at each

tract’s respective metropolitan area mean level. It is clear that even without spatial variation in

initial density and topography, there is already a significant increasing CBD distance effect in local

supply elasticities. This effect may be explained by local regulations which we do not control for in

our main specification due to endogeneity concerns and associated required sample restrictions.

Closer to city centers, building permits and zoning restrictions may be more stringent, making

supply less elastic. Almost perfectly coinciding is imputed γ when holding only the fraction of

developed land at its metro-mean level, allowing for variation in topography across tracts. Local

topographical features do not add much to spatial variation in supply elasticities within cities.

The steeper curves plot the imputed γ when fixing only the fraction of flat and plain land at its

metro-mean level, allowing initial development density to vary across tracts. These curves are
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much steeper and almost overlay the imputed overall γ (marked by the blue curve). Thus, the

monotonically declining development density with CBD distance, as shown in Figure 1, explains

almost all of the additional relationship between supply elasticity and CBD distance that exists

beyond that implied by the regression results in Table 6 Column 3. In the right panel of Figure 2,

we see more of a role for both topography and development density in explaining the increasing

profile of quality-adjusted supply elasticities with respect to CBD distance.

We plot similar figures for select metropolitan areas (Log Angeles, New York, Madison and

Pittsburgh) in Figure 3. Regardless whether a metropolitan area is considered elastic as a whole, its

within-city variation in supply elasticities is always amplified by spatial variation in the fraction

of developed land and, for quality-adjusted supply, topography. While there is a tendency for

supply elasticity to increase with CBD distance, this effect gets mitigated in Pittsburgh and Los

Angeles by the hilly topography at the edges of these metro regions.

6 Aggregation

Much of the existing evidence on housing supply elasticities uses metro areas as the unit of anal-

ysis. In order to connect our estimates to these metro level estimates, in this section we aggregate

the estimated tract-level housing supply elasticities to the metro area level. Aggregation brings

up a number of conceptual and practical challenges. The typical approach, for example in Saiz

(2010), has been to use metro level labor demand and/or population supply shocks to deliver

housing demand shocks. However, as we show above in Section 3, positive labor demand shocks

tend to be disproportionately oriented toward suburban areas where housing supply is relatively

elastic. This means that metro level studies may find supply elasticities that weight the suburbs

above their share of metro populations (though not necessarily land areas). Indeed, as neighbor-

hoods are linked in the residential demand system, metro level demand shocks of the same size

but aggregated from different combinations of changes in neighborhood fundamentals can im-

ply different metro level housing supply elasticities. Because of this variance to setting, here we

provide a few examples of the macro supply elasticities implied from some simple broad-based

neighborhood-specific shocks. Context matters and neighborhood level supply elasticities must

be aggregated as appropriate to the application at hand.

To get a handle on aggregation, we first note that the tract level supply elasticity γir generically
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aggregates to a metro region level elasticity γr as follows. Aggregating tract level supply growth

to the metro level means taking a sum weighted by initial neighborhood shares of the housing

stock:

∑
i

Hir

Hr
[d ln Hir = γird ln Pir]

Comparison with its region level counterpart d ln Hr = γrd ln Pr, by definition the region level

elasticity is given by

γr ≡ [∑
i

Hir

Hr
γird ln Pir]/[∑

i

Hir

Hr
d ln Pir] (24)

Here, we see that the metro level elasticity depends on the mix of neighborhoods experiencing

price growth that has been spurred by demand shocks. As neighborhoods are linked in spatial

equilibrium, it is difficult to think how price changes in any two neighborhoods may occur in

mutual isolation.

If demand shocks were to generate the same price growth rate in every neighborhood, the

macro level elasticity would simply be the average of micro elasticities weighted by shares. How-

ever, exactly because of differing supply elasticities across locations, the same demand shock

in each location would typically generate different price changes and aggregation is thus not

straightforward. The following sub-section provides some examples.

6.1 Aggregation of Common Neighborhood Demand Shocks

In this sub-section we consider the case in which all neighborhoods simultaneously experience

housing demand shocks. Because of differing housing supply elasticities, these shocks manifest

themselves as different combinations of housing price and quantity changes, depending on the

neighborhood. With Cobb-Douglas preferences, we have that tract level expenditure share on

housing is Hir Pir
Yir

= 1− β, where Yir ≡ yirπir. Therefore, if the demand shock changes expected

income by the same percentage in every neighborhood, d ln Hir + d ln Pir is a constant, call it x. This

could happen, for example, if a city experiences a change in the individual productivity dispersion

parameter ε.

The resulting metro housing supply elasticity is a weighted average of tract-level elasticities,

where the weight is the initial housing share adjusted for neighborhood supply elasticity. Using
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d ln Pir = x/(1 + γir) and using (24) to aggregate over tracts, we have

d ln Hr

d ln Pr
= γ1

r =

∑
i

Hir
Hr

γir
1+γir

∑
i

Hir
∑
i

Hir

1
1+γir

.

This expression reflects the fact that tracts with more elastic supply will receive lower weight in

aggregation because price growth is lower in these locations for a given demand shock.

In reality, demand shocks are likely to hit some neighborhoods more than others as households

move across tracts in search of lower housing costs. If this is the case, γ1
r would understate the true

aggregate elasticity. As such, we now turn to the case in which we assume that aggregate housing

demand shifts out in the city, but that people get distributed to neighborhoods only based on

neighborhood-specific price increases. We further assume that that demand shock occurs in a way

such that each tract has the same percentage change in price. This assumption can be justified

in the context of a spatial equilibrium condition as in Roback (1982) in which each neighborhood

differs in amenities but gets hit with the same income shock. In this case, the metro-level supply

elasticity is the following:
d ln Hir

d ln Qir
= γ2

r = ∑
i

[
Hir

Hr
γir

]
Tracts with higher initial housing stock are typically associated with smaller housing supply re-

sponse, but these tracts are weighted more in γ2
r . Thus the resulting metro-level elasticity is likely

to underestimate the true elasticity.

Table 11 presents summary statistics about four versions of our two aggregate supply elas-

ticity measures γ1
r and γ2

r . Because our second aggregation scheme allows for some residential

substitution across tracts, the average of metro supply elasticities are slightly above grand tract-

level averages. All region level aggregate measures of supply elasticities are significantly lower in

areas with a high fraction of land developed and most are also lower in regions with more unavail-

able land, with the hedonic price index based supply elasticities are more responsive in expected

directions to land unavailability (unreported). The key observation here is that tract-level supply

influencers also aggregate up to the metro level. Correlations between our metro level supply

elasticity measures and those found by Saiz (2010) are all positive but they are stronger for our

more broad-based hedonic indexes at 0.38.

To this point, we have relied on arbitrary assumptions about housing demand to aggregate

the tract-level supply elasticity into the metro-level supply elasticity. This approach, while useful,
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cannot be used to perform an equilibrium analysis of the housing market nor a corresponding

welfare analysis.

6.2 Estimating the Neighborhood Demand System

We now turn to partial structural estimation of the model, which delivers parameters that govern

demand substitution patterns across neighborhoods. To understand how neighborhood-specific

demand shocks feed into price growth, we must first specify the housing demand system. We

take this from the model in Section 3, using its structure to determine the substitution elasticities

between neighborhoods.

From (10) and (15), aggregate housing demand in each tract is given by

ln He f ,d
i = ln ρ̃HD +(

φ

η
− 1) ln ∑

i´∈m(i)

(
Bi′P

β−1
i′ RMA

1
ε

i′

)η

+
1 + η

ε
ln(RMAi)− (η(1− β)+ 1) ln Pi + η ln Bi

Housing demand becomes more elastic as η and φ
η grow, as these objects reflect how fundamen-

tally substitutible neighborhoods are for each other by residents. Therefore, understanding how

much a given exogenous demand shock (through changes in Bi for example) affects prices versus

quantities requires knowledge of these parameters. Evident from the housing demand equation

above, the elasticity of substitution between any two neighborhoods in the same municipality is

η(1− β) + 1, increasing in η. The elasticity of substitution between any two neighborhoods in

different municipalities also depends on φ.

We develop an “estibration” strategy for η and φ using the structural equations (16) and (18)

from the model for neighborhood and municipality population respectively. As inputs, we use

estimates of γir discussed above, estimates of (κε)r from gravity regressions and calibrated val-

ues for β and κ. The structural equations are estimated using GMM. (16) includes fixed effects

for “municipalities”. After some experimentation with different definitions, we assign 5 munic-

ipalities to each region: one for the central city and one each for suburbs in north, south, east

and westerly directions. We impose that the error term in (16) depends on all of the same control

variables as the regressions in Table 2 and is orthogonal to our main instrument d ln ˜RMAi. To

estimate (18), we build a municipality level data set and impose that its error term is orthogonal

to ∑i(m)[Si(1− 1−β
1+γi

)]d ln ˜RMAi, which only includes pre-determined objects. We calibrate β to 0.2
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and κ to 0.005 or 0.01.19

Table 13 presents these results. The first two columns show versions in which we assume

preferences are not nested, and φ = η. The final two columns show results assuming fully nested

preferences, each for different assumptions about κ. We estimate η to be between 1.5 and 3.5

and φ to be between 3.8 and 8.8. Incorporation of nested choices reduces dispersion and raises

substitutibility across neighborhoods.

6.3 Opportunity Zones

Finally, we apply elasticity estimates to evaluate the 2017 Opportunity Zone (OZ) program. Among

other incentives, this program reduces or eliminates capital gains taxes on real estate investments

in certain poor census tracts nationwide in the US. We use our housing supply and demand elas-

ticity estimates to calculate the incidence associated with this policy in different neighborhoods

for residential housing only. Further impacts are beyond the scope of this analysis. We think of

the capital gains tax as reducing the price that initial buyers are willing to pay per unit of housing

services. When the capital gains tax is lifted, demand for affected neighborhoods increases due

purely to investment motives. It is intuitive that neighborhoods with more elastic supply will

draw in fewer new investors since potential returns are lower.

This analysis is in progress.

7 Conclusion

Since Rosenthal’s (1999) lament on the limited work on the supply side of housing, a number of

studies have identified regulation and topographical conditions as determinants of supply elastic-

ity. Saiz (2010) in his seminal work estimates housing supply elasticities at the metropolitan area

level and characterizes them as a function of both physical and regulatory constraints. In this pa-

per, we follow his insight and present the first set of estimates of the tract-level supply elasticities.

Knowledge of local housing supply elasticities at a microgeographic scale is not only central to

19κ = 0.005 implies that 1 minute of commuting in one direction reduces full income by 0.5%. We also tried estimating

κ jointly with neighborhood demand parameters, but this yielded implied values of ε that were too low. This led us to

our “estibration” strategy.
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understanding within-city house price dynamics Glaeser et al. (2012); Guerrieri et al. (2013), but

also important for evaluating place-based policy interventions Busso et al. (2013); Hanson (2009).

We find that housing supply becomes more elastic further out from urban centers such that

there is more variation within than between metro areas in housing supply elasticity. This pattern

is in part but not entirely due to a larger fraction of land available for development. Initial de-

velopment density, availability of flat land and zoning regimes are all important determinants of

local housing supply.
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A Model Appendix

The fraction of residents of tract i that work in j Pr( viω Bizijkωwjk

P1−β
i eκτij

>= maxj′,k′
viω Bizij′k′ωwj′k′

P1−β
i e

κτij′ ) can be

determined using the properties of the Frechet draws zijkω.

πij|i =
∑k
[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij′

]ε ≡
∑k
[
wjke−κτij

]ε

RMAi
(25)

We write this expression as a function of resident market access RMAi ≡ ∑k ∑j
[
wjke−κτij

]ε, which

is a summary measure of the access to employment opportunities from residential neighborhood

i.

Before the productivity shock is revealed, the expected income (wage net of commuting cost)

yi associated with residing in tract i is E(maxj,k
wjkzijkω

eκτij ). Solving this through,

yi = Γ(1− 1
ε
)(RMA)

1
ε
i (26)

This object is increasing in RMAi and declining in ε. As ε increases, there is a smaller dispersion

in skill prices across locations, reducing the probability of individuals receiving high wage offers

in any location.

The probability that i is the highest utility residential location is the probability that the in-

clusive value of municipality m is the highest times the probability that neighborhood i is the

highest utility neighborhood in municipality m. Using properties of the Frechet distribution, this

second object is

(
Bi P

β−1
i yi

)η

∑i′
(

Pβ−1
i′ Bi′yi′

)η . The second object is
∑i´∈m(i)

(
Bi′P

β−1
i′ yi′

)η
]

φ
η

∑m[∑i´∈m(i)

(
Bi′P

β−1
i′ yi′

)η
]

φ
η ]

Plugging in for yi gives

the population supply function in the text..

The probability that j is the highest utility work location for a resident of any given tract i is

πij|i =
∑k

[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij

]ε . Summing over the probability of living in i, we recover the labor supply to

tract j in the text.
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Table 1: Summary Statistics

Mean Growth Rate

Tract Home Price Changes (Estimation Sample) Growth Mean St Dev Min Max Obs

Repeat Sales Index, 2000-2006 0.89 0.86 -1.77 69.07 24,773

Zillow Hedonic Index, 2000-2006 0.95 0.77 -2.04 15.28 24,975

Repeat Sales Index, 2000-2010 0.37 0.52 -3.20 17.52 23,877

Zillow Hedonic Index, 2000-2010 0.45 0.56 -10.11 8.57 24,697

Census Hedonic Index, 2000-2010 0.01 0.21 -3.63 2.30 31,263

Census Hedonic Index, 1990-2000 0.00 0.18 -2.38 2.15 31,263

Tract Housing Quantity Changes (Estimation Sample)

Stock of Housing Units, Census, 2000-2010 181 0.07 0.23 -3.18 5.91 31,250

Stock of Housing Units, Census, 1990-2000 202 0.14 0.32 -3.94 4.91 31,124

New Units, ACS, 2000-2009 237 0.11 0.20 0.00 5.83 31,242

New Units, Zillow, 2000-2006 193 0.09 0.19 0.00 5.68 30,606

New Units, Zillow, 2000-2009 232 0.10 0.21 0.00 5.90 30,605

Stock of Quality Adjusted Housing, 2000-2006 0.33 1.03 0.00 9.73 21,198

Stock of Quality Adjusted Housing, 2000-2010 0.53 1.22 0.00 10.02 21,187

New Units on Developed Land, ACS, 2000-2010 87 0.05 0.11 0.00 4.93 31,250

Stock of Housing on the Intensive Margin, 2000-2010 0.47 1.20 0.00 9.18 21,180

Tract Employment and Population Variables (Full Sample)

RMA, 2000-2006 (excludes 8 regions) 0.04 0.05 -0.88 0.76 59,752

Simulated RMA, 2000-2006 0.05 0.01 -0.02 0.09 63,897

Tract Employment, 2000-2006 (excl 8 regions) 53 -0.16 0.90 -8.96 6.04 61,359

Tract Employment, 2000-2010 78 -0.17 0.89 -11.25 6.39 63,616

Tract Level Bartik Instrument, 2000-2006 0.09 0.05 -0.13 0.25 63,897

Tract Population, 2000-2010 330 0.04 0.28 -5.56 7.37 63,578

Tract Level Supply Influencers (Full Available Sample)

Fraction of Land Area Developed, 2001 0.38 0.25 0.00 0.90 63,896

Fraction of Land Area Developed, 2011 0.39 0.24 0.00 0.90 63,896

Fraction of Land Area Flat 0.41 0.42 0.00 1.00 63,896

Fraction of Land Area Not Flat but Slope < 8% 0.45 0.37 0.00 1.00 63,896

Elevation Range (m) 64 147 0 4325 63,896

Wharton Real Estate Index (municipality level variation) 0.13 0.91 -2.02 4.22 30,526

Parcel Size Weighted Residential Floor Area Ratio (8 cities) 2.33 2.02 0.25 16.00 8,707

Metro Level Supply Influencers (Full Sample)

Fraction of Area Developed 0.05 0.04 0.00 0.38 306 metros

Fraction of Metro Area Unavailable for Development 0.26 0.20 0.00 0.87 306 metros

Fraction of Area Within 50 km of CBD Unavailable for Development 0.23 0.17 0.00 0.82 306 metros

Wharton Regulation Index (2008) -0.08 0.82 -1.76 2.82 261 metros
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Table 2: OLS Results for Housing Supply

(a) Controls for Region Fixed Effects

Quantity Measure New Units New Units New Units ∆ Units ∆ Quantity Index ∆ Intensive Margin New Units, Redev.

Source Zillow Zillow ACS Census Zillow Zillow & Census Zillow & USGS

Time Period 2000-2006 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010

(1) (2) (3) (4) (5) (6) (7)

Census Hedonic Index -0.0908*** -0.0919*** -0.0921*** 0.0198 0.0757** -0.0306***

(0.00508) (0.00478) (0.00556) (0.0368) (0.0364) (0.00293)

Zillow Repeat Sales Index 0.00310** 0.0123*** 0.0140*** 0.0191*** 0.0537** 0.0355* 0.0103***

(0.00131) (0.00283) (0.00266) (0.00297) (0.0211) (0.0208) (0.00158)

Zillow Hedonic Index 0.0136*** 0.0161*** 0.0151*** 0.0104*** 0.118*** 0.110*** 0.00903***

(0.00254) (0.00320) (0.00302) (0.00337) (0.0230) (0.0227) (0.00178)

(b) Controls for Region-Ring Fixed Effects

Quantity Measure New Units New Units New Units ∆ Units ∆ Quantity Index ∆ Intensive Margin New Units, Redev.

Source Zillow Zillow ACS Census Zillow Zillow & Census Zillow & USGS

Time Period 2000-2006 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010 2000-2010

(1) (2) (3) (4) (5) (6) (7)

Census Hedonic Index -0.0851*** -0.0874*** -0.0879*** -0.0518 0.00193 -0.0334***

(0.00520) (0.00493) (0.00573) (0.0366) (0.0362) (0.00306)

Observations 30,605 31,242 31,250 21,187 21,180 31,250

# of Regions Included 274 275 275 224 224 275

Zillow Repeat Sales Index 0.000803 0.00680** 0.00948*** 0.0107*** 0.0115 0.000683 0.00703***

(0.00132) (0.00291) (0.00276) (0.00306) (0.0212) (0.0210) (0.00164)

Observations 24,771 23,876 23,870 23,877 16,407 16,407 23,877

# of Regions Included 161 163 163 163 146 146 163

Zillow Hedonic Index 0.0108*** 0.0106*** 0.0109*** 0.00129 0.0233 0.0254 0.00623***

(0.00274) (0.00351) (0.00332) (0.00371) (0.0237) (0.0234) (0.00197)

Observations 24,969 24,694 24,689 24,697 17,457 17,457 24,697

# of Regions Included 164 169 169 169 152 152 169

Note: Each cell corresponds to the estimate from running an OLS regression of changes in housing quantities measured

as in described in the column on changes in house price index measured as described in the row. All specifications

include the 1990 and 2000 log employment, log house value, log rent, the distance to CBD and its square, 10 and 20 years

lags of tract-level demographic controls such as population, average household income, the share of African American,

the share of white people and the share of college graduate students. The top panel controls for the metropolitan area

fixed effects and the bottom panel controls for the within-metropolitan-area ring fixed effects.
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Table 3: Tract Level Regressions of Employment Growth on Bartik Shocks

∆ ln Emp, 2000-2006 ∆ ln Emp, 2000-2010

Tract Level Bartik Shock for 2000-2006 0.247*** 0.172* 0.636*** 0.626***

(0.0940) (0.100) (0.0920) (0.0980)

Indicator for 0 Tract Employment in 2000 -0.00373 0.000515 0.0496** 0.0648***

(0.0209) (0.0243) (0.0204) (0.0236)

Observations 61,359 61,359 63,616 63,616

R-Squared 0.058 0.050 0.055 0.047

Region Fixed Effects 298 306

Region-Ring Fixed Effects 4,392 4,523

Table 4: Relationships Between 1990-2000 and 2000-2006/10 Tract Housing Dynamics

∆ ln House Price ∆ ln House Quantity ∆ ln Sim. RMA

2000-2010 2000-2010 2000-2006

∆ ln House Price, 1990-2000 -0.277*** -0.301*** -0.0162** -0.0260*** 4.81e-05 -4.04e-05

(0.00662) (0.00706) (0.00653) (0.00675) (7.49e-05) (6.32e-05)

∆ ln House Quantity, 1990-2000 0.0302** 0.0209* 0.121*** 0.0779*** -5.75e-05 -0.000219**

(0.0119) (0.0124) (0.0109) (0.0109) (0.000131) (0.000107)

Lagged Demographic Controls Yes Yes Yes Yes Yes Yes

FE Metro Ring Metro Ring Metro Ring
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Table 5: First Stage and Reduced Form Results

∆ ln RMA, 2000-2006 ∆ Repeated Sales Index, 2000-2006

∆ ln Simulated RMA, 2000-2006 0.694*** 0.639*** 0.586*** 0.546*** 12.43*** 13.68*** 7.966*** 10.60***

(0.0510) (0.0507) (0.0532) (0.0532) (2.396) (2.386) (3.039) (3.034)

Observations 28,381 28,381 28,381 28,381 24,773 24,773 24,773 24,773

R-squared 0.010 0.033 0.006 0.013 0.009 0.027 0.001 0.017

∆ Repeated Sales Index, 2000-2010 ∆ Census Hedonic Index, 2000-2010

∆ ln Simulated RMA, 2000-2006 7.235*** 6.983*** 2.804* 5.019*** 2.074*** 1.818*** 3.480*** 2.138***

(1.382) (1.273) (1.690) (1.576) (0.519) (0.495) (0.691) (0.654)

Observations 23,877 23,877 23,877 23,877 31,263 31,263 31,263 31,263

R-squared 0.016 0.174 0.004 0.144 0.003 0.099 0.004 0.1147

∆ ln New Units in Zillow, 2000-2006 ∆ ln New Units in Zillow, 2000-2010

∆ ln Simulated RMA, 2000-2006 2.341*** 1.615*** 2.764*** 2.255*** 2.557*** 1.792*** 3.058*** 2.522***

(0.449) (0.415) (0.562) (0.533) (0.499) (0.461) (0.621) (0.587)

Observations 30,606 30,606 30,606 30,606 30,605 30,605 30,605 30,605

R-squared 0.062 0.207 0.012 0.122 0.061 0.209 0.012 0.125

Lagged Demographic Controls No Yes No Yes No Yes No Yes

FE Metro Metro Ring Ring Metro Metro Ring Ring
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Table 6: IV Result for Housing Supply

∆ Quantity New Units New Units New Units ∆Units ∆Space ∆Quality Redev.

-Adj.

Source Zillow Zillow ACS Census Zillow Zillow Zillow

Census

Time Period 00-06 00-10 00-10 00-10 01-11 01-11 00-10

(1) (2) (3) (4) (5) (6) (7))

Census HI 1.01** 0.81** 1.25*** 7.35 7.38*** 0.33*

(0.42) (0.34) (0.46) (2.19) (2.11) (0.17)

1st-Stage F 11.63 13.23 13.29 14.23 1.76 13.29

Zillow RS 0.17*** 0.40*** 0.33*** 0.41*** 2.67*** 2.62*** 0.14***

(0.047) (0.11) (0.09) (0.11) (0.67) (0.66) (0.05)

1st-Stage F 32.73 30.09 30.09 30.09 20.75 5.47 30.09

Zillow HI 0.22*** 0.51*** 0.41*** 0.54*** 3.83*** 3.83*** 0.16**

(0.06) (0.16) (0.14) (0.17) (0.99) (0.98) (0.07)

1st-Stage F 66.29 19.59 19.48 19.57 17.92 9.69 19.57

FE metro metro metro metro metro metro metro

(1) (2) (3) (4) (5) (6) (7)

Census HI 1.27** 0.87** 1.07** 7.35** 7.52*** 0.23

(0.55) (0.39) (0.47) (2.19) (2.25) (0.18)

1st-Stage F 11.63 13.23 13.29 14.23 1.76 13.29

Zillow RS 0.28*** 0.63*** 0.51** 0.56** 4.58*** 4.38*** 0.17*

(0.10) (0.23) (0.20) (0.22) (1.69) (1.67) (0.09)

1st-Stage F 32.73 30.09 30.09 30.09 20.75 5.47 30.09

Zillow HI 0.21*** 0.43*** 0.35*** 0.36*** 3.15*** 3.13**** 0.11*

(0.06) (0.13) (0.11) (0.17) (0.12) (0.67) (0.06)

1st-Stage F 66.29 19.59 19.48 19.57 17.92 9.69 19.57

FE ring ring ring ring ring ring ring

Note: Each entry shows the estimate from an IV regression of change in the housing quantity measure

in the column header on changes in the house price index measured indicated in each row. Panel A

includes MSA fixed effects and Panel B includes MSA fixed effects interacted with CBD distance bands

of 2 km width. All specifications include 1990 and 2000 log employment, log house value, log rent, the

distance to CBD and its square, 10 and 20 years lags of the following tract-level demographic controls:

log population, log average household income, share African American, share White, share college

graduates.

56



Table 7: Unit Supply: Heterogeneity by CBD Distance and Tract-Level Supply Conditions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ Quantity (Zillow) ∆ Redev. ∆ Quantity (Zillow) ∆ Redev.

∆ ln P 0.22* 0.51*** 0.12*** -0.08 1.04** 0.18*** 0.33** 1.06*** 0.04 -0.46** -0.02 0.37***

(0.12) (-0.13) (0.04) (0.14) (0.50) (0.05) (0.14) (0.30) (0.05) (0.17) (0.07) (0.11)

∆ ln P × dis 2.01*** 1.76*** 0.62*** 0.36** 1.73** 0.46** 1.46*** 1.42*** 0.14 0.16 0.43*** 0.23

(0.51) (0.58) (0.22) (0.16) (0.76) (0.21) (0.34) (0.46) (0.11) (0.22) (0.18) (0.17)

∆ ln P × dis × dis -1.06*** -0.84*** -0.56** -0.62*** -0.86** -0.26** -1.04*** -1.51*** 0.07 0.37 0.09 -0.52***

(0.26) (0.31) (0.23) (0.22) (0.33) (0.11) (0.24) (0.49) (0.25) (0.46) (0.29) (0.18)

∆ ln P × Edge 0.99** 0.88** 0.17* 0.003 0.87* 0.21 0.06* 0.05 -0.05 -0.02 -0.06* 0.03

(0.37) (0.36) (0.10) (0.14) (0.45) (0.13) (0.03) (0.06) (0.03) (0.03) (0.03) (0.03)

∆ ln P × % Dev -0.47*** -0.76*** -0.07** -0.50*** -0.16*** -0.92*** -0.51*** 0.07 -0.49*** -0.30***

(0.07) (0.03) (0.03) (0.19) (0.02) (0.16) (0.04) (0.06) (0.04) (0.06)

∆ ln P × % Flat 0.34*** 0.52*** 0.09** 0.28** 0.10*** 0.35*** 0.46*** 0.17*** 0.46*** 0.08***

(0.04) (0.03) (0.05) (0.11) (0.02) (0.05) (0.03) (0.06) (0.03) (0.02)

∆ ln P × % Dev × % Flat -0.77*** -0.75*** -0.11* -0.63** -0.21*** -0.46*** -0.64*** -0.65*** -0.07**

(0.12) (0.05) (0.06) (0.31) (0.05) (0.10) (0.04) (0.04) (0.03)

FARRM 0.07*** 0.09***

(0.01) (0.02)

∆ ln P ×MSA % Devr50 -1.17 -0.31

‘ (3.70) (0.22)

∆ ln P ×MSA % Unavr50 -2.77 0.18**

(4.35) (0.07)

FE Metro Metro Muni Metro Metro Metro Metro Metro Muni Metro Metro Metro

∆ ln P Measure . RS RS RS RS RS RS HI HI HI HI HI HI

Observations 23,874 23,874 22,822 1,512 23,874 23,875 24,690 24,690 23,649 2,021 23,649 24,693

Note: All specifications include the 1990 and 2000 log employment, log house value, log rent, the distance to CBD and its square, 10 and 20 years lags of

tract-level demographic controls such as population, average household income, the share of African American, the share of white people, the share of

college graduate students and metropolitan area fixed effects.
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Table 8: Quality-Adjusted Supply: Heterogeneity by Tract-Level Supply Conditions

∆Quality ∆ Space ∆ Space ∆ Quality ∆ Quality ∆ Space ∆ Space ∆ Quality ∆ Quality

Supply Adjusted Adjusted Adjusted Adjusted

(1) (2) (3) (4) (5) (6) (7) (8)

∆ ln P 2.97*** -0.23 2.95*** -0.22 5.43*** -0.32* 5.48*** -0.28*

(0.71) (0.15) (0.70) (0.15) (1.55) (0.16) (1.55) (0.16)

∆ ln P × % Dev -0.79*** -0.71*** -0.86*** -0.67*** -2.76*** -0.16 -2.82*** -0.17

(0.18) (0.10) (0.18) (0.10) (0.79) (0.11) (0.79) (0.12)

∆ ln P × % Flat -0.23 0.39*** -0.24 0.38*** 0.12 0.63*** 0.12 0.64***

(0.17) (0.10) (0.25) (0.10) (0.18) (0.10) (0.18) (0.10)

∆ ln P × % Dev × % Flat 0.11 0.07 0.24 0.17 0.29 -0.74*** 0.33 -0.75***

(0.26) (0.16) (0.25) (0.16) (0.28) (0.13) (0.28) (0.13)

FE Metro Muni Metro Muni Metro Muni Metro Muni

∆ ln P Measure RS RS RS RS HI HI HI HI

Observations 22609 21650 22595 21635 23692 22745 23689 22741

Note: All specifications include the 1990 and 2000 log employment, log house value, log rent, 10 and 20 years lags of

tract-level demographic controls such as population, average household income, the share of African American, the

share of white people, the share of college graduate students and metropolitan area fixed effects.
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Table 9: Heterogeneity by CBD Distance and Metro-level Supply Conditions

(a) Over Repeated-Sales Price Growth

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ Quantity (Zillow)

∆ ln P 0.209* 21.74 0.943 1.873 0.284 2.148 0.849 -1.133*** 1.927

(0.111) (199.9) (0.573) (2.748) (0.521) (11.85) (0.672) (0.412) (4.627)

∆ ln P × dis 2.116*** 6.633 2.509*** 3.373 2.122*** 4.719 2.508** 2.817*** 1.197

(0.632) (39.27) (0.972) (2.458) (0.616) (41.92) (1.015) (0.435) (6.687)

∆ ln P × dis × dis -0.897*** 0.303 -1.083*** -0.886** -0.874*** -1.196 -1.120** -1.228*** -0.395

(0.239) (12.72) (0.377) (0.438) (0.296) (8.932) (0.529) (0.196) (1.268)

∆ ln P ×MSA % Dev50 -119.9 5.653 -11.52

(1,073) (166.8) (17.22)

∆ ln P ×MSA % Devr50 -5.820 -5.938

(3.694) (4.292)

∆ ln P ×MSA % Unav50 -13.47 -21.07 -6.645

(22.27) (254.2) (64.88)

∆ ln P ×MSA % Unavr50 -0.580 0.840

(4.098) (5.864)

WRLURI -0.511* 0.879

(0.266) (3.124)

Observations 23,874 23,874 23,874 23,874 23,874 23,874 23,874 23,874 23,874

(b) Over Hedonic-Adjusted Price Growth

∆ Quantity (Zillow)

∆ ln P 0.351** -0.400 -0.502* -0.494 1.935 -0.632 1.313 -0.688*** -1.024

(0.143) (0.484) (0.260) (0.578) (9.581) (0.585) (6.672) (0.188) (0.803)

∆ ln P × dis 1.390*** 2.452*** 2.430*** 3.116** 6.762 2.908** 6.407 2.551*** -0.061

(0.327) (0.533) (0.443) (1.250) (16.20) (1.171) (13.77) (0.638) (1.045)

∆ ln P × dis × dis -0.877*** -0.821*** -0.879*** -1.501** -4.055 -1.557** -3.670 -1.018*** -1.190

(0.200) (0.149) (0.177) (0.728) (10.69) (0.607) (8.555) (0.354) (0.823)

∆ ln P ×MSA % Dev50 -1.254 3.108 2.210

(3.608) (2.864) (2.142)

∆ ln P ×MSA % Devr50 -0.910 -7.127

(1.335) (25.84)

∆ ln P ×MSA % Unav50 -5.670 -4.797 4.606

(3.929) (3.794) (6.015)

∆ ln P ×MSA % Unavr50 -36.24 -32.10

(107.7) (85.31)

WRLURI -0.492 0.523*

(0.632) (0.281)

Observations 24,690 24,690 24,690 24,690 24,690 24,690 24,690 24,690 24,690

Note: All specifications include the 1990 and 2000 log employment, log house value, log rent, the distance to CBD and

its square, 10 and 20 years lags of tract-level demographic controls such as population, average household income, the

share of African American, the share of white people, the share of college graduate students and metropolitan area

fixed effects. The top panel uses the repeated sales price growth and the bottom panel uses the hedonic price growth.
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Table 10: Tract Level Supply Elasticities (γi)

5% 25% 50% 75% 95% Mean S.D obs

Based on Repeated-Sales Price Growth

Unit Supply Elasticity 0.14 0.45 0.74 1.08 1.48 0.78 0.42 63,896

Redevelop Supply Elasticity 0.06 0.15 0.22 0.30 0.38 0.22 0.10 63,896

Space Supply Elasticity 2.21 2.38 2.56 2.73 2.90 2.56 0.21 63,896

Quality-Adjusted Supply Elasticity 2.20 2.37 2.53 2.70 2.87 2.53 0.21 63,896

Intensive Margin Supply Elasticity 1.77 1.92 1.98 2.07 2.14 1.98 0.11 63,896

Based on Hedonic Price Growth

Unit Supply Elasticity 0.26 0.62 0.91 1.12 1.36 0.87 0.38 63,896

Redevelop Supply Elasticity 0.06 0.16 0.23 0.29 0.40 0.23 0.10 63,896

Space Supply Elasticity 3.23 3.84 3.87 4.36 5.16 4.28 0.60 63,896

Quality-Adjusted Supply Elasticity 3.24 3.88 4.35 4.81 5.20 4.31 0.61 63,896

Intensive Margin Supply Elasticity 2.80 3.22 3.49 3.79 4.08 3.48 0.38 63,896

Note; The tract-level supply elasticities reported in this table are imputed using the estimates from Specifications (2),

(6), (8) and (12) in Table 7 and Specifications (1), (3), (5) and (7) in Table 8, combined with the tract-level data on cbd

distance, developed fraction and topographical features.
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Table 11: Summary Statistics of Imputed Metro-Level Supply Elasticities

Mean Std. Dev. Min Max # Obs Corr. ρ

Less Neighborhood Substitution

Unit Supply Elasticity (RS) .8442 .1462 .3068 1.2012 306 0.2006**

Unit Supply Elasticity (HI) .9987 .1262 .4364 1.2572 306 0.3791**

Quality Supply Elasticity (RS) 2.6283 .1037 2.3021 2.8229 306 0.3657**

Quality Supply Elasticity (HI) 4.6144 .2418 3.5023 5.0174 306 0.4251**

More Neighborhood Substitution

Unit Supply Elasticity (RS) .9183 .1475 .3714 1.2672 306 0.2114**

Unit Supply Elasticity (HI) 1.0337 .1190 .4986 1.2919 306 0.3819**

Quality Supply Elasticity (RS) 2.6340 .1033 2.3097 2.8249 306 0.3571**

Quality Supply Elasticity (HI) 4.6493 .2318 3.5515 5.0272 306 0.4280**

Saiz Supply Elasticity

Saiz Supply Elasticity 2.6093 1.4643 .5953 12.1480 236 1

Note: ρ shows the pairwise correlation between the imputed metro-leve elasticities and the Saiz measure of metro-level

housing supply elasticity. * indicates 10%; ** indicates 1% level significance for the null hypothesis of independency

between γ and the Saiz elasticity.
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Table 12: Heterogeneity in Metro-level Supply Elasticities

(a) Less Neighborhood Substitution

(1) (2) (3) (4)

Unit Unit Quality Quality

(RS) (HI) (RS) (HI)

MSA % Devr50 0.14 -0.71*** -0.65*** -2.38***

(0.18) (0.14) (0.12) (0.24)

MSA % Unavr50 -0.02 -0.04 0.11*** -0.05

(0.04) (0.04) (0.03) (0.07)

WRLURI -0.04*** -0.05*** -0.02*** -0.09***

(0.01) (0.01) (0.01) (0.02)

Observations 306 306 306 306

(b) More Neighborhood Substitution

(1) (2) (3) (4)

Unit Unit Quality Quality

(RS) (HI) (RS) (HI)

MSA % Devr50 0.07 -0.71*** -0.65*** -2.34***

(0.18) (0.13) (0.12) (0.23)

MSA % Unavr50 -0.05 -0.06* 0.11*** -0.04

(0.05) (0.04) (0.03) (0.06)

WRLURI -0.03** -0.04*** -0.02*** -0.08***

(0.01) (0.01) (0.01) (0.02)

Observations 306 306 306 306

Note: The dependent variable is the imputed metro-level supply elasticity. MSA % Devr50 indicates the fraction of

developed land within 50% of maximum radius from the CBD; MSA % Unavr50 indicates the fraction of area that is

lose to hills, water and wetland within 50% of maximum radius from the CBD; WRLURI indicates the metropolitan-

area-level WRLURI indices.
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Table 13: Demand Substitution Parameters from Estibration

(1) (2) (3) (4)

One layer One layer Two layer Two layer

choice choice nested choice nested choice

κ 0.005 0.01 0.005 0.01

η 2.58 1.46* 3.45*** 1.89***

(1.69) (0.75) (1.43) (0.58)

φ 8.78*** 3.84***

(0.62) (0.24)

ε min 2.24 1.12 2.24 1.12

ε max 21.40 10.70 21.4 10.7

ε mean 5.60 2.80 8.1 4.05

Standard errors in parentheses
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Figure 1: CBD Distance Patterns in Tract-Level Supply Conditions
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Figure 2: CBD Distance Patterns in Supply Elasticities Across All Tracts
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Figure 3: CBD Distance Patterns in Selected MSAs
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A Model Appendix

The fraction of residents of tract i that work in j Pr( viω Bizijkωwjk

P1−β
i eκτij

>= maxj′,k′
viω Bizij′k′ωwj′k′

P1−β
i e

κτij′ ) can be

determined using the properties of the Frechet draws zijkω.

πij|i =
∑k
[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij′

]ε ≡
∑k
[
wjke−κτij

]ε

RMAi
(27)

We write this expression as a function of resident market access RMAi ≡ ∑k ∑j
[
wjke−κτij

]ε, which

is a summary measure of the access to employment opportunities from residential neighborhood

i.

Before the productivity shock is revealed, the expected income (wage net of commuting cost)

yi associated with residing in tract i is E(maxj,k
wjkzijkω

eκτij ). Solving this through,

yi = Γ(1− 1
ε
)(RMA)

1
ε
i (28)

Not surprisingly, this object is increasing in RMAi and declining in ε. As ε increases, there is a

smaller dispersion in skill prices across locations, reducing the probability of individuals receiving

high wage offers in any location.

The probability that i is the highest utility residential location is the probability that the in-

clusive value of municipality m is the highest times the probability that neighborhood i is the

highest utility neighborhood in municipality m. Using properties of the Frechet distribution, this

second object is

(
Bi P

β−1
i yi

)η

∑i′
(

Pβ−1
i′ Bi′yi′

)η . The second object is
∑i´∈m(i)

(
Bi′P

β−1
i′ yi′

)η
]

φ
η

∑m[∑i´∈m(i)

(
Bi′P

β−1
i′ yi′

)η
]

φ
η ]

Plugging in for yi gives

the population supply function in the text..

The probability that j is the highest utility work location for a resident of any given tract i is

πij|i =
∑k

[
wjke−κτij

]ε

∑k ∑j′
[
wj′ke−κτij

]ε . Summing over the probability of living in i, we recover the labor supply to

tract j in the text.
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Table 14: Analysis of Pre-Treatment Trends

∆ Census Hedonic Index 1990-2000

∆ ln Sim. RMA, 2000-2006 0.360 0.277 -0.294 -0.361

(0.448) (0.431) (0.585) (0.565)

Observations 31,263 31,263 31,263 31,263

R-Squared 0.003 0.083 0.002 0.073

∆ ln House Quantity, 1990-2000

∆ ln Sim. RMA, 2000-2006 3.117*** -0.109 2.402*** -0.679**

(0.720) (0.248) (0.916) (0.334)

Observations 31,124 31,124 31,124 31,124

R-Squared 0.093 0.893 0.037 0.872

Region All FE 275 275

Region-Ring FE 3,235 3,235

Demographic Controls No Yes No Yes
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