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Migration Constraints and Disparate Responses to Changing Job Opportunities

1 Introduction and Background

Long-standing disparities in labor market outcomes by race are well documented.! At the
opening of a conference at the Board of Governors in 2017 highlighting these disparities and
their sources, Governor Brainard affirmed that labor market disparities might have negative,
"implications for the growth capacity of the economy" (Brainard 2017). Many contributors to
these disparities have been documented, including discrimination, educational opportunities, and
social networks. An additional contributor could be differences in migration patterns. A greater
ability to chase economic opportunity should improve one's labor market outcomes (for example,
see El Badaoui, Strobl, and Walsh 2017; Niebuhr et al. 2009; Davis and Haltiwanger 2014). In
fact, the "Great Black Migration" has been credited with significantly improving the economic
conditions of blacks from the U.S. South during the early 20th century (Boustan 2015).2
Therefore, racial disparities in the labor market may result, and persist, if a disadvantaged group
faces more constraints to migrating.

Constraints to migration can take many forms -- from social/cultural constraints to
financial constraints.> R. Wilson (2018) demonstrates that access to information can be important
for informing migration decisions. Cooke (2011) attributes 20 percent of the overall decline in

migration rates between 1999 and 2009 to what he calls "secular rootedness," suggesting a social

! For example, see Antecol and Bedard (2004); Biddle and Hamermesh (2013); Bradbury (2000);
Cajner et al. (2017); Chetty et al. (2018); Engemann and Wall (2010); Fallick and Krolikowski
2018; Zavodny and Zha (2000); Hotchkiss and Moore (2018).

2 Not all outcomes from the Great Migration were positive; Black et al. (2015) provide evidence
that migration by African Americans from rural southern states to northern urban locations
resulted in increased mortality.

3 An additional constraint, theorized by Shimer (2007), could include irrational expectations
about future local job prospects.



cost to migration (also see Kosar, Ransom, and Wilbert van der Klaauw 2019). Spilimbergo and
Ubeda (2004) also establish family ties as a factor affecting migration in their study for
differences in migration rates between Whites and Blacks in the U.S. They find that the reason
that Blacks move less than Whites, despite having many factors commonly associated with high
migration, is because Blacks have stronger family ties. Additionally, investigating migration
patterns in the 1990s, Frey et al. (2005) confirm that cultural constraints to migration are more
prevalent among racial minorities. This constraint would be in addition to any other differences
across race that have been long known to impact migration decisions, such as access to
resources, information, and education (for example, see Greenwood 1975). There may be other
indirect contributors to the relationship between migration and labor market outcome gaps. For
example, Blair and Chung (2017) provide evidence that occupational licensing reduces racial and
gender wage gaps, yet Johnson and Kleiner (2017) find that occupational licensing increases
costs of interstate migration. Even though blacks and Hispanics are less likely to be found in
occupations that are licensed (Blair and Chung 2017), such institutional constraints may be
contributing to labor market disparities in ways that are not obvious.

This paper first presents evidence consistent with racial minorities facing greater
migration constraints than white, non-Hispanics by documenting greater differences in the
geographic distributions of jobs requiring a certain education level and workers with that
education level. If migration was perfectly costless (free of constraints), jobs requiring a certain
level of education and workers with that education level would be equally distributed across
states (or some other relevant geography). Of course, the degree to which these distributions
differ is only suggestive of migration constraints. However, documenting a difference in the

distributions is, in a sense, a necessary condition to make the argument that differences in



migration patterns are contributing to observed labor market disparities. This analysis is related
to, but differs from the long-standing literature on spatial mismatch, which in its most recent
incarnation focuses on job decentralization as the dominant force in declining labor market
outcomes among urban minorities (see Kain 1968; Wilson 1990 and Ihlanfeldt and Sjoquist 1998
for a comprehensive survey and Miller 2018 for more recent evidence).

The paper then investigates the degree to which these distributional differences across
race/ethnicity, or mismatch, reflect differential responses to changing job opportunities. We find
evidence of weaker response among racial/ethnic minorities to changes in job opportunities
across geographic locations. The implication is that worse labor market outcomes among
minorities may, at least in part, be the result of greater migration constraints. Additional analysis
provides evidence that social costs may play a role in constraining ethnic/minority response to

changing labor market opportunities elsewhere.

2 Delta Index of Concentration

Indices of spatial concentration, within a much broader class of dissimilarity indices,
have been used extensively to measure the degree of and changes in residential segregation (see
Massey and Denton 1988; Iceland, Weinberg, and Steinmetz 2002). The "Delta" index of
concentration was first proposed by Hoover (1941) and it's use, often referred to as the "Duncan
Index," became popular among labor economists to measure occupational segregation (Duncan
and Duncan 1955; Watts 1998; Karmel and Maclachlan 2007; Silber 1992). Pertaining to the
question in this paper, the Delta Index can tell us how workers (of a certain education level and
race) are distributed across the U.S. relative to the distribution of jobs requiring the same

education level held by workers of the same race. If the distribution of jobs typically requiring,



say, a college degree better matches the distribution of whites with a college degree than the
distribution of blacks with a college degree, this suggests that whites, compared to blacks, are
geographically less concentrated than the distribution of occupations. Hence, geography could be
playing a role in observed labor market disparities. In other words, there is more of a geographic
mismatch between blacks with a college degree and college jobs than between whites with a
college degree and college jobs.

The Delta Index (DY) that quantifies the difference between the distribution across some
level of geography, g, of workers of racial group, », and education level, e, and the distribution of
jobs (or some other measure of labor market opportunity) across locations requiring that
education level and held by workers of that racial group, is calculated as follows:

neg _Jég
Ne e

; (1

Dg = %Zgﬂ
where,
ngg = number of people of racial group, 7, in geographic location, g, with education, e
» = total number of people in the U.S. of racial group, r, with education, e

Jég = number of jobs in location, g, requiring education, e, held by workers of racial group, »

+ = total number of jobs in the U.S. requiring education, e, held by workers of racial group,

G = total number of geographic locations across which the distributions are compared

The Index falls between zero and one. If workers of a certain racial group, with a certain

education, are distributed across locations identically to the distribution of jobs requiring that
education level then the Delta Index would be equal to zero -- the smaller the Index, the lower
the mismatch between distributions of jobs and people. The Delta Index tells us what share of the
racial group (or jobs) that would need to be moved in order to produce an equal distribution (see

Watts 1998); of course, in the context of migration, it's more natural to think about changing the



share of workers in a location (through migration), rather than changing the share of jobs in that

location, that would be needed to equalize the distributions. We will consider three levels of

geography -- states, core-based statistical areas (CBSAs), and commuting zones (CZ).* CBSAs

are restricted to more urban locations, while CZs are defined for both rural and urban areas,

although identification of the CZ of a person living in a sparsely populated county is limited for

confidentiality reasons. Figure 1 illustrates the CBSAs and CZs that are represented in our data.
[Figure 1 about here]

Job opportunities are classified not only by education but also by race (adding »
superscripts to the share of jobs at each education level) because of results from Hellerstein,
Neumark, and Mclnerney (2008) who find that an absence of the availability of jobs, generally,
is not enough to explain lower employment rates of blacks, but the absence of jobs available to
blacks that matters -- accounting for the distribution of jobs only by education level would ignore
this point. Additionally, one may argue that a more dynamic measure of job opportunities is
preferred. However, we are not using merely the level of employment, but the relative measure
of the distribution of employment across locations. In an appendix, we repeat all of the analyses
in this paper using an alternative measure of job opportunities -- the distribution of
race/education specific year-to-year unemployment-to-employment transitions. One might also
argue that a measure of job vacancies would better reflect job opportunities, but because of the

importance of identifying race-specific job opportunities (see Hellerstein, Neumark, and

4 Detailed information on CBSAs can be found at
https://www.census.gov/topics/housing/housing-patterns/about/core-based-statistical-areas.html.
Since metropolitan identifiers change over time, we created a cross-walk to create synthesized
CBSA; details can be found in Appendix D. CZ definitions are based on county-to-county
commuting patterns; details can be found at https://usa.ipums.org/usa-

action/variables/ COMZONE#description_section.



Mclnerney 2008), it is not possible to use vacancies for this purpose; it is illegal to specify race

when advertising a job opening.’

3 Data and Measurement Issues

The monthly Current Population Survey (CPS) between January 1996 and November
2018 is used for the analyses in this paper. The starting year of 1996 is chosen since this is when
county information necessary for identifying CZs is available. The CPS is administered each
month by the U.S. Bureau of Labor Statistics to roughly 60,000 households. This is the
nationally representative cross-sectional survey from which we get reports of the unemployment
rate and the labor force participation rate, among other monthly labor market statistics. Using
monthly CPS data, the number of workers and jobs are summed within each month for each year,
using the CPS person weight. Then, this monthly total is averaged across months to get an annual
average total.

The analysis in this paper only includes 25-54 year old men. Across several dimensions,
labor market racial disparities are often found to be worse among men than among women (for
example, see Cajner et al. 2017). The analysis was also performed for 25-54 year-old women, as
well, but the patterns across race for women mirror the patterns found among men. For each year

observations are classified into three racial groups (White, non-Hispanic; Black, non-Hispanic;

> There is a growing body of research using online vacancy data, such as Glassdoor or Vault (for
example, see Kurekova, Beblavy, and Thum-Thysen 2015). Additionally, the Bureau of Labor
Statistics makes available measures of job openings (vacancies) in their Job Openings and Labor
Turnover Survey (JOLTS). But these data are available only by industry or broad Census region,
not both. In addition, occupation is more reflective of educational requirements than industry,
which will employ workers of a much broader range of educational attainment. But more
importantly neither online vacancy data nor JOLTS identifies race-specific job opportunities.



and Hispanic) and four education levels (less than high school, high school degree, some college,
and bachelor degree and above).®

3.1 Education "Required" for Each Occupation

For each year, among those employed (both men and women and all races and all ages),
excluding the armed forces, the median education level is determined for each detailed
occupation.” Table 1 reports the distribution of occupations across median education. The CPS
has a different set of detailed occupation codes for 1992-2002, 2003-2010, and 2011 to the
present. Not being able to match codes across years is not a concern since the median education
for each occupation is constructed within these year groups.®

[Table 1 about here]

Table 1 shows that across all years, most occupations have a median education level of a
high school degree only, followed by some college, then college and above. Less than one
percent of all occupation codes have a median education level of less than a high school degree.
Only 12 occupations prior to 2003, three occupations between 2003 and 2010, and two
occupations since 2011 have a median education level of less than high school -- these include
occupations such as farm workers, nursery workers, textile cutting machine operators, launderers

and ironers, and graders and sorters.

6 "Other, non-Hispanic" is excluded from the analysis due to the small number of observations.
7 Using the mode education level proved problematic since several occupations had multiple
"modes," or, rather, multiple education levels that tied for mode status. CPS person weights are
used when obtaining the median.

8 Occupation codes for each year can be found at https://cps.ipums.org/cps-
action/variables/OCC#codes_section. This is also why the potential of changing skill
requirements within occupation over time (see Goyette 2008) is also not a concern.



3.2 Demand for Educational Skills--Labor Market Opportunities by Education and Race

The number of jobs (held by workers of any gender and age, within race groups) in each
geographic location requiring a certain education level (j4) is simply the sum of people of that
race group employed in that location in occupations requiring that education level, using the
median education for occupations. Summing across locations yields the total number of jobs in
the U.S. held by workers in that race group requiring that education level (J7). Again, all
analyses are repeated using an alternate measure of job opportunities -- the distribution of
race/education specific year-to-year unemployment-to-employment (U-to-E) transitions.

3.2 Supply of Workers by Race and Education

The supply of potential workers in each geographic location for each race and education
group is calculated simply as the sum of workers in the location of that race with that education

level (ngy). The total number of workers (25-54 year old men) in the U.S. of that race with that

education level, then, is just the sum across locations (N ). Table 2 reports the distribution of 25-
54 year old men across race/ethnicity for each educational group. This is the for the full sample
1996-2018. White, non-Hispanics make up the largest share in all education groups, except those
with less than a high school degree. The shares of black, non-Hispanics and Hispanics declines

in educational attainment, whereas the share of white, non-Hispanics increases in education.

[Table 2 about here]

4 Results - The Delta Index

4.1 Distributions in the Data

Figure 2 illustrates how the distributions of jobs across U.S. states in 2018 for which the

median education is a high school degree and the distribution of workers with that level of



education differ from one another.’ Panel (a) makes this comparison for black, non-Hispanics
and Panel (b) makes the comparison for white, non-Hispanics.
[Figure 2 about here]

The distributions will reflect the largest states (California, Texas, and New York, for
example) having among the greatest shares of jobs and people of each race at each education
level. However, the Delta Index is able to quantify the subtleties in relative distributional
differences. For example, the share of jobs requiring a high school degree held by blacks in
Pennsylvania is less than the share of blacks living in Pennsylvania (highlighted with red circles
in panel a). Similarly, the share of jobs requiring a high school degree held by whites in Oregon
is greater than the share of whites living in Oregon (highlighted with red circles in panel b).

4.2 Delta Index and Migration - Exploring some Stylized Facts

We claim that the Delta Index will potentially reflect differential migration constraints.
Specifically, in the presence of migration constraints, all else equal, we should see a greater
mismatch between workers and job opportunities. A greater mismatch in the distributions of
workers and jobs will produce a higher Delta Index. Therefore, we interpret a higher Delta Index
as evidence consistent with lower migration. Of course, all else is not equal, and there are
potential sources of worker/job mismatch other than migration constraints. Mismatch across
locations might arise if there are differences in substitution elasticities between education groups
(Ciccone and Peri 2005), if there are significant differences in amenities (Chen and Rosenthal
2008), or differences in location-specific incentives designed to retain residents with higher

levels of education (Clotfelter 1976; Strathman 1994). The regression analysis below will

? Similar distributional comparisons can be made for CBSAs and CZs, but differences are much
easier to see visually across states.



address this "all-else-equal" concern, but in this section, we investigate whether the relationship
between the Delta Index and migration is at least consistent with some stylized migration facts
from the literature.

4.2.a The Delta Index and the Relationship Between Migration and Education

A positive relationship between education and migration is well established in the
literature (for example, see Molloy, Smith, and Wozniak 2011; Greenwood 1975). The theory
behind this observation is that education reduces the informational cost of migrating and moving
yields a greater return on general human capital afforded to those with higher education levels.
Figure 3 shows that this stylized fact holds for white, non-Hispanics but not for the other racial
groups.

[Figure 3 about here]

For all groups, those will less than a high school degree are most dissimilarly distributed
across the locations relative to the jobs requiring that education level (not shown, but available
upon request). But, unexpectedly, there is greater mismatch between blacks and Hispanics with a
college degree and jobs requiring a college degree, compared with those with high school or
some college, across all geographic specifications. This suggests that differences in migration
constraints by education level vary by race, as well. Specifically, black and Hispanic workers at
higher education levels may face more constraints than those workers at lower education levels.
This reflects the importance of considering racial specificity of job opportunities (see Hellerstein,
Neumark, and Mclnerney 2008).

Comparing across geographic locations Figure 3 also illustrates, for all racial/ethnic
groups, how the broad geography of states masks mismatch that exists at narrower geographies

of CBSAs and CZs. The share of race/education specific jobs in a state is much too large a
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geography to capture the labor market opportunities for any one person or group. Notably, across
all races, the Delta Index is higher, and, thus, reflects a greater degree of mismatch when the
distribution across a narrower geography is considered. This makes sense, for example, since
there may be exactly the same share of black college graduates in the state of California as the
share of jobs held by black college graduates. However, the jobs may be concentrated in Los
Angeles, whereas the population may be concentrated in San Francisco. The state level Delta
Index does not pick up this mismatch, but the CBSA and CZ do. Additionally, level of
geography appears to matter more among racial/ethnic minorities.

4.2.b The Delta Index and Migration Patterns over Time

Since at least the 1980s, overall declines in inter-state migration are well-documented,
and many varied explanations have been offered to explain it (for example, see Costa and Kahn
2000; Cooke 2013; Molloy, Smith, and Wozniak 2011; Kaplan and Schulhofer-Wohl 2017) . The
declining trends in migration have been documented among all racial and education groups. If
there is a link between lower migration and greater dissimilarity between the distribution of jobs
and workers, we would expect the downward trend in migration rates to manifest itself in rising
Delta Indices.

We find the Delta Index to be unambiguously rising over the time period across states for
white and black high school graduates. This suggests that even if the Delta Index is found to
reflect a greater mismatch between people and job opportunities among racial/ethnic minorities
than among whites, linking this result to lower migration rates (i.e., migration constraints) may

be more tenuous than we thought.! However, if falling migration rates are more related to the

19 Also see Hall and Schulhofer-Wohl (2018) who document a reduction in job matching
efficiency between 2001 and 2013.
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aging population or declines in geographic specificity of occupations (Kaplan and Schulhofer-
Wohl 2017), then rising migration may not result in greater mismatch between job opportunities
and the working age population.

4.3 Delta Index and Evidence of Greater Mismatch among Racial/Ethnic Minorities

In order to emphasize differences in geographic mismatch across race/ethnicity, Figure 4
re-arranges the Delta Indices presented in Figure 3. Comparing distributions across states
(column 1), it appears that only white, NHs with a college degree have a distributional advantage
in job opportunities. However, at the CBSA or CZ level, that distributional advantage shows up
at all education levels, and is most dramatic at the college or above level of education. If
differences in the Delta Index across race/ethnicity reflect differences in migration constraints,
then Figure 3 suggests that racial/ethnic minorities, at all education levels, indeed face greater
migration constraints than white, NHs.

[Figure 4 about here]

Figure Al in Appendix A reproduces Figure 4 using a different measure of job
opportunities reflected in the distribution of year-to-year U-to-E transitions. The conclusion that
the Delta Index provides evidence of greater mismatch between job opportunity and population

among racial/ethnic minorities than among whites is clear in these figures, as well.

5 Multivariate Regression

So far, this analysis has interpreted a higher Delta Index (i.e., greater mismatch between
people and job opportunities) for a particular racial group as evidence for the presence of greater
constraints on migration. This has not been a causal analysis, but merely the presentation of

evidence consistent with that conclusion. All else equal, fewer migration constraints imply a
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greater migration response to growing job opportunities. In an effort to get at a more causal
conclusion to the question of whether white, non-Hispanics are more responsive to job
opportunities than racial and ethnic minorities, we estimate a regression model where the change
in local labor market opportunities (total share of race/education specific employment) enters as
a determinant for the change in the share of people (of the race/education group) in that location.

5.1 Model Specification

Again, restricting the analysis to men, ages 25-54, we make use of the same CPS data
between 1996 and 2018 to estimate the relationship between changes in labor market
opportunities and responsiveness. The primary analysis defines job opportunities as the share of
total race/education specific jobs in a certain geographic location. All analyses are repeated using
the year-to-year U-to-E race/education transition shares; this specification and results are
reported in Appendix A.

The baseline model is specified as follows:

A ("—g)i‘t = a+ pA (’79); +Y2, {B}RACE;]'I + B?RACE] , + A (’79)6 }

N rt

. Le
T ok EDUCE, + giEDUCE, + 0 ()" ]
Tt
. i j e
Y2 Y2, {A}RRACEé'tEDUC;t + 2%, RACE) .EDUCL, * A (’79) }
Tt

+0'Xgt-1+ Tt + 05+ €gerts 2)
where,

e
A (T;V—g) = change in the share of people of racial group, », with education, e, in geography, g,
Tt

from ¢-1 to ¢;
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P e
A (]79) = change in the share of total employment of racial group, r, with education level, e, in
Tt

geography, g, from ¢-1 to ;

RACE, ; = set of 0,1 regressors indicating black, non-Hispanic or Hispanic race/ethnicity;
EDUC,; = set of 0,1 regressors indicating some college or college plus education groups;
Xgc—1 = geography specific additional regressors at time #-/ , including the unemployment rate
and industry shares, which are expected to capture both baseline job opportunities and
unemployment risk in the geographic location (e.g., see Devaraj et al. 2017);

7, and g, are time and geography fixed effects, respectively; and €, ., are robust standard

errors, clustered at the geography level (each CBSA and CZ are observed multiple times across
years).!!

Both random and fixed effects (treating the geography/race/education as the unit of
observation) versions of the model are estimated and presented. A Hausman test indicates there
is no statistical difference between the random and fixed effects model parameter estimates.
Since the random effects estimator is more efficient (Clarke et al. 2010), those are the results we
will focus on in the discussion.

This analysis is restricted to location/race/education observations that have non-zero
values for current and lagged values of population share and job opportunity share. The reason
for this restriction is that we do not know whether a zero share of a race/education specific

occupation in a specific location is a true zero, or whether that location was simply not sampled

! Clustering is not done at the state level since CZs and CBSAs cross state boundaries. And,
using Census regions or divisions would provide too few clusters (see Cameron, Gelbach, and
Miller 2008).
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or the data suppressed that year. Over 80 percent of CBSA and CZ race/education specific
population and occupation shares in the data are non-zero.

The geography fixed effect is expected to control for time-invariant location effects, such
as differences in amenities; and the time fixed effect will control for periods of common
economic experiences, such as recessions. The analysis is performed for both CBSA and CZ
geography levels, and the unit of observation is race/education/geography/year. The analysis
excludes less than high school and races other than whites, blacks, and Hispanics. Note that the
definition of commuting zones depends on knowing a person's county, which is often suppressed
in public data (due to small county size); so there will be more observations in the CBSA

analysis than in the CZ analysis. Since changes in job opportunities may be endogenous to

e
population changes, we will investigate instrumenting A (j—i) with a Bartik shift-share (Bartik
e g't

1991) in future analyses.!?

This analysis is not unlike that undertaken by Amior and Manning (2018), who find
evidence of significant migratory response to labor market opportunity, but that push-migration
(from declining economic opportunity) is much weaker than pull-migration. This means that
populations never fully adjust to changing employment opportunities and labor market
disequilibrium persists across locations. Their analysis, however, does not separate migration

responses by education or race.

12 As a first step to address potential endogeneity through timing, we re-estimate equation (2)
with lagged change in job opportunities. Most of the patterns of results are consistent with those
presented here, but the marginal effects are estimated less precisely.
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Table 3 reports the marginal effects of the change in location job shares on change in
population shares.!* A positive marginal effect indicates that in an area with a higher change in
education/race job share over the previous year, the share of people in that education/race group
also increased in that area -- suggestive of a positive net migration response to improved job
opportunities in the area. The question is whether racial/ethnic minorities exhibit any different
level of response than white, non-Hispanics.

[Table 3 about here]

Table 3 indicates that there is a significant positive correlation between job share changes
and population changes at both the CBSA and CZ levels of geography. For the random effects
specification, the marginal effect for whites across CZs (0.7063), for example, suggests that a
standard deviation increase in the change in a location's job share (about 0.25 percentage point)
results in a 0.177 percentage point change in the population share of whites (0.25x0.7063).!4

The main result from Table 3 is that the marginal effect of education/race job share
changes on education/race specific population shares is smaller for blacks and Hispanics than for
whites, generally, and for all education levels, except Hispanics with some college education.
The marginal estimates for blacks and Hispanics that are statistically different from those for
whites are in bold.

The results suggest that, for the most part, racial/ethnic minorities are less responsive to

changes in job opportunities. Additionally, responsiveness of white and black non-Hispanics

13 Full estimation results are contained in Appendix B (Table B1); while none of the industry
fixed effects contribute additional explanatory power beyond the locational change in job
opportunities, the lagged unemployment rate has the expected and statistically significant
negative sign.

14 Comparing to the impact of changes in the CZ share of 12 month U-to-E transitions (see Table
Al in Appendix A), a one standard deviation in U-to-E transitions among whites (1.37
percentage points) results in a 0.038 percentage point change in the population share of whites.
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increases in education, whereas less educated Hispanics are more responsive than more educated
Hispanics. The marginal effects for responsiveness to changes in U-to-E transition shares are
found in Appendix A (Table A1) and are much less precise than those reported in Table 3.
6 Importance of Social Costs

The appropriate policy aimed at correcting the mismatch between jobs and workers
depends on the reason why racial/ethnic minorities are less responsive to changes in labor market
opportunities. If higher social costs are keeping racial and ethnic minorities from migrating to
better opportunities (for example, see Spilimbergo and Ubeda 2004), then a policy aimed at
moving people to jobs is likely to be less effective than a policy of moving jobs to people. Strong
social ties have been found to be important determinants of an individual's willingness (or
ability) to migrate in response to a negative labor market event (Huttunen, Meen, and Salvanes
2017; Zabek 2019). Kosar, Ransom, and Wilbert van der Klaauw (2019) find that that strong
(and growing) preferences for family and local cultural norms (social ties) partially explain the
long-run decline in migration rates in the U.S. A graphical analysis of Facebook connections
illustrates how powerful connections from historical events, like the Great Migration in the early
20th century, can dictate geographic connectedness today (Bailey et al. 2018, also see Badger
and Bui 2018).!° Also, Ananat, Shihe, and Ross (2018) find that as the share of a worker's race in
a local area increases, the employment density wage premium for that worker increases,
providing yet another reason why we might expect minorities to respond more to employment

opportunities in areas with higher own-racial shares. This section explores the role that social

15 A future analysis will make use of the same data to explore responsiveness to job opportunities
in location in which individuals have greater social media connections. An analysis that restricts
locations to Great Migration states does not find results statistically different from the full
sample (results available upon request).
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costs might be playing in weaker responsiveness of minority workers to changes in job
opportunities.

The analysis modifies equation (2) by including the share of the population in the
location (either CBSA or CZ) that is black or Hispanic by itself, interacted with education, and
also interacted with changing job opportunities in the location. The presence of a greater share of
one's own race/ethnic demographic might be expected to reduce the social cost of moving to that
location. Marginal effects by ethnic/racial percentiles are presented in Table 4.!°® The marginal
effects at the 75th percentile that are statically significantly different from the marginal effects at
the 25th percentile are bolded.

[Table 4 about here]

For Hispanics, the marginal effects at the 75th percentile for high school are higher at the
25th rather than the 75th percentile -- opposite of what we might expect if social costs were a
barrier to migration. Hispanics with some college education appear to be more motivated to
respond to job opportunities in locations with higher shares of Hispanics as the marginal effect at
the 75th percentile is larger than (and statistically different from) the marginal effect at the 25th
percentile.

For black, non-Hispanics, all the point estimates progress in the way that we would
expect if job market opportunities in locations with higher shares of ethnic/racial minorities was
more influential in motivating blacks to migrate to take advantage of those opportunities. The
significant difference between the 75th and 25th percentile marginal effects across CZs for

blacks overall, however, is being driven by the difference among the college educated. This

16 The estimating equation and full set of parameter estimates are found in Appendix C. Again,
we focus on the random effects model results here because a Hausman test fails to reject the null
hypothesis of equality between fixed and random effects parameter estimates.
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suggests reducing social costs would increase migration responses of minorities to job market
opportunities elsewhere, especially if information and resources were available (as they might
expected to be for the more educated) to take advantage of them. The stronger migration
response among college-educated blacks across CZs (including more rural areas and suburbs)
rather than across CBSAs (reflecting more urban locations) is consistent with the finding by
Couture and Handbury (2017, 32) that, "Young college-educated Blacks...are over-represented in
2000, but have grown faster [through 2010] in the suburbs, unlike Whites, Asians, Hispanics,
and others who grew faster [in this time period] in urban areas" (also see Sisson 2018).

Table A2 in Appendix A contains analogous results using 12-month U-to-E transitions as
job opportunities. The pattern of the point estimates is the same for both blacks and Hispanics,

but the point estimates are less precise.

7 Conclusions and Policy Considerations

The analysis in this paper finds that black and Hispanic workers, at each education level,
are more geographically concentrated than whites, relative to race/education specific job
opportunities. This result holds for different measures of job opportunities and across different
levels of geography, including states, Core-based Statistical Areas (CBSA), and Commuting
Zones (CZ).

A regression analysis supports the interpretation of these results as differences in
migration responses by education and race to changing job opportunities. At both the CBSA and
CZ geographic level, the relationship between the change in education/race specific job
opportunity in a location and the change in education/race specific population is significantly

larger and more statistically significant among white, non-Hispanics than it is for ethnic/racial
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minorities. Additional analysis provides evidence that social costs may play a role in
constraining ethnic/minority response to changing labor market opportunities elsewhere.

Finding evidence of greater job opportunity/population mismatch and weaker response to
changing job opportunities among racial/ethnic minorities is not sufficient to conclude that
blacks and Hispanics would be better off if they were spread more thinly across the U.S. to better
match the distribution of jobs matching their education. Some have found that racial and ethnic
minorities experience significant gains from social and cultural networks that are accessible
when living in close proximity with one another (e.g., Montgomery 1991; Edin, Fredriksson, and
Aslund 2003; Elliott 2005). This would suggest that efforts directed toward decreasing disparate
labor market outcomes should focus on adjusting the human capital of minorities (e.g., by
improving educational opportunities) to better match the occupational demands of the area, or by
improving economic opportunities that better match the educational attainment of the population,
rather than necessarily promoting migration.

On the other hand, Xie and Gough (2011) don't find any evidence of benefits to
immigrants working in "ethnic enclaves" relative to immigrants working outside of the enclave.
In addition, Dickerson (2007) finds that employment outcomes are worse for blacks in
segregated cities, suggesting that geographic concentration may indeed be harmful for economic
outcomes of minorities, and that easing migration might prove useful for improving labor market
disparities.

Picard and Zenou (2018) provide a theoretical model showing how minority workers,
faced with a mismatch of location and jobs, could benefit from a variety of policy approaches.
Place-based policies, such as neighborhood regeneration (which provides incentives for majority

workers to move there providing improved networking contacts) and establishment of enterprise
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zones (attracting firms providing additional employment opportunities) are ways in which
specific geographic locales can attract both residents and firms. Contrastingly, people-based
policies, such as the Moving to Opportunity programs, provide housing subsidies in order to
improve outcomes by moving people closer to jobs.!” Both of these first two types of policies
would improve the measured locational mismatch between minorities and jobs. However,
incentivizing people to move is a tall order (for example see Harrison and Raice 2018). Indirect
policies, such as improving public transportation or access to information (see Waldrip et al.
2015; R. Wilson 2018) will also improve employment outcomes among minorities, but may not
change the locational mismatch between minorities and jobs. This potential conflict in policies
focused on either people or place is long-standing in the urban literature, described in a phrase
coined by Winnick (1966)-- 'Place Prosperity vs. People Prosperity' (also see Bolton 1992;
Partridge and Rickman 2007).

Hellerstein, Neumark, and Mclnerney (2008) find that an absence of the availability of
jobs, generally, is not enough to explain lower employment rates of blacks, but it's the absence of
jobs available to blacks that matters. This suggests that while Marinescu and Rathelot (2018)
find that aggregate geographical mismatch between jobs and people may not be very important
in the overall unemployment rate, education/race specific mismatch may play a greater role in
determining labor market outcomes. In other words, combating discrimination and negative
neighborhood effects (Cain and Finnie 1990) may be even more important than solving the

distribution problem.

17 Also see Mueller (1981), who describes the apparent success of a relocation assistance
program in the 1970s in getting people to move to better job opportunities, even those who
expressly indicated they didn't want to move.

21



References

Amior, Michael, and Alan Manning. 2018. “The Persistence of Local Joblessness.” American
Economic Review 108 (7): 1942—70. https://doi.org/10.1257/aer.20160575.

Ananat, Elizabeth, Fu Shihe, and Stephen L. Ross. 2018. “Race-Specific Urban Wage Premia
and the Black-White Wage Gap.” Journal of Urban Economics 108 (November): 141—
53. https://doi.org/10.1016/j.jue.2018.11.002.

Antecol, Heather, and Kelly Bedard. 2004. “The Racial Wage Gap.” Journal of Human
Resources 39 (2): 564.

Badger, Emily, and Quoctrung Bui. 2018. “How Connected Is Your Community to Everywhere
Else in America?”’ The New York Times, September 19, 2018, sec. The Upshot.
https://www.nytimes.com/interactive/2018/09/19/upshot/facebook-county-
friendships.html, https://www.nytimes.com/interactive/2018/09/19/upshot/facebook-
county-friendships.html.

Bailey, Michael, Rachel Cao, Theresa Kuchler, Johannes Stroebel, and Arlene Wong. 2018.
“Social Connectedness: Measurement, Determinants, and Effects.” Journal of Economic
Perspectives 32 (August): 259-80. https://doi.org/10.1257/jep.32.3.259.

Bartik, Timothy. 1991. Who Benefits from State and Local Economic Development Policies?
Kalamazoo, MI: W_.E. Upjohn Institute. https://research.upjohn.org/up press/77.

Biddle, Jeff E., and Daniel S. Hamermesh. 2013. “Wage Discrimination over the Business
Cycle.” IZA Journal of Labor Policy; Heidelberg 2 (1): 1-19.
http://dx.doi.org.ezproxy.gsu.edu/10.1186/2193-9004-2-7.

Black, Dan A., Seth G. Sanders, Evan J. Taylor, and Lowell J. Taylor. 2015. “The Impact of the
Great Migration on Mortality of African Americans: Evidence from the Deep South.”
American Economic Review 105 (2): 477-503. https://doi.org/10.1257/aer.20120642.

Blair, Peter, and Bobby Chung. 2017. “Occupational Licensing Reduces Racial and Gender
Wage Gaps: Evidence from the Survey of Income and Program Participation.” Working
Paper 2017-50. Human Capital and Economic Opportunity Working Group.
https://econpapers.repec.org/paper/hkawpaper/2017-50.htm.

Bolton, Roger. 1992. ““Place Prosperity vs People Prosperity’ Revisited: An Old Issue with a
New Angle.” Urban Studies 29 (2): 185-203.
https://doi.org/10.1080/00420989220080261.

Boustan, Leah Platt. 2015. “The Great Black Migration: Opportunity and Competition in
Northern Labor Markets.” Focus 32 (1): 24-27.

Bradbury, Katharine L. 2000. “Rising Tide in the Labor Market: To What Degree Do
Expansions Benefit the Disadvantaged?”” New England Economic Review, Boston, June,
3-33.

Brainard, Lael. 2017. “Speech by Governor Brainard on Why Persistent Employment Disparities
Matter for the Economy’s Health.” Board of Governors of the Federal Reserve System.
September 26, 2017.
https://www.federalreserve.gov/newsevents/speech/brainard20170926a.htm.

Cain, Glen G., and Ross E. Finnie. 1990. “The Black-White Difference in Youth Employment:
Evidence for Demand-Side Factors.” Journal of Labor Economics 8 (1): S364-95.

Cajner, Tomaz, Tyler Radler, David Ratner, and Ivan Vidangos. 2017. “Racial Gaps in Labor
Market Outcomes in the Last Four Decades and over the Business Cycle.” Working

22



Paper 2017-071. Finance and Economics Discussion Series. Washington, D.C.: Federal
Reserve Board.

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2008. “Bootstrap-Based
Improvements for Inference with Clustered Errors.” The Review of Economics and
Statistics 90 (3): 414-27. https://doi.org/10.1162/rest.90.3.414.

Chen, Yong, and Stuart S. Rosenthal. 2008. “Local Amenities and Life-Cycle Migration: Do
People Move for Jobs or Fun?”’ Journal of Urban Economics 64 (3): 519-37.
https://doi.org/10.1016/j.jue.2008.05.005.

Chetty, Raj, Nathaniel Hendren, Maggie R. Jones, and Sonya R. Porter. 2018. “Race and
Economic Opportunity in the United States: An Intergenerational Perspective.” Mimeo.
http://www.equality-of-opportunity.org/assets/documents/race paper.pdf.

Ciccone, Antonio, and Giovanni Peri. 2005. “Long-Run Substitutability Between More and Less
Educated Workers: Evidence from U.S. States, 1950-1990.” The Review of Economics
and Statistics 87 (4): 652—63. https://doi.org/10.1162/003465305775098233.

Clarke, Paul, Claire Crawford, Fiona Steele, and Anna Vignoles. 2010. “The Choice between
Fixed and Random Effects Models: Some Considerations for Educational Research.”
10/240. The Centre for Market and Public Organisation. Department of Economics,
University of Bristol, UK. https://ideas.repec.org/p/bri/cmpowp/10-240.html.

Clotfelter, Charles T. 1976. “Public Spending for Higher Education: An Empirical Test of Two
Hypotheses.” Public Finance = Finances Publiques 31 (2): 177-95.

Cooke, Thomas J. 2011. “It Is Not Just the Economy: Declining Migration and the Rise of

Secular Rootedness.” Population, Space and Place 17 (3): 193-203.

https://doi.org/10.1002/psp.670.

. 2013. “Internal Migration in Decline.” The Professional Geographer 65 (4): 664-75.

https://doi.org/10.1080/00330124.2012.724343.

Costa, Dora L., and Matthew E. Kahn. 2000. “Power Couples: Changes in the Locational Choice
of the College Educated, 1940-1990.” The Quarterly Journal of Economics 115 (4):
1287—-1315. https://doi.org/10.1162/003355300555079.

Couture, Victor, and Jessie Handbury. 2017. “Urban Revival in America, 2000 to 2010.”
Working Paper 24084. National Bureau of Economic Research.
https://doi.org/10.3386/w24084.

Davis, Steven J., and John Haltiwanger. 2014. “Labor Market Fluidity and Economic
Performance.” 20479. NBER Working Papers. National Bureau of Economic Research,
Inc. https://ideas.repec.org/p/nbr/nberwo/20479.html.

Devaraj, Srikant, Michael J. Hicks, Emily J. Wornell, and Dagney Faulk. 2017. “How
Vulnerable Are American Communities to Automation, Trade, & Urbanization?”
Muncie, IN: Rural Policy Research Institute, Center for State Policy, Ball State
University.

Dickerson, Niki T. 2007. “Black Employment, Segregation, and the Social Organization of
Metropolitan Labor Markets.” Economic Geography 83 (3): 283-307.
https://doi.org/10.1111/j.1944-8287.2007.tb00355 x.

Duncan, Otis Dudley, and Beverly Duncan. 1955. “A Methodological Analysis of Segregation
Indexes.” American Sociological Review 20 (2): 210-17.
https://doi.org/10.2307/2088328.

23



Edin, Per-Anders, Peter Fredriksson, and Olof Aslund. 2003. “Ethnic Enclaves and the
Economic Success of Immigrants—Evidence from a Natural Experiment.” The Quarterly
Journal of Economics 118 (1): 329-57. https://doi.org/10.1162/00335530360535225.

El Badaoui, Eliane, Eric Strobl, and Frank Walsh. 2017. “Impact of Internal Migration on Labor
Market Outcomes of Native Males in Thailand.” Economic Development and Cultural
Change 66 (1): 147-77. https://doi.org/10.1086/694096.

Elliott, James R. 2005. “Social Isolation and Labor Market Insulation:” The Sociological
Quarterly 40 (2): 199-216. https://doi.org/10.1111/j.1533-8525.1999.tb00545 .x.

Engemann, Kristie M., and Howard J. Wall. 2010. “The Effects of Recessions Across
Demographic Groups.” Federal Reserve Bank of St. Louis.

Fallick, Bruce, and Pawel Krolikowski. 2018. “Hysteresis in Employment among Disadvantaged
Workers.” Working Paper 2018-01. Cleveland, Ohio: Federal Reserve Bank of
Cleveland.
https://www.clevelandfed.org/newsroom%:20and%20events/publications/working%?20pa
pers/2018%20working%20papers/wp%201801%?20hysteresis%20in%20employment%20
among%?20disadvantaged%20workers.

Frey, William H., Kao-Lee Liaw, Richard Wright, and Michael J. White. 2005. “Migration
within the United States: Role of Race-Ethnicity [with Comments].” Brookings-Wharton
Papers on Urban Affairs, 207-62.

Goyette, Kimberly A. 2008. “College for Some to College for All: Social Background,
Occupational Expectations, and Educational Expectations over Time.” Social Science
Research 37 (2): 461-84. https://doi.org/10.1016/].ssresearch.2008.02.002.

Greenwood, Michael J. 1975. “Research on Internal Migration in the United States: A Survey.”
Journal of Economic Literature 13 (2): 397-433.

Hall, Robert E., and Sam Schulhofer-Wohl. 2018. “Measuring Job-Finding Rates and Matching
Efficiency with Heterogeneous Job-Seekers.” American Economic Journal:
Macroeconomics 10 (1): 1-32. https://doi.org/10.1257/mac.20170061.

Harrison, David, and Shayndi Raice. 2018. “How Bad Is the Labor Shortage? Cities Will Pay
You to Move There.” Wall Street Journal, April 30, 2018, sec. Economy.
https://www.wsj.com/articles/how-bad-is-the-labor-shortage-cities-will-pay-you-to-
move-there-1525102030.

Hellerstein, Judith K., David Neumark, and Melissa McInerney. 2008. “Spatial Mismatch or
Racial Mismatch?” Journal of Urban Economics 64 (2): 464-79.
https://doi.org/10.1016/j.jue.2008.04.003.

Hoover, Edgar M. 1941. “Interstate Redistribution of Population, 1850-1940.” The Journal of
Economic History 1 (2): 199-205.

Hotchkiss, Julie L., and Robert E. Moore. 2018. “Some Like It Hot: Assessing Longer-Term
Labor Market Benefits from a High-Pressure Economy.” Working Paper 2018—1. Federal
Reserve Bank of Atlanta Working Paper. Atlanta, GA.
https://www.frbatlanta.org:443/research/publications/wp/2018/01-assessing-longer-term-
labor-market-benefits-from-a-high-pressure-economy-2018-01-30.

Huttunen, Kristiina, Jarle Mgen, and Kjell G. Salvanes. 2017. “Job Loss and Regional Mobility.”
Journal of Labor Economics 36 (2): 479-509. https://doi.org/10.1086/694587.

Iceland, John, Daniel H. Weinberg, and Erika Steinmetz. 2002. “Racial and Ethnic Residential
Segregation in the United States: 1980-2000.” Washington, D.C.: U.S. Department of
Commerce. https://www.census.gov/prod/2002pubs/censr-3.pdf.

24



Ihlanfeldt, Keith R., and David L. Sjoquist. 1998. “The Spatial Mismatch Hypothesis: A Review
of Recent Studies and Their Implications for Welfare Reform.” Housing Policy Debate 9
(4): 849-92. https://doi.org/10.1080/10511482.1998.9521321.

Johnson, Janna E., and Morris M. Kleiner. 2017. “Is Occupational Licensing a Barrier to
Interstate Migration?” Working Paper 24107. National Bureau of Economic Research.
https://doi.org/10.3386/w24107.

Kain, John F. 1968. “Housing Segregation, Negro Employment, and Metropolitan
Decentralization.” The Quarterly Journal of Economics 82 (2): 175-97.
https://doi.org/10.2307/1885893.

Kaplan, Greg, and Sam Schulhofer-Wohl. 2017. “Understanding the Long-Run Decline in
Interstate Migration.” International Economic Review 58 (1): 57-94.
https://doi.org/10.1111/iere.12209.

Karmel, T., and M. Maclachlan. 2007. “Occupational Sex Segregation —Increasing or
Decreasing?*.” Economic Record 64 (3): 187-95. https://doi.org/10.1111/j.1475-
4932.1988.tb02057.x.

Kosar, Gizem, Tyler Ransom, and H Wilbert van der Klaauw. 2019. “Understanding Migration
Aversion Using Elicited Counterfactual Choice Probabilities.” Working Paper Staff
Report No. 883. Staff Reports. New York, NY.

Kurekova, Lucia Mytna, Miroslav Beblavy, and Anna Thum-Thysen. 2015. “Using Online
Vacancies and Web Surveys to Analyse the Labour Market: A Methodological Inquiry.”
1ZA4 Journal of Labor Economics 4 (1): 18. https://doi.org/10.1186/s40172-015-0034-4.

Marinescu, loana, and Roland Rathelot. 2018. “Mismatch Unemployment and the Geography of
Job Search.” American Economic Journal: Macroeconomics 10 (3): 42-70.
https://doi.org/10.1257/mac.20160312.

Massey, Douglas S., and Nancy A. Denton. 1988. “The Dimensions of Residential Segregation.”
Social Forces 67 (2): 281-315. https://doi.org/10.2307/2579183.

Miller, Conrad. 2018. “When Work Moves: Job Suburbanization and Black Employment.”
Working Paper 24728. National Bureau of Economic Research.
https://doi.org/10.3386/w24728.

Molloy, Raven, Christopher L. Smith, and Abigail Wozniak. 2011. “Internal Migration in the
United States.” Journal of Economic Perspectives 25 (3): 173-96.
https://doi.org/10.1257/jep.25.3.173.

Montgomery, James D. 1991. “Social Networks and Labor-Market Outcomes: Toward an
Economic Analysis.” The American Economic Review 81 (5): 1408-18.

Mueller, Charles f. 1981. “Migration of the Unemployed: A Relocation Assistance Program.”
Monthly Labor Review, April, 62—64.

Niebuhr, Annekatrin, Nadia Granato, Anette Haas, and Silke Hamann. 2009. “Does Labour
Mobility Reduce Disparities between Regional Labour Markets in Germany?” Working
Paper 15/2009. IAB-Discussion Paper.
http://doku.iab.de/discussionpapers/2009/dp1509.pdf.

Partridge, Mark D., and Dan S. Rickman. 2007. “Persistent Pockets of Extreme American
Poverty and Job Growth: Is There a Place-Based Policy Role?” Journal of Agricultural
and Resource Economics 32 (1): 201-24.

Picard, Pierre M., and Yves Zenou. 2018. “Urban Spatial Structure, Employment and Social
Ties.” Journal of Urban Economics 104: 77-93.
https://doi.org/10.1016/j.jue.2018.01.004.

25



Shimer, Robert. 2007. “Mismatch.” American Economic Review 97 (4): 1074—1101.
https://doi.org/10.1257/aer.97.4.1074.

Silber, Jacques. 1992. “Occupational Segregation Indices in the Multidimensional Case: A
Note.” Economic Record 68 (202): 276-77. https://doi.org/10.1111/1.1475-
4932.1992.tb01773.x.

Sisson, Patrick. 2018. “How a ‘Reverse Great Migration’ Is Reshaping U.S. Cities.” Curbed. July
31, 2018. https://www.curbed.com/2018/7/31/17632092/black-chicago-neighborhood-
great-migration.

Spilimbergo, Antonio, and Luis Ubeda. 2004. “Family Attachment and the Decision to Move by
Race.” Journal of Urban Economics 55 (3): 478-97.
https://doi.org/10.1016/j.jue.2003.07.004.

Strathman, James G. 1994. “Migration, Benefit Spillovers and State Support of Higher
Education.” Urban Studies 31 (6): 913-20. https://doi.org/10.1080/00420989420080741.

Waldrip, Kyle Fee, Lisa Nelson, and Stuart Adnreason. 2015. “Identifying Opportunity
Occupations in the Nation’s Largest Metropolitan Economies.” Cleveland, Ohio: Federal
Reserve Bank of Cleveland. https://www.clevelandfed.org:443/newsroom and
events/publications/special reports/sr 20150909 identifying opportunity occupations.

Watts, Martin. 1998. “Occupational Gender Segregation: Index Measureiient and Econometric
Modeling.” Demography 35 (4): 489-96. https://doi.org/10.2307/3004016.

Wilson, Riley. 2018. “Moving to Jobs: The Role of Information in Migration Decisions.”
Working Paper. College Park, MD: Department of Econmics, Univeisty of Maryland.

Wilson, William Julius. 1990. The Truly Disadvantaged: The Inner City, the Underclass, and
Public Policy. Reprint edition. Chicago: University Of Chicago Press.

Winnick, Louis. 1966. “Place Prosperity vs People Prosperity: Welfare Considerations in the
Geographic Resitribution of Economic Activity.” In Essays in Urban Land Economics in
Honor of the Sixty-Fifth Birthday of Leo Grebler, 273-83. Los Angeles, CA: Real Estate
Research Program.

Xie, Yu, and Margaret Gough. 2011. “Ethnic Enclaves and the Earnings of Immigrants.”
Demography 48 (4): 1293—1315. https://doi.org/10.1007/s13524-011-0058-8.

Zabek, Mike. 2019. “Local Ties in Spatial Equilibrium.” Working Paper. Washington, D.C:
Board of Governors of the Federal Reserve System (U.S.).
https://mikezabek.com/pdf/LocalTies.pdf.

Zavodny, Madeline, and Tao Zha. 2000. “Monetary Policy and Racial Unemployment Rates.”
Federal Reserve Bank of Atlanta Economic Review 85 (4): 1-59.

26



Figure 1 CBSAs and CZs represented in the data.
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Figure 2 Maps of the distribution of high-school-only jobs by race across states.

Panel (a): Distribution of high school jobs held by black, non-Hispanics vs. the distribution of black, non-Hispanics with a high school degree.
Distribution of Jobs Requiring HS Degree Held by Black, NH Distribution of Black, non-Hispanics with High School Degree
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Panel (b): Distribution of high school jobs held by white, non-Hispanics vs. the distribution of white, non-Hispanics with a high school degree.
Distribution of Jobs Requiring HS Degree Held by White, NH Distribution of White, non-Hispanics with High School Degree
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Notes: The "required" education for a job is determined by the median education of people employed in that occupation. Data reflects the distribution
of jobs in 2018. Maps created using the Stata program maptile .
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Figure 3 Delta Index by race across education and time, total number of jobs across U.S. states, CBSAs, and CZs.
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Figure 4 Delta Index by education across race and time, total number of jobs across U.S. states, CBSAs, and CZs.
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Source: Authors calculations using the CPS monthly data January 1996 through November 2018. Education level less-than-high-school excluded for

illustrative purposes (available upon request).
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Table 1 Distribution of occupations across median education of those employed in the
occupation 1996-2018.

Median Education in Occupation Percent of Occupation
codes across years

Less than high school 0.65%

High school degree only 41.45%

Some college 32.83%

College degree and above 25.07%

Notes: Authors calculations using the CPS.

Table 2 Distribution of 25-54 year old men across race/ethnicity by educational attainment,
1996-2018 across US States.

Percent of Education Category
White, NH  Black, NH Hispanic

Less than HS 38 11 51
HS degree 68 15 18
Some College 74 14 13
College degree or more 84 8 8

Notes: Authors calculations using the CPS person weight. Row totals may not sum to 100 due to
rounding.
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Table 3 Marginal effect of a change in location job share A G) on share of population A ( ) in
the location, by race/ethnicity and educational attainment.
Fixed Effects Random Effects
Geographic area: CBSA CZone CBSA CZone
White, NH 0.5385%** = (0.7014*** | 0.5413%** | 0.7063***
[0.0225] [0.0283] [0.0222] | [0.0286]
High School 0.5287*** = 0.5946*** | 0.5351%** | 0.6049%**
[0.0299] [0.0436] [0.0305] | [0.0426]
Some College 0.4873%** = (0.6893*#* | (0.4923%** | (0.6911%**
[0.0356] [0.0397] [0.0344] | [0.0380]
College and Above | 0.6060*** = 0.8376*** | 0.6023*** | (0.8399%**
[0.0484] [0.0448] [0.0489] | [0.0445]
Black, NH 0.4425%**  (0.5362*%** | 0.4435%** | 0.5374%**
[0.0236] [0.0483] [0.0234] [0.0486]
High School 0.4521%** = 0.4752%%* | 0.4522%** | 0.4799%**
[0.0309] [0.0519] [0.0317] [0.0536]
Some College 0.3785%** = 0.5247*** | 0.3811%** | 0.5254%**
[0.0617] [0.0631] [0.0611] | [0.0621]
College and Above | 0.5012%** = 0.6192*** | 0.5016%** | 0.6165%**
[0.0626] [0.0601] [0.0624] [0.0600]
Hispanic 0.4519%**  0.6348*** | 0.4574%** | 0.6364***
[0.0243] [0.0506] [0.0237] [0.0487]
High School 0.5454%** = 0.7493*** | 0.5561*** | 0.7463%**
[0.0378] [0.0395] [0.0356] | [0.0353]
Some College 0.4369%**  0.6442*** | 0.4406%** | 0.6462%**
[0.0745] [0.1310] [0.0732] | [0.1267]
College and Above | 0.3584*** = 0.4926*** | 0.3597%** | 0.4991%**
[0.0572] [0.0609] [0.0567] [0.0624]
Observations 36,466 20,258 36,466 20,258
Number of FE 2,548 1,557 -- --
Clusters 307 188 307 188

Note: Robust standard errors are clustered at the level of geography. *, **, *** => statistical
significance at the 90, 95, and 99 percent level. Additional controls include the area's baseline
unemployment rate and industry shares. Sample includes 25-54 year-old men with at least a high
school degree and 1996-2018 years of data. Full estimation results are included in Appendix B.
Bolded numbers reflect statistically significant difference between racial/ethnical minority and
white, NH marginal effects.

32



Table 4 Marginal effect of a change in the job share among black, NH and Hispanics on share of population in CBSA, by own

race/ethnicity, at different points in the distribution of CBSA race/ethnicity population share; random effects specification.

Core Statistical Business Area Analysis

Own race population share in CBSA, percentile

25t Percentile

50" Percentile

75% Percentile

Commuting Zone Analysis

Own race population share in CZ, percentile

25t Percentile

50" Percentile

75% Percentile

M.E. for Blacks, NH 0.3977%** 0.4093 % 0.4324%% 0.4396%** 0.4630%** 0.5100%**
[0.0273] [0.0238] [0.0213] [0.0560] [0.0476] [0.0425]

High School 0.4439%** 0.4460%** 0.4503 %% 0.428 1 *** 0.4408%** 0.4663%**
[0.0423] [0.0366] [0.0287] [0.0564] [0.0494] [0.0459]

Some College 0.3216%** 0.3339%** 0.3584 %% 0.4896%** 0.4967*** 0.5108%**
[0.0759] [0.0644] [0.0544] [0.0907] [0.0774] [0.0622]

College or Above 0.4246%** 0.4464%** 0.4900%** 0.3971 %** 0.4508%** 0.5580%**
[0.0719] [0.0626] [0.0540] [0.0727] [0.0583] [0.0420]

M.E. for Hispanics 0.4505%** 0.4505%** 0.4506%** 0.6090%** 0.6123%** 0.6221 %%
[0.0258] [0.0250] [0.0233] [0.0473] [0.0456] [0.0431]

High School 0.6377%** 0.6272%** 0.5959% 0.7737%** 0.7710%** 0.7628%**
[0.0485] [0.0460] [0.0401] [0.0524] [0.0487] [0.0403]

Some College 0.2669%** 0.2851 *** 0.3397%% 0.4499 % 0.4688%** 0.5257%%
[0.0718] [0.0697] [0.0653] [0.1121] [0.1103] [0.1080]

College or Above 0.4310%** 0.4235%** 0.4010%** 0.5900%** 0.5833 % 0.5631%**
[0.0625] [0.0600] [0.0542] [0.0680] [0.0645] [0.0547]

Note: Robust standard errors are clustered at the geography level. There are 307 CBSAs and 188 CZs. *, **_ *** => gtatistical
significance at the 90, 95, and 99 percent level. Regression includes location specific unemployment rate and industry shares, and
location/education/race and year fixed effects. Sample includes 25-54 year-old men with at least a high school degree and 1996-2018
years of data. Full estimation results are found in Appendix C. Bolded numbers reflect statistically significant difference between the
75th and 25th percentile marginal effects.
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Appendix A: Analyses using the Year-to-year Unemployment to Employment Transitions
as Proxy for Job Opportunities

Rather than proxy for job opportunities across geography using the total number of
education/race specific total employment or number of jobs, this appendix presents results from
the Delta Index and regression analyses using the year-to-year unemployment-to-employment
(UR) transitions as the proxy for job opportunities.

A.1 The Delta Index Analysis

It might be argued that the total number of race/education specific jobs in an area does
not appropriately account for job opportunities -- that what is needed is a more dynamic measure.
While a measure of job vacancies by occupation (for any geography level) is not practical since
they would not be available by race, we can create a measure of transitions from unemployment
to employment (U-to-E). While total jobs reflects a point-in-time employment opportunity for an
area, U-to-E transitions could be argued to reflect greater labor market dynamism, thus changing
opportunity.

In this case, the Delta Index is calculated to compare the distribution of people of a
particular race and education level with the distribution of year-to-year transitions by workers of
the same race and education level (a similar analysis using monthly transitions produces similar

results):

r r
Nes tes

Ne TS

1
Dy =133, , (A1)

where,

ngs and N} are defined as above in equation (1);

tss = number of U-to-E transitions from one year to the next made by workers of racial group, 7,
with education level, e, in state, s; and

T] = total number of U-to-E transitions in the U.S. from one year to the next made by workers of
racial group, r, with education level, e.



Figure A1 reproduces Figure 3 from the text, comparing the degree of mismatch between
race/education job opportunities (measured by the share of U-to-E transitions in the location) and
race/education specific population. If anything, Figure A1 presents even more compelling
evidence of greater mismatch, at all education levels, among racial/ethnic minorities than among
white, non-Hispanics.

[Figure A1l about here]

A.2 The Multivariate Regression Analysis

Equation (2) in the text is re-specified with changes in the share of year-to-year U-to-E

transitions as the measure of local labor market opportunities:
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where,
A (;—E) = change in the share of all people of racial group, r, with education, e, in geography,
e g't

g, from t-1 to t;

r
A (%) = change in the share of all U-to-E transitions from one year to the next made by
e g't

workers of racial group, r, with education level, e, in geography, g, from ¢-/ to ¢;

RACE, ; = set of 0,1 regressors indicating black, non-Hispanic or Hispanic race/ethnicity;

EDUC, ; = set of 0,1 regressors indicating some college or college plus education groups;
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Xgc—1 = geography specific additional regressors at time #-/ , including the unemployment rate
and industry shares, which are expected to capture both baseline job opportunities and
unemployment risk in the geographic location;

T¢, 04, and g4, . time, geography, and geography/race/education fixed effects respectively.
&g.e,r¢ are robust standard errors, clustered at the geography level (each CBSA and CZ are
observed multiple times across years). The geography/race/education fixed effect is expected to
control for time-invariant group effects. For example, at the geographic level this would account
for differences in amenities; and at the race/education level, the fixed effect would account for
underlying race/education specific differences in migration patterns. The unit of observation is
race/education/geography/year and the analysis is performed for both CBSA and CZ geography
levels. The analysis excludes less than high school. Note that the definition of commuting zones
depends on knowing a person's county, which is often missing; so there will be more
observations in the CBSA analysis than in the CZ analysis. Table A1l reports the marginal effects

from this estimation that are analogous to those reported in Table X in the text.



Figure A1 Delta Index by education across race and time, total number of year-to-year UE transitions across U.S. states, CBSAs, and CZs.
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Source: Authors calculations using the CPS monthly data January 1996 through November 2018. Education level less-than-high-school excluded for
illustrative purposes (available upon request). Comparable to Figure 3 in text.
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Table A1 Marginal effects of a change in location U-to-E 12 month transitions share A (;1—2) on

12

share of population A (%) in the location, by race/ethnicity and educational attainment;
comparable to Table 3 in text.

Fixed Effects Random Effects
Geographic area: CBSA CZone CBSA CZone
White, NH 0.0110%* 0.0287** 0.0101 0.0282**
[0.0063] [0.0113] [0.0066] [0.0114]
High School 0.0094 0.0358** 0.0095 0.0350**
[0.0087] [0.0145] [0.0087] [0.0145]
Some College 0.0077 0.0235 0.0054 0.0234

[0.0098]  [0.0181] = [0.0101] [0.0183]
College and Above ~ 0.0209%*  0.0214  0.0199%**  0.0207
[0.0091]  [0.0176] = [0.0094]  [0.0174]

Black, NH 0.0119 | 0.0411%*  0.0126  0.0404%*
[0.0179]  [0.0194] = [0.0172] [0.0186]

High School 0.0175 0.0201 0.0176  0.0192
[0.0250]  [0.0274] = [0.0242] = [0.0265]
Some College 0.0621%**  0.0777**  0.0625%** (0.0785%*

[0.0235]  [0.0358]  [0.0225]  [0.0347]
College and Above =~ -0.0900*  0.0258  -0.0874*  0.0229
[0.0512]  [0.0327]  [0.0507]  [0.0291]

Hispanic 0.005 0.0409* 0.007 0.0416*
[0.0192] [0.0219] [0.0196] [0.0222]
High School 0.0456*  0.0745%**  0.0465*  0.0748***
[0.0241] [0.0288] [0.0255] [0.0290]
Some College -0.0179 0.0373 -0.0166 0.0366
[0.0178] [0.0249] [0.0176] [0.0262]
College and Above = -0.0560* -0.0311 -0.05 -0.0269
[0.0332] [0.0497] [0.0317] [0.0468]
Observations 12,769 7,259 12,769 7,259
Number of FE 1,430 887 -
Clusters 300 180 300 180

Note: Robust standard errors are clustered at the level of geography. *, **, *** => statistical
significance at the 90, 95, and 99 percent level. Additional controls include the area's baseline
unemployment rate and industry shares. Sample includes 25-54 year-old men with at least a high
school degree and 1996-2018 years of data. Full estimation results available upon request.
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Table A2 Marginal effects of a change in the 12 month U-to-E transition shares share among black, NH and Hispanics on share of
population in CBSA, by own race/ethnicity, at different points in the distribution of CBSA race/ethnicity population share;
comparable to Table 4 in text; random effects specification.

Core Statistical Business Area Analysis Commuting Zone Analysis
Own race population share in CBSA, percentile Own race population share in CZ, percentile
25% Percentile 50" Percentile 75" Percentile 25" Percentile 50" Percentile 75" Percentile
M.E. for Blacks, NH 0.0345%** 0.0276* 0.0164 0.0245 0.0287 0.0353*
[0.0174] [0.0161] [0.0154] [0.0225] [0.0202] [0.0185]
High School 0.0124 0.0139 0.0164 0.0105 0.0122 0.0148
[0.0245] [0.0238] [0.0245] [0.0271] [0.0249] [0.0271]
Some College 0.0642** 0.0632%*** 0.0615%** 0.0609 0.0656 0.0731%**
[0.0284] [0.0237] [0.0204] [0.0466] [0.0408] [0.0339]
College or Above 0.0368 -0.0019 -0.0637 -0.0084 0.0006 0.0149
[0.0481] [0.0429] [0.0402] [0.0501] [0.0406] [0.0288]
M.E. for Hispanics -0.0031 -0.0014 0.0033 0.0299 0.0318 0.0369
[0.0180] [0.0174] [0.0168] [0.0330] [0.0303] [0.0245]
High School 0.0541%** 0.0531%** 0.0505** 0.1126%*** 0.1071*** 0.0922%**
[0.0241] [0.0234] [0.0232] [0.0326] [0.0316] [0.0306]
Some College -0.0649%* -0.0578** -0.0383** -0.0099 -0.0031 0.0155
[0.0255] [0.0236] [0.0191] [0.0318] [0.0284] [0.0221]
College or Above -0.0355 -0.0366 -0.0398 -0.0931 -0.0828 -0.0547
[0.0479] [0.0432] [0.0315] [0.0876] [0.0789] [0.0583]

Note: Robust standard errors are clustered at the CBSA level. There are 300 CBSAs and 180 CZs. *, **, *** => gtatistical
significance at the 90, 95, and 99 percent level. Regression includes location specific unemployment rate and industry shares. Sample
includes 25-54 year-old men with at least a high school degree and 1996-2018 years of data. Full estimation results available upon
request.



Appendix B: Parameter Coefficient Estimates

Table B1 CBSA and CZ results; the dependent variable is the year-to-year change in share of

population A (%), change in job shares; produces marginal effects found in Table 3 in text.

Fixed Effects Model Random Effects Model
VARIABLES CBSA CZ CBSA CZ
Change in Job Share 0.5287122%**  (0.5945933***  (.5350788***  (0.6048553***
(0.0298654) (0.0435989) (0.0305429) (0.0425568)
Black, NH*Change in Job Share -0.0766009 -0.1194380* -0.0828759* -0.1249110*
(0.0470808) (0.0678887) (0.0489093) (0.0686627)
Hispanic*Change in Job Share 0.0166639 0.1547429%** 0.0210554 0.1414490%**
(0.0461388) (0.0483788) (0.0438643) (0.0470719)
Some College*Change in Job -0.0414618 0.0947121* -0.0428080 0.0861957*
Share
(0.0408362) (0.0490865) (0.0410810) (0.0462757)
College and Above*Change in 0.0773133 0.2430288*** 0.0672100 0.2350147***
Job Share
(0.0642135) (0.0595745) (0.0661214) (0.0548193)
Black, NH*Some -0.0321196 -0.0451438 -0.0282784 -0.0406967
College*Change in Job Share
(0.1020318) (0.0824273) (0.1038038) (0.0795491)
Black, NH*College and -0.0282018 -0.0990150 -0.0178222 -0.0984777
Above*Change in Job Share
(0.0741026) (0.0760369) (0.0761817) (0.0741026)
Hispanic*Some College*Change  -0.0670525 -0.1998531* -0.0727410 -0.1863007
in Job Share
(0.0998954) (0.1199783) (0.0971916) (0.1167910)
Hispanic*College and -0.2642612***  -0.4998072***  -0.2636434***  -0.4822609***
Above*Change in Job Share
(0.0997261) (0.0802517) (0.0967324) (0.0774568)
Lag Labor Market -0.0000055* -0.0000149* -0.0000055* -0.0000143*
Unemployment Rate
(0.0000030) (0.0000077) (0.0000029) (0.0000075)
Black, NH -0.0000018 -0.0000021
(0.0000098) (0.0000297)
Hispanic 0.0000001 -0.0000015
(0.0000099) (0.0000239)
Some College 0.0000000 -0.0000002
(0.0000063) (0.0000136)
College and Above 0.0000002 -0.0000001
(0.0000058) (0.0000143)
Black, NH *Some College 0.0000007 0.0000006
(0.0000137) (0.0000387)
Black, NH*College and Above -0.0000010 -0.0000010
(0.0000181) (0.0000420)
Hispanic*Some College 0.0000004 0.0000003
(0.0000161) (0.0000331)



Fixed Effects Model Random Effects Model

VARIABLES CBSA CZ CBSA CZ
Hispanic*College and Above -0.0000007 -0.0000050
(0.0000164) (0.0000456)
Constant 0.0005089 0.0007648 0.0002424 0.0009088
(0.0005673) (0.0012668) (0.0002639) (0.0006733)
Observations 36,466 20,258 36,466 20,258
Number of FE 2,548 1,557 -- --
(location/education/race)
R-squared Within 0.119 0.225 0.119 0.225
R-squared Between 0.213 0.604 0.294 0.665
R-squared Overall 0.123 0.235 0.124 0.236
Number of Clusters (location) 307 188 307 188

Note: Robust standard errors are clustered at the geography level. *, **, *** => statistical significance at the 90, 95,
and 99 percent level. Sample includes 25-54 year-old men with at least a high school degree and 1996-2018 years of
data. Additional controls include location specific industry shares and location and year fixed effects. A Hausman
test rejects equality between the random and fixed effects parameter estimates.



Appendix C: Regression specification including interactions with geographic location share
of population that is black/Hispanic.

This appendix describes an estimation specification that modifies equation (2) to take into
account the share of the minority population in the location where growing job opportunities are
observed. If social costs are important to the migration decision, we should observe that blacks
and Hispanics are more willing to respond to growing labor market opportunities, all else equal,

in locations with larger population shares of racial minorities. Equation (2) is modified as

follows:
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In this specification, the share of the population in location g that is black, non-Hispanic
or Hispanic enters the regression by itself, interacted with education, and also interacted with
changing job opportunities in location g. Increasing responsiveness to job market opportunities

in CBSAs with higher shares of same ethnic/racial population would suggest that social costs



could be constraining migration of ethnic/racial minorities. Marginal effects of changing
transition shares on changes in population shares at different points in the population
race/ethnicity share distribution are reported in the text and the full set of estimation results for

CBSA and CZ are found in Table CI1.



Table C1 Regression results of a change in the job share among black, NH and Hispanics on
share of population in CBSA or CZ, by own race/ethnicity, at different points in the distribution
of CBSA race/ethnicity population share; produces marginal effects found in Table 4 in text.

Fixed Effects Model Random Effects Model
VARIABLES CBSA CzZ CBSA CzZ
Change in Job Share 0.5702745%** 0.5730378*** | 0.5716771*** | (0.5796425%**
(0.0441143) (0.0689037) (0.0441869) (0.0682961)
Black, NH*Job Share -0.0797165* -0.1457091** -0.0863593* -0.1519108**
(0.0480016) (0.0658617) (0.0495292) (0.0660217)
Hispanic* Job Share 0.0665081 0.1721979%** 0.0702748 0.1597677***
(0.0506199) (0.0546388) (0.0488197) (0.0542337)
Some College*Job Share -0.1940400** 0.0086470 -0.1986700** 0.0008617
(0.0932127) (0.0802835) (0.0927215) (0.0750848)
College and Above* Job Share 0.0000184 0.1407651 -0.0050023 0.1302658
(0.1061299) (0.0882974) (0.1062269) (0.0817214)
Black, NH* Some College*Job -0.0582215 -0.0366205 -0.0531745 -0.0319100

Share

(0.1045215)

(0.1013348)

(0.1055290)

(0.0964371)

Black, NH* College and -0.0542851 -0.1824675** -0.0462704 -0.1840712%**
Above*Job Share

(0.0642551) (0.0799740) (0.0667605) (0.0788851)
Hispanic*Some College*Job -0.2286784** -0.3437541*** | -0.2299301** | -0.3299088***
Share

(0.0948787) (0.1242280) (0.0921663) (0.1213922)
Hispanic*College and Above* -0.2579609** -0.4419803*** | -0.2613230*** | -0.4291469***
Job Share

(0.0999115) (0.0887803) (0.0966721) (0.0864462)
Share Black, NH 0.000691 1*** 0.0015394** | 0.0006188*** 0.0008393*

(0.0002345) (0.0007392) (0.0001482) (0.0004692)
Share Hispanic 0.0004034* 0.0004857 0.0004119** | 0.0011592%**

(0.0002333) (0.0004957) (0.0001722) (0.0003217)
Some College*Share Black, NH 0.0002753 -0.0000832 0.0000835 0.0003444*

(0.0003991) (0.0010936) (0.0000638) (0.0001775)
College and Above*Share Black, -0.0003501 -0.0012568 0.0000466 0.0003462%*
NH

(0.0003347) (0.0008065) (0.0000778) (0.0002042)
Some College*Share Hispanic 0.0003792 0.0009933 0.0000639 0.0001167

(0.0003644) (0.0007468) (0.0000553) (0.0000968)
College and Above*Share -0.0003874 0.0014750 0.0000051 0.0000647
Hispanic

(0.0004495) (0.0009717) (0.0000515) (0.0001320)
Share Black, NH*Job Share 0.0397771 0.2914046 0.0538318 0.3177933

(0.2012858) (0.3445913) (0.2019270) (0.3442725)




Fixed Effects Model Random Effects Model
VARIABLES CBSA Cz CBSA Cz
Share Hispanic*Job Share -0.3711007*** -0.0882654 | -0.3486219*** |  -0.0906735
(0.1260029) (0.1811125) (0.1259080) (0.1800467)
Some College*Share Black, 0.2285387 -0.1362921 0.2528126 -0.1413754
NH*Job Share
(0.6009583) (0.4174068) (0.5959777) (0.4151834)
Coll. and Above*Share Black, 0.5001639 1.0160302%** 0.4912839 1.02299071 ***
NH*Job Share
(0.4882297) (0.3427094) (0.4823522) (0.3325065)
Some College*Share 0.9752856*** 0.7197866*** | 0.9553087*** | 0.7225444%**
Hispanic*Job Share
(0.2496332) (0.2228377) (0.2480213) (0.2250504)
College and Above*Share 0.1106998 -0.1507177 0.0988788 -0.1333251
Hispanic*Job Share
(0.2063511) (0.1851945) (0.2067154) (0.1821998)
Lag local Unemployment Rate -0.0000064** -0.0000174** | -0.0000065** | -0.0000167**
(0.0000030) (0.0000077) (0.0000029) (0.0000075)
Black, NH -0.0000021 -0.0000021
(0.0000096) (0.0000299)
Hispanic -0.0000003 -0.0000048
(0.0000102) (0.0000236)
Some College -0.0000138 -0.0000473
(0.0000122) (0.0000307)
College and Above -0.0000046 -0.0000445
(0.0000112) (0.0000300)
Black, NH* Some College -0.0000040 -0.0000058
(0.0000126) (0.0000371)
Black, NH* College and Above -0.0000054 -0.0000200
(0.0000181) (0.0000404)
Hispanic*Some College -0.0000013 0.0000048
(0.0000153) (0.0000327)
Hispanic*College and Above -0.0000020 -0.0000027
(0.0000164) (0.0000406)
Constant 0.0002850 0.0004108 0.0001111 0.0009007
(0.0005595) (0.0011162) (0.0002555) (0.0006520)
Observations 36,466 20,258 36,466 20,258
Number of FE 2,548 1,557 - --
R-squared Within 0.123 0.233 0.123 0.233
R-squared Between 0.103 0.446 0.298 0.667
R-squared Overall 0.122 0.237 0.128 0.244
Number of Clusters 307 188 307 188




Note: Robust standard errors are clustered at the CBSA or CZ level. *, **, *** => statistical significance
at the 90, 95, and 99 percent level. Additional controls include location specific industry shares and location and
year fixed effects. Sample includes 25-54 year-old men with at least a high school degree and 1996-2018
years of data. A Hausman test rejects equality between the random and fixed effects parameter estimates.



Appendix D: Synthesizing CBSA Codes Across Time

In 2003, OMB changed classifications of metropolitans from “Metropolitan Statistical
Areas” (MSAs) to “Core Based Statistical Areas” (CBSAs).! MSAs had four digit codes and
CBSAs have 5 digit codes. For many MSAs, a CBSA code is directly comparable. However,
there are several problems with CBSA code consistency post 2003.

Here we document problems encountered in trying to create a crosswalk between MSA
and CBSA codes contained in the Current Population Survey (CPS) across time and the solutions
employed. Much of the difficulty arises from the fact that post 2003, CBSAs also include
mircopolitan areas that were never part of MSAs.

For all but a small number of CBSAs, a one-to-one match was possible based on the
names of the CBSA and MSA .2 The locations for which a direct name match was not possible
are detailed in Section D.1. Additionally, there were a handful of occurrences where other
geographic codes were incorrectly recorded as CBSA codes. This problem and its solutions are
detailed Section D.2. Lastly, there were four CBSAs that simply changed codes over time. The
solution to this problem is detailed in Section D.3.

Another source for consistent classifications for metropolitans is [PUMS:CPS
(https://cps.ipums.org/cps/index.shtml). However, they convert CBSA codes to MSA codes.
Since CBSA codes more often than not encompass a larger geographic area than an MSA code,

we choose to convert MSA codes prior to 2003 to their more recent CBSA counterpart.

' See “2010 Census Summary File-Technical Documentation, Revised 2012,” p. 619,
https://www.census.gov/prod/cen2010/doc/sf1.pdf

2 Sources used for matching on names and counties:
https://www.census.gov/population/estimates/metro-city/03 12msa.txt
https://www.census.gov/population/estimates/metro-city/99mfips.txt
http://www.nber.org/data/cbsa-msa-fips-ssa-county-crosswalk.html
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The final MSA to CBSA crosswalk was verified by summing up the population in the

synthesized CBSAs to make sure there is a smooth transition across the introduction of CBSAs.

D.1 Problem: MSAs and CBSAs cannot be matched by name only

Solution: Smaller areas previously known as MSAs are combined into larger CBSAs

CBSA Name CBSA Code
(names of MSAs combined are listed below the CBSA name) (MSA Code below)
New York-Northern New Jersey-Long Island, NY-NJ-PA 35620
Middlesex-Somerset-Hunterdon, NJ 5015
Monmouth-Ocean, NJ 5190
Newark, NJ 5640
Bergen-Passaic, NJ 875
Jersey City, NY 3640
Nassau-Suffolk, NY 5380
New York, NY 5600
San Francisco-Oakland-Fremont, CA 41860
San Francisco-Oakland-San Jose, CA 5775
San Francisco, CA 7360
Los Angeles-Long Beach-Santa Ana 31100
Los Angeles-Long Beach, CA 4480
Orange County, CA 5945
Boston-Cambridge-Quincy, MA-NH 14460
Boston, MA-NH 1120
Lowell, MA-NH 4560
Lawrence, MA-NH 4160
Brockton, MA 1200
Portsmouth-Rochester, NH-ME? 6450
Worcester, MA 49340
Worcester, MA-CTP 9240
Fitchburg-Leominster, MA 2600
Seattle-Tacoma-Bellevue, WA 42660
Seattle-Bellevue-Everett, WA 7600
Tacoma, WA 8200
Miami-Fort Lauderdale-Miami Beach, FL 33100
Miami, FL 5000
Fort Lauderdale, FL. 2680
West Palm Beach-Boca Raton, FL 8960
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 37980
Philadelphia, PA-NJ 6160
Wilmington-Newark, DE-MD 9160
Poughkeepsie-Newburgh-Middletown, NY 39100
Dutchess County, NY 2281
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CBSA Name CBSA Code
(names of MSAs combined are listed below the CBSA name) (MSA Code below)
Newburgh, NY-PA® 5660
Houston-Baytown-Sugar Land, TX 26420
Houston, TX 3360
Galveston-Texas City, TX 2920
Brazoria, TX 1145
Bridgeport-Stamford-Norwalk, CT 14860
Danbury, CT 1930
Bridgeport, CT 1160
Stamford-Norwalk, CT 8040
Dallas-Fort Worth-Arlington, TX 19100
Dallas, TX 1920
Fort Worth-Arlington, TX 2800
New Haven-Milford, CT 35300
New Haven-Meriden, CT 5480
Waterbury, CT 8880
Chicago-Naperville-Joliet, IL-IN-WI 16980
Chicago, IL 1600
Gary, IN 2960
Sacramento--Arden-Arcade--Roseville, CA 40900
Sacramento, CA 6920
Yolo, CA 9270
Cincinnati-Middletown, OH-KY-IN 17140
Cincinnati, OH-KY-IN 1640
Hamilton-Middletown, OH 3200
Manchester-Nashua, NH 31700
Manchester, NH 4760
Nashua, NH 5350
Providence-New Bedford-Fall River, RI-MA 39300
Providence-Fall River-Warwick, RI-MA 6480
New Bedford, MA 5400

2 NH residents only; ME residents from this MSA are assigned to a different CBSA.
® MA residents only; CT residents from this MSA are assigned to a different CBSA.
¢ NY residents only; PA residents from this MSA are assigned to a different CBSA.

Sources of information:

Crosswalk between PMSA and MSA codes: ttps://www.census.gov/population/estimates/metro-

city/99mfips.txt
Crosswalk between CBSA and CBSA divisions:

https://www.census.gov/population/estimates/metro-city/03 12msa.txt




D.2 Problem: Incorrect CBSA Codes Reported

D.2.a New England City and Town Area (NECTA) codes were incorrectly reported as CBSA
codes for some observations in New England.

Solution: Match NECTA and CBSA names to assign correct CBSA code. All NECTA codes
all begin with a "7" and no CBSA codes begin with "7," so this error was easily identified.

Changes Made:
NECTA | NECTA Name | CBSA | CBSA Name Notes
70750 Bangor, ME 12620 | Bangor, ME
70900 Barnstable 12700 | Barnstable Town, ME
Town, ME
71650 Boston- 14460 | Boston-Cambridge-
Cambridge- Quincy, MA-NH
Quincy, MA-
NH
71950 Bridgeport- 14860 | Bridgeport-Stamford-
Stamford- Norwalk, CT
Norwalk, CT
72400 Burlington- 15540 | Burlington-South
South Burlington, CT
Burlington, CT
72850 Danbury, CT 14860 | Bridgeport-Stamford- | Danbury, CT is in Fairfield
Norwalk, CT County in CT which is in the
Bridgeport CBSA
73450 Hartford-West | 25540 | Hartford-West
Hartford-East Hartford-East
Hartford, CT Hartford, CT
74500 Leominster- 49340 | Worcester, MA-CT All observation are in
Fitchburg- Worcester County, MA which
Gardner, MA is in the CBSA
74950 Manchester, 31700 | Manchester-Nashua,
NH NH
75550 New Bedford 39300 | Providence-New
Bedford-Fall River,
RI-MA
75700 New Haven, CT | 35300 | New Haven-Milford,
CT
76450 Norwich-New 35980 | Norwich-New All observations are our
London, CT-RI London, CT sample are in CT
76750 Portland-South | 38860 | Portland-South

Portland, ME

Portland-Biddeford,
ME

D-4




NECTA | NECTA Name | CBSA | CBSA Name Notes

77200 Providence-Fall | 39300 | Providence-New
River-Warwick, Bedford-Fall River,
RI-MA RI-MA

77350 Rochester- 14460 | Boston-Cambridge- The observations we have are
Dover, NH-ME Quincy, MA-NH in NH

78100 Springfield, 44140 | Springfield, MA The observations we have are
MA-CT MA

78700 Waterbury, CT | 35300 | Waterbury, CT

79600 Worcester, 49340 | Worcester, MA-CT
MA-CT

Sources of information used for solving this problem included:

Division codes to CBSA: https://www.census.gov/population/estimates/metro-city/0312msa.txt
List of NECTA codes and names: https://www?2.census.gov/programs-
surveys/cps/methodology/Geographic%20Coding%20-
%20Metro%20Areas%20(since%20August%202005).pdf

Counties to MSA to CBSA crosswalk: http://www.nber.org/data/cbsa-msa-fips-ssa-county-
crosswalk.html

Larger list of NECTA codes and names: https://www.census.gov/population/estimates/metro-
city/03nfips.txt

D.2.b CBSA Division codes were incorrectly recorded as CBSA codes across multiple states.
Solution: CBSA Division codes are mapped to a unique, larger CBSA, so the CBSA Division

Codes are simply changed to the corresponding CBSA codes. This error is easily identified
since all CBSA Division codes end with a "4" and all CBSA codes end with a "0."

Changes Made
CBSA | State | CBSA Division Codes re-assigned
14460 | 25 14484 15764 21604
14460 | 33 40484
16980 |17 16974 29404

16980 | 18 23844
16980 | 55 29404

19100 | 48 19124 23104
19820 |26 19804 47644
31100 |6 31084 42044
33100 |12 22744 33124
35620 | 34 20764 35644 35084
35620 | 36 35004 35644

37980 |10 48864
37980 |24 48864
37980 |34 15804 48864
37980 |42 37964
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CBSA | State | CBSA Division Codes re-assigned

41860 |6 36084 41884
42660 | 53 42644 45104
47900 |11 47894
47900 |24 13644 47894
47900 |51 47894

Sources of Information: crosswalk between CBSA and CBSA divisions:
https://www.census.gov/population/estimates/metro-city/03 12msa.txt

D.2.c MSA codes were incorrectly recorded as CBSA codes in the years 2004 and 2005. These
are easily identified because MSA codes are 4 digits and CBSA codes are 5 digits.

Solution: Replace missing MSA FIPS code with the code listed incorrectly in the CBSA
code.

MSA Codes that were incorrectly labeled CBSA codes
MSA
0460
3000
3160
3720

D.3 Problem 3: Two CBSA's had codes that changed over time.

Solution: Identified the correct CBSA change in these sources:

Changes Made
CBSA | State | CBSA (old) re-
assigned
42060 |6 42200
22520 |1 22460
31100 |6 31080
26180 |15 46520
14060 |17 14010
42260 |12 35840

Sources of information:
https://www?2.census.gov/programs-surveys/cps/methodology/Geographic%20Coding%20-
%20Metro%20Areas%20(since%20August?%202005).pdf (for CBSA 22520) and
http://mecdc.missouri.edu/data/georef/Tools/cbsa_changes.lst (for CBSA 3110).
http://mecdc.missouri.edu/data/georef/Tools/cbsa_changes.Ist
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/cls_cbsa/cbsa_countyassoc.htm





