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1 Introduction

Search often involves two parties. Workers search for firms and firms search for workers.

Customers search for shops and shops search for customers. Entrepreneurs search for venture

capitalists and venture capitalists search for entrepreneurs.

Two-sided searches generate a strategic complementarity. If the probability of a match

depends on the search intensity exerted by the parties, an increase in the search effort by one

party might lead to a rise in the search effort by the other party. Conversely, a decrease in

the search effort by one party might lower the search effort by the other party. Under certain

conditions, this strategic complementarity begets multiple Nash equilibria: either both agents

search with high effort or both agents search with low effort—even when fundamentals such as

technology and preferences are the same.

Based on this intuition, we build a quantitative business cycle model, calibrating it to U.S.

data. Firms post job vacancies and fill them with workers from households in an otherwise

standard Diamond-Mortensen-Pissarides (DMP) frictional labor market. Once vacancies have

been filled, firms must match among themselves to produce output. This mechanism is a simple

way to capture the inter-firm linkages embedded in the network structure of a modern economy.

For example, a general contractor needs to find an electrician to finish a new house, and an

electrician must find a general contractor to transform her skills into output. When general

contractors search with high intensity for electricians and electricians search with high intensity

for general contractors, output is high and unemployment low. Otherwise, output is low and

unemployment high.

In our model, search and matching have strategic complementarities. Returns from estab-

lishing a joint venture between firms depend on fundamentals and on the search intensity of

potential partners. The latter dependence generates, for plausible parameter values, a passive

equilibrium (where firms search for partners with zero intensity) and an active equilibrium

(where firms search for partners with positive intensity). In this active equilibrium, firms post

more vacancies, output is higher, and unemployment lower than in the passive equilibrium.

In addition, households are subject to discount factor shocks, and firms experience productiv-

ity shocks. Since households own the firms in the economy, the discount factor shocks also affect

how firms discount the future. When the discount factor is high, households and firms search,
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ceteris paribus, more intensely because the continuation value from search is discounted less (a

similar reasoning holds for productivity shocks, which we ignore here for concision). Thus, the

passive equilibrium might disappear and only the active equilibrium survives. Conversely, when

households and firms discount the future sufficiently, just the passive equilibrium exists. For

intermediate values of the discount factor, both equilibria are possible. In this case, we will

assume that the economy stays in the same equilibrium as in the previous period: if yesterday

firms did not search, today firms still do not search; if yesterday firms searched with positive

intensity, today firms still search.

This history-dependent equilibrium selection amplifies and lengthens the effects of shocks. A

small drop in the discount factor when the economy is at an active equilibrium, but on the cusp

of the disappearance of such an equilibrium, pushes the economy to the passive equilibrium,

leading to a large decline in output and a big increase in unemployment. By comparison, when

the economy is farther away from the region where the active equilibrium disappears, the same

shock has only minor effects on output and unemployment. Thus, our economy features a strong

non-linearity and bimodal ergodic distributions of aggregate variables, where the mass around

each mode represents the economy living in one equilibrium or another.

Furthermore, once the economy is at the passive equilibrium, it remains there until a

sufficiently large discount factor shock terminates the equilibrium. In the meantime, even if the

active equilibrium reappears as a possibility, the economy is stuck in the passive equilibrium.

Thus, search complementarities transform transitory shocks into long-lived slumps. This

phenomenon might explain the aftermath of the Great Recession in the United States, where

output has remained below trend for ten years after the outset of the crisis and employment-to-

population ratios are still depressed. The economy moved in 2008 to an equilibrium with less

search, and it has not abandoned it even after the original negative shocks evaporated.

Quantitatively, if the model starts from the active equilibrium deterministic steady state,

a one-period adverse shock to the discount factor of 12% moves the system to the passive

equilibrium with low search intensity, increasing the unemployment rate by 3.2% and reducing

output by approximately 15%. This reduction in output is in the ballpark of the one observed for

the U.S. in the Great Recession if we measure it as a deviation with respect to trend (which we

ignore in our model for simplicity).1 Since Justiniano and Primiceri (2008) estimate a standard

1Between 2007.Q4 and 2014.Q4, output per capita fell 12.4% in the U.S. with respect to its post-war trend.
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deviation of the discount factor equal to 5% in the U.S. post-war period, a reduction of 12% in

the discount factor is approximately a two-and-a-half standard deviation fall in the discount

factor, a low probability but not a rare event. Smaller shocks to the discount factor fail to move

the system away from the original equilibrium and the properties of the system are similar to

those of standard business cycle models. By comparison, productivity shocks have much more

limited effects on equilibrium switches. Given the observed U.S. data, the empirically plausible

standard deviation of productivity shocks is too small to generate productivity realizations that

move the economy from one equilibrium to the other.

The model matches U.S. business cycle statistics, in particular along two moments that

have proven to be difficult to replicate in the past. First, the economy generates a strong

internal propagation of shocks, and the autocorrelation of the variables is larger and closer to the

observed data than in standard models without the need to assume highly persistent exogenous

shocks. In our model, instead, the persistence of variables comes from the switches between the

two equilibria. Second, our economy generates endogenous movements in labor productivity and

a more realistic volatility of unemployment than in standard business cycle models.

The data support the central mechanism in our model. Changes in the discount factor—

proxied by a broad range of indexes—are strongly correlated with the volume of intermediate

input and co-move tightly with output and unemployment. Observed movements in intermediate

inputs are strongly linked to changes in output at the industry level, and fluctuations in

intermediate input explain more than 70% of fluctuations in total industry gross output.

We also show how the volatility of shocks plays a crucial role in shaping aggregate fluctuations

in the presence of search complementarities. A reduction in macroeconomic volatility, such

as the Great Moderation, leads to increased persistence in labor market downturns.2 Since

large shocks are unlikely in the Great Moderation, once the economy is pushed into the passive

equilibrium due to one of these rare negative shocks, it takes a long time before a new large rare

positive shock arrives, allowing the economy to abandon the passive equilibrium. Under the

Great Moderation, recessions are rarer but their consequences more severe. Far from being an

anomaly, the last decade of disappointing macroeconomic performance is a direct consequence

of the Great Moderation, albeit an unwelcome one.

In comparison, unemployment increased, at its peak, from 4.4% to 10.0%, around 50% more than in our model.
2The reports of the death of the Great Moderation have been greatly exaggerated. See Liu et al. (2018) for

updated evidence.
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Finally, we investigate the role of fiscal policy in our model. In our example above, an

electrician can work for a general contractor or wire a new public school. If the government

increases its expenses (modeled as an increase in government-owned firms such as a new public

school), the search incentives for private firms increase, and the economy can switch from a

passive equilibrium to an active one. Thus, the fiscal multipliers can be large (as high as 3.5

when the fiscal stimulus is of just the right size to move the economy from the passive to the

active equilibrium) and highly-nonlinear. On the other hand, if search intensity is already high

(or the fiscal expansion too small in a passive equilibrium), the fiscal multiplier will be small (as

low as 0.15 when the economy is already in the active equilibrium).

There is a long tradition in macroeconomics of linking strategic complementarities to aggregate

fluctuations, going back to Diamond (1982), Weitzman (1982), and Diamond and Fudenberg

(1989) and explored by Cooper and John (1988) and Chatterjee et al. (1993). Recent examples

of that tradition include Huo and Ŕıos-Rull (2013) and Kaplan and Menzio (2016). Also, similar

ideas regarding the large potential effects of fiscal policy appear in the study of a “big push” à

la Murphy et al. (1989).

How does our paper add to the literature of strategic complementarities and aggregate

fluctuations? First, we embed strategic complementarities into an otherwise standard quantitative

general equilibrium business cycle model that matches the data with a conventional calibration

and improves upon the empirical performance of other business cycle models.3 Thus, our

experiments regarding the effects of shocks and fiscal policy provide useful quantitative guidance

for policymakers. Second, we do not rely on increasing returns to scale on production, trading,

or others. This approach is important, as increasing returns are difficult to identify in the data

and to distinguish from varying capacity utilization. Third, we provide evidence that supports

our particular choice of strategic complementarities in intra-firm matching and an empirically

plausible mechanism for equilibrium switches through variations in the discount factor of the

household. Fourth, we show the effects of volatility (and changes to it) on our economy, with

consequences for the length of equilibria spells and their changes over time.

3Other recent quantitative models are related to ours, but with a different mechanism, such as Taschereau-
Dumouchel and Schaal (2015) (who employ strategic complementarities in models with varying production
capacity utilization and monopolistic competition), Sterk (2016) (who deals with strategic complementarities
created by skill losses of unemployed workers), and Eeckhout and Lindenlaub (2018) (who highlight the strategic
complementarities between on-the-job search and vacancy posting by firms).
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2 A simple model with search complementarities

To build intuition, we present a simple model with search complementarities. This environment

embodies the mechanisms at work in our fully fledged model with greater transparency, but at

the cost of quantitative implications that are not designed to account for the data.

2.1 Environment

We start with a deterministic version of the model. The economy is composed of a continuum of

islands of unit measure where time is discrete and infinite. Two risk-neutral firms populate each

island. Both firms are owned by a representative household, whose only task is to consume the

aggregate net profits of all firms in the economy. At the start of the period, firms are in two

separate locations within the island, and they must meet to engage in production. If they do not

meet, each firm produces zero output. If they do meet, they jointly produce 2 units of output

that they split into equal parts. At the end of the period, the match is dissolved, and each firm

moves to a new, separate location to search in the next period ex novo. Since we will analyze

symmetric equilibria where all firms follow the same search intensity, we drop the island index.

Although realizations of the search will differ among islands, a law of large numbers will hold in

the aggregate economy and individual matching probabilities will equal the aggregate share of

islands where matches occur. Similarly, since there are no state variables carrying information

across periods, it is unnecessary to specify a discount factor, and, for the moment, we can drop

the time index of each variable.

The probability of meeting is given by a matching function that depends on the search

intensity of each firm within the island. Specifically, for a search intensity σ1 ∈ [0, 1] of firm 1

and a search intensity σ2 ∈ [0, 1] of firm 2, the matching probability function is:

π (σ1, σ2) =
1 + σ1 + σ2 + σ1σ2

4
. (1)

This function yields a matching probability of 1/4 when σ1 = σ2 = 0, a probability of 1 when

σ1 = σ2 = 1, and probabilities between 0 and 1 in the intermediate cases of search intensity.

6



For an α ∈ [0, 1), the cost of search intensity for firm i ∈ {1, 2} is:

c (σi) =
1 + α

4
σi +

σ3
i

3
. (2)

2.2 Nash equilibria

To find the set of Nash equilibria in our model, we look at the problem of firm 1 when it takes

the search intensity of firm 2, σ2, as given. The expected profit function of firm 1 is:

J (σ1, σ2) =
1 + σ1 + σ2 + σ1σ2

4
− 1 + α

4
σ1 −

σ3
i

3
.

Maximizing J (σ1, σ2) with respect to σ1 and noticing that the optimal solution is, for some

values of σ2, at a corner of zero optimal search intensity, we get the best response function Π (σ2)

for firm 1:

σ∗1 =

 0 ifσ2 ≤ α

1
2

√
σ2 − α ifσ2 > α.

(3)

Analogously, the best response function Π (σ1) for firm 2 is:

σ∗2 =

 0 ifσ1 ≤ α

1
2

√
σ1 − α ifσ1 > α.

(4)

These best response functions explain why we imposed the condition that α ∈ [0, 1). Values

of α < 0 imply that there is a unique Nash equilibrium and that such an equilibrium has positive

search intensity. Values of α ≥ 1 also yield a unique Nash equilibrium, but now with zero

search intensity. Only for α ∈ [0, 1) can we have multiple Nash equilibria caused by search

complementarities.

A (within period) pure Nash equilibrium is a tuple {σ∗1, σ∗2} that is a fixed point of the

product of both best response functions (3) and (4) (we ignore mixed strategies equilibria; see

Footnote 7). Clearly, for all α ∈ [0, 1), {σ∗1, σ∗2}= {0, 0} is a Nash equilibrium. We call this case

a passive equilibrium, where the matching probability is 1/4, aggregate output y is 1/2, and

consumption by the representative household c is 1/2.

Depending on the value of α, we might have one or two more equilibria in pure strategies
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with a positive search intensity of σ∗ = σ∗1 = σ∗2 > 0. The matching probability is now given by

1 + 2σ∗ + (σ∗)2

4
,

aggregate output y by
1 + 2σ∗ + (σ∗)2

2
,

and consumption c by
1 + 2σ∗ + (σ∗)2

2
− 1 + α

2
σ∗ − 2

3
(σ∗)3 .

To derive c, we subtracted the search costs of both firms from output. We call equilibria with

positive search intensity active.

Figure 1: Three cases of cost parameter α
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Figure 1 draws three cases: α = 0.05 (panel on the left), α = 0.063 (central panel), and

α = 0.07 (panel on the right). The dashed line plots the best response function of firm 1,

the solid line the best response function of firm 2, and the red circles each Nash equilibrium.

When α = 0.05, there are three Nash equilibria in pure strategies: σ∗ = σ∗1 = σ∗2 = 0,

σ∗ = σ∗1 = σ∗2 = 0.069, and σ∗ = σ∗1 = σ∗2 = 0.181. These equilibria are Pareto-ranked:

consumption (a welfare measure in our environment) is 0.5 in the first equilibrium, 0.535 in the

second equilibrium, and 0.598 in the third equilibrium. When α = 0.063, there are two Nash

equilibria in pure strategies: σ∗ = σ∗1 = σ∗2 = 0, and σ∗ = σ∗1 = σ∗2 = 0.126. Again, the equilibria

are Pareto-ranked, with consumption in the active equilibrium equal to 0.565. When α = 0.07,

the only Nash equilibrium in pure strategies is passive, σ∗ = σ∗1 = σ∗2 = 0.
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2.3 Stochastic shocks

To generate additional results beyond the multiplicity of equilibria, we introduce stochastic

shocks in the production function of matched firms. Instead of jointly producing 2 units of

output, as in the baseline case, we now assume that firms produce 2zt, where zt is a productivity

shock in period t (we now index variables by t, but because of symmetry, there is no need to

index them by the island). Productivity shocks will induce movements in the economy along

one Nash equilibrium and, sometimes, changes among the Nash equilibria firms play.

The new expected profit function of firm 1 is:

J (σ1,t, σ2,t, zt) = zt
1 + σ1,t + σ2,t + σ1,tσ2,t

4
− 1 + α

4
σ1,t −

σ3
1,t

3
.

Following the same reasoning as in the deterministic case, the best response function Π (σ2,t, zt)

for firm 1 is:

σ∗1,t =

 0 if zt (1 + σ2,t) ≤ (1 + α)

1
2

√
zt (1 + σ2,t)− (1 + α) if zt (1 + σ2,t) > (1 + α) ,

(5)

and the best response function Π (σ1,t, zt) for firm 2 is:

σ∗2,t =

 0 if zt (1 + σ1,t) ≤ (1 + α)

1
2

√
zt (1 + σ1,t)− (1 + α) if zt (1 + σ2,t) > (1 + α) .

(6)

When zt = 1, equations (5) and (6) collapse to equations (3) and (4).

A (with-in period) pure Nash equilibrium is a tuple
{
σ∗1,t, σ

∗
2,t

}
that is a fixed point of the

product of both of the best response functions (5) and (6). As before, we can have one, two, or

three Nash equilibria with matching probability given by

1 + 2σ∗t + (σ∗t )
2

4
,

aggregate output yt by

zt
1 + 2σ∗t + (σ∗t )

2

2
,
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and consumption ct by

zt
1 + 2σ∗t + (σ∗t )

2

2
− 1 + α

2
σ∗t −

2

3
(σ∗t )

3 .

To illustrate the behavior of our economy, we fix α = 0.063 and assume that zt follows a

Markov chain with support {0.93, 1, 1.07}. Since the values of the transition matrix for this

chain will not matter for the next few paragraphs, we momentarily differ its specification. We

pick the average value of zt to be 1 to make the stochastic model coincide, for that realization,

with the deterministic environment. The value of α = 0.063 ensures that, when zt = 1, there is

only one active Nash equilibrium. We pick the high realization of zt to be 1.07 to get zt > 1 + α.

When this condition holds, zero search intensity is not a Nash equilibrium. We pick the low

realization 0.93 for symmetry.

Figure 2: Changing productivity zt
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Figure 2 plots the best response functions under each realization of productivity. The left

panel shows in solid lines the best responses for zt = 1 (with crosses for the best response of firm

2). These are the same as those drawn in the central panel of Figure 1 and show two fixed points,

one with σ∗t = σ∗1,t = σ∗2,t = 0, and one with σ∗t = σ∗1,t = σ∗2,t = 0.126. Consumption in the first

equilibrium is 0.5 and 0.565 in the second equilibrium, even if productivity remains the same.

The dashed lines in the same panel are the best responses when zt = 1.07 (with crosses for the

best response of firm 2). Now we have a unique Nash equilibrium at σ∗t = σ∗1,t = σ∗2,t = 0.274 (the

green circle), with consumption at 0.709. The right panel plots in solid lines the best responses

for zt = 1, with the same explanation as above. The dashed lines now draw the best responses

for zt = 0.93, with a unique Nash equilibrium at σ∗t = σ∗1,t = σ∗2,t = 0 and consumption at 0.465.
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Figure 2 illustrates how consumption usually moves more than productivity. For example,

consumption increases 27% when the economy starts at the passive equilibrium and zt moves

from 1.0 to 1.07. This amplification mechanism comes from search complementarities: when firm

1 searches more because productivity is higher, firm 2 increases its search intensity in response

to the higher search intensity of firm 1 (and vice versa).

Indeed, in our model, the multiplier ∆ct/ct
∆zt/zt

of consumption to a productivity shock is state-

dependent: the same productivity shock leads to different changes in consumption depending

on the state of the economy. Table 1 documents this point by reporting the multiplier in six

relevant cases (and where subindexes denote the productivity level and type of equilibria). The

multiplier ranges from as low as 1 –when the economy moves from low productivity to mean

productivity, as search intensity is zero in both cases– to nearly 6 –when the economy moves

from mean productivity and zero search intensity to high productivity.

Table 1: Multiplier

Productivity shock ∆ct/ct
∆zt/zt

zlow → zmean,passive 1
zlow → zhigh 3.485

zmean,passive → zhigh 5.969
zmean,active → zhigh 3.627

zhigh → zlow 4.009
zhigh → zmean,active 3.095

Our last task is to specify a transition matrix Π for productivity shocks. We select a standard

business cycle parameterization with symmetry and medium persistence:

Π =


0.90 0.08 0.02

0.05 0.90 0.05

0.02 0.08 0.90

 .

When zt is high or low, the Nash equilibrium is unique. When zt = 1, there are two Nash

equilibria, and we select between them through history dependence following Cooper (1994).

More concretely, if the economy was in a passive equilibrium in the previous period, we stay

in such an equilibrium today. Conversely, if the economy was in an active equilibrium in the

previous period, firms continue searching with positive intensity today (Taschereau-Dumouchel
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and Schaal 2015 show that a global game produces, on average, the same equilibrium selection).

This history-dependent equilibrium selection has two implications. First, the effects of a

productivity shock persist longer than the shock. In particular, the economy cannot move

directly from zlow to zmean,active or from zhigh to zmean,passive (this explains why Table 1 does

not report these cases). Instead, to switch equilibria, the economy must transition through an

intermediate stage of high productivity (when we start from zt = 0.93) or low productivity (when

we start from zt = 1.07). Second, we do not generate fluctuations through sunspots. Changes

among Nash equilibria in our economy always derive from the movement in fundamentals.

Figure 3: Simulation of aggregate consumption
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Figure 3 shows a typical realization of consumption for 1,000 periods. Consumption takes

four different values: 0.465 (zt = 0.93), 0.5 (zt = 1.0, passive equilibrium), 0.565 (zt = 1.0, active

equilibrium), and 0.709 (zt = 1.07). Given Π, the stationary distribution of productivity is

(0.278, 0.444, 0.278). Since our simulations start from zt = 1.0 (and an active equilibrium), we

have a slightly higher level of mean realizations of productivity, with a count of (233, 490, 277).

Consumption is 0.465 in 233 periods and 0.552 in 277 periods. More interesting is the breakdown

of the 490 periods when zt = 1.0: 180 happen in a passive equilibrium and 310 in an active

equilibrium. Asymptotically, due to the symmetry of Π, the realizations of zmean will split evenly

between both levels of consumption.

The simple model has illustrated four points. First, search complementarities create multiple

Nash equilibria. Second, the interaction of search complementarities with stochastic shocks

amplifies the impact of the latter. Third, the effects of shocks are history-dependent: the
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multiplier of consumption to a productivity shock is a highly non-linear function of the state

of the economy. Fourth, history dependence enhances the persistence of aggregate variables

to shocks. We move now to show how these four key points appear as well in a fully fledged

quantitative business cycle model with search complementaries.

3 A search and matching model

We work with a search and matching model where time is discrete and infinite. The economy is

composed of households, firms in the intermediate-goods production sector (I), and firms in the

final-goods production sector (F ).

3.1 Households

There is a continuum of households of size 1. Households are risk neutral and discount the

future by βξt per period. This term is the product of a constant β < 1 and a preference shock

ξt. Innovations to ξt encapsulate movements in the stochastic discount factor, which Cochrane

(2011) and Hall (2016, 2017) highlight as a central source of aggregate fluctuations. Since

households own the firms in the economy, firms also employ βξt to discount future profits.

Households can either work one unit of time per period for a wage w or be unemployed and

receive h utils of home production and leisure. Households do not have preferences for working

–or searching for a job– in either sector i ∈ {I, F} of the economy. Households also receive the

aggregate profits of all firms, but since those are zero in equilibrium because of free entry, we

ignore them.

3.2 Labor matching

At the beginning of each period t, any willing new firm can post a vacancy in either sector at the

cost of χ per period to hire job-seeking households. Each firm posts a vacancy for one worker.

Vacancies and job seekers meet in a DMP frictional labor market.

More precisely, given ui,t unemployed households and vi,t posted vacancies in sector i, a

constant-return-to-scale matching technology m(ui,t, vi,t) determines the number of hires and

vacancies filled in period t. The new hires start working in period t+ 1. The job finding rate
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for unemployed households, µi,t = m(ui,t, vi,t)/ui,t = µ(θi,t), and the probability of filling a

vacancy, qi,t = m(ui,t, vi,t)/vi,t = q(θi,t), are functions of each sector’s labor market tightness

ratio θi,t = vi,t/ui,t. Then, µ′(θi,t) > 0 and q′(θi,t) < 0: in a tighter labor market, unemployed

households are more likely to find a job, and firms are less likely to fill vacancies.

At the end of each period t, already existing jobs terminate at a rate δ and unfilled vacancies

expire. Newly unemployed workers are equally split across sectors. To simplify the model,

households search for a job in one of the two sectors without being allowed to change sector

(given the symmetry of our model across sectors and our calibration below, workers do not mind

this restriction). Appealing to an appropriate law of large numbers, unemployment evolves as:

ut+1 = ut − [µI (θI,t) · uI,t + µF (θF,t) · uF,t]︸ ︷︷ ︸
Job creation

+ δ · (1− ut)︸ ︷︷ ︸
Job destruction

(7)

where ut = uI,t + uF,t. Equation (7) shows how unemployment is determined by changes in job

creation that depend on sectoral labor market tightness, θi,t. A slack (tight) labor market in

sector i decreases (increases) job creation and increases sectoral unemployment.

3.3 Inter-firm matching

Once job vacancies are filled, a final-goods firm must form a joint venture with an intermediate-

goods firm to manufacture together, starting in t+ 1, the final goods sold to households. This

final good is also the numeraire in the economy. If a firm fails to form a joint venture in period

t, it produces no output and continues searching for a partner in t+ 1. This simple matching

problem summarizes more sophisticated inter-firm network structures such as those in Jones

(2013) and Acemoglu et al. (2012).

A technology with variable search intensity governs inter-firm matching. Search intensity is

costly, but it reduces the expected duration of remaining a single firm unable to produce. At the

end of each period, a constant fraction of already existing joint ventures are destroyed because

either the job matches in the component firms terminate or the joint venture fails at a rate δ̃.4

In the former case, the firms dissolve. In the latter case, the firms revert to their status as single

4To simplify the algebra, we assume that, in a joint venture, the jobs in the intermediate-goods firm and the
final-goods firm terminate simultaneously with probability δ or survive simultaneously with probability 1− δ. In
single firms, the job destruction rate is also δ. Also, we assume that δ + δ̃ < 1.
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firms, but the jobs survive.

Figure 4: Timeline of firms’ evolution

Time t                                                                                                                                                                        Time t+1          

Prospective firm posts a 
vacancy

match succeeds

Creation of a joint venture: 
firm matches with a firm in 
the opposite sector

Separate and exit

Continue as a joint 
venture

Continuation as single firm 
in search for a partner

Separate and exit

Continue search for 
partner

match fails: 

vacancy expires

Single firm creation 

(Labor market matching) 

Joint venture creation 

(Inter-firm matching) 

The actions of these firms, summarized in Figure 4, require more explanation. In a joint

venture, the intermediate-goods firm uses its worker to produce yI,t = zt, where zt is the

stochastic productivity in the intermediate-goods sector. The final-goods firm takes this yI,t

and, employing its worker, transforms it one-to-one into the final good, yF,t = yI,t = zt.

Extending the search intensity model in Burdett and Mortensen (1980), we assume that the

number of inter-firm matches is M (ñF,t, ñI,t, ηF,t, ηI,t) = (φ+ ηF,tηI,t)H (ñF,t, ñI,t), where ñF,t

is the number of single firms in sector F with search intensity effort, ηF,t; ñI,t and ηI,t are the

analogous variables for the I sector. The parameter φ > 0 represents the efficiency in matching

unrelated with search efforts and it will help us to replicate the inter-firm matching probability

in the data. The function H (·) has constant returns to scale and it is strictly increasing in

both search intensities. We set up its units by choosing H (1, 1) = 1. Variable search intensity

generates strategic complementarities in the sense of Bulow et al. (1985) since the degree of

optimal search intensity by one firm will be (weakly) increasing in the number of firms searching

in the opposite sector and their search intensity.

Given the inter-firm market tightness ratio ñF/ñI , the probability that a sector I firm will

form a joint venture with a sector F firm is:

πI =
M (ñF , ñI , ηF , ηI)

ñI
= (φ+ ηFηI)H

(
ñF,t
ñI,t

, 1

)
, (8)
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and the probability that a sector F firm will form a joint venture with a sector I firm is:

πF =
M (ñF , ñI , ηF , ηI)

ñF
= (φ+ ηFηI)H

(
1,
ñI,t
ñF,t

)
. (9)

Search intensity in each sector is given by a fixed component, ψ > 0, and a variable,

effort-related component, σi,t ≥ 0:

ηi,t = ψ + σi,t. (10)

The fixed component ψ guarantees that the marginal return to searching does not become zero

when prospective partners search with zero intensity. In comparison, each firm optimally chooses

σi,t ≥ 0 (we will focus on symmetric equilibria where all firms within one sector make the same

choice) to trade off search cost and the profits from matching success.

The cost of searching at intensity σi,t is given by:

c (σi,t) = c0σi,t + c1

σ1+ν
i,t

1 + ν
, (11)

where c0 > 0 creates a linear cost tranche and {c1, ν} > 0 a convex cost tranche.5 The linear

cost implies that the net gain from searching can be negative, in which case the firm chooses

σi = 0. This assumption is critical. If c0 = 0, the benefit from an additional unit of search

intensity is always positive, and the firm chooses σi > 0 in all states of the economy. Instead,

c0 > 0 generates the non-convexity that triggers, as we will see, multiple equilibria.

In a symmetric equilibrium, the two sectors have the same number of single firms (ñF,t = ñI,t)

and search intensity (σF,t = σI,t). Thus, the inter-firm matching probability is:

πF,t = πI,t = φ+ ηF,tηI,t = φ+ (ψ + σF,t) (ψ + σI,t) . (12)

Note that ψ determines the impact of the search intensity in the opposite sector for the total

matching probability because of the product ηFηI in equation (12), while φ > 0 does not. This

will give us identification in our calibration in Section 5.6

5The cost function (2) in our simple model in Section 2 follows equation (11) when c0 = 1+α
4 , c1 = 1, and

ν = 2.
6The matching probability (1) in our model in Section 2 is nearly the same as the matching probability in

equation (12) when φ = 3
16 and ψ = 1

4 , except for a term 1
4 missing in front of σI,tσF,t, which we introduced in

the simple model to ensure that the matching probability was always between (0, 1).
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The number of joint ventures in period t+ 1 comprises firms that survive job separation and

joint venture destruction plus newly formed joint ventures:

nt+1 = (1− δ − δ̃)nt + (φ+ (ψ + σF,t) (ψ + σI,t))ñI,t. (13)

The number of single firms in period t+ 1 includes firms that survive job separation ((1− δ) ñi,t),

newly created single firms whose vacancies are filled by job-seekers (µi (θi,t) · ui,t), and firms

whose joint ventures exogenously terminate (δ̃ni,t), net of the number of single firms that form

joint ventures (πi,tñi,t):

ñi,t+1 = (1− δ) ñi,t + µi (θi,t) · ui,t + δ̃ni,t − πi,tñi,t. (14)

We will prove below that search complementarities beget multiple equilibria. As in Section 2,

one of these equilibria is passive, with zero search intensity (σI,t = σF,t = 0), low production, and

high unemployment. The other equilibria are active, with positive search intensity ((σI,t, σF,t) >

0), high production, and low unemployment. Also, as we assumed in Section 2, the selection of

equilibria is history dependent. Sufficiently large shocks to productivity or the discount factor

induce firms to adjust search intensity, and the economy shifts from one equilibrium to the other.

Otherwise, the economy stays in the same equilibrium as in the previous period.

Since we require notation to keep track of those equilibria, we specify an indicator function, ιt,

with value 0 if the equilibrium is passive and 1 if active. This indicator function is an endogenous

state variable taken as given by all agents.7

3.4 Values of households and firms

We can now define the Bellman equations that determine the value, for each sector i, of an

unemployed household (Ui,t), of an employed household in a single firm (W̃i,t) and in a joint

venture (Wi,t), of a filled job in a single firm (J̃i,t) and in a joint venture (Ji,t), and of a vacant job

(Vi,t). We index all of these value functions by ιt since they depend on the type of equilibrium

7There might exist a mixed-strategy Nash equilibrium in which firms search with positive intensity with a
certain probability. However, Appendix E shows the mixed-strategy is not robust: when one sector changes
the probability slightly due to a trembling hand perturbation, the opposite sector would immediately set the
probability to either zero or one. Therefore, we forget about these mixed-strategy Nash equilibria for the rest of
the paper.
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at t, which affects the future path of the equilibrium and the match value.

The value of an unemployed household in sector i and equilibrium ι is:

Ui,t|ιt = h+ βξtEt
[
µi,tW̃i,t+1 + (1− µi,t)Ui,t+1 | ιt

]
. (15)

In the current period, the unemployed household receives a payment h. The household finds a

job with probability µi,t and circulates into employment during the next period, or it fails to

find employment with probability 1− µi,t and remains unemployed.

The value of a household with a job in a single firm in sector i is:

W̃i,t|ιt = w̃i,t + βξtEt
{

(1− δ)
[
πi,tWi,t+1 + (1− πi,t) W̃i,t+1

]
+ δUi,t+1 | ιt

}
. (16)

The first term on the right-hand side (RHS) is the period wage w̃i,t (to be determined below by

Nash bargaining). In period t+ 1, the match that survives job destruction may either form a

joint venture with a firm in the opposite sector with probability πi,t, gaining the value Wi,t+1, or

otherwise remain a single firm with probability 1− πi,t, with value W̃i,t+1. With probability δ,

the job is destroyed, and the household transitions into unemployment.

The value of a household with a job in a joint venture in each sector i is:

Wi,t|ιt = wi,t + βξtEt
[
(1− δ − δ̃)Wi,t+1 + δ̃W̃i,t+1 + δUi,t+1 | ιt

]
. (17)

A worker in a joint venture receives the wage wi,t. In period t+1, the worker becomes unemployed

with probability δ, gaining the value Ui,t+1. With probability δ̃, the joint venture is terminated,

and the value becomes W̃i,t+1. Otherwise, the match continues, gaining the value Wi,t+1.

The value of a single firm in sector i is:

J̃i,t|ιt = max
σi,t≥0

{
−w̃i,t − c (σi,t) + β (1− δ) ξtEt

[
πi,tJi,t+1 + (1− πi,t) J̃i,t+1 | ιt

]}
. (18)

Equation (18) tells us that single firms have zero revenues until they form a joint venture with a

firm in the opposite sector. Despite zero production, the firm pays the wage (w̃i,t) and incurs

search costs c (σi,t), as described in equation (11). In period t+ 1, conditional on surviving job

destruction with probability 1− δ, the firm forms a joint venture with probability πi,t given by
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equation (12), gaining the flow value Ji,t+1. Otherwise, the firm remains single with flow value

J̃i,t+1. If the job is destroyed, the firm exits the market with zero value.

The value of a joint venture for a sector I firm is:

JI,t|ιt = ztpt − wI,t + βξtEt
[
(1− δ − δ̃)JI,t+1 + δ̃J̃I,t+1 | ιt

]
. (19)

This profit comprises revenues ztpt from selling intermediate goods to the final-goods firm, net

of the wage wI,t. Both pt and wI,t are determined by Nash bargaining. In period t + 1, with

probability δ̃, the firm is separated from its partner and becomes a single firm, gaining a value

of J̃I,t+1; with probability δ, the job match is destroyed, and the firm exits the market with zero

value. Otherwise the joint venture continues with flow value Ji,t+1.

The value of a joint venture for a sector F firm is:

JF,t|ιt = zt(1− pt)− wF,t + βξtEt
[
(1− δ − δ̃)JF,t+1 + δ̃J̃F,t+1 | ιt

]
. (20)

The profit for the joint venture in the final-goods sector comprises revenues from selling zt units

of final goods at a unitary price, net of the costs of purchasing intermediate goods (ztpt) and

paying the wage (wF,t). The rest of the equation follows the same interpretation as equation

(19).

The value of a vacant job in sector i is:

Vi,t|ιt = −χ+ βξtEt
[
q (θi,t) J̃i,t+1 + (1− q (θi,t)) max (0, VI,t+1, VF,t+1) | ιt

]
. (21)

Equation (21) shows that the value of a vacant job comprises the fixed cost of posting a vacancy

χ in period t. With probability q
(
θi,t|ιt

)
, the vacancy is filled, and a single firm with flow value

J̃i,t+1 is created. Otherwise, the vacancy remains open, generating the flow value of Vi,t+1. The

last term in the equation shows that firms that fail to recruit a worker may choose to be inactive

or post a vacancy in either sector in the next period t+ 1.

Due to the free-entry condition by firms, we have Vi,t = 0 and then:

χ = βξtEt
[
q (θi,t) J̃i,t+1 | ιt

]
, (22)
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a condition that pins down labor market tightness.

3.5 Wages and prices

We are ready now to define the Nash bargaining rules that determine wages and prices. During

each period t, wages are pinned down by Nash bargaining between firms in joint ventures and

workers:

max
wi,t

(Wi,t − Ui,t)1−τJτi,t (23)

and between single firms and workers:

max
w̃i,t

(W̃i,t − Ui,t)1−τ J̃τi,t, (24)

where the parameter τ ∈ [0, 1] is the firm’s bargaining power.

The price for goods manufactured in the intermediate-goods sector is determined by Nash

bargaining between the final-goods producer and the intermediate-goods producer within the

joint venture:

max
pt

(JF,t − J̃F,t)1−τ̃ (JI,t − J̃I,t)τ̃ , (25)

where the parameter τ̃ ∈ [0, 1] is the intermediate-goods producer’s bargaining power.

3.6 Stochastic processes and aggregate resource constraint

The preference shock, ξt, has a log-normal i.i.d. distribution, log (ξt) ∼ N
(
0, σ2

ξ

)
. This

preference shock is not persistent over time. In this way, we can show that the propagation

mechanism created by discount factor shocks in our model is wholly endogenous. Productivity

follows an AR(1) process in logs: log (zt+1) = ρz log (zt) + σzεz,t+1 where ρz ≤ 1.

We close the presentation of the model by pointing out that the total resources of the

economy, equal to ztnt (i.e., production per joint venture times the number of existing joint

ventures; h is in util terms and, thus, fails to appear here), are used for aggregate consumption

by households, ct, and to pay for vacancies and intra-firm search:

ct +
∑
i=I,F

χvi,t +
∑
i=I,F

ñi,t

(
c0σi,t + c1

σ1+ν
i,t

1 + ν

)
= ztnt. (26)
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4 Equilibrium

A recursive equilibrium of type ιt for our economy is a collection of Bellman equations Ui,t, W̃i,t,

Wi,t, J̃i,t, Ji,t, and Vi,t, a search intensity σi,t, and sequences for unemployment ut, single firms

ñi,t, joint ventures nt, the price of the intermediate good pt, and wages w̃i,t and wi,t, all for

i ∈ {I, F}, such that:

1. Ui,t, W̃i,t, Wi,t, J̃i,t, Ji,t, and Vi,t satisfy equations (15)-(21).

2. The free entry condition Vi,t = 0 holds.

3. σi,t maximizes the asset value of the single firm J̃i,t.

4. The sequences of unemployment ut, single firms ñi,t, and joint ventures nt follow the laws

of motion in equations (7), (14), and (13), respectively.

5. The intermediate-goods price pt and wage for single and joint ventures, w̃i,t and wi,t,

respectively, are determined by the Nash bargaining equations (23)-(25).

6. The type of equilibrium ιt is consistent with the value of search intensity σi,t.

7. ξt and zt follow their stochastic processes.

8. The aggregate resource constraint (26) is satisfied.

We can use this definition to characterize the optimal search strategy of firms and show the

existence of multiple equilibria.

4.1 Optimal search intensity

Following condition 3 above, the optimal search intensity σi,t maximizes the value of the single

firm, J̃i,t. We can express this value function as a response function to σj,t given an equilibrium

ιt:

Πi (σi,t | σj,t, ιt) = −w̃i,t − c (σi,t) + βξt (1− δ)Et
[
πi,t(Ji,t+1 − J̃i,t+1) + J̃i,t+1 | ιt

]
. (27)
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A single firm i chooses its search intensity σi,t to maximize Πi (σi,t | σj,t, ιt). The interior solution

σi,t > 0 satisfies:

c0 + c1σ
ν
i,t = β̃ (ψ + σj,t)︸ ︷︷ ︸

Search intensity in sector j

ξt︸︷︷︸
Preference shock

Et
(
Ji,t+1 − J̃i,t+1 | ιt

)
︸ ︷︷ ︸

Expected capital gain

(28)

where β̃ = β (1− δ) /τ (the wage Nash bargaining implies that the firm bears τ fraction of the

search cost). The left-hand side (LHS) of equation (28) is the marginal cost of exerting search

intensity to build a joint venture in sector i, while the RHS is the expected benefit of searching

for a partner, which increases with σj,t, and the expected capital gain from entering into a joint

venture, Et(Ji,t+1 − J̃i,t+1 | ιt) times the preference shock ξt. Because the optimization problem

is non-convex, we also have a corner solution σi,t = 0 when the RHS of equation (28) is less than

c0, either because the firms in the other sector do not search actively or because the discounted

expected gains from matching are small. The next proposition summarizes this argument.

Proposition 1. The optimal search intensity σi,t is equal to:

σi,t =


[
β̃(ψ+σj,t)ξtEt(Ji,t+1−J̃i,t+1|ιt)−c0

c1

] 1
ν

if β̃ (ψ + σj,t) ξtEt
(
Ji,t+1 − J̃i,t+1 | ιt

)
> c0

0 otherwise.

(29)

Proposition 1 establishes why search complementarities beget a multiplicity of equilibria

(this proposition follows directly from equation (28); the proofs of the other propositions and

lemmas in this subsection appear in Appendix C). The firm’s optimal search intensity in sector

i depends on the expected capital gain from forming a joint venture, which in turn depends on

the search intensity of the firms in sector j. Positive search intensity in one sector stimulates

search intensity in the other sector. Similarly, a termination of search in one sector lowers search

intensity and ultimately terminates search in the other sector. The parameter c0 determines

whether the firm searches with positive intensity while c1 controls search intensity. A high c1

increases the marginal cost of search and flattens the best response line. Shocks to ξt change

the incentive for searching. Sufficiently large shocks move the system between equilibria and

alternate business cycle phases with robust search intensity, a large number of joint ventures,

and low unemployment with phases marked by no search intensity, few joint ventures, and high
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unemployment.

Figure 5 illustrates Proposition 1 by plotting the optimal search intensity σF of a firm in the

final-goods sector as the best response to the search intensity of firms in the intermediate-goods

sector σI . The red circle shows the best response in the passive equilibrium when search intensity

in the intermediate-goods sector is zero. The solid line shows the best response in the active

equilibrium with positive search intensity. Here and in the rest of this section, we calibrate the

model using the parameter values described in Section 5.8

Figure 5: Best response function for firm in the final-goods sector
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Note: The figure shows the best response function in the final-goods sector conditional on the active
equilibrium (ι = 1, solid line) and on the passive equilibrium (ι = 0, circle marker).

Two lessons emerge from Figure 5. First, the active equilibrium with positive search intensity

involves complementarities in search intensity. The upward sloping optimal response curve

shows that the final-goods producing firm (weakly) increases its search intensity when the firm

in the intermediate-goods sector increases its own search intensity. Second, the optimal search

intensity for the final-goods firm remains equal to zero for values of σI below 0.05. In such a

region, the marginal cost of forming a joint venture is larger than the benefit of the joint venture

and, thus, final-goods producing firms choose σF = 0.

8Also, we use the expected capital gain in the stable and active deterministic steady state (DSS) when
computing the best response curve in the active equilibrium. Analogously, we use the expected capital gain in the
passive DSS when computing the best response in the passive equilibrium. We will follow the same assumptions
regarding the expected capital gain and parameter values in Figures 8 and 9 below.
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4.2 The deterministic steady states of the model

We study now the existence and stability properties of the deterministic steady states (DSSs) of

the model that appear when we shut down the shocks to the discount factor and productivity. The

model encompasses two types of DSSs: a passive DSS with zero search intensity (σI = σF = 0)

and active DSSs with positive search intensity (σI > 0, σF > 0). The level of economic activity

is different across DSSs.

Proposition 2. The level of output is strictly lower and the unemployment rate is strictly higher

in a passive DSS than in an active DSS.

Proposition 2 shows that the passive DSS is associated with weak economic activity compared

to an active DSS. Intuitively, zero search intensity in the passive DSS implies few joint ventures

and low production. A small probability of forming a joint venture reduces the value of a single

firm and generates a fall in posted vacancies and an increase in unemployment.

The next two propositions establish conditions for the existence of the different DSSs.

Proposition 3. The passive DSS exists if and only if

β̃ψ

2− 2β
[(

1− δ − δ̃
)
− (1− δ) (φ+ ψ2)

] < c0. (30)

Proposition 3 states that the passive DSS exists for any sufficiently large value of c0—that is,

when the benefit from an additional unit of search intensity is lower than the cost associated

with it. In such a case, optimal search intensity is zero (i.e., σI = σF = 0). The critical cost for

the existence of the passive DSS is c0. In comparison, c1 does not appear in Proposition 3.

Proposition 4. The active DSS exists if and only if there exists σ ∈
(
0,
√

1− φ− ψ
)

that solves

β̃ (ψ + σ)
1 +

(
c0σ + c1

σ1+ν

1+ν

)
2− 2β

[(
1− δ − δ̃

)
− (1− δ)

(
φ+ (σ + ψ)2)] = c0 + c1σ

ν . (31)

The LHS of equation (31) captures the marginal gain of searching with positive intensity

in the active equilibrium. The RHS reflects the marginal cost of searching. In the active DSS,

both quantities must be equal. Proposition 4 defines the parameter values that guarantee the
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existence of the active DSS. The restriction σ ∈
(
0,
√

1− φ− ψ
)

ensures that the matching

probability φ+ (ψ + σI)(ψ + σF ) is within (0,1).

Proposition 5. The active and passive DSSs coexist if and only if equations (30) and (31) hold

simultaneously.

Equations (30) and (31) can hold simultaneously, since they depend on different parameter

combinations. Intuitively, the passive DSS characterized by equation (30) is uniquely pinned

down when search intensity is zero and the stochastic shocks are fixed at their mean value. In

comparison, the system allows for multiple active DSSs, since equation (31) can hold for different

symmetric values of search intensity across the two sectors.

Using Figure 5, we determine the active DSS by the crossing between the best response

function and the 45-degree line that represents the intersection of the best response function in

the two sectors. When the best response function is strictly concave (i.e., ν > 1), the system

admits, at most, two DSSs (if ν < 1, we would only have one active and unstable equilibrium).

The argument is formalized in the lemma below.

Lemma 1. The system has a unique passive DSS and at most two active DSSs.

Figure 6 numerically illustrates, for a range of values of c0 (x-axes) and c1 (y-axes), the

conditions for the existence of a passive DSS, an active DSS, and the coexistence of DSSs

(the computation of the DSS is described in Appendix B). The yellow-shaded area shows the

combination of c0 and c1 values that guarantee the existence of such a DSS, while the blue area

shows the nonexistence region. Panel (a) shows that the passive DSS exists for values of c0

larger than 0.28, irrespective of c1. As stated in Proposition 3, a sufficiently large value of c0

leads firms to search with zero intensity. Panel (b) demonstrates that the active DSS exists

for sufficiently low values of c0. An increase in the value of c1 has two opposing effects on the

incentive to form a joint venture. On the one hand, it increases the cost of search intensity and,

on the other hand, it decreases the value of remaining a single firm, which raises the relative

value of forming a joint venture. On balance, the second effect dominates, and a large c1 expands

the range of values of c0 that satisfy Proposition 4. Panel (c) shows that two active DSSs exist

when c1 is sufficiently large. Panel (d) combines panel (a) and panel (b) to draw the values for

c0 and c1 that support the coexistence of passive and active DSSs. Lastly, panel (e) plots the

values of c0 and c1 that allow for the coexistence of a passive and two active DSSs.
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Figure 6: Existence of DSSs
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(b) At least one active DSS
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(c) Two active DSS
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(d) Coexistence of passive and at
least one active DSS
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(e) Coexistence of passive and two
active DSSs
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The next proposition establishes the stability of the DSSs. This stability guarantees that

a slight deviation of a subset of firms from their best response will fail to cause the system to

deviate from the initial DSS permanently.

Proposition 6. Suppose the active and passive DSSs coexist. The passive DSS is stable. When

two active DSSs coexist, one DSS is stable and the other DSS is unstable. When only one active

DSS exists, it is unstable.

For the remainder of the analysis, we mainly focus on stable DSSs. Also, we can study

the transition path from an arbitrary point in the state space of the system to the DSS. The

endogenous state variables of the system are the unemployment rates (uI,t, uF,t), the measure

of single firms (ñI,t, ñF,t), the measure of firms in joint ventures (nI,t, nF,t), and the current

equilibrium (ιt). Knowledge of ñi,t and ui,t gives us ni,t = 1− ñi,t − ui,t.

Figure 7 shows the transition path of the system to the DSS for different initial values of the

unemployment rate (x-axes) and the measure of single firms (y-axes). Since we consider the case

of a symmetric economy, the analysis is representative of the equilibrium in each sector. Panel

(a) shows the transition path to the DSS when the system starts from a passive equilibrium

(with each red dot representing a DSS of the system). Given the history dependence of the
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equilibrium selection, the system remains in the passive equilibrium and converges to the passive

DSS indicated by the higher red circle, where the unemployment rate is 8.7% and the measure

of single firms is 22%. Analogously, panel (b) shows the system converges to the active and

stable DSS, when it starts from an active equilibrium. In the active DSS (the lower red dot),

the unemployment rate is 5.5%, and the measure of single firms is 12%.

Figure 7: Transition path to the DSS

(a) Initial passive equilibrium
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(b) Initial active equilibrium
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4.3 Existence of two (stochastic) equilibria

Once we have characterized the DSSs of the model, we can reintroduce the shocks to the discount

factor and productivity. The following propositions characterize the conditions for the existence

of (stochastic) passive and active equilibria and their coexistence.

Proposition 7. The passive equilibrium exists if and only if

∂Πi (0|0, ιt = 0)

∂σi,t
≤ 0 for i = I, F (32)

or equivalently

c0 > β̃ψξtEt(Ji,t+1 − J̃i,t+1 | ιt = 0). (33)

Proposition 7 states that the passive equilibrium exists when the marginal benefit from

increasing search intensity is negative. Equation (33) highlights that the existence of the passive
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equilibrium requires either a low ξt or a small zt+1 (and, hence, a low Et(Ji,t+1 − J̃i,t+1 | ιt = 0)).

Proposition 8. The active equilibrium exists if and only if there exists a pair of positive search

efforts ({σI,tσF,t} > 0) that satisfies:

∂Πi (σi,t | σj,t, ιt = 1)

∂σI,t
= 0 for i = {I, F} (34)

or, equivalently,

c0 + c1σ
ν
i,t = β̃ (ψ + σj,t) ξtEt(Ji,t+1 − J̃i,t+1 | ιt = 1), (35)

with (σI,t, σF,t) > 0 and the second derivatives of Πi are negative.

Proposition 8 states that an active equilibrium exists when the optimal response of the firm

is to choose a positive search intensity that satisfies equation (35).

Proposition 9. The active and passive equilibria coexist if and only if Propositions 7 and 8

hold simultaneously.

Proposition 9 states the condition for the coexistence of the two equilibria. History dependence

selects between them.

4.4 Multiple equilibria, dynamics, and ξt

We can also investigate the role of ξt in creating a multiplicity of equilibria. Panel (a) in Figure

8 plots the optimal search intensity in each sector for ξt = 1. The solid and dashed lines show

the optimal response for the final-goods firm and the intermediate-goods firm, respectively, for

the active equilibrium (i.e., ι = 1). The circle and cross markers show the optimal response for

the final-goods firm and the intermediate-goods firm, respectively, in the passive equilibrium

(i.e., ι = 0). Panel (a) shows three crossings of the best response functions. Point A has zero

search intensity (i.e., σI = σF = 0). Point C shows a positive optimal level of search intensity

(i.e., σI = σF = 0.30). Furthermore, this optimal level of search intensity is stable. Point B also

entails positive search intensity (i.e., σI = σF = 0.06), but this choice is unstable. If one firm

increases its search intensity, the firm in the opposite sector also increases its search intensity

until the system reaches point C. Similarly, if a firm decreases its search intensity, the firm in

the other sector also decreases its search intensity until we arrive at point A.
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Figure 8: Coexistence of equilibria

(a) Two equilibria (ξt = 1)
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(b) Unique passive eq. (ξt = 0.85)
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(c) Unique active eq. (ξt = 1.10)
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Note: Each panel shows the best response function of the final-goods sector (solid line) and the
intermediate-goods sector (dashed line) for the active equilibrium and the best response for the passive
equilibrium for the final-goods sector (circle marker) and the intermediate-goods sector (cross marker).

We consider now the case when ξt = 0.85. Panel (b) in Figure 8 shows that point A

(σI = σF = 0) continues to exist. However, there is no other crossing of the best response

functions: a low ξt reduces the gain from forming a joint venture, and firms exert no search

intensity. Finally, when ξt = 1.10, panel (c) of Figure 8 shows that the system retains the

crossings at points B and C (with the same stability properties as when ξt = 1). Point A

disappears, since firms in both sectors optimally choose positive search intensity even when the

other firms do not search, as shown by the circle and cross markers around 0.05.

To illustrate the properties of the stochastic system and the transition dynamics between

equilibria, Figure 9 draws the phase diagram summarizing movements in search intensity as a

function of ξt (a similar figure could be drawn for changes in zt). The dashed line plots the

passive equilibrium path with low search intensity and the solid line the active equilibrium path

with high search intensity. The arrows indicate the direction of the transition dynamics for the

endogenous variable to reach the basins of attraction of the system, represented by point σp(1)

for the passive DSS and σa(1) for the active DSS. The shaded area indicates the range of values

of ξt that support multiple equilibria. The passive equilibrium fails to exist for sufficiently large

values of ξt and, conversely, the active equilibrium fails to exist for sufficiently small values of ξt.

In the absence of innovations to ξt, the system converges and remains on the original basins of

attraction in the passive equilibrium, σp(1), and the active equilibrium, σa(1), depending on the

starting equilibrium.

Temporary shifts to ξt, which are sufficiently strong to change search intensity, move the
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Figure 9: Phase diagram for search intensity
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system to a new equilibrium. For example, if the system starts in the passive equilibrium at

point A and a large and positive innovation to ξt moves the system to point B, the passive

equilibrium disappears, and the equilibrium of the system becomes active. The economy moves

to the new active equilibrium at point C, converging to the stationary basin of attraction σa(1) in

the long run. The system remains in the active equilibrium until a sufficiently large and negative

innovation to ξt returns the system to the passive equilibrium. For instance, a large negative

innovation to ξt, which moves the system from point C to point D, triggers the new passive

equilibrium at point E, converging to the stationary basin of attraction σp(1). In comparison,

innovations to ξt that move the equilibrium of the system within the shaded area, where both

equilibria coexist, fail to shift the equilibrium because of history dependence.

5 Calibration

We calibrate the model at a monthly frequency for U.S. data over the post-WWII period. Table

2 summarizes the value, and the source or target for each parameter.

The constant β in the discount factor is set to 0.996 (equivalent to 0.99 at a quarterly

frequency) to replicate an average annual interest rate of 5% over the sample period. We assume

a Cobb-Douglas matching function m(u, v) = u1−αvα in the labor market and calibrate the

elasticity of vacancies in the matching function α = 0.4, which is the average value estimated in
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Table 2: Parameter calibration

Parameter Value Source or Target

β 0.996 5% annual risk-free rate
α 0.4 Shimer (2005)
τ 0.4 Hosios condition
χ 0.28 0.45 monthly job-finding rate
κ 1.25 den Haan et al. (2000)
h 0.3 Thomas and Zanetti (2009)
τ̃ 0.5 Sectoral symmetry
δ 0.027 5.5% unemployment rate in active DSS

δ̃ 0.017 5 years duration of joint venture
φ 0.135 22% rate of idleness in recessions
ψ 0.114 Condition of Propositions 3 and 4 and 15% recession periods
c0 0.33 Condition of Propositions 3 and 4 and 15% recession periods
c1 5 12% rate of idleness in booms
ν 2 Ensure concavity of best response function
σξ 0.05 Justiniano and Primiceri (2008)

ρz 0.951/3 BLS
σz 0.008 BLS

the literature (see Petrongolo and Pissarides, 2001). We set the wage bargaining power equal to

τ = α = 0.4, which satisfies the Hosios (1990) condition for efficiency. The inter-firm matching

function is

H (ñF , ñI) =
ñF · ñI

(ñκF/2 + ñκI/2)1/κ
. (36)

We follow den Haan et al. (2000) and set κ = 1.25.

We pick the cost of posting a vacancy χ = 0.28 to match the monthly job-finding rate

in the active DSS, µ (θ) = 0.45, as in Shimer (2005). Conditional on χ = 0.28, we select a

job-separation rate δ = 0.027 to match an unemployment rate of 5.5% in the active DSS. The

flow value of unemployment h is set at 0.3, which consists of the value of leisure and home

production and the unemployment benefit, as in Thomas and Zanetti (2009). In this calibration,

the flow value of unemployment is about 61% of the average wage in the active DSS, which is in

the range of replacement rates documented by Hall and Milgrom (2008).

Compared to a standard DMP economy, our model includes seven new parameters: τ̃ , δ̃, φ,

ψ, c0, c1, and ν. The bargaining share of the intermediate-goods firm τ̃ is set to 0.5, to evenly

split between firms the total surplus from matching and make the workers indifferent between

working in either sector. The rate of termination of inter-firm matches δ̃ is 0.017 to target it

to the 5 years’ average duration of joint ventures. As shown in Figure 10, the median and the
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mean of the duration of inter-firm matches is around 5 years in the Compustat segment data,

which report the major trading partners for a subset of listed companies in the United States on

a yearly basis.

Figure 10: The distribution of the inter-firm trading relationship duration
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Once we set values for δ̃ and the labor market parameters, the convex component of the

search cost c1 and the constant component of inter-firm matching efficiency φ pin down the

measure of single firms in the active DSS and passive DSS, respectively. The ratio of the measure

of single firms to employment corresponds to the rate of idleness, indicating the share of time

when employed workers are idle due to a lack of activity (see Michaillat and Saez, 2015). The

Institute for Supply Management constructs the operating rates (one minus the rate of idleness)

in the United States. According to its measurements, the rate of idleness is about 30% for the

non-manufacturing sector and 20% for the manufacturing sector during the Great Recession,

and 12% for both sectors before this event. Thus, we set φ = 0.135 and c1 = 5 to yield a rate of

idleness equal to 0.22 and 0.12 in the passive DSS and the active DSS, respectively. Finally,

ν = 2 ensures the concavity of the best response function of search intensity.

There is no direct empirical guidance for the calibration of c0 and ψ. We calibrate them as

0.33 and 0.114, respectively, to satisfy the conditions for the coexistence of passive and active

DSSs in Proposition 5. Our calibration of c0 and c1 generates similar costs of hiring workers and

costs of searching for intermediate-goods firms. This finding is consistent with Michaillat and

Saez (2015), who establish that the number of workers whose occupation is buying, purchasing,

and procurement is about the same as the number of workers whose job relates to recruitment.
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Formally, our calibration implies that hiring costs and search costs are the same, i.e., the values

for c0 and c1 are such that χ · vi ≈ n∗i ·
(
c0σ + c1

σ1+ν

1+ν

)
in the DSSs.

We set σξ to 0.05.9 Such a value, given the rest of the calibration, generates a passive

equilibrium with 15% probability, consistent with the frequency of recessions in the post-WWII

United States. The persistence of the productivity shock, ρz, is set to 0.881/13 to match the

observed quarterly autocorrelation of 0.88, and the standard deviation, σz, is set to 0.0027 to

match the quarterly standard deviation of 0.02, as in Shimer (2005).

Once the model is calibrated, we compute the different value functions using value function

iteration and exploit the equilibrium conditions of the model to find all other endogenous

variables of interest. See Appendices A and D for technical details.

6 Quantitative analysis

In this section, we study the dynamic properties of the model by simulating it for 3,000,000

months and time-averaging the resulting variables to generate quarterly data. We start the

simulation from the active DSS, focusing on the case when only discount factor shocks are present.

Appendix F provides a quantitative analysis of properties of the model with productivity shocks.

We relegate that case to the appendix because we find that productivity shocks of plausible

magnitude are unable to move the system between different equilibria, unless those shocks to

technology are permanent.

Figure 11 reports the responses of key variables to shocks to ξt for the first 100 periods. The

economy begins at a positive search intensity with high output, low unemployment, and a high

job-finding rate. Then, in period 15, a sufficiently large shock to the discount factor pushes the

economy to the low search equilibrium until period 25, with a prolonged drop in output (as joint

ventures terminate faster than they are replaced), high unemployment, and a low job-finding

rate. In that period, a large positive discount factor shock shifts the economy back to the active

equilibrium with positive search intensity.

Figure 12 plots the ergodic distribution of selected variables implied by the entire simulation.

9Justiniano and Primiceri (2008, Table 1) find that the quarterly σεξ = 3.13%, with a persistence of 0.84.

This implies that σξ = 0.0313/
√

1− 0.842 = 0.0577. If we extrapolate the quarterly AR(1) process to a monthly
AR(1) process, the implied standard deviation is about 0.056. Since we ignore persistence, we lower σξ to 0.05,
to be on the conservative side.
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Figure 11: Simulated variables for the first 100 periods with shocks to ξt
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Endogenous switches between the two equilibria generate a distinctive bimodal distribution of

aggregate variables that bring significant differences between the two equilibria. As required

by our calibration, the figure implies that the economy spends about 85% of the time in

the active equilibrium and 15% in the passive equilibrium. In the active equilibrium, the

unemployment rate fluctuates around 5.5%. In the passive equilibrium with zero search intensity,

unemployment fluctuates around 8.7%. Similarly, the job-finding rate moves around 45% in the

active equilibrium and 27% in the passive equilibrium.

Panel (a) of Table 3 reports various second moments of observed business cycle statistics

following the same structure as in Shimer (2005, Table 1). Panel (b) reports second moments of

the benchmark model with two DSSs. Finally, Panel (c) reports second moments of a version

of the model without search complementarities and calibrated on the active equilibrium. Each

entry presents the autocorrelation coefficient, the standard deviation, and the correlation matrix

for the variables listed across the first row of the table.

Several lessons come from Table 3. First, our benchmark model generates a robust inter-

nal propagation: the autocorrelation coefficients of the aggregate variables are significantly

larger than in the model without complementarities and much closer to the observed ones.

Complementarities in search intensity amplify and prolong the effect of shocks.
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Figure 12: Ergodic distribution with i.i.d. shocks to ξt
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Second, our benchmark model generates large and empirically plausible standard deviations

for the selected variables that are substantially larger than those in the model without comple-

mentarities. This property of the model comes from the amplification of shocks created by the

shift between equilibria.

Third, the benchmark model produces endogenous movements in labor productivity (“lp”

in the table) that would be otherwise absent. Our benchmark model assumes that firms

manufacture goods after matching with a partner. Hence, measured labor productivity depends

on the fraction of the joint ventures over the total number of firms, ni,t/ (ñi,t + ni,t), which is

endogenously determined. In comparison, in a version of the model without joint ventures, labor

productivity is exogenous. Table 3 shows that business cycle statistics for labor productivity

generated by our benchmark model are close to those in the data.

Fourth, the benchmark model generates a correlation between unemployment and vacancies

(i.e., the Beveridge curve) equal to -0.71, which is close to the value of -0.92 in the data and

much larger than the correlation of -0.27 in the model without complementarities. The large

negative correlation between vacancies and unemployment is a direct consequence of strategic

complementarities in search intensity. For instance, in the active equilibrium with high search

efforts, there is robust vacancy posting and low unemployment, while the relationship is reversed
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Table 3: Second moments

u v v/u lp ξ

(a) Quarterly U.S. data, 1951-2016

Autocorrelation coefficient 0.95 0.95 0.95 0.90 −
Standard deviation 0.20 0.21 0.40 0.02 −

u 1 -0.92 -0.98 -0.25 −
Correlation matrix v 1 0.98 0.29 −

v/u 1 0.27 −
lp 1 −

(b) Benchmark model

Autocorrelation coefficient 0.82 0.55 0.71 0.88 0
Standard deviation 0.10 0.21 0.28 0.02 0.03

u 1 -0.71 -0.85 -0.94 -0.06
Correlation matrix v 1 0.97 0.54 0.39

v/u 1 0.72 0.30
lp 1 0.00
ξ 1

(c) Model without search complementarities

Autocorrelation coefficient 0.06 -0.27 -0.08 1 0
Standard deviation 0.02 0.04 0.05 0 0.03

u 1 -0.27 -0.56 0 -0.56
Correlation matrix v 1 0.95 0 0.95

v/u 1 0 1.00
lp 1 0
ξ 1

in the passive equilibrium. The switching between equilibria results in periods with a consistently

negative relationship between vacancies and unemployment that generates the downward sloping

Beveridge curve that is absent in the standard search and matching model.

In summary, introducing complementarities in the inter-firm search intensity magnifies the

effect of exogenous shocks on the system and enables the model to replicate important business

cycle statistics.

Finally, Figure 13 shows generalized impulse response functions (GIRF) of selected variables

to a 12% (solid line) and 10% (dashed line) shock to ξt, respectively (we are not dealing with a

linear model, thus the description of “generalized” is used). In period t = 1, the economy starts

from the active DSS. In period t = 2, an exogenous and one-period disturbance to the discount

factor hits the economy. When the contractionary shock to ξt is 10%, the firm’s search intensity

temporarily declines in response to the fall in the stream of benefits in forming a joint venture,
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Figure 13: GIRFs to a negative discount factor shock
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Note: Each panel shows the response of a variable to a negative discount factor shock (ξt) with
magnitudes of 0.10 (solid line) and 0.12 (dashed line).

generating a temporary fall in labor market tightness and a rise in the unemployment rate.

This shock is too small to move the system to the passive equilibria and the variables return

to the original DSS. However, when the fall in ξt is sufficiently large, search intensity across

firms ends, and the system moves to the equilibrium with zero search intensity, low output, and

high unemployment. Notice how the shock is only 2% larger (12% instead of 10%), and yet the

effects are quite different: search complementarities induce large non-linearities in the model.

7 Evidence on the theoretical mechanism

The central mechanism in our model builds on two legs: first, the cyclical role of intermediate

goods for changes in production and, second, the relevance of the discount factor for movements

in intermediate goods and other measures of real activity. We investigate, in turn, the empirical

foundation of each of these legs.

The Bureau of Economic Analysis (BEA) compiles a measure of gross output (O) equal to

the sum of an industry’s value added (V A) and intermediate inputs (II), i.e., O = V A + II.

BEA data are annual and comprise 402 industries for 69 commodities over the period 1997-2015.
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Figure 14 plots the cyclical component of gross output (blue line), intermediate inputs (red

line), and industry value added (yellow line) together with NBER-dated recession periods (grey

bands). We extract the cyclical component of the variable using an HP filter. The figure reveals

that fluctuations in intermediate inputs are more procyclical than those in output. The period of

the Great Recession is characterized by a sharp fall in intermediate input and gross production

across industries, while the value added remained more stable.

Figure 14: Intermediate inputs, value added, and gross output

To establish the relative contribution of value added and industry input to the overall

volatility of gross output, we decompose the variance of the gross industrial output in terms of

the covariance terms: Var(O) = Cov(V A,O) + Cov(II, O). Using this identity, together with

the definition O = V A + II, and plugging in observed data, we find that the contribution of

industry inputs to movements in industrial gross output is:

Cov(II, V A+ II)

Var(V A+ II)
= 0.71. (37)

Thus, fluctuations in intermediate input account for 71% of overall movements in gross industry

output. This average contribution increases during recessions. For instance, in 2008, industry

intermediate input decreased by 1.9 trillion, making up 84% of the decline in gross industrial

output (2.3 trillion).

The second critical theoretical mechanism embedded in the model is the relevance of changes
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in the discount factor for fluctuations in intermediate inputs and aggregate fluctuations. We use

the standard definition of the discount factor as the ratio of the current market price of a future

cash receipt to the expected value of the payment (our households are risk neutral and, hence,

we do not need to adjust for risk).

To investigate this link, we relate three popular measures of the discount factor to changes

in aggregate output and unemployment. In measure 1, we follow Hall (2017) and construct the

series for the market discount rate for dividends payable from one year (12 months) to two years

(24 months) as: ξt = pt/(Et
∑24

τ=13 dt+τ ), where pt is the market price in month t of the claim of

future dividends inferred from option prices and the stock price, and dt is the dividend paid in

month t. The data on pt are from Binsbergen et al. (2012). In measure 2, we proxy the discount

factor using the price-dividend ratio (p/d) of the stock market, as described in Cochrane (2011).

Finally, in measure 3, we proxy the discount rate rt using the measure of expected returns from

the S&P stock price index. We obtain the median 12-months-ahead forecast of the stock market

index (mnemonics: SPIF, Forecast12month) from the Livingston Survey. Then, we divide by the

index of the base period to calculate the expected gross return 1 + rt and compute the discount

factor as ξt = 1/ (1 + rt).

Table 4: Discount factor: standard deviation and correlation matrix

(a) (b) (c)
Livingston Survey S&P dividend strip P/d ratio

Standard Deviation 0.04 0.12 0.10

Correlation matrix
Livingston Survey 1 0.19 0.46
S&P dividend strip p/d ratio 1 0.34
P/d ratio 1

Figure 15 plots the three alternative measures of the discount factor for the period between

January 1996 and May 2009. Importantly, all three measures agree that i) there was a sizable

decline in the discount factor during the Great Depression (as our theory requires) and ii)

the series display high variance (reflecting the large sensitivity of the discount factor over the

business cycle, also required by our theory). The low correlation across the three measures (see

Table 4 and, for similar results, Hall, 2017) is not surprising, since each of these series reflects

discounting from different financial players and assets.

Finally, Table 5 shows that the three measures of the discount factor are positively correlated
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Figure 15: Alternative measures of the discount factor
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with GDP and input of intermediate goods and negatively correlated with unemployment.

This pattern corroborates the important relation between shocks to the discount factor and

movements in production and unemployment highlighted by our model.

Table 5: Correlation between discount rates and aggregate variables

Correlation coefficient
Unemployment rate GDP Intermediate input

Livingston Survey -0.55 0.53 0.42
S&P dividend strip p/d ratio -0.33 0.50 0.21
P/d ratio -0.75 0.80 0.53

Note: Discount rates and unemployment: monthly data from January 1996 to May 2009. GDP:
quarterly data from 1996Q1 to 2009Q1. Intermediate input: annual data from 1997 to 2009. Series are
HP filtered.

8 The volatility of shocks

In this section, we study how the volatility of the shocks to the economy is critical for the

dynamic properties of the model and the likelihood and duration of each equilibrium.
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8.1 Analytical illustration with a simplified model

To gain intuition, and before we report the quantitative results from the full model, we derive

an analytical characterization of the effect of volatility for the likelihood and duration of each

equilibrium by simplifying the model in Section 3. First, we assume firms produce their output

without the need of workers. Thus, we can drop the whole DMP module of the model and set a

constant measure of size 1 of firms in each sector (instead of their number being determined by

the free-entry condition in job posting). Second, we assume that δ̃ = 1, i.e., all joint ventures

terminate after one period. Also, joint ventures start producing in the same period where firms

match. Hence, the firm’s problem is equivalent to a sequence of static maximization problems

and we do not need to specify a discount factor. To ease the algebra, we also set ρz = 0, and as

we did in the calibration in Section 5, τ̃ = 0.5 and ν = 2.10

Under these simplifications, each firm optimally chooses the level of its search intensity, σi,t,

given the search intensity of the firms in the opposite sector, σ−i,t, and productivity, zt, by

maximizing its static profits:

Ji,t(σi,t, σ−i,t, zt) = (φ+ (ψ + σi,t) (ψ + σ−i,t))
zt
2
− c0σi,t − c1

σ3
i,t

3
.

The first term of the RHS is the inter-firm matching probability defined in equation (12)

multiplied by half the expected production, πi,tzt (recall the equal split of output between the

firms given τ̃ = 0.5) minus the cost of searching.

The interior solution σi,t > 0 satisfies:

c0 + c1σ
2
i,t = (ψ + σ−i,t)

zt
2
. (38)

Otherwise, σi,t = 0. Hence, as in the benchmark model, the simplified model entails passive and

active equilibria. The passive equilibrium with zero search intensity exists if and only if

c0 > ψ
zt
2
. (39)

From equation (39), we can define a threshold of productivity z̄ = 2c0
ψ

that determines whether

10This simplified model is nearly identical to the model in Section 2. The only differences are a slightly different
matching function and that now we have an AR(1) process for zt.

41



the passive equilibrium exists.

Lemma 2. The passive equilibrium exists if and only if zt < z̄.

Recall that we assumed that ψ > 0. If ψ = 0, a passive equilibrium always exists regardless

of the value of zt.

In an active equilibrium, firms in each sector optimally choose a positive search intensity

that comes from finding the fixed point of the product of equation (38) for each sector:

σF,t = σI,t =
zt +

√
z2
t + 8ψzt − 16c0c1

4c1

. (40)

This optimal search intensity is increasing in zt.
11

From equation (40), we define the threshold for the active equilibrium z = 4
(√

ψ2c2
1 + c1c0 − ψc1

)
,

and we get the following lemma.12

Lemma 3. An active equilibrium exists if and only if zt ≥ z.

Proposition 10 merges lemmas 2 and 3 to characterize the range of values zt compatible with

multiple equilibria.

Proposition 10. The economy retains multiple equilibria if zt ∈ (z, z̄). The passive equilibrium

is the unique equilibrium if zt ≤ z. The active equilibrium is the unique equilibrium if zt ≥ z̄.

Proposition 10 establishes that if economic fundamentals are sufficiently weak or strong, the

equilibrium is unique, either passive or active; otherwise, we have two equilibria. Sufficiently

large shocks to zt move the system between the two alternative equilibria. Proposition 10 is

empirically relevant because we can calibrate ψ to a small number so that z̄ is low and c1 to a

large number so that z is high. In that way, the model will allow multiple equilibria for a wide

range of productivity z < 1 < z̄.

Since we have set ρz = 0, we have that log (zt) ∼ N (0, σ2
z). Using the distribution for zt

and the thresholds z and z that determine changes between equilibria, we derive the transition

matrix between equilibria:

11There is a second fixed point, σi,t =
zt−
√
z2t+8ψzt−16c0c1

4c1
. However, this solution is locally unstable.

12To prevent the marginal search cost from converging to zero when σi,t is zero, the term c0 must be positive.
If c0 = 0, it yields z = 0. In such an instance, the active equilibrium exists for any positive value of zt.
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Active Passive

Active 1− Φ [log (z) /σz] Φ [log (z) /σz]

Passive 1− Φ [log (z̄) /σz] Φ [log (z̄) /σz]

where Φ(·) is the cdf of the standard normal distribution. The next proposition characterizes

the role that the volatility of exogenous disturbances plays in the duration of each equilibrium.

Proposition 11. The expected duration of a passive equilibrium spell is 1
Φ[log(z)/σz ]

, and the

expected duration of an active equilibrium spell is 1
1−Φ[log(z̄)/σz ]

. The duration of each equilibrium

is inversely related to the volatility of zt.

Proposition 11 establishes that aggregate volatility plays a critical role in the selection and

duration of each equilibrium and how it interacts with search complementarities. A reduction in

volatility induces the system to remain for a prolonged spell in one equilibrium, with a decreased

probability for the system to move to the alternative equilibrium. However, if a sufficiently large

change in fundamentals triggers a change in the equilibrium, the economy would move to the

alternative equilibrium and stay there for a long time.

The dynamics in the simple model are consistent with the large and persistent increase in

the unemployment rate in the aftermath of the financial crisis of 2007-2009 and the prolonged

period before the series returned to its initial level in 2017. The financial crisis was preceded

by a long spell of stable economic conditions during the Great Moderation that started in the

mid-1980s, which the model identifies as a prerequisite for the unprecedented persistence in

unemployment.

8.2 Simulation with the benchmark model

With the intuition from the simplified model, we return to our benchmark model to assess the

quantitative effect of changes in the volatility of shocks. Table 6 reports business cycle statistics

for a low (column (a)) and a high (column (b)) variance of shocks to the discount factor (σξ). As

before, we simulate the model for 3,000,000 months and time average to obtain quarterly data.

The first and second rows report the number of periods and the average duration of the passive

equilibrium, respectively, and the third row reports the transition matrix between equilibria.

We calibrate high and low volatility by following Justiniano and Primiceri (2008), who estimate

that the volatility of preference shocks is equal to 0.07 before 1984 and 0.04 after that date.
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Table 6: Variance of shocks and duration of equilibria

(a) (b)
σξ = 0.04 σξ = 0.07

Fraction of periods in passive equilibrium 0.11 0.27
Average number of quarters at a passive equilibrium 11 3.4
Transition matrix

Active Passive Active Passive
Active 0.98 0.02 0.89 0.11
Passive 0.09 0.91 0.29 0.71

The passive equilibrium materializes with a probability of around 11% in the low-volatility

economy, in contrast with 27% probability in the high-volatility economy. Despite the lower

chance of moving to a passive equilibrium, the low-volatility economy stays longer on average in

a passive equilibrium, 11 quarters, than the high-volatility economy, 3.4 quarters. Low volatility

induces less frequent but long-lasting periods of low output and high unemployment.

The last two rows in Table 6 report the transition matrix between equilibria. The entries

reveal that the low-volatility economy transitions between equilibria infrequently. The probability

of moving from active equilibrium to passive equilibrium is equal to 2%, and the probability

of a reverse move from passive equilibrium to active equilibrium is equal to 9%. The rotation

among equilibria gets much higher in the high-volatility economy, as the probability of moving

from an active to a passive equilibrium is 11%, and the probability of a reverse move is 29%.

Appendix G includes the histograms of endogenous variables of interest in the model with

high and low probability. The most important lesson from those figures is the long left tail of

output when the volatility of ξt is high.

8.3 The Great Moderation and the persistence of business cycles

Our model predicts that a lower volatility of fundamentals is associated with more prolonged

equilibrium spells. This prediction is consistent with the empirical pattern in the U.S. data. In

Figure 16, the upper panel plots the U.S. employment rate (blue curve) and its trend (orange

curve) estimated from an HP filter with λ = 1600 from 1996 to 2017. The light-orange bars

indicate labor market downturns. Inspired by the NBER’s methodology in defining recessions,

we define that a labor market downturn starts when the employment rate falls below the trend

for two quarters and ends when the employment rate rises above the trend for two quarters. As
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noted by many researchers (see Jaimovich and Siu 2012 and references therein), the figure shows

how the three labor market downturns that occurred after 1984 were longer than the previous

ones. Precisely after 1984, the U.S. economy experienced a substantial reduction in the volatility

of business cycle fluctuations, which Justiniano and Primiceri (2008) and Fernández-Villaverde

et al. (2015) attribute, in part, to a lower volatility of shocks to fundamentals. To illustrate this

point, the bottom panel in Figure 16 plots the cyclical component of real GDP per capita, with

a grey area to indicate the Great Moderation that started in the mid-1980s.

Figure 16: The Great Moderation and labor market downturns
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Our model suggests an intrinsic linkage between the Great Moderation and the increasing

persistence in labor market downturns. While the Great Moderation improves macroeconomic

stability and reduces the occurrences of recessions, it makes these recessions and the associated

labor market downturns more durable.

45



9 The role of fiscal policy

In our model, government spending that stimulates joint venture formation may permanently

move the system from a passive to an active equilibrium, inducing a large fiscal multiplier. To

study this hypothesis, we embed government spending in the economy and derive the analytical

conditions for fiscal policy to move the system from a passive to an active equilibrium. We then

investigate the effect of public spending on the DSSs in the model. Finally, we study the size

and state dependence of the impact of government spending.

9.1 Government spending as a set of final-goods producers

We focus our investigation on government spending defined as government consumption expen-

ditures and gross investment. We ignore transfers because our model abstracts from aggregate

demand considerations. We model government spending as an exogenous increase in the number

of single firms in the final-goods sector, where these additional firms can be interpreted as

new public projects such as building a new school. Thus, we have government-owned single

final-goods firms, ñGF,t, that operate together with private single firms in both sectors. The

formation of private firms remains endogenous, as described by equation (14). We assume that

government spending is financed by lump-sum taxes.

The law of motion for government single final-goods firms, ñGF , is:

ñGF,t+1 = (1− δ − πF ) ñGF,t + εGt , (41)

where εGt are the new government-owned single firms created in period t. Like the private firms

in the final-goods sector, government-owned firms must form a joint venture with firms in the

intermediate-goods sector to manufacture goods (for example, a public school requires bricks

produced by private firms). Joint ventures with government-owned firms, nGF , follow:

nGF,t+1 =
(

1− δ − δ̃
)
nGF,t + πF ñ

G
F,t. (42)

A government firm exits the market when its job match or joint venture is terminated.
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The inflow εGt changes the matching probabilities in the inter-firm matching market:

πI,t = [φ+ (ψ + σI) (ψ + σF )]H
(

1, θ̃t

)
, (43)

and

πF = [φ+ (ψ + σI) (ψ + σF )]H

(
1

θ̃t
, 1

)
, (44)

where θ̃t = (ñF,t + ñGF,t)/ñI,t is the inter-firm matching market tightness ratio in the presence of

government single firms.

Since H is increasing in both arguments, εGt > 0 increases the matching probability for

intermediate-goods firms (more potential partners) and decreases the matching probability for

final-goods firms (stiffer competition for partners). These changes in matching probabilities, in

turn, move search intensity and, potentially, the equilibrium of the economy.

Total government spending is equal to the output produced by government-owned firms in

joint ventures and the single government-owned firms’ search cost:

gt = ztn
G
F + ñGF

(
c0σF + c1

σ1+ν
F

1 + ν

)
.

Gross aggregate output comprises government and private production: yt = zt(n
G
F,t+nF,t), and it

is used for private consumption, government spending, and search costs. The aggregate resource

constraint is:

yt = ct + gt +
∑
i=I,F

χvi +
∑
i=I,F

ñi

(
c0σi + c1

σ1+ν
i

1 + ν

)
. (45)

9.2 Shocks to government spending and equilibria switches

We assume that the economy is in the passive equilibrium (i.e., σI = σF = 0) before the arrival

of a positive government spending shock, εGt .

Upon the realization of the shock, the passive equilibrium continues to exist if:

β̃ξtψH
(

1, θ̃t

)
Et
(
JI,t+1 − J̃I,t+1 | ι = 0

)
< c0, (46)

and

β̃ξtψH
(
θ̃−1
t , 1

)
Et
(
JF,t+1 − J̃F,t+1 | ι = 0

)
< c0. (47)
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Equation (46) shows that the passive equilibrium disappears if the increase of a government-

owned single firm tightens the inter-firm matching market enough and makes the expected

capital gain of intermediate-goods firms so high that these firms search with positive intensity

even if the final-goods firms search with zero intensity.

Proposition 12. Starting from the passive equilibrium, the size of government spending needed

to move the system to the active equilibrium is:

ñGF,t
ñI,t

> Ψ

 c0

βξψEt
(
JI,t+1 − J̃I,t+1 | ι = 0

)
− ñF,t

ñI,t
, (48)

with Ψ
′
> 0.13

Equation (48) shows that the magnitude of the policy intervention that moves the economy

to an active equilibrium is proportional to the cost-to-benefit ratio of forming a joint venture;

and it decreases with the measure of the private firms in the final-goods sector relative to

intermediate-goods firms. A large quantity of private final-goods firms improves the joint venture

prospects for intermediate-goods firms, decreasing the magnitude of government spending needed

to move to the active equilibrium.

9.3 Quantitative results

We investigate the dynamic response of the economy to expansionary fiscal policy shocks and

the size of the fiscal multiplier. See Appendix D.2 for details of the computation of the model

in this case. Once we introduce government spending, we have 12 state variables. Due to this

large number of state variables, we implement a dimensionality reduction algorithm inspired

by Krusell and Smith (1998) that is of interest in itself and potentially applicable to similar

problems.

Panel (a) of Figure 17 plots the best response functions for the final-goods firm and the

intermediate-goods firm in the active equilibrium (magenta solid and dotted lines, respectively)

and the passive equilibrium (black circle and cross markers, respectively) for a 20% exogenous

13Denote h
(
θ̃
)

= H
(

1, θ̃
)

. Ψ is the inverse function of h (·). As h (·) is strictly increasing in θ̃ by assumption,

Ψ is also a strictly increasing function. In our calibration: h (θ) = 2
1
κ

(
1 + θ̃−κt

)− 1
κ

, Ψ (x) = (2x−κ − 1)
− 1
κ .
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increase in the relative size of the final-goods sector. The blue lines and the red circle and

cross markers show the best response functions when the fiscal shock is absent. Following

Proposition 12, this 20% fiscal shock is sufficiently powerful to move the system to the active

equilibrium. Given our calibration in Section 5, the threshold for an equilibrium switch is 19%.

The fiscal stimulus increases the matching probability for intermediate-goods firms, raising

the payoff to forming joint ventures and leading to an optimal positive search intensity in the

intermediate-goods sector (σI = 0.03 as in the cross marker). The passive equilibrium ceases to

exist, and point C remains the unique stable equilibrium. In comparison, panel (b) in Figure

17 plots the best response functions associated with a 15% increase in the relative size of the

final-goods sector. This fiscal stimulus fails to eliminate the passive equilibrium with zero search

intensity in the final-goods sector and the intermediate-goods sector (circle and cross markers,

respectively).

Figure 17: Increase in government spending
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(b) 15% increase
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Figure 18 shows the dynamic reaction of selected variables to the same 15% (dotted line) and

20% (solid line) shocks to the relative size of the final-goods sector that we just described when the

economy starts at the passive equilibrium DSS (Appendix H shows the responses for the system

that starts from the active equilibrium). Since the 20% fiscal expansion satisfies Proposition

12, it produces a significant and persistent increase in output and a fall in unemployment.

Nevertheless, this fiscal expansion crowds out private consumption upon impact. This reaction

is due to two mechanisms: first, a rise in government-owned firms reduces, in the short run,
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the formation of joint ventures that produce for private consumption, and second, the shift of

equilibrium triggers an increase in the cost associated with vacancy posting and joint venture

formation, which further reduces private consumption. The first mechanism still exists in the

15% fiscal expansion, inducing a small drop in private consumption even when the system stays

in the passive equilibrium.

Figure 18: GIRFs to positive government spending shock
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Note: Each panel shows the response of a variable to a one-period, 15% (dashed line) and 20% (solid
line) increase in government spending.

We also calculate the fiscal multiplier for our economy, defined as the ratio of the cumulative

change in output over one quarter and one year, generated by the one-period change in government

spending triggered by the inflow of government-owned single firms in the final-goods sector (we

could compute the fiscal multiplier at other horizons if desired). Panel (a) in Figure 19 shows the

fiscal multiplier as a function of the inflow of government-owned single firms when the economy

is in the passive equilibrium at the start of the fiscal expansion. Panel (b) replicates the exercise

for the case when the economy is in the active equilibrium.

In the passive equilibrium, a sufficiently large fiscal expansion generates a multiplier larger

than 1 since it triggers a rise in search intensity. The fiscal multiplier peaks at the threshold

where we shift from the passive to the active equilibrium. In our calibration, the peak quarterly

fiscal multiplier, 3.5, is at a 19% increase in the number of government-owned firms, which is
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Figure 19: Fiscal multiplier
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equivalent to a 3.8% increase in government spending relative to output in the first quarter

(since the increase in government spending is persistent, the overall size of the fiscal intervention

is larger than the impact change of 3.8%). Any stimulus beyond this level reduces the fiscal

multiplier because the crowding out of private consumption outweighs the increase in output

from the fiscal expansion. A doubling in the number of government-owned final-goods firms

generates a fiscal multiplier of around 1 over a quarter. Similarly, a fiscal expansion below the

threshold generates a less than unitary fiscal multiplier since it creates a large crowding out

effect and no equilibrium switch.

Panel (b) in Figure 19 shows that the fiscal multiplier is substantially lower in the active

equilibrium. The increased costs of forming joint ventures for private firms in the final-goods

sector reduce private output, and we have a less than unitary fiscal multiplier for any size of the

fiscal stimulus. The multiplier declines with the size of government spending for a crowding out

effect across a wide range of time horizons.

Our results in Figure 19 agree with the recent empirical literature that has documented the

acute state-dependence of fiscal multipliers. See, for example, Auerbach and Gorodnichenko

(2012), Owyang et al. (2013), and Ghassibe and Zanetti (2019). Our model proposes a mechanism

to account for the state-dependence of fiscal multipliers parsimoniously.

51



10 Conclusion

This paper shows that search complementarities in inter-firm joint venture formation have broad

implications for the persistence of business cycle fluctuations and the effect of fiscal policy.

The optimal degree of search intensity is either zero or positive, and the system entails two

equilibria: an active one with large economic activity and a passive one with high economic

activity. Sufficiently large changes in fundamentals that change search intensity move the system

between the two equilibria.

The dynamic properties of our economy are unlike those of standard models. Search

complementarities generate bimodal ergodic distributions of variables and protracted slumps.

Macroeconomic volatility plays an essential role in the selection and duration of each equilibrium.

In particular, large negative shocks during spells of low volatility generate a persistent shift to

the passive equilibrium, which is consistent with the large and persistent deviation of economic

variables from trend after the financial crisis that started in 2007 in the aftermath of the Great

Moderation. Fiscal policy operates markedly different than in standard models, and it is powerful

in stimulating the economy in the passive equilibrium, with a non-monotonic effect on economic

activity, while its effectiveness significantly declines in the active equilibrium.

The analysis opens exciting avenues for additional research. A direct extension would be to

embed strategic complementarities in richer models of the business cycle such as those including

money, nominal rigidities, and financial frictions. Furthermore, the role of agent heterogeneity

deserves further exploration. We will explore some of those avenues in future work.
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Appendix

We include, for completeness, a series of appendices. First, in Appendix A, we show the

derivation of the total surplus of a filled job and the capital gain from forming a joint venture.

Second, in Appendix B, we describe how we compute the DSSs of the model. Third, in Appendix

C, we present the proofs of several propositions in the main text. Fourth, in Appendix D, we

outline how to compute the model. Fifth, in Appendix E, we discuss the role of mixed-strategy

Nash equilibria in our model. Sixth, in Appendix F, we complete our discussion of the effects of

technology shocks in the model. Seventh, in Appendix G, we look at the ergodic distribution of

variables of interest in cases of high and low volatility of the shocks to ξt. Last, in Appendix H,

we report the GIRFs to government spending shocks in the active equilibrium.

A Total surplus

The total surplus of a labor market match at time t in a joint venture in either sector i ∈ {I, F}

of the economy is TSi,t = Wi,t − Ui,t + Ji,t. Analogously, the total surplus of a filled job in a

single firm is T̃ Si,t = W̃i,t − Ui,t + J̃i,t.

Nash bargaining for wages implies that:

Ji,t = τTSi,t,

Wi,t − Ui,t = (1− τ)TSi,t,

J̃i,t = τ T̃Si,t,

W̃i,t − Ui,t = (1− τ) T̃ Si,t,

where recall that the parameter τ is the firm’s bargaining weight, common across sectors. The

free-entry condition of the labor market is:

χ = βξtτθ
α−1
i,t Et

(
T̃ Si,t+1

)
. (49)

The total surplus of establishing a joint venture is the sum of the capital gain from matching

for the firms in the intermediate-goods sector, JI,t − J̃I,t, and final-goods sector, JF,t − J̃F,t:

TSJVt = JI,t − J̃I,t + JF,t − J̃F,t.
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The price for intermediate goods, pt, is set according to the Nash bargaining rule:

JI,t − J̃I,t = τ̃TSJVt

JF,t − J̃F,t = (1− τ̃)TSJVt,

where the parameter τ̃ is the intermediate goods producer’s bargaining power.

We derive now value functions for TSi,t, T̃ Si,t, and TSJVt. We start with the total surplus of

a filled job in a joint venture, TSi,t. Using the equations for WI,t, JI,t, and UI,t in the definition

of TSi,t, we get:

WI,t + JI,t − UI,t = ztpt − h

+ βξtEt

 (
1− δ − δ̃

)
(Wi,t+1 + Ji,t+1 − Ui,t+1)

+δ̃
(
W̃i,t+1 + J̃i,t+1 − Ui,t+1

)
− µI,t

(
W̃I,t+1 − UI,t+1

)
 , (50)

or, equivalently,

TSI,t = ztpt − h+ βξtEt
[(

1− δ − δ̃
)
TSI,t +

(
δ̃ − µI,t (1− τ)

)
T̃ SI,t

]
, (51)

where, in the interest of space, we omit the variable ιt.

Analogously, the total surplus of a filled job in a joint venture for the firm in the final-goods

sector F is:

TSF,t = zt (1− pt)− h+ βξtEt
[(

1− δ − δ̃
)
TSF,t +

(
δ̃ − µF,t (1− τ)

)
T̃ SF,t

]
. (52)

Next, we derive the total surplus of a filled job in a single firm, T̃ Si,t. The equations for

W̃I,t, J̃I,t, and UI,t yield:

J̃I,t + W̃I,t − UI,t = −h− c
(
σ∗I,t
)

+

βξtEt

 (1− δ)
(
1− π∗I,t

) (
J̃I,t+1 + W̃I,t+1 − UI,t+1

)
+

(1− δ) π∗I,t (Wi,t+1 + Ji,t+1 − Ui,t+1)− µI,t
(
W̃I,t+1 − UI,t+1

)
 , (53)

where σ∗I,t is the search intensity that maximizes J̃I,t and π∗I,t is the matching probability induced
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by σ∗I,t. By using the definition of T̃ Si,t above, we re-arrange the previous equation as:

T̃ SI,t = −h− c
(
σ∗I,t
)

+ βξtEt
[
(1− δ) πI,tTSI,t+1 + ((1− δ) (1− πI,t)− (1− τ)µI,t) T̃ SI,t+1

]
. (54)

Since σ∗I,t maximizes J̃I,t, it also maximizes T̃ SI,t. Thus, equation (54) becomes:

T̃ SI,t = max
σI,t≥0

{
− h− c (σI,t)

+ βξtEt
[
(1− δ)πI,tTSI,t+1 + ((1− δ) (1− πI,t)− (1− τ)µI,t) T̃ SI,t+1

]}
, (55)

and where πI,t is an increasing function of σI,t.

We denote the gain for total surplus from forming a joint venture as ∆TSi,t = TSi,t − T̃ Si,t,

and rewrite equation (55) as:

T̃ SI,t = max
σI,t≥0

{
− h− c (σI,t)

+ βξtEt
[
(1− δ) πI,t∆TSI,t+1 + ((1− δ)− (1− τ)µI,t) T̃ SI,t+1

]}
. (56)

Similarly, we write the total surplus for single firms in the final-goods sector as:

T̃ SF,t = max
σF,t≥0

{
− h− c (σF,t)

+ βξtEt
[
(1− δ) πF,tTSF,t+1 + ((1− δ) (1− πF,t)− (1− τ)µF,t) T̃ SF,t+1

]}
, (57)

or, equivalently,

T̃ SF,t = max
σF,t≥0

{
− h− c (σF,t)

+ βξtEt
[
(1− δ) πF,t∆TSF,t+1 + ((1− δ)− (1− τ)µF,t) T̃ SF,t+1

]}
. (58)

Finally, we derive the total surplus of a joint venture, TSJVi,t. The Nash bargaining for the

intermediate goods price and wage yields ∆TSI,t = τ̃
τ
TSJVt and ∆TSF,t =

(
1−τ̃
τ

)
TSJVt. Using

equations (51) and (55) in the definition of ∆TSi,t produces:

∆TSI,t = min
σI,t

{
ztpt + c (σI,t) + β

[(
1− δ − δ̃

)
− (1− δ)πI,t

]
ξtEt (∆TSI,t+1)

}
, (59)
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or after using the Nash bargaining condition ∆TSI,t = τ
τ̃
TSJVt:

TSJVt = min
σI,t

{τ
τ̃

[ztpt + c (σI,t)] + β
[(

1− δ − δ̃
)
− (1− δ)πI,t

]
ξtEt (TSJVt+1)

}
. (60)

Analogously, the total surplus of a joint venture from sector F ’s optimization problem is:

TSJVt = min
σF,t

{ τ

1− τ̃
[zt (1− pt) + c (σF,t)]

+ β
[(

1− δ − δ̃
)
− (1− δ) πF,t

]
ξtEt (TSJVt+1)

}
. (61)

Combining Equation (60)×τ̃+Equation (61)× (1− τ̃), pt cancels out and we find:

TSJVt = τ · zt + β
(

1− δ − δ̃
)
ξtEt (TSJVt+1)

+ min
σI,t

{
τ · c (σI,t)− β (1− δ) πI,tξtEt (τ̃ · TSJVt+1)

}
+ min

σF,t

{
τ · c (σF,t)− β (1− δ) πF,tξtEt [(1− τ̃) · TSJVt+1]

}
. (62)

The first-order conditions for {σI,t, σF,t} in equation (62) are:

β (1− δ) (ψ + σF,t)H
(

1, θ̃t

)
τ̃ ξtEt (TSJVt+1) = τ [c0 + c1 (σI,t)

ν ] , (63)

β (1− δ) (ψ + σI,t)H
(

1, θ̃−1
t

)
(1− τ̃) ξtEt (TSJVt+1) = τ [c0 + c1 (σF,t)

ν ] . (64)

The active equilibrium exists if and only if there exists a pair (σI,t, σF,t) > 0 that jointly

solves equations (63) and (64). In the symmetric equilibrium for which τ̃ = 1/2 and θ̃t = 1,

equations (63) and (64) become:

β̃ (ψ + σF,t) ξtEt
(
JI,t+1 − J̃I,t+1

)
= c0 + c1 (σI,t)

ν , (65)

β̃ (ψ + σI,t) ξtEt
(
JF,t+1 − J̃F,t+1

)
= c0 + c1 (σF,t)

ν , (66)

where β̃ = β (1− δ) /τ . Equivalently, we can express the first-order conditions as:

β (1− δ) (ψ + σF,t) ξtEt (∆TSI,t+1) = c0 + c1 (σI,t)
ν (67)

β (1− δ) (ψ + σI,t) ξtEt (∆TSF,t+1) = c0 + c1 (σI,t)
ν . (68)
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B Solving for the DSSs

To solve for the DSSs of our model, we evaluate the set of equilibrium conditions when the

variables remain constant over time and the exogenous state variables take their average value.

The model entails a passive and an active (stable) DSS. We denote the variables referring to the

passive and active DSS with superscript “pas” and “act,” respectively.

Using equation (62), the total surplus of a joint venture in the passive DSS is:

TSJV pas = τ · zss + 2τ · c (0)

+ βξss
[(

1− δ − δ̃
)
− τ̃ (1− δ) πpasI − (1− τ̃) (1− δ) πpasF

]
TSJV pas (69)

where c (0) = 0, πpasI = (φ+ ψ2)H
(

1, θ̃pas
)

, and πpasF = (φ+ ψ2)H
(

1, 1/θ̃pas
)

. As in our

baseline calibration, we set τ̃ = 0.5 and assume a symmetric equilibrium so that θ̃pas = 1.

Applying these conditions in equation (69) yields:

TSJV pas =
τ · zss

1− βξss
[(

1− δ − δ̃
)
− (1− δ) (φ+ ψ2)

] . (70)

The gain of total surplus from forming a joint venture in the passive DSS is determined

by ∆TSpasI = τ̃
τ
TSJV pas and ∆TSpasF =

(
1−τ̃
τ

)
TSJV pas, which are useful in deriving the total

surplus of a filled job in the passive DSS.

Analogously, the total surplus of a joint venture in the active DSS is determined by:

TSJV act =

τ ·
[
zss +

(
c0σ

act
I + c1

(σactI )
ν+1

1+ν

)
+

(
c0σ

act
F + c1

(σactF )
ν+1

1+ν

)]
1− βξss

[(
1− δ − δ̃

)
− τ̃ (1− δ) πactI − (1− τ̃) (1− δ)πactF

] , (71)

where:

πactI =
[
φ+

(
σactF + ψ

) (
σactI + ψ

)]
H
(

1, θ̃act
)
,

and

πactF =
[
φ+

(
σactF + ψ

) (
σactI + ψ

)]
H
(

1, 1/θ̃act
)
.

By imposing the symmetry conditions τ̃ = 1/2, θ̃act = 1 and σactF = σactI = σact, equation (71)
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becomes:

TSJV act =

τ ·
[
zss + 2

(
c0σ

act + c1
(σact)

ν+1

1+ν

)]
1− βξss

[(
1− δ − δ̃

)
− (1− δ)

[
φ+ (σact + ψ)2]] . (72)

In the active DSS, the first-order condition for {σI,t, σF,t} described by equations (63) and

(64) is:
β (1− δ) (ψ + σact) ξssTSJV act

2
= τ

[
c0 + c1

(
σact
)ν]

. (73)

Equations (72) and (73) can be used to solve numerically for σact and TSJV act.

The gain of total surplus from forming a joint venture in the active DSS is determined by

∆TSactI = τ̃
τ
TSJV act and ∆TSactF =

(
1−τ̃
τ

)
TSJV act. We then derive the total surplus of a filled

job in a single firm and the job finding rate in the DSS. Using equation (54), the total surplus

of a filled job for a single firm in sector I in the passive DSS is:

T̃ S
pas

I = −h+ β
{

(1− δ)πpasI ·∆TS
pas
I + [(1− δ)− µpasI (1− τ)] T̃ S

pas

I

}
, (74)

where ∆TSpasI and πpasI are solved analytically. Using the matching function and free-entry

condition in the labor market, the job finding rate in the passive DSS is:

µpasI =

(
βτT̃S

pas

I

χ

) α
1−α

. (75)

Equations (74) and (75) are solved numerically for T̃ S
pas

I and µpas.

Applying the same approach, we solve for T̃ S
pas

F and µpasF . Analogously, the total surplus of

a filled job in a single firm and the job finding rate in the active DSS solves:

T̃ S
act

= −h+

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β

{
(1− δ)πact ·∆TSact +

[
(1− δ)− µact (1− τ)

]
T̃ S

act
}
, (76)

and

µact =

(
βτT̃S

act

χ

) α
1−α

. (77)
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The total surplus of a filled job in a joint venture in the DSS is:

TSli = T̃ S
l

i + ∆TSli, i ∈ {I, F} , l ∈ {act, pas} .

The firm’s asset value in the DSS is:

J li = τTSli, J̃
l
i = τ T̃S

l

i, i ∈ {I, F} , l ∈ {act, pas} .

Finally, we can derive the DSS value for the remaining variables. Substituting the job finding

rate into the matching function of the labor market, we get θpas = (µpas)
1
α and θact = (µact)

1
α .

The value for the unemployment rate, the measure of single firms, and the measure of joint

ventures in the passive and active DSS are:

upas =
δ

δ + µpas

uact =
δ

δ + µact

ñpas =
δ̃ +

(
µpas − δ̃

)
upas

δ + πpas + δ̃

ñact =
δ̃ +

(
µact − δ̃

)
uact

δ + πact + δ̃

npas = 1− upas − ñpas

nact = 1− uact − ñact.

The value for total final output in the passive and active DSSs are ypas = zssnpas and yact = zssnact,

respectively.

C Proof of propositions

Proof of Proposition 2

Proof. We consider the case of symmetric sectors, so we drop the sector subscripts. We first

show that the labor market tightness ratio is strictly lower in the passive DSS, i.e., θpas < θact,

or, equivalently T̃ S
pas

< T̃S
act

, as implied by the free-entry condition of the labor market.
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We start with

T̃ S
act

= −h+

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β

{
(1− δ)πact ·∆TSact +

[
(1− δ)− µact (1− τ)

]
T̃ S

act
}
, (78)

and

µact =

(
βτT̃S

act

χ

) α
1−α

. (79)

The values for T̃ S
act

and θact solve to equations (76) and (77). We rewrite equation (77), for

both DSSs, as

θ =

(
βτT̃S

χ

) 1
1−α

. (80)

Applying equation (80) to equation (76), delivers:

(
1− τ
τ

)
χθ =

{
− h−

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β (1− δ) πact ·∆TSact − [1− β (1− δ)] T̃ S

}
. (81)

In equation (81), labor market tightness, θ, is linear and strictly decreasing in the total surplus

for a single firm, T̃ S. In equation (80), θ is strictly increasing in T̃ S.

Similarly, values for T̃ S
pas

and θpas solve:(
1− τ
τ

)
χθ = [−h+ β (1− δ) πpas ·∆TSpas]− [1− β (1− δ)] T̃ S, (82)

θ =

(
βτT̃S

χ

) 1
1−α

. (83)

In equation (82), θ is linear and strictly decreasing in T̃ S. In equation (83), θ is strictly increasing

in T̃ S.

For θact > θpas, it must be that the intercept term in equation (81) is greater than the

intercept term in equation (82), which occurs if:

− h−

[
c0σ

act + c1
(σact)

ν+1

1 + ν

]
+ β (1− δ) πact ·∆TSact > −h+ β (1− δ) πpas ·∆TSpas. (84)
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To simplify notation, denote W (σ) = −h+ W1(σ)
W2(σ)

, where

W1 (σ) =
[
β
(

1− δ − δ̃
)
− 1
] [
c0σ + c1

σν+1

1 + ν

]
+ β (1− δ)

[
φ+ (ψ + σ)2] ,

W2 (σ) = 1− β
{(

1− δ − δ̃
)
− (1− δ)

[
φ+ (ψ + σ)2]} .

We can rewrite equation (84) as W (σact) > W (0) and verify that, for σ ∈
(
0,
√

1− φ− ψ
)
,

dW1

dσ
/W1 > dW2

dσ
/W2, which implies dW/dσ > 0. Consequently, equation (84) holds, and

θact > θpas.

Since the job finding rate is strictly increasing in labor market tightness, µact > µpas. Since

u = δ/ (δ + µ) in the DSS, uact < upas holds.

Finally, we show that yact > ypas. Since y = n and n = 1− ñ− u, yact > ypas is equivalent to

show that ñact + uact < ñpas + upas.

In the DSS, it holds that:

ñ+ u =
δ̃ + (π + µ+ δ) δ

δ+µ

δ + π + δ̃
. (85)

The RHS of equation (85) is strictly decreasing in both µ and π. Given that µpas < µact and

πpas < πact, it holds that ñact + uact < ñpas + upas, or, equivalentlyyact > ypas.

Proof of Proposition 3

Proof. Proposition 3 holds if it is optimal for firms in one sector to search with zero intensity

when firms in the opposite sector search with zero intensity. In such a case, the Nash equilibrium

with zero search intensity exists in the passive DSS.

The firm’s maximization problem in the passive DSS is:

T̃ S
pas

= max
σ≥0
−h−

(
c0σ + c1

σν+1

1 + ν

)
+ β

(1− δ) [φ+ ψ (ψ + σ)] ·∆TSpas

+ [(1− δ)− µpas (1− τ)] T̃ S
pas

 . (86)

The total surplus of a single firm T̃ S
pas

is strictly concave in σ, for σ > 0. Hence, the corner

solution σ = 0 is optimal if and only if the first-order derivative is non-positive at σ = 0:

c0 + c10ν > β (1− δ)ψ∆TSpas, (87)
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or, equivalently:

c0 >
β (1− δ)ψ

2− 2β
[(

1− δ − δ̃
)
− (1− δ) (φ+ ψ2)

] , (88)

where we assume zss = 1, ξss = 1, and τ̃ = 0.5.

Proof of Proposition 4

Proof. Proposition 4 holds if there exist σ ∈
(
0,
√

1− φ− ψ
)

(to guarantees that the matching

probability is bounded by one) and ∆TS ∈ R that solve equations (73) and (72).

By substituting equation (73) into equation (72), we get:

1 +
(
c0σ + c1

σν+1

1+ν

)
2− 2β

[(
1− δ − δ̃

)
− (1− δ)

[
φ+ (σ + ψ)2]] =

c0 + c1σ
ν

β (1− δ) (ψ + σ)
, (89)

where we assume τ̃ = 1/2, ξss = 1, zss = 1.

Proof of Proposition 6

Proof. We first show that the Nash equilibrium in the passive DSS is stable. To do so, we

demonstrate that there exists a ε > 0, such that when a firm in sector j deviates from the

passive DSS by searching with a small and positive effort bounded by ε, it remains optimal for

the firm in the opposite sector i to search with zero effort:

c0 + c10ν > β (1− δ) (ψ + σj)E (∆TSi) , (90)

where σj ∈ (0, ε). The RHS of equation (90) is a function of σj, which is continuous at σj = 0

(note that E (∆TSi) is a continuous function of σj). Given the existence of the passive DSS,

we know that c0 + c10ν > β (1− δ)ψ∆TSpas. Because of continuity, there exists ε > 0, so that

equation (90) holds when σj < ε.

Next, we show that one Nash equilibrium in the active DSS is stable when two active DSSs

exist. The best response function of sector i implied by equations (67) and (68) in the active

DSS is:

σi =


[
β(1−δ)(ψ+σj)∆TS

act−c0
c1

] 1
ν

if β (1− δ) (ψ + σj) ∆TSact ≥ c0

0 if β (1− δ) (ψ + σj) ∆TSact < c0,
(91)
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which is strictly increasing and concave in σj since c1 > 0 and ν > 1. When two active DSSs

exist, the best response curve (91) intersects with the 45-degree line at σF = σI = σ∗ and

σF = σI = σ∗∗ with 0 < σ∗ < σ∗∗ <
√

1− φ−ψ. Due to strict concavity, we have dσi
dσj
|σi=σj=σ∗> 1

and dσi
dσj
|σi=σj=σ∗∗< 1. Therefore, the active Nash equilibrium at σF = σI = σ∗ is unstable, while

the one at σF = σI = σ∗∗ is stable.

Finally, consider the case when the passive DSS and one active DSS exist, where σF = σI = σ∗

and 0 < σ∗ <
√

1− φ− ψ. Since the passive DSS exists, the inequality c0 > β (1− δ)ψ∆TSpas

holds. In addition, we have that ∆TSact < ∆TSpas, which results from equations (70) and

(71). We also have that c0 > β (1− δ)ψ∆TSact. So σi (σj) = 0 in the active DSS for σj ∈ [0, σ̂]

with σ̂ = c0
β(1−δ)∆TSact − ψ. Since σF = σI = σ∗ is the only intersection between σi (σj) and the

45-degree line in the range σj ∈ [σ̂, σ∗] with σi (σ̂) = 0, we must have dσi
dσj
|σi=σj=σ∗> 1. Thus,

the active Nash equilibrium at σF = σI = σ∗ is unstable.

D Model solution

In this appendix, we outline the algorithm to solve the model numerically.

D.1 Solution without government spending

We first discuss the solution to the benchmark case with sectoral symmetry without government

spending. The vector of state variables is: St = (zt, ξt, ιt−1, ut, nt, ñt), where we omit the sector

subscripts. At the beginning of period t, St is taken as given. The states zt and ξt are exogenous,

and the states ιt−1, ut, nt, and ñt are endogenous and predetermined. To derive the solution

of the system, we require the value functions TSJV (St), and T̃ S (St); two policy functions

σ (St), and θ (St); and the transition rule of ιt = ι (ιt−1, St). The transition rule for the other

endogenous states (ut, nt and ñt) is directly given by the model once the other functions have

been found.

Because of sectoral symmetry, θ̃t = ñF,t/ñI,t = 1. As we will show below, a fixed θ̃ implies

that the value functions, policy functions, and the transition rule for ιt depend on (zt, ξt, ιt−1)

only.
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Step 1: Solve for TSJV , σ and ι. Equation (62) can be rewritten as:

TSJV (zt, ξt, ιt−1) = min
σt≥0

τ · [zt + 2c (σt)] + β
{(

1− δ − δ̃
)
− (1− δ) [φ+ (ψ + σt) (ψ + σt)]

}
∗ ξtEt [TSJV (zt+1, ξt+1, ιt)] , (92)

where σt is the search intensity in the opposite sector, taken as given by the firms. In the

symmetric equilibrium, σt = σt.

The equilibrium type ιt is determined by the best response functions implied by equation (92)

and the history-dependence of equilibrium selection. Specifically, if ιt−1 = 0 (passive equilibrium

in period t− 1), we first verify whether the passive equilibrium continues to exist in period t by

checking whether:

arg min
σt≥0

2c (σt)− β̃ [φ+ (ψ + σt)ψ] ξtEt [TSJV (zt+1, ξt+1, ιt = 0)] = 0 (93)

holds. If it does, the passive equilibrium exists and persists (i.e., ιt = ιt−1 = 0). Otherwise, the

passive equilibrium fails to exist and the active equilibrium is selected (i.e., ιt = 1).

Analogously, if ιt−1 = 1 (active equilibrium in period t− 1), we verify whether the active

equilibrium continues to exist in period t by checking whether:

arg min
σt≥0

2c (σt)− β̃ [φ+ (ψ + σt) (ψ + σ∗)] ξtEt [TSJV (zt+1, ξt+1, ιt = 1)] > 0 (94)

holds. If it does, the active equilibrium exists and persists (i.e., ιt = ιt−1 = 1). Otherwise, the

active equilibrium fails to exist and the passive equilibrium is selected (i.e., ιt = 0).

We use value function iteration methods to solve for the value function TSJV , the policy

function σ and the transition rule of ι using equation (92) and conditions (93) and (94).

Step 2: Solve for T̃ S and θ. Equation (54) can be rewritten as:

T̃ S (zt, ξt, ιt−1) = −h− c (σt) + βξtEt

 (1− δ)πt∆TS (zt+1, ξt+1, ιt) +

((1− δ)− (1− τ) θα (zt, ξt, ιt−1)) T̃ S (zt+1, ξt+1, ιt)

 , (95)

where we used ∆TSt+1 = TSt+1 − T̃ St+1 and µt = θαt .
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The free-entry condition of the labor market (equation 49) can be rewritten as:

χ = βξtτθ
α−1 (zt, ξt, ιt−1)Et

[
T̃ S (zt+1, ξt+1, ιt)

]
. (96)

With ∆TSt = τ̃TSJVt/τ , σt, and ιt being solved in step 1, we find the value function T̃ S

and the policy function θ with equations (95) and (96) by using value function iteration.

D.2 Solution with government spending

We consider now the case with government spending. This case is challenging to solve since,

in general, it implies sectoral asymmetry. The model’s vector of state variables is: St =(
zt, ξt, ε

G
t , ιt−1, u

F
t , u

I
t , n

F
t , n

I
t , n

G
t , ñ

F
t , ñ

I
t , ñ

G
t

)
. States zt, ξt, and εGt are exogenous, and states

ιt−1, u
F
t , u

I
t , n

F
t , n

I
t , n

G
t , ñ

F
t , ñ

I
t , and ñGt are endogenous. To derive the solution of the system, we

need the solution for the value functions TSJV (St), T̃ SF (St), and T̃ SI (St) (the other value

functions can be derived from these three value functions), the four policy functions σI (St),

σI (St), θI (St) and θF (St), and the transition rule of ιt = ι (ιt−1, St). The transition rule of the

other endogenous states is directly given by the model once the other functions have been found.

In the asymmetric case, the value functions, the policy functions, and the transition rule of

ιt depend on the entire vector of states St rather than a subset of St as in Appendix D.1. The

reason is that the measure of single firms
(
ñFt , ñ

I
t , ñ

G
t

)
determines the inter-firm market tightness

ratio θ̃t, which affects firms’ value and policy. In addition, the transition rule of
(
ñFt , ñ

I
t , ñ

G
t

)
depends on the

(
uFt , u

I
t , n

F
t , n

I
t , n

G
t

)
.

Given the high dimension of the state space, we simplify the model solution with a fore-

cast rule for θ̃ that only depends on a small number of state variables. This approach is

inspired by similar ideas in Krusell and Smith (1998). Intuitively, firms do not need to know(
uFt , u

I
t , n

F
t , n

I
t , n

G
t , ñ

F
t , ñ

I
t , ñ

G
t

)
to make decisions if the forecast rule is accurate, which greatly

reduces the dimension of the state space when solving the value and policy functions.

We choose the forecast rule:

log
(
θ̃t+1

)
=
(
aθ̃ + aθ̃,ιιt−1

)
log
(
θ̃t

)
+ (az + az,ιιt−1) log (zt)

+ (aξ + aξ,ιιt−1) log (ξt) + (aG + aG,ιιt−1) εGt , (97)

where A =
(
aθ̃, aθ̃,ι, az, az,ι, aξ, aξ,ι, aG, aG,ι

)
is the vector of coefficients to be determined.
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To do so, we proceed as follows:

Step 1: Initialize the algorithm. We initialize the forecast rule with some initial guess:

A(0) =
(
a

(0)

θ̃
, a

(0)

θ̃,ι
, a(0)

z , a(0)
z,ι , a

(0)
ξ , a

(0)
ξ,ι , a

(0)
G , a

(0)
G,ι

)
. (98)

Step 2: Solve for TSJV , σF , σI, and ι. Equation (62) can be rewritten as:

TSJV
(
zt, ξt, ε

G
t , ιt−1, θ̃t

)
= τ · zt + β

(
1− δ − δ̃

)
ξtEt

[
TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)]
(99)

+ min
σI,t

τ · c (σI,t)− β (1− δ) πI,tξtEt
[
τ̃TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)]
+ min

σF,t
τ · c (σF,t)− β (1− δ) πF,tξtEt

[
(1− τ̃)TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)]
,

where πI,t = [φ+ (ψ + σF,t) (ψ + σI,t)]H
(

1, θ̃t

)
, πF,t = [φ+ (ψ + σF,t) (ψ + σI,t)]H

(
1, θ̃t

)
,

log
(
θ̃t+1

)
=
(
a

(q)

θ̃
+ a

(q)

θ̃,ι
ιt−1

)
log
(
θ̃t

)
+
(
a(q)
z + a(q)

z,ι ιt−1

)
log (zt)

+
(
a

(q)
ξ + a

(q)
ξ,ι ιt−1

)
log (ξt) +

(
a

(q)
G + a

(q)
G,ιιt−1

)
εGt ,

and A(q) =
(
a

(q)

θ̃
, a

(q)

θ̃,ι
, a

(q)
z , a

(q)
z,ι , a

(q)
ξ , a

(q)
ξ,ι , a

(q)
G , a

(q)
G,ι

)
is the vector of coefficients of the forecast rule

in q-th iteration.

The equilibrium type ιt is determined by the best response functions implied by equation (92)

and the history-dependence of equilibrium selection. Specifically, if ιt−1 = 0 (passive equilibrium

in period t− 1), we verify whether the passive equilibrium still exists in the current period t,

i.e., ιt = 0, by checking whether:

arg min
σI,t≥0

c (σI,t)− β̃ [φ+ (ψ + σI,t)ψ] ξtEt
[
τ̃TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt = 0, θ̃t+1

)]
= 0

(100)

arg min
σF,t≥0

c (σF,t)− β̃ [φ+ (ψ + σF,t)ψ] ξtEt
[
(1− τ̃)TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt = 0, θ̃t+1

)]
= 0

(101)

hold. If these conditions hold, ιt = ιt−1 = 0. Otherwise, ιt = 1.

Analogously, if ιt−1 = 1 (active equilibrium in period t− 1), we verify whether the active
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equilibrium still exists in the current period, i.e., ιt = 1, by checking whether:

arg min
σI,t≥0

c (σI,t)− β̃ [φ+ (ψ + σI,t) (ψ + σF,t)] ξtEt
[
τ̃TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt = 1, θ̃t+1

)]
> 0

(102)

arg min
σF,t≥0

c (σF,t)− β̃ [φ+ (ψ + σI,t) (ψ + σF,t)] ξtEt
[
(1− τ̃)TSJV

(
zt+1, ξt+1, ε

G
t+1, ιt = 1, θ̃t+1

)]
> 0

(103)

hold. If these conditions hold, ιt = ιt−1 = 1. Otherwise, ιt = 0.

Given the forecast rule with A(q), we can solve for the value function TSJV , the policy

function σ, and the transition rule ι with equation (99) and conditions (100)-(103) using value

function iteration.

Step 3: Solve for T̃ S and θ. Equation (54) can be rewritten, for i ∈ {I, F}, as:

T̃ S
(
zt, ξt, ε

G
t , ιt−1, θ̃t

)
= −h− c (σi,t)

+ βξtEt


(1− δ) πi,t∆TS

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)
+(

(1− δ)− (1− τ) θαi

(
zt, ξt, ε

G
t , ιt−1, θ̃t

))
∗T̃ S

(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)
 , (104)

where we have used the fact that ∆TSi,t+1 = TSi,t+1 − T̃ Si,t+1 and µi,t = θαi,t.

We also have, for i ∈ {I, F}, the free-entry condition implied by equation (49):

χ = βξtτθ
α−1
i

(
zt, ξt, ε

G
t , ιt−1, θ̃t

)
Et
[
T̃ S
(
zt+1, ξt+1, ε

G
t+1, ιt, θ̃t+1

)]
. (105)

With ∆TSi,t, σI,t, σF,t and ιt being solved in step 2 (in particular, ∆TSt = τ̃TSJVt/τ), we

can solve for the value function T̃ Si,t and the policy function θi,t approximately with equations

(104) and (105) using value function iteration.

Step 4: Simulate the model. We simulate the model for 10,000 periods (disregarding the

first 2,000 as a burn-in) with random draws of
{
zt, ξt, ε

G
t

}
. Then, we compute the realized

equilibrium inter-firm market tightness ratio θ̃t.
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Step 5: Update the forecast rule. Based on the simulated data, we update the coefficient

of the forecast rule A(q) with A(q+1) using ordinary least squares. If A(q) and A(q+1) are sufficiently

close to each other, we stop the iteration. Otherwise, we return to step 2. The converged

forecasting rule explains the fluctuations of θ̃t well, with an R2 of 0.91.

E Mixed-strategy Nash equilibria

This appendix discusses the role of mixed-strategy Nash equilibria in our model. We first

establish the condition for the existence of a mixed-strategy Nash equilibrium in the DSS (the

case with stochastic shocks is similar, but more cumbersome to derive). Then, we argue that such

a mixed-strategy Nash equilibrium exists and is unique for the calibration in Section 5. However,

this mixed-strategy Nash equilibrium is unstable: a small deviation from the mixed-strategy

makes the system converge to the pure-strategy Nash equilibrium.

In a mixed-strategy setting, firms randomize their search intensity by choosing σ = 0 with

probability q and choosing σ = σ̂ with probability (1− q). The random choice is independent

across firms. Due to the law of large numbers, the average search intensity in both sectors

is σ = q · 0 + (1− q) σ̂. For a single firm, the inter-firm matching probability is given by

π (σ) = φ+ ψ (ψ + σ) (ψ + σ). In the mixed-strategy Nash equilibrium, the inter-firm matching

probability takes two values: π (0) = φ+ ψ (ψ + σ) and π (σ̂) = φ+ (ψ + σ̂) (ψ + σ).

A mixed-strategy Nash equilibrium consists of a tuple {q, σ̂} with σ̂ ∈
(
0,
√

1− φ− ψ
)

and

q ∈ (0, 1). The tuple {q, σ̂} implies that single firms are indifferent between choosing σ = 0 and

σ = σ̂, i.e., T̃ S (0) = T̃ S (σ̂). Since ∆TS (0) = TS − T̃ S (0) and ∆TS (σ̂) = TS − T̃ S (σ̂), it

holds that ∆TS (0) = ∆TS (σ̂). We denote ∆TS (0) = ∆TS (σ̂) = ∆TS.

According to equation (59):

∆TS = zsspss + β
[(

1− δ − δ̃
)
− (1− δ) π (0)

]
∆TS, (106)

where c (0) = 0. From equation (56), the single firm’s total surplus with zero search effort is:

T̃ S (0) = −h+ β
[
(1− δ)π (0) ∆TS + ((1− δ)− (1− τ) θα) T̃ S (0)

]
. (107)
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Analogously, the single firm’s total surplus by choosing σ̂ search effort satisfies:

T̃ S (σ̂) = −h− c (σ̂) + β
[
(1− δ) π (σ̂) ∆TS + ((1− δ)− (1− τ) θα) T̃ S (σ̂)

]
. (108)

Since T̃ S (0) = T̃ S (σ̂) in the mixed-strategy Nash equilibrium, combining equations (107)

and (108) delivers:

c (σ̂) = β (1− δ) (π (σ̂)− π (0)) ∆TS. (109)

Finally, according to the first-order condition for {σI,t, σF,t} in equation (67):

β (1− δ) (ψ + σ) ∆TS = c0 + c1σ̂
ν . (110)

In sum, we have three equations (i.e., equations (106), (109), and (110)) and three unknowns

(i.e., σ̂, q, ∆TS). The mixed-strategy Nash equilibrium exists if the system of equations has a

solution for the three unknowns. Using the calibration in Section 5, the mixed-strategy Nash

equilibrium is q = 0.3425, σ̂ = 0.0164, and ∆TS = 2.7417. The average search intensity σ is

(1− q)× σ̂ = 0.0107.

Figure 20: Best response in the mixed-strategy Nash equilibrium
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The left panel in Figure 20 displays the firm’s optimal search effort in sector F as a function

of σI . The firm chooses a positive search effort if σI > 0.0107 (i.e., for values to the right of the

vertical dashed line). The firm chooses a zero search effort if σI < 0.0107 (i.e., for values to the

left of the vertical dashed line). The firm is indifferent between choosing σ = 0.0164 and σ = 0

if σI = 0.0107 (i.e., if sector I uses the mixed-strategy qI = 0.3425, σ̂I = 0.0164).
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The right panel in Figure 20 plots σF as a function of σI . The firm chooses a positive search

effort if σI > 0.0107 (i.e., for values to the right of the vertical dashed line). The firm would

choose a zero search effort if σI < 0.0107 (i.e., for values to the left of the vertical dashed line).

If σI < 0.0107 (i.e., if sector I uses the mixed-strategy qI = 0.3425, σ̂I = 0.0164), a fraction

of 0.3425 firms chooses σ = 0, while the rest of the firms choose σ = 0.0164, which implies

σF = 0.0107 (i.e., the cross marker).

Figure 20 shows that the mixed-strategy Nash equilibrium is unstable: a decrease in σI

induces all firms in sector F to search with zero intensity and the system converges to the

pure-strategy Nash equilibrium with zero search intensity (i.e., passive equilibrium). Similarly,

an increase in σI induces all firms in sector F to search with positive intensity; hence, the

system converges to the pure-strategy Nash equilibrium with positive search intensity (i.e., active

equilibrium).

F Simulations based on shocks to productivity

In this appendix, we complete our discussion of the effects of technology shocks in the model.

Figure 21 plots the ergodic distribution of selected variables for the case where we only have

AR(1) shocks to technology, zt (for transparency, we eliminate the discount factor shocks). As

outlined in the paper, persistent exogenous disturbances to the technological process fail to

move the system to a different equilibrium, the equilibrium is always active, and the ergodic

distributions of the variables of interest are unimodal.

For completeness, in Figure 22, we plot the ergodic distribution of selected variables for the

case where we have both shocks to technology, zt and to the discount factor, ξt. We recover

bimodality, but this feature is induced by the shocks to ξt and their ability to switch equilibria.

The main effect of the shocks to productivity is to spread out the ergodic distribution in Figure

12 in the main text (only shocks to ξt) around its two modes.

Figure 23 shows the GIRFs to a range of persistent negative productivity shocks when the

economy starts from the active DSS. Negative productivity shocks are unable to generate a shift

in equilibrium even when their magnitude gets very large. In each case, the costly search intensity

falls after the productivity shock, and then gradually recovers. The effect of a productivity

shock on the labor market tightness ratio and the unemployment rate is also transitory. The

mechanism is that the gain of matching with a partner (TS − T̃ S) in the active equilibrium
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Figure 21: Ergodic distribution with AR(1) shocks to zt
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Figure 22: Ergodic distribution with i.i.d. shocks to ξt and AR(1) shocks
to zt
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is inelastic with the change in productivity. This result is similar to the intuition in Shimer

(2005), who points out that the gain of matching with a worker TS is inelastic with the change
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in productivity in a canonical DMP model. As a result, the existence condition for the active

equilibrium in equation (35) keeps holding: if we start at the active DSS, firms find it desirable

to search actively for a partner even when productivity is low.

Figure 23: GIRFs to a negative productivity shock
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We also experiment with permanent changes in productivity. In period t = 1, the economy

starts from the active DSS with positive search intensity, and in period t = 2 a permanent fall in

productivity hits the economy. This permanent shock may shift the equilibrium of the system

by affecting the expected gain of match Et(Ji,t+1 − J̃i,t+1). For example, in an economy in the

active equilibrium, a sufficiently large fall in zt decreases the expected gain from joint venture

formation and moves the system to the passive equilibrium.

We use the model to assess the magnitude of the fall in zt needed to move the system from

the active to the passive equilibrium. Figure 24 shows the GIRFs of selected variables to a 19%

(solid line), 23% (dashed line) and 35% (dot-dashed line) permanent decline in productivity

(zt), respectively. The first two shocks are unable to move the system to the active equilibrium

because the expected gain from inter-firm matching is relatively inelastic to permanent changes

in productivity. Productivity shocks induce J̃i,t+1 and Ji,t+1 to comove, leading to a weak

response of Et(Ji,t+1 − J̃i,t+1) to the shock. As we mentioned above, this finding is consistent

with Shimer (2005). In comparison, a sufficiently large productivity shock of 35% moves the

economy to the passive equilibrium with zero search intensity. This analysis suggests that a
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permanent productivity shock is unlikely to move the system between equilibria unless the shock

is massive.

Figure 24: GIRFs to a negative permanent productivity shock
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Note: Each panel shows the response of a variable to a permanent negative productivity shock (z) with
magnitudes of 0.19 (solid line), 0.23 (dashed line) and 0.35 (dot-dashed line).

G Volatility of shocks

Figure 25 plots the ergodic distribution of endogenous variables with i.i.d. shocks to ξ in the

case of high volatility. Figure 26 repeats the same exercise, but in the case of low volatility. In

both cases, we see the bimodal distributions that we discussed in the main text and the long

left tail of output when the volatility of ξt is high.
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Figure 25: Ergodic distribution with i.i.d. shocks to ξ, high volatility
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Figure 26: Ergodic distribution with i.i.d. shocks to ξ, low volatility
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H GIRFs to government spending shock in the active

equilibrium

This appendix studies the effect of government spending shocks when the economy starts from

the active equilibrium. Figure 27 shows the response in the level of selected variables to a 15%

(the solid line) and an 18% (the dashed line) government spending shock. Since the economy is

already in the active equilibrium, the effects of the fiscal expansion are limited and transitory.

Figure 27: GIRFs to positive government spending shock in the active
equilibrium
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Note: Each panel shows the response of a variable to a one-period 15% (solid line) and 18% (dashed
line) increase in government spending.
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