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1 Introduction

This paper analyzes the effects of model uncertainty on the design of optimal policy. Uncer-

tainty is pervasive, hard to quantify and difficult to act upon. Economic agents (households or

firms) and policymakers acknowledge that. They recognize that their probability models may be

misspecified and are cautious towards this model uncertainty or ambiguity. In this paper, I put

both the policymaker and the economic agents on equal footing and allow them to exhibit fears

of model misspecification. I lay down the general methodology of setting up policy problems

with model uncertainty and study the main forces that emerge.

I study policy under commitment and I allow both the Stackelberg leader and the follower to

have fears of misspecification about the probability model of exogenous uncertainty. I use the

multiplier preferences of Hansen and Sargent (2001) to express aversion to model ambiguity. In

order to illustrate the methodology, I use two separate environments: a) a microeconomic setup

of an industry where a large firm faces a competitive fringe a) a macroeconomic setup where a

government chooses optimally how to tax the labor income of the representative consumer in

order to finance a stream of exogenous government expenditures.

Each of the two environments has its own advantages. The industry problem is sufficiently

rich to have both backward-looking and forward-looking constraints. Additionally, this setup

allows us to have a richer representation of the pessimistic beliefs that agents form: these

beliefs may differ due to either different attitude towards model ambiguity or to different return

(profit) functions. The industry problem has also the typical structure of standard monetary

policy problems and makes contact also with the industrial organization and demand uncertainty

literature.

Turning to the fiscal policy problem, its usefulness lies in two separate aspects: first, it

allows to show explicitly how to introduce doubts about the model for both the policymaker and

the private sector in a general equilibrium economy. Second, it permits the natural distinction

between the case of a benevolent planner, who adopts the welfare criterion of the representative

household, and the case of a paternalistic government, which may doubt the model more or less

than the household. This freedom in forming the criterion of the policymaker is welcome because,

in an environment with subjective uncertainty, it is not clear anymore what the normative welfare

criterion should be.

When there is model ambiguity, each of the economy participants forms cautious beliefs

based on their objective criterion. A cautious large or competitive firm assigns high probability

on low profitability events. Similarly, a government and a representative household assign high

probability on low utility events, which are typically associated with high, non-utility providing

spending shocks. Aside from this obvious pessimism, there is an additional angle in optimal

policy problems, coming from the fact that the worst-case beliefs of the follower are endogenous.

2



As a result, they can be affected, or ‘managed’ to the benefits of the leader.

To see that, consider the general methodology of the optimal policy problem under commit-

ment. The follower (the competitive fringe or the representative household) tilts its probability

assessments towards events with low profitability or low utility. Worst-case beliefs affect the be-

havior of the follower and determine equilibrium objects. In the industry application, pessimistic

price forecasts determine the quantity produced by the competitive fringe, and therefore, the

prevailing equilibrium price. In the fiscal policy problem, pessimistic evaluations of contingencies

determine the price of state-contingent debt and therefore the tradeoffs between taxing today

versus issuing debt.

The leader (large firm or government) understands that these cautious forecasts depend on

endogenous objects (profits or utility), and therefore uses its instruments (quantity of the pro-

duced good or the labor tax) to properly affect the evolution of profits or utility of the follower.

The pessimistic expectation management takes different forms depending on the application:

in the industry problem, the large firm has an incentive to make the competitive fringe enter-

tain pessimistic forecasts of demand shocks. Such forecasts lead to reduced fringe production,

allowing larger profits for the large firm. Thus, the large firm has an incentive to amplify the

pessimism of the fringe. In the optimal taxation application, this result is reversed. The govern-

ment has an incentive to make new debt cheaper, since this relaxes the government budget and

allows lower tax rates in the current period. Exactly because the government sells debt against

good times, it has an incentive to increase revenue from debt issuance by making the price of

debt against good times higher. This is achieved by making the pessimistic household assign

a higher probability on good times. Thus, the government is trying to mitigate the inherent

pessimism of the household in order to manipulate properly the price of government debt.

Lastly, the worst-case beliefs of the leader and his disagreement with the follower form an

independent channel of influence on optimal policy. This can be seen in a transparent way in

the optimal taxation problem of the second part of the paper. In the case of a paternalistic

government, the ratio of worst-case beliefs of the household and the government plays an inde-

pendent role in the design of policy. Depending on the strength of the relative pessimism of the

government versus the household’s, paternalism can act either in the same direction with, or in

the opposite direction to the management of the pessimistic expectations of the follower.

1.1 Related literature

In this section I want to pay tribute to the intellectual ancestors of the current paper. Model

uncertainty and robustness concerns have played a major role in thinking about policy, especially

monetary policy.

Most previous work has focused on fears of model misspecification on the side of the poli-

cymaker. An example among the earliest conributions is Tetlow and von zur Muehlen (2001),
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who study the effects of unstructured and structured misspecifications on the design of policy

rules and address the question of aggressive or attenuated policy responses in light of model

uncertainty. Barlevy (2009) and Barlevy (2011) delve further into these issues. Tetlow (2015)

puts us in the shoes of an actual policymaker and studies the robustness and performance of

various policy rules in forty-six vintages of the FRB/US model of the Federal Reserve. Giannoni

(2002) analyzes robust Taylor rules and Giannoni (2007) deals with both shock and parameter

uncertainty. Cogley et al. (2008) deals with the intriguing issue of robustness and the motives

for learning and experimentation in U.S. policy.1

I use the multiplier preferences of Hansen and Sargent (2001), that have been axiomatized

by Strzalecki (2011). Hansen and Sargent (2008) provide a textbook treatment of ambiguity

aversion and robustness. Hansen and Sargent (2012) clarify several concepts of a robust poli-

cymaker and propose a useful nomenclature in terms of three types of ambiguity.2 Kwon and

Miao (2017) operationalize the concepts of Hansen and Sargent (2012) in a discrete-time setup.

The papers mentioned in the previous paragraphs put aside the issue of model uncertainty of

the private sector. Turning into that, the price manipulation through the endogenous pessimistic

expectations of the household in the second part of the paper was first analyzed in Karantounias

(2013). In that paper, the policymaker had full confidence in the model, whereas the household

was afraid that the model is misspecified. Hansen and Sargent (2012) call this formulation type

0 ambiguity. The current paper, by introducing doubts about the model to both the leader and

the follower, nests and generalizes the analysis in Karantounias (2013). Using the ratio of the

worst-case beliefs as the relevant indicator of disagreement, it is explicitly shown that the price

manipulation through expectation management and the paternalistic incentives can act also in

the same direction, and not only in the opposite direction- which was the only outcome when

the government had full confidence in the model. Furthermore, a small-doubts approximation

is provided, furnishing novel analytical results about the behavior of tax rates and debt. The

analysis of the industry problem in the first part of the paper provides also a cautionary tale

against jumping to conclusions about expectation management; depending on the specifics of

the application, it may be optimal to amplify or mitigate the pessimistic expectations of the

follower.

Other relevant contributions are Ferrière and Karantounias (2019), who study distortionary

taxation and the design of utility-providing government consumption when there is ambigu-

ity about the business cycle, and Benigno and Paciello (2014), who study the implications of

ambiguity aversion of the representative consumer and the policymaker for the design of opti-

1Other contributions that are motivated by robustness concerns are Orphanides and Williams (2007) and
Ajello et al. (2019).

2The work of Dennis (2008) is relevant for type I ambiguity. Type II (and type 0) ambiguity is nested in the
current paper. Type III ambiguity reflects the approach of Woodford (2010). See further references in Hansen
and Sargent (2012).
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mal monetary policy. Michelacci and Paciello (2019) associate the credibility of the monetary

authority actions to the worst-case beliefs of a heterogenous private sector.

Orlik and Presno (2018) follow the type 0 ambiguity assumptions of Karantounias (2013)

and deviate from the commitment assumption by using the notion of sustainable plans. Luo

et al. (2014) use a standard ad hoc tax-smoothing model where the policymaker has model

uncertainty, and abstract from the general equilibrium determination of the price of government

debt.

Other applications of ambiguity aversion outside the realm of optimal policy are Benigno

and Nisticò (2012), who study optimal portfolio choice in open economies, Bidder and Smith

(2012), who estimate a model of ambiguity aversion with stochastic volatility, and Pouzo and

Presno (2016), who generate sovereign ambiguity premia. Croce et al. (2012) analyze positive

fiscal policy and ambiguity aversion, and Molavi (2019) constructs a general theory of learning

and misspecification. For another perspective, Christensen (2019) explores identification and

estimation of models of robust decision makers.

This paper uses the smooth multiplier preferences of Hansen and Sargent (2001) to analyze

optimal policy design. For an example of max-min expected utility see Ilut and Schneider (2014),

who analyze the implications of ambiguity aversion for business cycles. Lastly, several new

papers interpret survey evidence on expectations through the lens of ambiguity and worst-case

beliefs, strengthening the empirical plausibility of ambiguity aversion. Indicatively, Bhandari

et al. (2019) look at survey expectations of inflation and unemployment in the United States,

Michelacci and Paciello (2020) analyze inflation forecasts at the household level in the United

Kingdom, and Bachmann et al. (2020) provide survey evidence on multiple probability models

of German manufacturing firms.

1.2 Organization

The first part of the paper sets up a dynamic monopolist-competitive fringe Stackelberg game

with model uncertainty. Section 2 lays down the environment and section 3 analyzes the manage-

ment of the pessimistic expectations of the fringe. Similarly, the second part of the paper deals

with a classic macroeconomic policy problem. Section 4 describes the economy. Section 5 delves

into the fiscal policy problem, contrasts the mitigation of the pessimistic beliefs of the household

to the amplification of the fringe’s pessimism we found in section 3, and highlights the partic-

ular intricacies that paternalism may introduce in a Ramsey problem with model uncertainty.

Section 6 concludes. Appendices A and B provide further details on our two environments. A

separate Online Appendix provides the details of a small-doubts approximation that may be of

independent interest.
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2 A large firm facing a competitive fringe

We start the first part of the paper with a dynamic Stackelberg problem with linear-quadratic

functional assumptions. This is a classic example in Ljungqvist and Sargent (2004) and Hansen

and Sargent (2008), that is used to illustrate the optimal control of models with forward-looking

constraints.3 Given the linear-quadratic structure, the setup makes also contact with the optimal

monetary policy literature.

The setup consists of a large firm with market power, that faces a continuum of small

atomistic firms, which are price-takers. For the sake of brevity, we call the large player the

‘monopolist ’, and the (representative) small player the competitive fringe. Both agents produce

a single perishable good, whose demand is subject to shocks. Both agents share a reference

probability model of demand shocks, which could be misspecified. The reference model, which

does not necessarily have to be the true data-generating process, is described by an autoregressive

process of order 1,

vt = ρvt−1 + Cεεt, (1)

where Cε > 0 and v−1 = 0. The shock εt is i.i.d. with zero mean, unitary variance and a

reference density f(εt). Let εt ≡ (ε0, ..., εt) denote the partial history of demand shocks up to t.

The initial shock ε0 (and therefore v0) is given. The expectation operator E refers to integration

with respect to the reference probability model. The inverse demand function for the good is

linear and given by

pt(ε
t) = A0 − A1(Qt + q̄t) + vt(ε

t), (2)

where Ai > 0, i = 0, 1. Qt stands for the quantity of the monopolist, and q̄t for the quantity

that the competitive fringe produces in equilibrium. It is assumed that the choice of output is

made one period ahead, so the relevant quantity variables are pre-determined, that is, they are

measurable functions of the history εt−1, Qt = Qt(ε
t−1) and q̄t = q̄t(ε

t−1).

Monopolist. The cost structure of the monopolist is given by

3Ljungqvist and Sargent (2004) consider a situation of full confidence in the model by both the monopolist
and the competitive fringe (which corresponds to σR = σA = 0 in our notation). Hansen and Sargent (2008)
consider a situation where only the monopolist has doubts about the model (σR < 0, σA = 0). Here we allow for
both types of agents to exhibit fears of model misspecification, (σR < 0, σA < 0).
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CM
t = eQt(ε

t−1) +
1

2
gQ2

t (ε
t−1) +

1

2
cu2

t (ε
t) (3)

where ut(ε
t) ≡ Qt+1(εt)−Qt(ε

t−1), the change in output produced. Thus, the monopolist faces

quadratic adjustment costs, which introduce a dynamic dimension to the profit maximization

problem. This feature, together with the fact that Qt+1 is predetermined, make output act

effectively as capital. The period profits of the monopolist are given by

ΠM
t = pt(ε

t)Qt(ε
t−1)− CM

t . (4)

Competitive fringe. Turning to the competitive fringe, we let qt(ε
t−1) denote its output

choice. We differentiate in notation between q̄t and qt to capture the fact that the fringe is a

price-taker, and, as such, it ignores the effect of its production on prices. In equilibrium we have

qt = q̄t, and this a relationship that the monopolist, as a large player, understands and tries to

manipulate. The cost structure of the competitive fringe is similar to the monopolist’s,

CF
t = dqt(ε

t−1) +
1

2
hq2

t (ε
t−1) +

1

2
ci2t (ε

t), (5)

where it(ε
t) ≡ qt+1(εt)− qt(εt−1), the change in the respective output. The period profits of

the competitive fringe are

ΠF
t = pt(ε

t)qt(ε
t−1)− CF

t . (6)

The cost parameters are positive, d, h, e, g > 0. We let c ≥ 0 be non-negative to allow for

the possibility of zero adjustment costs (c = 0).

2.1 Competitive fringe and model uncertainty

Fear of model misspecification. The firm in the competitive fringe has doubts about the

reference probability model of demand shocks. Let ft(ε
t) denote the joint density of the history of

shocks εt. The firm is afraid that this density is misspecified and considers alternative probability

models. We follow Hansen and Sargent (2005) and take the alternative models to be absolutely

continuous with respect to the reference model over finite time intervals. This allows us to use the

Radon-Nikodym theorem and express these models as a non-negative random variable Mt(ε
t),

that is a measurable function of εt with EMt = 1. We set M0 ≡ 1, since uncertainty is realized

at t = 0. Mt has the interpretation of a change of measure and is a martingale with respect to
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the reference model, EtMt+1 = Mt. We can think of Mt as an unconditional likelihood ratio,

Mt(ε
t) =

fFt (εt)

ft(εt)
of an alternative density fFt to the reference density, and calculate expectations

with respect to the alternative measure as EF (Xt) = EMtXt, for a random variable Xt.

Furthermore, we can decompose Mt by defining mt+1(εt+1) ≡ Mt+1(εt+1)
Mt(εt)

, which we can think

of as the conditional likelihood ratio, i.e. the change in the conditional measure. The conditional

likelihood ratio has to integrate to unity, Etmt+1 = 1 in order to be a proper change of measure.

Aversion to model ambiguity. We use the multiplier preferences of Hansen and Sargent

(2001), axiomatized by Strzalecki (2011), to express the competitive fringe’s aversion to model

ambiguity:

min
{mt+1≥0,Mt≥0}

E0

∞∑
t=0

βtMtΠ
F
t + βθAE0

∞∑
t=0

βtMtεt(mt+1) (7)

subject to Mt+1 = mt+1Mt and Etmt+1 = 1, with M0 = 1 and 0 < θA ≤ ∞. The criterion (7)

uses relative entropy as a measure of discrepancies between distributions,

εt(mt+1) ≡ Etmt+1 lnmt+1. (8)

According to criterion (7), the cautious firm is calculating the present value of profits under

alternative probability models, and considers the worst-case scenario. The penalty parameter

θA penalizes deviations of the alternative model from the reference model in terms of discounted

relative entropy, and captures the fear of misspecification of the fringe. The “farther” the

alternative model is, the more it is penalized. Full confidence in the model is captured by

θA =∞. In that case, (7) collapses to a standard present value of profits criterion, which is the

case considered by Ljungqvist and Sargent (2004) and Hansen and Sargent (2008).

Problem 1. (‘Competitive fringe problem’)

The firm in the competitive fringe solves

max
{qt+1,ut}

min
{mt+1≥0,Mt≥0}

E0

∞∑
t=0

βtMtΠ
F
t + βθAE0

∞∑
t=0

βtMtεt(mt+1)

subject to
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qt+1 = qt + it, t ≥ 0 (9)

Mt+1 = mt+1Mt, t ≥ 0 (10)

Etmt+1 = 1, t ≥ 0, (11)

where (q0, v0) given and M0 ≡ 1. The reference model for the demand shock obeys (1) and prices

are given by the inverse demand function (2). Period costs and profits are given by (5) and (6)

respectively.

Worst-case beliefs. Let asterisks denote the worst-case beliefs of the competitive fringe that

solve the minimization problem in criterion (7). We have

m∗t+1 =
exp(σAVt+1)

Et exp(σAVt+1)
, t ≥ 0, (12)

where σA ≡ −1/θA ≤ 0 and Vt the cautious assessment of the fringe’s present value of profits.

Vt follows the recursion

Vt = ΠF
t + β[Etm

∗
t+1Vt+1 + θAεt(m

∗
t+1)],

which, after using (12), takes the familiar risk-sensitive form

Vt = ΠF
t +

β

σA
lnEt exp(σAVt+1). (13)

Thus, (12) implies that a cautious competitive fringe that doubts its probability model of

demand shocks (σA < 0), assigns high probability (relative to the reference model) on events

that have a low present value of profits Vt+1. Similarly, the fringe is assigning low probability

on events that have a high value of profits. Full confidence in the model (σA = 0) leads to

m∗t = M∗
t = 1,∀t, as expected.

Optimal quantity. The optimal choice of qt+1 is governed by the first-order condition

it = βc−1Etm
∗
t+1[pt+1 − (d+ hqt+1)] + βEtm

∗
t+1it+1, t ≥ 0. (14)

Recall that the competitive fringe is facing output adjustment costs. If there were zero

adjustment costs (c = 0), then (14) would reduce to
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Etm
∗
t+1pt+1 = d+ hqt+1 ≡MCF

t+1, (15)

that is, the fringe would equalize its static marginal cost (MCF
t+1) to the expected price under

its pessimistic beliefs, as we would expect in a competitive market where output is chosen one

period in advance.

Given positive adjustment costs, we can solve (14) forward to get

it = c−1Et

∞∑
j=1

βj
M∗

t+j

M∗
t

[pt+j −MCF
t+j] = c−1EF

t

∞∑
j=1

βj[pt+j −MCF
t+j] (16)

where M∗
t the respective worst-case unconditional likelihood ratio, and EF

t shorthand for the

conditional expectation operator according to the fringe’s worst-case beliefs. Consequently, (16)

instructs us that the change in output is proportional to the pessimistic expected present value

of all future prices minus the respective marginal costs. High expectations of future prices or

low expectations of future marginal costs make the fringe increase more its output for tomorrow

versus today.

Pessimistic expectation management? What is crucial to bear in mind is that the mo-

nopolist cares about the pessimistic price and marginal costs forecasts of the fringe, because

they determine the optimal competitive output choices through (14) or (16). But the quantity

produced by the fringe will affect equilibrium prices, and therefore it will affect the profits of

the monopolist. This is a standard mechanism that a Stackelberg leader takes into account.

In addition to that, the pessimistic beliefs of the competitive fringe are endogenous, since they

depend on the present value of profits Vt+1. This fact is novel in the analysis of the behavior of

the fringe and generates for the monopolist an incentive to manipulate the pessimistic expecta-

tions by its choice of its future quantities Qt+i, i ≥ 1. We will see in the next sections that the

monopolist will try to amplify the worst-case beliefs of the fringe, in order to reduce the fringe’s

price forecasts and limit therefore the quantity produced by the fringe.

2.2 Monopolist and model uncertainty

Monopolist’s alternative models. We use the same machinery as with the competitive

fringe in order to express the alternative models that the monopolist is considering. Let Nt(ε
t)

capture the change of measure of the monopolist, that is Nt is a non-negative random variable

with ENt = 1. Nt is a martingale with respect to the reference model, EtNt+1 = Nt and can be
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decomposed in terms of conditional likelihood ratios nt+1 that integrate to unity, Nt+1 = nt+1Nt,

with Etnt+1 = 1 and the normalization N0 ≡ 1.

Evaluation of monopolist’s profits. The monopolist’s objective is

min
{nt+1≥0,Nt≥0}

E0

∞∑
t=0

βtNtΠ
M
t + βθRE0

∞∑
t=0

βtNtεt(nt+1) (17)

subject to Nt+1 = nt+1Nt and Etnt+1 = 1, with N0 ≡ 1 and 0 < θR ≤ ∞. The penalty parameter

θR depicts the confidence of the monopolist in the model. Lack of doubts about the model is

captured by setting θR =∞.4

The monopolist acts as a Stackelberg leader that maximizes under commitment profits at

t = 0, subject to the best responses of the competitive fringe, and the inverse demand schedule.

The monopolist understands how prices are affected by his output choices and the choices of

the fringe in the inverse demand function (2), so he understands that q̄t = qt in equilibrium. By

choosing a plan of quantities {Qt+1(εt), ut(ε
t)}, the monopolist is affecting equilibrium prices,

and therefore, profits Vt+1(εt+1), worst-case beliefs m∗t+1(εt+1), and quantity choices of the fringe

(q̄t+1(εt), it(ε
t)). The problem of the monopolist takes the following form.

Problem 2. (‘Monopolist problem’)

The large firm solves

max
{Qt+1,ut,q̄t+1,it,m∗

t+1,Vt}
min

{nt+1≥>0,Nt≥0}
E0

∞∑
t=0

βtNtΠ
M
t + βθRE0

∞∑
t=0

βtNtεt(nt+1)

4Anticipating the second part of the paper, where a ‘Ramsey’ policymaker - leader faces as a follower a
representative ‘agent’, we use throughout the paper the subscripts R and A for the penalty parameters of the
leader and the follower.
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subject to

Qt+1 = Qt + ut, t ≥ 0 (18)

q̄t+1 = q̄t + it, t ≥ 0 (19)

it = βc−1Etm
∗
t+1

[
pt+1 − (d+ hq̄t+1)

]
+ βEtm

∗
t+1it+1, t ≥ 0 (20)

m∗t+1 =
exp(σAVt+1)

Et exp(σAVt+1)
, t ≥ 0 (21)

Vt = ΠF
t +

β

σA
lnEt exp(σAVt+1), t ≥ 1 (22)

Nt+1 = nt+1Nt, t ≥ 0 (23)

Etnt+1 = 1, (24)

where (Q0, q̄0, v0) given and N0 ≡ 1. The reference model for vt is the process in (1) and the

inverse demand function is given by (2). The profits of the monopolist and the fringe are given

by (4) and (6) respectively, by setting qt = q̄t.

The Stackelberg leader is facing two backward-looking constraints in terms of the predeter-

mined output choices, Qt+1 and q̄t+1, with laws of motion (18) and (19) respectively. As usual,

the monopolist has to take into account the forward-looking constraint that describes the best

responses of the fringe, as captured by (20). Nonetheless, the presence of the endogenous pes-

simistic beliefs m∗t+1 makes the monopolist take into account the evolution of the profits of the

fringe, in order to properly manage the pessimism of the competitive firm. This fact adds one

more forward-looking constraint, (22), in comparison to the analysis in Ljungqvist and Sargent

(2004) and Hansen and Sargent (2008).

Recursive formulation. Before we proceed to the analysis of the problem, it is useful to

make some comments on the recursive formulation of the problem under commitment. Due to

the forward-looking constraints, the commitment problem is not recursive in its natural state

variables (Qt, q̄t, vt). We follow Kydland and Prescott (1980) and augment properly the state

space in order to achieve such a formulation. We use the change in the fringe’s quantity it

and the “expected” profits of the fringe as the two pseudo-state variables that capture the

forward-looking constraints (20) and (22). The Appendix provides a detailed description and

the respective Bellman equation for the interested reader.

2.3 Analysis of the Stackelberg leader’s problem

Going back to the monopolist’s problem 2, we start with the formation of pessimistic beliefs.
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2.3.1 Worst-case beliefs of monopolist

The worst-case beliefs of the monopolist in problem 2 are captured by the conditional likelihood

ratio,

n∗t+1 =
exp(σRWt+1)

Et exp(σRWt+1)
, t ≥ 0 (25)

where σR ≡ −1/θR ≤ 0. Wt stands for the conservative evaluation of the present value of

the monopolist’s profits. As usual, using the same steps as with the profit recursion of the

competitive fringe, we get a risk-sensitive recursion for Wt,

Wt = ΠM
t +

β

σR
lnEt exp(σRWt+1). (26)

Similarly to the competitive fringe in (12), the monopolist assigns high probability on events

with a low present value of profits Wt+1. Lack of doubts (σR = 0) leads to n∗t = N∗t = 1∀t.
The worst-case beliefs of the monopolist and the competitive fringe may differ for two distinct

reasons. First, they may have a different attitude towards model ambiguity, as captured by σR

and σA. Second, the period profits ΠM
t and ΠF

t differ from each other; so even if σR = σA, the

worst-case probability assessments can be different.

2.3.2 Optimal choice of quantities

Let ξ̃it(ε
t) denote the (normalized with the monopolist’s likelihood ratio N∗t ) multiplier on the

forward-looking constraint (20) that involves the change in the fringe’s output it. Similarly, let

ξ̃Vt (εt) denote the (normalized) multiplier on the fringe’s profits Vt, (22).5

Consider the optimal choice of the monopolist output, Qt+1. The first-order condition takes

the form

cut = βEtn
∗
t+1[

MRMt+1−MCMt+1︷ ︸︸ ︷
pt+1 − A1Qt+1 − (e+ gQt+1)] + βcEtn

∗
t+1ut+1

−βA1

[
c−1ξ̃it︸ ︷︷ ︸

direct effect on fringe’s reaction

+ q̄t+1Etn
∗
t+1ξ̃

V
t+1

]︸ ︷︷ ︸ .
indirect effect through fringe’s worst-case beliefs

(27)

Optimality condition (27) has a straightforward interpretation. To understand the first part

in the right-hand side of (27), eliminate the competitive fringe and consider a pure monopoly

5See the Appendix for the Lagrangian. Throughout the first part of the paper, the “tilde” notation regarding
a random variable Xt(ε

t) refers to a normalization by the monopolist’s worst-case likelihood ratio N∗t , X̃t ≡ Xt

N∗
t

.
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(so that ξ̃it = ξ̃Vt = 0 in (27)). Then, if there were no adjustment costs (c = 0), the monopolist

would produce so much so that the expected (under its worst-case scenario) marginal revenue

(MRM
t+1 ≡ pt+1 −A1Qt+1) would equal the expected static marginal cost (MCM

t+1 ≡ e+ gQt+1).

The monopolist would deviate partially from this rule, to the extent there were some adjustment

costs c > 0 and increase or decrease output according to the entire present value of differences

between future marginal revenues and costs, similarly to the dynamic choice of output by the

fringe in (16).

Turning to a situation with a competitive fringe, the ‘monopolist’ acts as a Stackelberg leader.

Thus, he takes into account that an increase in quantity reduces prices and therefore it reduces

the output produced by the fringe, as captured by (14) (or (15) when there are no adjustment

costs). The shadow value to the monopolist of this reduction of price is given by ξ̃it, which

multiplies the third term in the right-hand side of (27). But when beliefs are endogenous, the

monopolist has also to takes into account how an increase in Qt+1 affects them. A fall in prices

through an increase of monopoly output, reduces the profits of the fringe, for each realization of

the shock next period (recall that Qt+1 is pre-determined). This reduction in profits alters the

worst-case beliefs of the fringe, and bears an average shadow value of Etn
∗
t+1ξ̃

V
t+1, multiplied with

the quantity that the fringe produces, q̄t+1. This is the fourth term in the right-hand side of (27).

Consider now the optimal choice of the fringe’s output. Let λ̃q̄t denote the normalized mul-

tiplier on the law of motion of the fringe’s output (19). The optimality condition with respect

to q̄t+1 is given by

λ̃q̄t = −βA1Qt+1︸ ︷︷ ︸
reduction in monopolist’s profits

+ βEtn
∗
t+1λ̃

q̄
t+1 − βc−1(A1 + h)ξ̃it︸ ︷︷ ︸

reduction in p−MCF

+β Etn
∗
t+1ξ̃

V
t+1︸ ︷︷ ︸

belief manipulation

MRFt+1−MCFt+1︷ ︸︸ ︷[
pt+1 − A1q̄t+1 − (d+ hq̄t+1)

]
(28)

Condition (28) has a similar interpretation. An increase in q̄t+1 reduces the profits of the

monopolist through a reduction in prices (first term in the right-hand side of (28)). Furthermore,

this reduction in prices and the accompanied increase in marginal costs reduces the difference

between prices and marginal costs in the best response of the fringe, bearing shadow value of ξ̃it

(third term in the right-hand side of (28)). As before, a change in output q̄t+1 affects the fringe’s

marginal profits at t + 1, captured by the difference in the marginal revenue and marginal cost

(MRF −MCF ), and therefore, its worst-case beliefs, with an average shadow value measured

by the last term in (28).
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2.3.3 Law of motion of ξ̃it

Being the (normalized) multiplier on the best response of the competitive fringe (20), ξ̃it captures

the shadow value to the Stackelberg leader of the fringe’s pessimistic evaluation of the present

discounted value of differences between future prices and marginal costs, as seen in (16). The

first-order condition with respect to it is

ξ̃it = λ̃q̄t −citξ̃Vt︸ ︷︷ ︸
endogenous beliefs effect

+
m∗t
n∗t

ξ̃it−1︸︷︷︸
old promises

, (29)

with ξ̃i−1 ≡ 0. As usual, the initial value of the multiplier is zero, since at t = 0 there are no

output promises to be kept by the monopolist.

To interpret the condition, consider first the case where neither the monopolist nor the fringe

have fear of misspecification (σR = σA = 0), so that n∗t = m∗t = 1. Note also that if the fringe

has full confidence in the model, then the monopolist has no reason to keep track of the fringe’s

profits, so ξ̃Vt = 0. This is the prominent textbook case of Ljungqvist and Sargent (2004). Then,

(29) simplifies to

ξ̃it = λ̃q̄t + ξ̃it−1 (30)

and, therefore, the shadow value of it would just be the cumulative sum of all multipliers

λq̄t , ξ̃
i
t =

∑t
j=0 λ̃

q̄
j , a result of the commitment of the monopolist to the promises induced by the

forward-looking constraint (20). In other words, exactly because the monopolist commits to his

plan at t = 0, he takes into account that a change of the fringe’s output at time t (which has

shadow value λ̃q̄t ) will affect all the price forecasts of a forward-looking competitive fringe up

to time t. Turning now model uncertainty on (σR < 0, σA < 0), in addition to the standard

commitment to old promises that we analyzed, the monopolist has also to take into account that

an increase in it reduces the profits of the fringe and, therefore, it affects its worst-case beliefs.

This effect is captured by the term citξ̃
V
t in (29).

What if only the monopolist has doubts about the model (σR < 0, σA = 0)? Hansen and

Sargent (2012) call this case type II ambiguity. The law of motion of ξ̃it would take the form

ξ̃it = λ̃q̄t +
1

n∗t
ξ̃it−1, ξ̃

i
−1 ≡ 0. (31)

In that case, even if the multiplier ξ̃Vt on the profits of the fringe is vanishing, there is still a

non-linearity in the law of motion through the conditional likelihood ratio n∗t of the monopolist.
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This is the reason why there are no closed-form solutions even in the linear-quadratic case.6

3 Managing the pessimistic expectations of the fringe

Of central importance is ξ̃Vt , the multiplier that captures the shadow value (to the monopolist)

of the fringe’s profits, to the extent they affect the pessimistic forecasts of future prices. As such,

it encapsulates how the monopolist manages the worst-case beliefs of the competitive firm.

The first-order condition with respect to the profits of the fringe Vt delivers

ξ̃Vt = σA
m∗t
n∗t

[µt − Et−1m
∗
tµt]︸ ︷︷ ︸

net value of reducing m∗
t

1

N∗t−1

+
m∗t
n∗t

ξ̃Vt−1︸︷︷︸
old promises

, t ≥ 1, (32)

where µt the multiplier on the worst-case conditional likelihood ratio of the fringe, (21). As

expected, when σA = 0 we have ξ̃Vt = 0. Furthermore, since uncertainty is realized at t = 0, the

shadow value of profits at t = 0 is zero, ξ̃V0 ≡ 0. Is it easy to see from (32) that ξ̃Vt generates

persistence to the optimal choices of the Stackelberg leader: ξ̃Vt is a martingale with respect to

the worst-case beliefs of the monopolist, Et−1n
∗
t ξ̃
V
t = ξ̃Vt−1, since Et−1m

∗
t (µt − Et−1m

∗
tµt) = 0.

Hence, the average value of ξ̃Vt is zero, EN∗t ξ̃
V
t = 0, and it can take both positive and negative

values.7

How does the monopolist manage the pessimistic expectations of the fringe? Consider an

increase in the profits of the fringe Vt. An increase in profits makes the pessimistic fringe assign

a lower conditional probability mass on εt, leading to a reduction in m∗t (σA < 0). The benefit

or cost of a reduction of m∗t is captured by the shadow value of m∗t , which is just the multiplier

µt. Moreover, a reduction in the conditional probability of εt leads necessarily to an increase in

the probabilities of the other nodes ε̂t 6= εt of the event tree, so that the total probability mass is

unity. This increase in the rest of the nodes has shadow value of Et−1m
∗
tµt, so the net effect of

increasing Vt is captured by σA(µt−Et−1m
∗
tµt) in (32). Note that a change in current profits Vt

affects the fringe’s evaluation of the present value of profits in the periods preceding t (and thus

its worst-case scenarios the previous periods). Thus, as in the analysis of the law of motion of

ξ̃it in (29), the commitment of the monopolist makes him to take into account the shadow value

of its old promises, ξ̃Vt−1, in (32). In other words, ξ̃Vt cumulates the shadow value of changing all

the conditional likelihood ratios up to period t.

6This is so even if we make additional Gaussian assumptions on the reference model of the shock vt. Recall
that in the absence of model-uncertainty (σA = σR = 0) we have closed-form solutions, see for example Ljungqvist
and Sargent (2004). See Kwon and Miao (2017) for a general analysis of the three types of ambiguity of Hansen
and Sargent (2012) in a discrete-time setup.

7We can use the martingale result to replace Etn
∗
t+1ξ̃

V
t+1 with ξ̃Vt in (27).
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What is the shadow value of the likelihood ratio m∗t to the monopolist? The first-order

condition with respect to m∗t is

µt = [c−1Cεεt + it]ξ̃
i
t−1N

∗
t−1, t ≥ 1. (33)

Condition (33) is intuitive. An increase in m∗t at a particular shock means that the fringe

is putting higher conditional probability at εt. The benefit to the monopolist µt should be

associated with the size of εt (that has now higher probability mass) and the expected difference

of future prices and marginal costs, which determines the fringe’s best response it, as seen from

(16). The induced change of competitive output due to changes in the probability mass has

shadow value ξ̃it−1 to the monopolist.

Using (33), the law of motion of ξ̃Vt finally becomes

ξ̃Vt = σA
m∗t
n∗t

[
c−1Cε(εt − Et−1m

∗
t εt)︸ ︷︷ ︸

pt−Et−1m∗
t pt

+ (it − Et−1m
∗
t it)
]
ξ̃it−1 +

m∗t
n∗t
ξ̃Vt−1, ξ̃

V
0 ≡ 0. (34)

Define now

It ≡ c−1[pt −MCF
t ] + it = c−1Et

∞∑
j=0

βj
M∗

t+j

M∗
t

[pt+j −MCF
t+j]. (35)

It is the sum of the current difference of prices and marginal costs and the present value of future

differences in prices and marginal costs, it, as seen from (16). Thus, the “surprise” in It is

It − Et−1m
∗
t It = c−1Cε(εt − Et−1m

∗
t εt) + (it − Et−1m

∗
t it). (36)

Consequently, we can rewrite (34) as

ξ̃Vt = σA
m∗t
n∗t

[
It − Et−1m

∗
t It]ξ̃

i
t−1 +

m∗t
n∗t
ξ̃Vt−1, ξ̃

V
0 ≡ 0. (37)

Therefore, the increment to the martingale ξ̃Vt depends on the “news” (under the fringe’s

worst-case measure) in It. The news can be further decomposed as “news” in the present value

of prices and “news” in the present value of marginal costs,
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It − Et−1m
∗
t It = c−1

[
(EF

t − EF
t−1)

∞∑
i=0

βipt+i︸ ︷︷ ︸
news in prices

− (EF
t − EF

t−1)
∞∑
i=0

βiMCF
t+i︸ ︷︷ ︸

news in marginal costs

]
. (38)

In order to dig deeper in the analysis, we need to understand the sign of ξ̃it, which gives us

information on how the monopolist wants to affect the quantity choice of the fringe. We consider

in the next section a situation with zero adjustment costs, that allows us to simplify the “news”

terms in (38) and to sign ξ̃it.

3.1 Zero adjustment costs

Let c = 0. The lack of adjustment costs allows us to discard (Qt, q̄t) as state variables, and

simplifies the problem by making only the one-period ahead price forecast matter.

In particular, recall from (15) that when there are no adjustment costs, the fringe is setting

its marginal cost equal to the worst-case expectation of future prices, Etm
∗
t+1pt+1 = d + hq̄t+1.

By using the inverse demand function (2), we can rewrite the optimality condition of the fringe

in terms of the equilibrium competitive quantity,

q̄t+1 =
A0 − d− A1Qt+1 + ρvt + CεEtm

∗
t+1εt+1

A1 + h
. (39)

The equilibrium reaction of the competitive fringe in (39) illuminates a direct and an indirect

effect of the monopolist’s actions on the quantity that the competitive fringe is producing. The

direct effect is the typical Stackelberg effect: an increase in Qt+1 reduces expected prices and

decreases therefore the quantity that the fringe is producing. The indirect effect comes from

the pessimistic forecasts of demand shocks, Etm
∗
t+1εt+1. An increase in expected demand leads

to an increase in the quantity that the fringe will produce according to (39). Since the fringe’s

expectations are endogenous, it is natural to conjecture that the monopolist has an incentive to

make the fringe more pessimistic; a low forecast of the demand shock makes the fringe produce

less, reducing its share in the market and allowing therefore the monopolist to increase its

quantity and profits. We will see that this is exactly the mechanism that emerges.

Proposition 1. (‘Zero adjustment costs’)

The monopolist’s problem for c = 0 is to choose {Qt+1, q̄t+1,m
∗
t+1, Vt} to maximize the worst-

case present value of profits (17) subject to the reaction function of the fringe, (15), the worst-case

beliefs of the fringe and its profit recursion (for c = 0), (21) and (22), the reference process for

the demand shock (1) and the inverse demand function (2), given initial values (Q0, q̄0, v0).
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• The optimality conditions with respect to (Q, q) are

Qt+1 : Etn
∗
t+1

[
pt+1 − A1Qt+1 − (e+ gQt+1)

]
− A1

[
ξ̃it + ξ̃Vt q̄t+1

]
= 0 (40)

q̄t+1 : −A1Qt+1 − (A1 + h)ξ̃it + Etn
∗
t+1ξ̃

V
t+1

[
pt+1 − A1q̄t+1 − (d+ hq̄t+1)

]
= 0 (41)

The worst-case likelihood ratio of the monopolist is determined by (25) and its profits by

the respective risk-sensitive recursion (26), for the case of zero adjustment costs.

• The shadow value of the conditional likelihood ratio m∗t is

µt = Cεεtξ̃
i
t−1N

∗
t−1. (42)

Hence, the law of motion of the martingale ξ̃Vt simplifies to

ξ̃Vt = σA
m∗t
n∗t
Cε(εt − Et−1m

∗
t εt)ξ̃

i
t−1 +

m∗t
n∗t
ξ̃Vt−1, ξ̃

V
0 ≡ 0. (43)

• When c = 0, the multiplier ξ̃it stands for the shadow value (to the monopolist) of the fringe’s

price forecast. Using (41) and (43) we can show that

ξ̃it = − A1

A1 + h− σAC2
ε V ar

F
t (εt+1)

[
Qt+1 + ξ̃Vt q̄t+1

]
, t ≥ 0, (44)

where V arFt (.) stands for the conditional variance according to the worst-case measure of

the fringe, V arFt (εt+1) ≡ Etm
∗
t+1(εt+1 − Etm∗t+1)2.

Proof. See the Appendix for the Lagrangian and the derivations. When c = 0, the dynamics of

ξ̃it are muted (recall the law of motion (29)), allowing us to focus on the dynamics of ξ̃Vt .

3.1.1 Build intuition: σA = 0

In order to build intuition, assume that the competitive fringe has no doubts about the model

(σA = 0), so that there is no belief management and ξ̃Vt = 0.8 In that case we have from (44)

8When c = 0 and σA = 0, the problem of the robust monopolist becomes a standard problem without forward-
looking constraints, since then the only expectation in the behavior of the fringe is exogenous and actually zero,
Etεt+1 = 0.
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ξ̃it = − A1

A1 + h
Qt+1 < 0. (45)

The fact that the multiplier is negative means that the monopolist has an incentive to reduce

the price forecast of the follower. This captures the shadow value of the direct effect that we

highlighted earlier. The reason is simple: a decrease in prices leads to a reduction in quantity

produced by the follower and therefore larger profits for the monopolist. The first-order condition

of the cautious monopolist (40) becomes

Etn
∗
t+1

[
pt+1 − A1Qt+1 − (e+ gQt+1)

]
− A1ξ̃

i
t = 0. (46)

As usual, the first term in the left-hand side denotes the expected marginal profit that

the monopolist is getting with an increase in quantity Qt+1. The second term in the left-

hand side denotes the Stackelberg benefit (since ξ̃it < 0) of increasing quantity. An increase in

quantity decreases prices and therefore the quantity produced by the follower. This mitigates

the reduction in prices than a given increase in Qt+1 has.

3.1.2 Amplifying worst-case beliefs

The sign of ξ̃it is important because it reveals whether the monopolist wants the fringe to increase

or decrease its price forecast. Going back to the case of σA < 0, we see from (44) that ξ̃it < 0

as long as ξ̃Vt is not “too” negative, ξ̃Vt > −Qt+1/q̄t+1. Recall that the multiplier ξ̃Vt takes both

positive and negative values with average value zero. The lower bound for a negative ξ̃Vt is not

too stringent as long as the ratio Qt+1/q̄t+1 is large enough, that is, as long as the monopolist

quantity is large relative to the competitive fringe quantity. Assume for the rest of the section

that ξ̃Vt > −Qt+1/q̄t+1, so that the monopolist benefits if the pessimistic price forecasts of the

fringe are reduced (ξ̃it < 0).

High and low demand shocks. What is the net effect of increasing m∗t , as captured by

µt − Et−1m
∗
tµt? Using (42), we see that µt − Et−1m

∗
tµt is negative in good times, i.e. when

demand shocks are above average, εt > Et−1m
∗
t εt, and µt − Et−1m

∗
tµt is positive in bad times,

i.e. when demand shocks are below average, εt < Et−1m
∗
t εt.

9 Hence, the monopolist wants to

decrease the probability mass that the pessimistic fringe is assigning on good times and he wants

to increase the probability mass that the fringe is assigning on bad times. But the pessimistic

fringe is either way assigning low probability on good times, where profits are high, and higher

9When we have positive adjustment costs, “good” times correspond to positive news in It (see (36) and (38)),
and “bad” times to negative news in It.
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probability on bad times, since profits are low. Thus, the monopolist is trying to amplify the

pessimistic beliefs of the competitive fringe. And the intuition is simple, as illuminated by

(39). A lower forecast of demand shocks leads to a smaller quantity by the fringe, allowing the

monopolist to have higher profits.

The monopolist twists the pessimistic beliefs of the competitive fringe by affecting the fringe’s

present value of profits Vt, which have shadow value ξ̃Vt . We summarize the implications of the

law of motion (43) in terms of a proposition.

Proposition 2. (‘Good versus bad times’) Assume without loss of generality that εt takes two

values εH > 0 > εL with mean value zero under the reference model. Let xt(i), i = H,L denote

the value of a variable when εt = εi, i = H,L.

a) Assume that ξ̃Vt−1 is at its average value, which is zero, ξ̃Vt−1 = 0. Then ξ̃Vt (H) > 0 > ξ̃Vt (L).

b) Assume that ξ̃Vt−1 > −Qt/q̄t and that (σR, σA) and the monopolist’s and fringe’s profits are

such so that m∗t (H) = n∗t (H). Then, ξ̃Vt (H) > ξ̃Vt−1 > ξ̃Vt (L).

Proof. We obviously have εH > Et−1m
∗
t εt > εL. a) When ξ̃Vt−1 = 0, we get from (44) that

ξ̃it−1 < 0. Thus, from (43) we get ξt(H) = σA
m∗
t (H)

n∗
t (H)

Cε[εH − Et−1m
∗
t εt]ξ̃

i
t−1 > 0 > ξ̃Vt (L) =

σA
m∗
t (L)

n∗
t (L)

Cε[εL − Et−1m
∗
t εt]ξ̃

i
t−1. b) (44) implies again that ξ̃it−1 < 0. Furthermore, since the

conditional likelihood ratios have to add to unity according to the reference measure, we have

m∗t (L) = n∗t (L). So the conditional belief ratios m∗t/n
∗
t in (43) become identically unity and the

result follows.

The proposition says that, starting from the unconditional average, the shadow value of

the fringe’s profits is positive in good times and negative in bad times. Or, more generally, if

there is not a lot of disagreement in the probabilistic assessment of contingencies between the

monopolist and the fringe, the shadow value of the fringe’s profits increases in good times and

decreases in bad times. This behavior of the multiplier has again to do with how the monopolist

amplifies the worst-case beliefs of the fringe. By increasing the profits of the fringe in good times

and decreasing the profits of the fringe in bad times, the competitive fringe tilts even more its

pessimistic assessments towards low demand shocks.

The instrument of the monopolist is its quantity, Qt+1, which is pre-determined, as we have

emphasized, Qt+1(εt). How does it change when the multiplier ξ̃Vt increases (as in good times)?

Proposition 3 gives a partial answer.

Proposition 3. Keep the conditional worst-case moments Etm
∗
t+1εt+1, Etn

∗
t+1εt+1 and V arFt (εt+1)

constant. Then:
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• An increase in ξ̃Vt decreases the monopolist’s quantity at t + 1 and increases the fringe’s

quantity,

∂Qt+1

∂ξ̃Vt
|moments const. < 0

∂q̄t+1

∂ξ̃Vt
|moments const. > 0.

• An increase in ξ̃Vt reduces the total quantity produced for t+ 1, Qtotal
t+1 ≡ Qt+1 + q̄t+1,

∂Qtotal
t+1

∂ξ̃Vt
|moments const. < 0.

Proof. In the Appendix we show how, given the conditional moments of the monopolist and the

fringe at time t, we can solve for (Qt+1, q̄t+1) as a (non-linear) function of (ξ̃Vt , vt). We perform

then a ceteris-paribus exercise.

By choosing Qt+1(εt) for next period, the monopolist affects the current present value of the

fringe’s profits, Vt(ε
t) and therefore the current likelihood ratio m∗t . We expect that when ξ̃Vt

increases, the monopolist has an incentive to increase the fringe’s current profits in order to

induce the fringe to reduce the current likelihood ratio. And the monopolist can achieve that by

reducing Qt+1. This decrease in the monopolist’s quantity increases the expectation of future

competitive fringe profits, increasing therefore current profits Vt. And this reduction in quantity

induces also the fringe to produce more for next period (but not as much as to increase the total

quantity in the market). Proposition 3 confirms partially this intuition. Taking into account

also proposition 2, which shows how ξ̃Vt varies in good and bad times, we expect the monopolist

to decrease its quantity for next period in good times, and increase its quantity for next period

in bad times. The next section provides a simple illustration.

3.1.3 Illustration

Consider now a three-period example with zero adjustment costs. At t = 0 and at t = 2 there

is no uncertainty and the demand shock is zero, v0 = v2 = 0. At t = 1 the demand shock is

v1 = Cεε1. The shock ε1 has a reference distribution with zero mean and unitary variance. The

monopolist and the competitive fringe form at t = 0 a worst-case distribution of ε1, captured by

the changes of measure n∗1(ε1) and m∗1(ε1) respectively. The initial quantities (Q0, q̄0) are given.
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Figure 1: The top panels display the worst-case likelihood ratios of the monopolist and the fringe (the dotted
line depicts the full-confidence case, n∗1 = m∗1 = 1). The bottom panels contrast the respective worst-case
distributions to the reference distribution f , which has zero mean and unitary variance. See the Appendix for
the parametrization of the example.

Given the timing assumptions, (Q1, q̄1) are not random. Quantities at t = 2 are functions of ε1,

(Q2(ε1), q̄2(ε1)). The fringe’s behavior at t = 1 and at t = 2 is given by

Em∗1p1 = d+ hq̄1 (47)

p2(ε1) = d+ hq̄2(ε1),∀ε1. (48)

Similarly, the manipulation of the fringe’s beliefs is captured by the multiplier ξ̃V1 (ε1), that

takes positive and negative values in good and bad times respectively, signaling that the monop-

olist wants to increase the profits of the fringe in good times, and decrease them in bad times.

The Appendix provides the details of the exercise.

Worst-case beliefs. Figure 1 displays the worst-case conditional likelihood ratios and the

resulting worst-case distributions for the monopolist and the competitive fringe for σR = σA =

−0.02. As expected, the pessimistic monopolist and the competitive fringe assign higher prob-

ability mass on low demand shocks. Note that the competitive fringe is putting relatively more

mass than the monopolist on bad demand shocks, despite sharing the same value of the penalty
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Figure 2: The top panels are displaying the quantities of the monopolist (left) and the fringe (right) at t = 2.
The bottom left panel depicts the total quantity in the market, and the bottom right panel the resulting price.
The optimal quantities and prices are also contrasted to the quantities and induced prices that would prevail if
we had a ‘naive’ monopolist. The ‘naive’ quantities and prices at t = 2 are the same as the ones that would
prevail if σA = 0 and σR ≤ 0.

parameter σ (≡ −1/θ). This indicates that the profits of the fringe fall relatively more than the

profits of the monopolist in bad times.

Amplifying pessimism. We expect from Proposition 3 that the monopolist produces rela-

tively more in bad times (reducing the fringe’s profits), in order to make the fringe twist its

beliefs towards bad profits states. This is clearly displayed in figure 2. The monopolist is in-

creasing its quantity Q2(ε1) in bad times and decreases it in good times, leading to a relative

reduction of prices in bad times and, consequently, to a decrease of competitive fringe quantities

q̄2(ε1) in bad times (with a respective increase in good times). Note that if there were no doubts

about the model (σR = σA = 0), or if only the monopolist doubted the model and not the

fringe (σR < 0, σA = 0), the quantities at t = 2 for both the monopolist and the fringe would be

constant across shocks.10

A pessimistic fringe is cautious and assigns high probability mass on low demand shocks.

10This result is an outcome of the lack of persistence in the particular example and makes the contrast to the
case of model uncertainty even sharper. See the Appendix for further details.
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Figure 3: This graph contrasts the ‘naive’ worst-case beliefs of the fringe, that is, the beliefs that would emerge
if the monopolist was not recognizing that the beliefs of the fringe were endogenous, to the optimal ones that
entail expectation management (which were depicted in figure 1). The left panel depicts the likelihood ratios m∗1
and the right panel the worst-case distributions.

What part of these endogenous pessimistic beliefs is an outcome of the actual expectation man-

agement from the side of the Stackelberg leader? To answer this question, consider the following

thought experiment. Imagine that the monopolist did not recognize that the worst-case beliefs

of the fringe were endogenous, and that he followed a ‘naive’ (or passive) policy, i.e. a policy

that treated the fringe’s beliefs as exogenously given. This thought experiment amounts to a

‘belief-taking’ assumption and mutes the expectation management through the multiplier ξ̃Vt .

As a result, the monopolist would choose constant quantities across shocks, as figure 2 demon-

strates.11 Figure 3 contrasts the induced worst-case distribution of the fringe coming from the

‘naive’ policies to the optimal distribution that is stemming from the active expectation man-

agement, allowing us to see sharply the effects of pessimism per se versus the effects coming

from the pessimistic expectation management. Relative to the ‘naive’ beliefs, the optimal beliefs

assign a higher probability mass on low demand shocks. Consequently, the monopolist amplifies

the worst-case beliefs of the fringe, above and beyond the fringe’s inherent pessimism.

11The ‘naive’ quantities and prices at t = 2 in figure 2 are exactly the same as the ones that would prevail if
there was full confidence on the side of the fringe (σA = 0), and any confidence on the side of the monopolist,
σR ≤ 0. See the Appendix for details.
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4 An optimal taxation problem

In the second part of the paper we use as our laboratory the general equilibrium economy of

Lucas and Stokey (1983). We attribute fears of model misspecification to both the policymaker

(government) and the representative consumer (household). Drawing parallels with the first part

of the paper, the policymaker corresponds to the monopolist and the representative household

to the firm in the competitive fringe.

Time is discrete and the horizon is infinite. There is a single perishable good that can be

allocated to private consumption ct or government consumption gt. Government consumption

is exogenous, stochastic, takes finite or countable values, and does not provide any utility. A

linear production technology uses labor as input and converts one unit of labor to one unit of

good.

Let gt = (g0, ..., gt) denote the partial history of government expenditures up to time t. There

is a representative consumer that is endowed with one unit of time, works ht(g
t), enjoys leisure

lt(g
t) = 1− ht(gt) and consumes ct(g

t) at history gt for each t ≥ 0. The notation indicates that

the respective variables are measurable functions of gt. The resource constraint of the economy

reads

ct(g
t) + gt = ht(g

t). (49)

Markets are complete and competitive. Competition makes the real wage wt(g
t) = 1 for

all t ≥ 0 and any history gt. The government has no access to lump-sum taxes; instead it

finances its time t expenditures either by using a linear tax τt(g
t) on labor income or by issuing

state-contingent debt bt+1(gt+1, g
t) that is sold at price pt(gt+1, g

t) at history gt. This security

pays one unit of the consumption good if government expenditures are gt+1 next period and zero

otherwise. The one-period government budget constraint at t is

bt(g
t) + gt = τt(g

t)ht(g
t) +

∑
gt+1

pt(gt+1|gt)bt+1(gt+1, g
t). (50)

Equivalently, using the proper no-Ponzi game condition, we get the single intertemporal budget

constraint

b0 +
∞∑
t=0

∑
gt

qt(g
t)gt ≤

∞∑
t=0

∑
gt

qt(g
t)τt(g

t)ht(g
t), (51)

where qt(g
t) the history-contingent prices of Arrow-Debreu contracts trade at t = 0.12

12Note also that in order to avoid introducing new notation, we use pt and qt in a different way that in the
first part of the paper.
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4.1 Model misspecification

The representative consumer and the government share a reference probability model in terms

of a sequence of joint densities πt(g
t) over histories gt. The expectation operator with respect to

the reference model is denoted again by E. Uncertainty at t = 0 has been realized, so π0(g0) = 1.

Both the consumer and the government fear that the reference model is misspecified and consider

alternative probability models that are absolutely continuous with respect to the reference model

over finite time intervals. As in the first part of the paper, we use positive martingales in order

to express these alternative models. Moreover, we follow the same notation for the likelihood

ratios of the household-follower and the policymaker-leader as we did for the competitive fringe

and the monopolist respectively. So we have the following:

Representative consumer. The alternative models of the household can be expressed as a

non-negative random variable Mt, or else, likelihood ratio, with EMt = 1 and EtMt+1 = Mt.

The initial value is set to unity, M0 ≡ 1. The respective conditional likelihood ratio is mt+1 =

Mt+1/Mt with Etmt+1 = 1.

Government. The alternative models of the government are expressed as a non-negative ran-

dom variable Nt with ENt = 1 and N0 ≡ 1. The likelihood ratio Nt is a martingale with

respect to the reference model, so EtNt+1 = Nt. The respective conditional likelihood ratio is

nt+1 = Nt+1/Nt, with Etnt+1 = 1.

4.2 Ambiguity aversion

Both the consumer and the government are averse to model ambiguity. We represent this

aversion by using the multiplier preferences of Hansen and Sargent (2001) and Hansen et al.

(2006).

Representative consumer. The consumer ranks consumption and leisure plans using the

following criterion:

min
mt+1≥0,Mt≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Mt(g

t)U(ct(g
t), 1−ht(gt))+βθA

∞∑
t=0

βt
∑
gt

πt(g
t)Mt(g

t)εt
(
mt+1(gt+1)

)
,

(52)

subject to Etmt+1 = 1 and Mt+1 = mt+1Mt, with M0 = 1 and 0 < θA ≤ ∞. The period

utility U(ct, 1 − ht) satisfies the typical monotonicity and concavity assumptions. The positive

parameter θA is a penalty parameter that measures fear of model misspecification.
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According to (52), the representative household evaluates expected utility under the alter-

native probability models, as captured by Mt, and shows its aversion to model ambiguity by

considering the model that furnishes the worst utility. Deviations from the reference model are

penalized in terms of a measure of discounted relative entropy. Higher values of the parameter

θA represent more confidence in the reference model πt. Full confidence is captured by θA =∞,

which reduces the above preferences to the expected utility preferences of the Lucas and Stokey

household.

Government. The government’s preferences are described by

min
nt+1≥0,Nt≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Nt(g

t)U(ct(g
t), 1− ht(gt)) + βθR

∞∑
t=0

βt
∑
gt

πt(g
t)Nt(g

t)εt
(
nt+1(gt+1)

)
,(53)

subject to Etnt+1 = 1 and Nt+1 = nt+1Nt, with N0 = 1 and 0 < θR ≤ ∞. Similarly, θR

captures the policymaker’s confidence in the reference probability model.

If θR = θA, then the policymaker becomes a “benevolent” planner that adopts the preferences

of the household. This is in contrast to the first part of the paper, where equality of the penalty

parameters θi, i = R,A was not sufficient to equalize the objectives of the monopolist and

the competitive fringe, since the return functions were different. In the case of θR 6= θA, the

policymaker exhibits paternalism, that is, he imposes his own evaluation of the utility that the

household is deriving from a stochastic stream of consumption and leisure. We don’t take a

stance on the criterion of the government and we allow the policymaker to doubt the model less

(θR > θA), the same (θR = θA), or more than the household (θR < θA).

4.3 The representative household’s problem

The problem of the consumer is

max
ct,ht

min
Mt≥0,mt+1≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Mt(g

t)
[
U(ct(g

t), 1− ht(gt))

+θAβ
∑
gt+1

πt+1(gt+1|gt)mt+1(gt+1) lnmt+1(gt+1)
]
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subject to

∞∑
t=0

∑
gt

qt(g
t)ct(g

t) ≤
∞∑
t=0

∑
gt

qt(g
t)(1− τt(gt))ht(gt) + b0 (54)

ct(g
t) ≥ 0, ht(g

t) ∈ [0, 1]∀t, gt (55)

Mt+1(gt+1) = mt+1(gt+1)Mt(g
t),M0 = 1∀t, gt (56)∑

gt+1

πt+1(gt+1|gt)mt+1(gt+1) = 1, ∀t, gt (57)

Inequality (54) is the intertemporal budget constraint of the household. The right side is the

discounted present value of after-tax labor income plus an initial asset position b0 that can

assume positive (denoting government debt) or negative (denoting government assets) values.

4.4 Worst-case beliefs

The optimal conditional likelihood ratio takes the familiar exponentially twisting form:

m∗t+1(gt+1) =
exp

(
−Vt+1(gt+1)

θA

)
∑

gt+1
πt+1(gt+1|gt) exp

(
−Vt+1(gt+1)

θA

) , all t ≥ 0, gt (58)

where the asterisks denote optimal values from the minimization problem and Vt is the house-

hold’s utility under the worst-case measure, which, as in the first part of the paper, follows the

risk-sensitive recursion

Vt = U(ct, 1− ht) +
β

σA
lnEt(exp(σAVt+1)), (59)

where σA ≡ −1/θA ≤ 0. Equation (58) summarizes how a cautious household forms pessimistic

beliefs. The household assigns high probability (relative to the reference model) to events with

low continuation utilities Vt+1, and low probability to events with high utility Vt+1.

Lastly, the law of motion in (56) becomes

M∗
t+1 =

exp
(
σAVt+1(gt+1)

)∑
gt+1

πt+1(gt+1|gt) exp
(
σAVt+1(gt+1)

)M∗
t , M0 ≡ 1. (60)

4.5 Labor supply, asset choice and equilibrium

The labor supply of the household is determined by equalizing the marginal rate of substitution

between consumption and leisure to the after-tax wage,
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Ul(g
t)

Uc(gt)
= 1− τt(gt). (61)

The asset choice of the household is determined by condition

qt(g
t) = βtπt(g

t)M∗
t (gt)

Uc(g
t)

Uc(g0)
, (62)

which equalizes the intertemporal rate of substitution between consumption at time t and con-

sumption at the initial period to the price of an Arrow-Debreu contract. The price at t = 0 is

normalized to unity, q0 = 1. Similarly, the optimality condition when there is trade in state-

contingent Arrow securities is

pt(gt+1, g
t) = βπt+1(gt+1|gt)

exp
(
σAVt+1(gt+1)

)∑
gt+1

πt+1(gt+1|gt) exp
(
σAVt+1(gt+1)

)︸ ︷︷ ︸
m∗
t+1

Uc(g
t+1)

Uc(gt)
. (63)

The expression for the equilibrium price of a state-contingent claim (63) involves the ratio

of marginal utilities, and, most importantly, the pessimistic evaluation of the likelihood of the

particular contingency, m∗t+1, which depends on continuation utilities. By affecting utility, the

policymaker’s choices influence the household’s worst-case beliefs and ultimately the equilibrium

prices of government debt. This is the core of pessimistic expectation management in the second

part of the paper and a channel that was first analyzed in Karantounias (2013).

Definition 1. A competitive equilibrium is a consumption-labor allocation (c, h), distortions to

beliefs (m,M), a price system q, and a government policy (g, τ) such that (a) given (q, τ), (c, h)

and (m,M) solve the household’s problem, and (b) markets clear, so that ct(g
t)+gt = ht(g

t)∀t, gt.

5 Disagreement and pessimistic expectation management

We proceed now to the analysis of optimal fiscal policy. There are two forces that are prevalent

in the analysis: the discrepancy (if any) in the pessimistic beliefs of the leader-policymaker and

the follower-household, and the management of the endogenous pessimistic expectations of the

household. For the particular optimal taxation application, the discrepancy in the pessimistic

evaluations is related to the paternalism of the policymaker, whereas the pessimistic expectation

management is related, as in Karantounias (2013), to the manipulation of equilibrium prices of

state-contingent debt with the ultimate target to make debt issuance cheaper.

30



5.1 Fiscal policy problem

The government chooses taxes and state-contingent debt at t = 0 in order to maximize the

government’s welfare criterion (53). We use the primal approach of Lucas and Stokey (1983)

and posit a policymaker who chooses under commitment allocations subject to the resource

constraint (49) and implementability constraints imposed by the competitive equilibrium.

Problem 3. The government’s problem is

max
(c,h,M∗,V )

min
n,N≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Nt(g

t)
[
U
(
ct(g

t), 1− ht(gt)
)

+ βθRεt(nt+1)
]

subject to

∞∑
t=0

βt
∑
gt

πt(g
t)M∗

t (gt)[Uc(g
t)ct(g

t)− Ul(gt)ht(gt)] = Uc(g0)b0 (64)

ct(g
t) + gt = ht(g

t), ∀t, gt (65)

M∗
t+1(gt+1) =

exp (σAVt+1(gt+1))∑
gt+1

πt+1(gt+1|gt) exp (σAVt+1(gt+1))
M∗

t (gt),∀t, gt,M0(g0) ≡ 1, (66)

Vt(g
t) = U(ct(g

t), 1− ht(gt)) +
β

σA
ln
∑
gt+1

πt+1(gt+1|gt) exp
(
σAVt+1(gt+1)

)
,

∀t, gt, t ≥ 1 (67)

Nt+1(gt+1) = nt+1(gt+1)Nt(g
t), ∀t, gt, N0(g0) ≡ 1 (68)∑

gt+1

πt+1(gt+1|gt)nt+1(gt+1) = 1 (69)

Proof. The competitive equilibrium is characterized fully by the resource constraint, the house-

hold’s two Euler equations, the intertemporal budget constraint (54) (which holds with equality),

the law of motion of the household’s worst-case belief distortions (60), and the recursion for Vt in

(59), which helps determine the endogenous pessimistic beliefs. Use (61) and (62) to substitute

for prices and after-tax wages in the intertemporal budget constraint to obtain (64).

The presence of the household’s pessimistic beliefs in the implementability constraint (64)

contributes two additional implementability constraints to those already in Lucas and Stokey

(1983): the law of motion of the endogenous likelihood ratio M∗
t (66), and the household’s utility

recursion (67).

5.2 Disagreement

Government’s worst-case beliefs. The worst-case beliefs of the policymaker are given by

the optimality conditions of the minimization problem in problem 3. The optimal conditional
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likelihood ratio of the government takes the form

n∗t+1(gt+1) =
exp
(
−Wt+1(gt+1)

θR

)∑
gt+1

πt+1(gt+1|gt) exp
(
−Wt+1(gt+1)

θR

) (70)

with Wt following the recursion

Wt = U(ct, 1− ht) +
β

σR
lnEt exp(σRWt+1), (71)

where σR ≡ −1/θR. Wt+1 represents the conservative evaluation of the utility of the poli-

cymaker. As expected, the policymaker assigns higher probability to events that provide low

continuation utility Wt+1.

Belief ratio. The worst-case unconditional likelihood ratio of the policymaker has a law of

motion N∗t+1 = n∗t+1N
∗
t , N0 = 1. We can define the belief ratio Λt ≡ M∗

t /N
∗
t as the ratio of the

martingales M∗
t , N

∗
t . The belief ratio follows law of motion

Λt =
m∗t
n∗t
· Λt−1 =

exp(σAVt+1)/Et exp(σAVt+1)

exp(σRWt+1)/Et exp(σRWt+1)
· Λt−1, t ≥ 1 (72)

with Λ0 ≡ 1, and Vt and Wt following recursions (59) and (71) respectively. The ratio Λt captures

the disagreement that the household and the policymaker express about the likelihood of a

particular contingency. A high Λt at a history gt denotes a contingency on which the pessimistic

household assigns a higher probability than the policymaker. Similarly, if Λt is low, then the

policymaker assigns a higher probability than the household. The disagreement in beliefs matters

because it implies a different welfare ranking of competitive equilibrium allocations. Note that

if θR = θA, recursion (71) becomes the same as the utility recursion (59) for the representative

household and therefore, we have Wt = Vt and N∗t = M∗
t . The belief ratio becomes then

identically unity, Λt(g
t) = 1, ∀t, gt.

5.3 Optimal tax rate

To see the forces of paternalism and pessimistic expectation management, we have to consider

the optimal tax rate.

Proposition 4. (‘Optimal tax rate’)

Assume that initial assets are not large enough to finance spending without resorting to

distortionary taxation and let Φ > 0 denote the multiplier on the implementability constraint
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(64). Let ξ̃t denote the (normalized with the policymaker’s likelihood ratio N∗t ) multiplier on the

household’s utility recursion (67) in problem 3.

• The optimal tax rate for t ≥ 1 is

τt =
ΦΛt(εcc,t + εch,t + εhh,t + εhc,t)

1 + ξ̃t + ΦΛt(1 + εhh,t + εhc,t)
(73)

where εcc,t ≡ −Uccct/Uc, εch,t ≡ Uclht/Uc, εhh,t ≡ −Ullht/Ul and εhc,t ≡ Uclct/Ul, the own

and cross elasticities of the marginal utility of consumption and the marginal disutility of

labor respectively. If Ucl ≥ 0, then τt ≥ 0.

• Consider the following two examples:

1. (Power function in h) Let U(c, 1− h) = c1−γ−1
1−γ − ah

h1+φh
1+φh

. Then, (73) implies

τt =
ΦΛt(γ + φh)

1 + ξ̃t + ΦΛt(1 + φh)
. (74)

2. (Power function in l) Let U(c, l) = c1−γ−1
1−γ + al

l1−ψ−1
1−ψ . Then, (73) implies

τt =
ΦΛt(γ + ψ ht

1−ht )

1 + ξ̃t + ΦΛt(1 + ψ ht
1−ht )

. (75)

Proof. See the Appendix.

Shutting down doubts about the model (σR = σA = 0) delivers the classic Lucas and Stokey

(1983) environment. There is no room for the policymaker to manipulate the worst-case beliefs

of the household through continuation utilities, so ξ̃t = 0. Furthermore, with full confidence

in the model, we have N∗t = M∗
t = 1 so the belief ratio becomes identically unity, Λt = 1,∀t.

Any variation in the tax rate (73) is coming from variation in the curvature of the period utility

function, as captured by the elasticities εij, i, j = c, h. If these elasticities were constant, like in

example (74), we would have perfect tax-smoothing.

With ambiguity though (σR < 0, σA < 0), in addition to the elasticity channel, there is

variation in the tax rate coming from the management of the pessimistic expectations of the

household as captured by ξ̃t. Additionally, in the case of paternalism (σR 6= σA), there is further

action in the tax rate coming from the belief ratio Λt. We turn now to the analysis of these

mechanisms.
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5.4 Pessimistic expectation management

Let µt denote the multiplier of the law of motion of the household’s worst-case likelihood ratio

(66). The first-order condition with respect to Vt delivers the following law of motion for ξ̃t,

ξ̃t = σA
m∗t
n∗t

[µt − Et−1m
∗
tµt]Λt−1︸ ︷︷ ︸

value of reducing m∗
t

+
m∗t
n∗t
ξ̃t−1, t ≥ 1, ξ̃0 ≡ 0. (76)

Recall that the policymaker has no need to keep track of any utility promises at t = 0 (since

uncertainty is realized at t = 0), which explains why ξ̃0 = 0. It is easy to see that ξ̃t is a

martingale with respect to the worst-case beliefs of the policymaker πt · N∗t , Etn
∗
t+1ξ̃t+1 = ξ̃t, a

fact that induces persistence. So the mean value of the multiplier is zero, EN∗t ξ̃t = 0, and it can

take positive and negative values.

Notice the similarity of (76) with the respective law of motion of ξ̃Vt in the competitive fringe

application (32). As in the first part of the paper, the multiplier ξ̃t captures the management

of the pessimistic expectations of the follower; the representative household in the particular

economy. An increase in the household utility Vt makes the household tilt less its beliefs, reducing

m∗t , with a net effect of µt − Et−1m
∗
tµt. What is the benefit to the policymaker of an increase

or decrease of the likelihood ratio m∗t ? In the Appendix, we show that µt is proportional to the

debt position of the government, properly scaled with marginal utility,

µt(g
t) = ΦUc(g

t)bt(g
t). (77)

Using (77), we can rewrite (76) as

ξ̃t = σA
m∗t
n∗t

Φ
[
Uctbt − Et−1m

∗
tUctbt

]
Λt−1 +

m∗t
n∗t
ξ̃t−1. (78)

Moreover, if we shut down the paternalism of the government by setting σR = σA = σ̄, (78)

simplifies to

ξ̃t = σ̄Φ
[
Uctbt − Et−1m

∗
tUctbt

]
+ ξ̃t−1, (79)

since in that case the ratio of conditional and unconditional beliefs becomes unity,
m∗
t

n∗
t

= Λt =

1,∀t.
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Making debt cheaper. Equations (77) and (78) indicate that the policymaker wants to

increase the pessimistic likelihood ratio of the household (by decreasing Vt) at states of the

world against which he issues relatively high debt in marginal utility units, Uctbt > Et−1m
∗
tUctbt.

Similarly, the policymaker wants to decrease the likelihood ratio (by increasing Vt) at states of

the world against which he issues relatively low debt in marginal utility units (or buys assets),

Uctbt < Et−1m
∗
t bt. What is the mechanism here? By increasing m∗t , the policymaker makes

the equilibrium price of government debt higher, as seen in (63). This is beneficial when the

policymaker is selling debt, as seen in (77). In other words, the policymaker reduces effectively

the interest rate on the debt that he is selling, making debt cheaper. This relaxes the government

budget by increasing revenue from debt issuance and increases welfare. Recall though that

likelihood ratios are interconnected, since they have to integrate to unity, so the net effect of

decreasing Vt is captured by the relative debt position Uctbt−Et−1m
∗
tUctbt. In a similar manner,

when debt in marginal utility units is relatively low, the policymaker has an incentive to decrease

the likelihood ratio and decrease the price of the state-contingent claim that is bought. Thus,

the rate on the assets that the government acquires increases, relaxing the pressure on the

government budget.13

Tax rate and price manipulation. To see effectively the same mechanism in terms of the

tax rate, shut off paternalism (σR = σA = σ̄ < 0) and consider the evolution of the tax rate

in (79). For states of the world for which debt is relatively high (Uctbt > Et−1m
∗
tUctbt), ξ̃t falls,

ξ̃t < ξ̃t−1. A decrease in ξ̃t increases the tax rate, all else equal, as seen in (73). This is just

another manifestation of the price manipulation mechanism. The policymaker increases the

tax rate exactly at these states, against which it becomes cheaper to issue debt. Intuitively, by

increasing the tax rate for high-debt states, the policymaker reduces the utility of the household,

making it assign higher probability against these states, increasing therefore the price of debt

sold. Instead, for low-debt (or asset) states (Uctbt < Et−1m
∗
tUctbt), ξ̃t increases, ξ̃t > ξ̃t−1,

decreasing therefore the tax rate. So for low-debt states, the policymaker reduces the tax rate

and increases utility in order to reduce the current price of claims that he acquires.

Mitigating pessimism. The previous analysis did not associate the high or low debt states

of the world to the type of shocks they are associated with. Due to complete markets, we

expect that the government hedges fiscal shocks by issuing more debt against low spending

shocks (’good’ times), which is to be paid back by running surpluses, and by buying assets

against ‘bad’ times in order to insure against high government spending. So, following the price

manipulation logic, we expect that the government is making debt cheaper by increasing taxes

13With the exception of the government’s worst-case beliefs, the mechanism in this section is similar to Karan-
tounias (2013).
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Table 1: Summary of expectation management of the follower.

Environment Object determining Shadow value of Increase m∗t

beliefs increasing m∗t in

Large firm facing Present value of µt = Cεεtξ̃
i
t−1N

∗
t−1 ‘bad’ times

a competitive fringe profits ξ̃it < 0 (low εt)

Economy with Utility µt = ΦUctbt ‘good’ times

linear labor taxes Φ > 0 (low gt)

This table contrasts the pessimistic expectation management in the two environments of the paper (through
ξ̃Vt and ξ̃t respectively). For the industry problem, we are reporting here for simplicity only the case with
zero adjustment costs, which allowed the sharp illustration of belief amplification.

against good times of low spending shocks and by decreasing tax rates against bad times of high

spending shocks. But the cautious consumer is assigning lower probability than the reference

model in good times and higher probability in bad times. Thus, by taxing more and reducing

utility in good times, the policymaker is mitigating the pessimism of the household, in contrast

to the belief amplification we highlighted in the first part of the paper. Table 1 provides a useful

summary of pessimistic expectation management in the two economies.

5.5 Putting the two forces together

The analysis in the previous section would be sufficient if we constrained ourselves to a benevolent

planner (σR = σA). Turning to the analysis of paternalism (σR 6= σA), we can see sharply the

effects of the disagreement in beliefs on the optimal plan, in contrast to the first part of the

paper.

Disagreement and the tax rate. Consider the optimal tax rate (73) in proposition 4. Keep-

ing everything else equal, we see that an increase in the belief ratio Λt increases the tax rate τt.
14

The reason behind this outcome is intuitive. An increase in Λt(g
t) means that the household

considers history gt more probable than the government. Therefore, the welfare loss associated

with a distortionary tax is small in the eyes of the paternalistic government, since these histories

are not considered probable. Consequently, the paternalistic government has an incentive to tax

14The belief ratio Λt affects also the evolution of the multiplier ξ̃t, as seen by (76). Solve backwards ξ̃t to
get ξ̃t = σAΛt

∑t
i=1 ηi, where ηi ≡ µi − Ei−1m

∗
iµi, i ≥ 1. Thus, the optimal tax rate in (73) can be written as

τt =
ΦΛt(εcc,t+εch,t+εhh,t+εhc,t)

1+Λt

[
σA

∑
i ηi+Φ(1+εhh,t+εhc,t)

] . Differentiate now τt with respect to Λt, keeping elasticities constant (or just

consider example (74)), to get ∂τt
∂Λt

=
Φ(εcc,t+εch,t+εhh,t+εhc,t)(
1+ξ̃t+ΦΛt(1+εhh,t+εhc,t)

)2 > 0, for Ucl ≥ 0.
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more states of the world that is does not consider probable (relative to the household) and less

states of the world that it considers more probable than the household.

Paternalism in ‘good’ and ‘bad’ times. To elaborate on the previous paragraph, the effects

of paternalism depend on the relative pessimism of the government versus the household’s.

Consider for example the case where the government doubts the model less than the household,

so that σA < σR and fix the history of shocks up to t− 1. Then, we expect that the government

is twisting less its beliefs (relative to the household) towards bad times of high government

spending at t, so we expect Λt to be high when gt is high. Similarly, we expect the belief ratio to

be low in good times, i.e. when gt is low. Thus, a paternalistic government that is less pessimistic

than the household would try to tax more in bad times and less in good times. Following exactly

the same logic, we expect the opposite result when the government is more pessimistic than the

household, σR < σA, i.e. we expect the government to impose smaller taxes in bad times (which

are considered to be very probable, so the welfare loss of a given tax is high) and higher taxes

in good times.

Opposite or same direction? Putting now the two forces of paternalism and expectation

management together, we see that the direction of tax rate depends on the strength of the

government’s versus the households doubts. If the government doubts the model less than the

household (σA < σR), then we expect that it will tax more in bad times and less in good times.

But the price manipulation through the expectation management commands to tax less in bad

times and more in good times. Consequently, the two effects operate in the opposite direction and

the final response of the tax rate depends on the size of the two effects. This case nests effectively

the case that was analyzed in Karantounias (2013), who considered a government with full

confidence in the model, σA < σR = 0.15 However, the fact that paternalism acts in the opposite

direction than price manipulation is an artifact of the lack of doubts of the government, or more

generally, a consequence of having a government that is less pessimistic than the household.

If we had a government that is more pessimistic than the household (σR < σA < 0), then

paternalism and price manipulation will operate in the same direction: the government taxes

more in good times, both because it considers them less probable (so the welfare loss from high

taxes is considered small) and because it can make debt that is issued against good times cheaper.

Obviously, we can consider also the other extreme of having only the government doubting the

model and not the household (σR < σA = 0), which would eliminate completely the expectation

management (ξ̃t = 0) and allow only the paternalism effect in place.16

15Similarly to Karantounias (2013), we can employ the Marcet and Marimon (2019) methods in order to
represent recursively the commitment problem, and interpret (Λt, ξ̃t) as state variables. Details are available
upon request.

16Recall from the introduction that the case (σR = 0, σA < 0) and the diametrically opposite case (σR <
0, σA = 0) are called respectively type 0 and type II ambiguity in the optimal policy nomenclature of Hansen
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5.6 Small doubts about the model

We sharpen our intuitive discussion of the previous section by considering the impacts of small

doubts about the probability model of government spending. We express the relevant variables

as function of the robustness parameters σ ≡ (σR, σA) and perform a first-order Taylor expansion

around the full confidence case of Lucas and Stokey (1983), σ = (0, 0).17

Proposition 5. (‘Dynamics for small doubts about the model’)

Let xt(σ) be shorthand for the endogenous variable xt(g
t, σR, σA), and let xt(0) denote the

same variable evaluated at the full confidence economy, (σR, σA) = (0, 0).

• For small doubts about the model, the law of motion of the belief ratio (72) becomes

Λt(σ) = Λt−1(σ) + (σA − σR)
[
Vt(0)− Et−1Vt(0)

]
,Λ0 ≡ 1. (80)

• For small doubts about the model, the law of motion of ξ̃t (78) becomes

ξ̃t(σ) = ξ̃t−1(σ) + σAΦ(0)
[
Uct(0)bt(0)− Et−1Uct(0)bt(0)

]
, ξ̃0 ≡ 0. (81)

Proof. See the Online Appendix.

Note that the martingales (Λt, ξ̃t) become random walks with respect to the reference model

in the small doubts approximation. The increments in (80) and (81) depend on the respective

utility, debt, and cost of distortionary taxation (as captured by Φ(0)) of the Lucas and Stokey

(1983) full-confidence economy. The approximate law (80) makes sharp the intuition we de-

veloped about paternalism. When there is a positive innovation in utility (Vt(0) > Et−1Vt(0)),

the belief ratio increases (decreases) when the household doubts the model less (more) than

the government (σA > (<)σR). This comes from the fact that when the household doubts less

than the government, it will assign relative more probability in good times than the government.

Consider now the quasi-linear utility function

U(c, 1− h) = c− h1+φh

1 + φh
, (82)

and Sargent (2012).
17These heuristic expansions follow the logic of Holmes (1996) and Judd (1998) in perturbing around a known

solution, which in the current environment is the Lucas and Stokey (1983) allocation. There are examples
of similar in spirit expansions in terms of preference parameters in asset pricing and portfolio choice theory by
Hansen et al. (2007) and Kogan and Uppal (2002). The Online Appendix provides a detailed analysis and caveats,
and delves into the intricacies that are stemming from the fact that the coefficients in the Taylor expansion are
random variables.
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which falls in the category of constant Frisch elasticity utility functions in proposition 4 for

γ = 0, ah = 1. In the Online Appendix we provide the analysis for more general utility functions

but here we focus on the quasi-linear case, since it provides a setup where the government

manipulates asset prices only through the worst-case beliefs of the household. The small-doubts

approximation delivers illuminating formulas.

Proposition 6. (‘Worst-case models for the quasi-linear case’)

Assume the utility function (82) and let the reference model for gt have the Wold moving

average representation

gt = µg + γ(L)ugt , (83)

where µg > 0, γ(L) ≡
∑

i γiL
i the lag polynomial, γ(β) > 0 the present value of the polyno-

mial coefficients, and ugt ∼ iid(0, σ2
u).18 Then,

1. The approximate dynamics of (Λt, ξ̃t) in (80) and (81) are determined by the innovation

in the present value of gt

Vt(0)− Et−1Vt(0) = bt(0)− Et−1bt(0) = −(Et − Et−1)[
∞∑
i=0

βigt+i] = −γ(β)ugt (84)

2. The government’s and the household’s conditional likelihood ratios are approximately equal

to

n∗t = 1 +
1

θR
γ(β)ugt , m∗t = 1 +

1

θA
γ(β)ugt . (85)

3. The government’s worst-case mean and variance of ugt are approximately equal to

Etn
∗
t+1u

g
t+1 =

1

θR
γ(β)σ2

u > 0, V arGov.
t (ugt+1) = σ2

u +
γ(β)

θR
Et
(
ugt+1

)3
, (86)

whereas the household’s worst-case mean and variance can be described by the above for-

mulas by replacing θR with θA and n∗t+1 with m∗t+1.

Proof. See the Online Appendix for the derivations. With quasi-linear utility, both the tax

rate and labor become constant in the full-confidence case. This feature is behind the elegant

expressions in (84).

18We drop here the restriction that g lives on a countable space. We also assume that shocks have bounded
support, so that g remains positive.
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Proposition 6 connects the dynamics of paternalism and expectation management to innova-

tions in government spending. The expression in (84) shows that a positive shock in government

spending reduces utility in the full-confidence economy. Both the cautious government and

the household assign higher probability mass on high spending shocks, as seen in (85). Con-

sequently, the worst-case conditional means of ugt are positive. In this example, the worst-case

conditional variance remains unaltered, if we assume that the reference model has zero skewness,

Et
(
ugt+1)3 = 0.

Consider now the implied tax and debt policies for the quasi-linear case.19

Proposition 7. (‘Taxes and debt for the quasi-linear case’)

Assume the utility function (82) and the reference process (83). Let τ ≡ Φ(0)φh
1+Φ(0)(1+φh)

stand for

the constant full-confidence tax rate, and let h ≡ (1− τ)1/φh denote the respective full-confidence

labor.20 We have the following results for small doubts about the model:

1. The tax rate, labor allocation and tax revenues Tt ≡ τtht follow random walks with respect

to π,21

τt(σ)− τt−1(σ) =
Φ(0)φh(

1 + Φ(0)(1 + φh)
)2

[
σAΦ(0) + (σR − σA)

]
γ(β)ugt︸ ︷︷ ︸

Expectation management vs Paternalism

(87)

ht(σ)− ht−1(σ) = − h

1 + Φ(0)

Φ(0)

1 + Φ(0)(1 + φh)

[
σAΦ(0) + (σR − σA)

]
γ(β)ugt (88)

Tt(σ)− Tt−1(σ) =
h

1 + Φ(0)

Φ(0)φh(
1 + Φ(0)(1 + φh)

)2

[
σAΦ(0) + (σR − σA)

]
γ(β)ugt (89)

2. The optimal debt policy is

bt(σ) =
τh

1− β
− Et

∞∑
i=0

βigt+i︸ ︷︷ ︸
Lucas and Stokey debt policy

+
(1− β)−1h

1 + Φ(0)

Φ(0)φh(
1 + Φ(0)(1 + φh)

)2

[
σAΦ(0) + (σR − σA)

]
γ(β)

t∑
i=1

ugi︸ ︷︷ ︸
Expectation management vs Paternalism

. (90)

19See the Online Appendix for the small-doubts tax and debt policies for any utility function that satisfies the
typical concavity and differentiability assumptions. Useful formulas for Markov shocks are also provided.

20The non-linear tax rate with doubts about the model is given by (74) for γ = 0. From that same formula we
get also the full-confidence tax rate by setting ξ̃t = 0 and Λt = 1.

21The random walk result is obviously the manifestation of the martingale property in the small-doubts ap-
proximation and indicates the high persistence of optimal policy. These non-stationary results are not to be
taken at face value for the long-run; we interpret them as being instructive for a short-run analysis starting at
t = 0. See the Online Appendix for further discussion.
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Proof. See the Online Appendix.

Proposition 7 sharpens our loose discussion in the previous section about the effects of ex-

pectation management and paternalism on the optimal tax rate and debt. Consider the tax rate

in (87) and note how the innovation in gt is factored out, since it determines both the innovation

in utility and the innovation in debt. If we eliminate paternalism, σR = σA, then the tax rate

is clearly increasing when there is a reduction in government spending, increasing the price of

debt (through a reduction of utility) sold against good times. Similarly, tax rates are reduced

in bad times of high government spending.

Turning on paternalism, σR 6= σA, the reaction of the tax rate depends on the strength of

expectation management versus the disagreement on the welfare cost of taxes. If the government

is more pessimistic than the household (σR < σA or, equivalently, σR/σA > 1), then the price

manipulation through expectation management and the paternalistic efforts of the relatively

pessimistic government act in the same direction. Thus, a positive spending shock leads to a

reduction in the tax rate, as (87) shows. When the government doubts the model less than the

household (σR > σA), then the two effects act in the opposite direction and the reaction of the

tax rate hinges on their relative strength. The size of the price manipulation effect depends on

how much the government budget is relaxed by making debt cheaper, and therefore on the cost

of distortionary taxation in the full-confidence economy, Φ(0). If Φ(0) > 1 − σR/σA, the price

manipulation though expectation management dominates, and the tax rate falls in bad times.22

If Φ(0) < 1−σR/σA (which can only happen if σR/σA < 1 since Φ(0) > 0), then the paternalism

of the relatively optimistic government dominates, and the tax rate increases in bad times and

falls in good times.

To conclude, optimal labor in (88) is the opposite image of the tax rate; when the tax rate

increases, labor decreases. And optimal tax revenues in (89) reflect the behavior of the tax rate

in (87). Similar comments hold for the optimal debt policy in (90). The Lucas and Stokey

component reflects the fiscal hedging that the government conducts with state-contingent debt;

the government is insuring against bad shocks by issuing less debt and issues more debt against

good times. The second part reflects the price manipulation and the paternalism we highlighted

in the analysis of the tax rate; higher taxes against a contingency are accompanied with higher

debt issuance.

6 Concluding remarks

This paper provides a comprehensive overhaul of optimal policy problems where both the

policymaker-leader and the agent-follower doubt the probability model of exogenous uncertainty.

22A sufficient condition for this outcome is obviously Φ(0) > 1.

41



We have used a setup of a large firm that is facing a competitive fringe and a classic optimal

taxation problem. The defining feature of this type of problems is the efforts of the leader to

deal with her own model misspecification and her attempts to manage the endogenous cautious

beliefs of the follower. Depending on the application there may be incentives to either amplify

or mitigate the inherent pessimism of the follower.

It is useful to focus these remarks on future research avenues. We have not touched upon the

issue of parameter uncertainty, but the methodology developed in the current paper would be

useful in such an endeavor. Situations with multiple sources of uncertainty are particularly inter-

esting. For example, Hansen and Sargent (2007) develop a machinery with two risk-sensitivity

operators, that allow misspecification both within a model and across models. These ideas can

lead to fragility of the worst-case beliefs, with intriguing consequences for the market price of

risk, as Hansen and Sargent (2010) show. Optimal policy in such environments would add an

additional channel of managing the endogenous fragile beliefs of the investor/household.23

Lastly, two more comments are due. The current study has focused on a situation where

multiple agents perturb a baseline probability model by surrounding it with a set of unstructured

models, and studied the implications for optimal policy design. More elaborate schemes of both

structured and unstructured ambiguity can be constructed, following the lead of Hansen and

Sargent (2020). Furthermore, by representing ambiguity aversion with smooth preferences, the

current paper focused on how small changes in the instrument of the policy maker lead to small

changes in the worst-case beliefs of the follower. If we followed other approaches (non-smooth

or non-additive) to represent ambiguity aversion, regions of inaction or inertia could potentially

appear, as in the seminal work of Dow and da Costa Werlang (1992). Inertial behavior would

require large actions from the policymaker to induce a change in the pessimistic beliefs of the

follower. Such directions are all worthy of future research.

23See Ju and Miao (2012) and Collard et al. (2018) for further applications of learning under ambiguity ideas
in asset pricing.
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A Monopolist and competitive fringe

A.1 Recursive formulation

We follow here the method of Kydland and Prescott (1980), which relies on finding the proper

pseudo-state variables that capture the forward-looking constraints. We formulate the problem

before the realization of uncertainty.

Let Pt ≡ 1
σA

lnEt exp(σAVt+1) denote the risk-sensitive “expected” profits of the competitive

fringe and recall that Vt follows recursion (13). The respective recursion in terms of Pt becomes

Pt−1 =
1

σA
lnEt−1 exp(σA(ΠF

t + βPt)) (A.1)

The monopolist’s present value of profits in (17) can be represented recursively as

Wt = ΠM
t + β min

nt+1≥0,Etnt+1=1

{
Etnt+1Wt+1 + θRεt(nt+1)

}
. (A.2)

Let

Jt ≡ min
nt+1≥0,Etnt+1=1

Etnt+1Wt+1 + θRεt(nt+1) (A.3)

denote the “expected” profits of the monopolist under the worst-case beliefs (taking into account

also the entropy penalty). Using this definition, we get that Wt = ΠM
t + βJt. Thus, we can

rewrite the profit recursion (A.2) in terms of Jt,

Jt−1 = min
nt≥0,Et−1nt=1

Et−1nt
[
ΠM
t + βJt

]
+ θRεt−1(nt) (A.4)

Bellman equation. Let J(·) denote the value function for the commitment problem from

period one onward as a function of the state (Q, q̄, v−, i−, P−). Underscore “−” denotes previous

period. The state includes the two endogenous backward-looking variables Q, q̄, the exogenous

shock v−, and (i−, P−), which capture respectively the promises of monopolist to a particular

evolution of the fringe’s output and profits. The value function takes the form24

J(Q, q̄, v−, i−, P−) = max
{u(ε),i(ε),m∗(ε),P (ε)}

min
n(ε)≥0

∫
n(ε)

{
[A0 − A1(Q+ q̄) + (ρv− + Cεε)]Q

−(eQ+
1

2
gQ2 +

1

2
cu2(ε)) + βJ(Q′, q̄′, ρv− + Cεε, i(ε), P (ε))

}
f(ε)dε+ θR

∫
n(ε) lnn(ε)f(ε)dε

24Notation like i(ε) or P (ε) indicates that the control variables are functions of the shock innovation ε.
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subject to

Q′ = Q+ u(ε) (A.5)

q̄′ = q̄ + i(ε) (A.6)

i− = βc−1

∫
m∗(ε)

[
(A0 − A1(Q+ q̄) + ρv− + Cεε)− (d+ hq̄)

]
f(ε)dε

+β

∫
m∗(ε)i(ε)f(ε)dε (A.7)

m∗(ε) =
exp
(
σA(ΠF (ε) + βP (ε))

)∫
exp
(
σA(ΠF (ε) + βP (ε))

)
f(ε)dε

(A.8)

P− =
1

σA
ln

∫
exp
(
σA(ΠF (ε) + βP (ε))

)
f(ε)dε (A.9)∫

n(ε)f(ε)dε = 1 (A.10)

where ΠF (ε) is shorthand for the fringe’s period equilibrium profits,

ΠF (ε) ≡
(
A0 − A1(Q+ q̄) + ρv− + Cεε

)
q̄ − (dq̄ +

1

2
hq̄2 +

1

2
ci2(ε)).

Initial period problem. The state variables i and P are pseudo-state variables, that is, they

are useful to capture the promises of the monopolist to the fringe and, as a result, to represent

the commitment problem recursively. Their initial values (i0, P0) are chosen optimally at t = 0,

when there are no promises to be kept. Given (Q0, q̄0, v0), the initial period problem is to choose

(u0, i0, P0) to maximize

(A0 − A1(Q0 + q̄0) + v0)Q0 − (eQ0 +
1

2
gQ2

0 +
1

2
cu2

0) + βJ(Q0 + u0, q̄0 + i0, v0, i0, P0). (A.11)

A.2 Lagrangians

The optimality conditions of the monopolist’s problem are listed and analyzed in the text. For

completeness, I provide here the respective Lagrangians. All multipliers dated at t are functions

of information at t and are scaled by βt and the reference joint density of the partial history of

shocks εt.

A.2.1 Adjustment costs, c > 0

The Lagrangian of problem 2 is as follows.
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L = E0

∞∑
t=0

βtNt

[
(A0 − A1(Qt + q̄t) + vt)Qt − (eQt +

1

2
gQ2

t +
1

2
cu2

t )
]

+ βθRE0

∞∑
t=0

βtNtεt(nt+1)

−E0

∞∑
t=0

βtλQt [Qt+1 −Qt − ut]− Et
∞∑
t=0

βtλq̄t [q̄t+1 − q̄t − it]

−E0

∞∑
t=0

βtξit

[
it − βc−1

[
A0 − A1(Qt+1 + q̄t+1)− (d+ hq̄t+1) + ρvt + CεEtm

∗
t+1εt+1

]
− βEtm∗t+1it+1

]
−E0

∞∑
t=0

βtβEtµt+1

[
m∗t+1 −

exp(σAVt+1)

Et exp(σAVt+1)

]
−E0

∞∑
t=0

βtξVt

[
Vt −

[
(A0 − A1(Qt + q̄t) + vt)q̄t − (dq̄t +

1

2
hq̄2

t +
1

2
ci2t )
]
− β

σA
lnEt exp(σAVt+1)

]
−E0

∞∑
t=0

βt
[
βEtν

N
t+1[Nt+1 − nt+1Nt] + νnt (Etnt+1 − 1)

]
A.2.2 No adjustment costs

Consider now the Lagrangian without adjustment costs, c = 0. In this case we do not need to

keep track of the laws of motion (18) and (19). Moreover, the optimality condition of the fringe

(20) is simplified.

L = E0

∞∑
t=0

βtNt

[
(A0 − A1(Qt + q̄t) + vt)Qt − (eQt +

1

2
gQ2

t )
]

+ βθRE0

∞∑
t=0

βtNtεt(nt+1)

+E0

∞∑
t=0

βt+1ξit
[
A0 − A1(Qt+1 + q̄t+1)− (d+ hq̄t+1) + ρvt + CεEtm

∗
t+1εt+1

]
−E0

∞∑
t=0

βtβEtµt+1

[
m∗t+1 −

exp(σAVt+1)

Et exp(σAVt+1)

]
−E0

∞∑
t=0

βtξVt

[
Vt −

[
(A0 − A1(Qt + q̄t) + vt)q̄t − (dq̄t +

1

2
hq̄2

t )
]
− β

σA
lnEt exp(σAVt+1)

]
−E0

∞∑
t=0

βt
[
βEtν

N
t+1[Nt+1 − nt+1Nt] + νnt (Etnt+1 − 1)

]
(A.12)

A.3 Proof of proposition 1

Proof. The Lagrangian is stated in (A.12). Consider first the optimality condition with respect

to the fringe’s profits Vt. This takes the form
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ξVt = σAm
∗
t [µt − Et−1m

∗
tµt] +m∗t ξ

V
t−1, ξ

V
0 ≡ 0.

But from the optimality condition with respect to the worst-case likelihood ratio m∗t+1 we get

µt+1 = Cεεt+1ξ
i
t. Use this result to replace µt in the law of motion of ξVt and recall the definition

of the normalized multipliers to get (43). Note that, as in the case of adjustment costs, we have

a martingale result with respect to the monopolist’s measure, Etn
∗
t+1ξ̃

V
t+1 = ξ̃Vt .

The optimality condition with respect to Qt+1, after normalizing with N∗t , takes the form

Etn
∗
t+1

[
pt+1 − A1Qt+1 − (e+ gQt+1)

]
− A1

[
ξ̃it + q̄t+1Etn

∗
t+1ξ̃

V
t+1

]
= 0

Use the martingale result for ξ̃Vt to get (40). Optimality condition (41) is just the standard

first-order condition with respect to q̄t+1, using again the normalized variables. To get (44) use

the fact that Etm
∗
t+1pt+1 = d+ h̄qt+1 and the martingale result for ξ̃Vt to rewrite (41) as

−A1[Qt+1 + ξ̃Vt q̄t+1]− (A1 + h)ξ̃it + Etn
∗
t+1ξ̃

V
t+1(pt+1 − Etm∗t+1pt+1) = 0 (A.13)

Consider now the last term in the left-hand side above. We have

Etn
∗
t+1ξ̃

V
t+1(pt+1 − Etm∗t+1pt+1)

(43)
= σACεEtm

∗
t+1(εt+1 − Etm∗t+1εt+1)(pt+1 − Etm∗t+1pt+1)ξ̃it

+ξ̃Vt Etm
∗
t+1(pt+1 − Etm∗t+1pt+1)

=0

= σAC
2
ε

(
Etm

∗
t+1(εt+1 − Etm∗t+1εt+1)2

)
ξ̃it = σAC

2
ε V ar

F
t (εt+1)ξ̃it,

where I used the fact that the innovation in prices is pt+1−Etm∗t+1pt+1 = Cε(εt+1−Etm∗t+1εt+1).

Use this result in (A.13), collect terms that multiply ξ̃it and rearrange to get (44).

A.4 Optimal quantities

A.4.1 Preliminaries

We show here how to find (Qt+1, q̄t+1) as functions of the exogenous state vt, the multiplier ξ̃Vt ,

and the implied worst-case first and second moments of the monopolist and the fringe.

Use (44) to replace ξ̃it in (40). This delivers an optimality condition for the monopolist in

terms of (Qt+1, q̄t+1), the state variables (ξ̃Vt , vt) and the worst-case moments of the monopolist

and the fringe. Use the resulting equation and the reaction function of the fringe (15) to get the
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system

At ·

(
Qt+1

q̄t+1

)
= Bt ·

(
1

vt

)
⇒

(
Qt+1

q̄t+1

)
= A−1t Bt ·

(
1

vt

)
(A.14)

where

At ≡

[
A1(2− ωt) + g A1(1 + (1− ωt)ξ̃Vt )

A1 A1 + h

]
, ωt ≡

A1

A1 + h− σAC2
ε V ar

F
t (εt+1)

(A.15)

Bt ≡

[
A0 − e+ CεEtn

∗
t+1εt+1 ρ

A0 − d+ CεEtm
∗
t+1εt+1 ρ

]
. (A.16)

Note that matrices (At,Bt) depend on the value of the multiplier ξ̃Vt and on the worst-case

first (Etn
∗
t+1εt+1, Etm

∗
t+1εt+1) and second moments (V arFt (εt+1)). Thus, if we knew the worst-

case likelihood ratios n∗t+1 and m∗t+1, we could solve for the optimal choice of quantities as a

(non-linear) function of (ξ̃Vt , vt). This feature of the solution will be useful for the proof of

proposition 3 and for the solution algorithm in the next section.

A.4.2 Proof of proposition 3

Proof. The inverse of At in (A.15) is

A−1t =
1

Ξt

[
1 −ς(1 + (1− ωt)ξ̃Vt )

−ς ς(2− ωt + g/A1)

]
(A.17)

Ξt ≡ A1

(
2− ωt + g/A1 − ς(1 + (1− ωt)ξ̃Vt )

)
, ς ≡ A1

A1 + h
(A.18)

Note that when σA = 0 we have ωt = ς. Turning to the solution of the system, we get

At
−1Bt =

1

Ξt

[
I11,t I12,t

I21,t I22,t

]
,

where
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I11,t ≡ A0 − e+ CεEtn
∗
t+1εt+1 − ς

(
1 + (1− ωt)ξ̃Vt

)[
A0 − d+ CεEtm

∗
t+1εt+1

]
(A.19)

I12,t ≡ ρ(1− ς(1 + (1− ωt)ξ̃Vt )) (A.20)

I21,t ≡ ς
[
−(A0 − e+ CεEtn

∗
t+1εt+1 + (2− ωt + g/A1)(A0 − d+ CεEtm

∗
t+1εt+1)

]
(A.21)

I22,t ≡ ρς(1− ωt + g/A1) (A.22)

We will take now derivatives ignoring the dependence of the endogenous worst-case moments

(Etn
∗
t+1εt+1, Etm

∗
t+1εt+1) and V arFt (εt+1) (which affects ωt) on ξ̃Vt . The respective derivatives are

∂Ξt

∂ξ̃Vt
= −ςA1(1− ωt) (A.23)

∂I11,t

∂ξ̃Vt
= −ς(1− ωt)[A0 − d+ CεEtm

∗
t+1εt+1] (A.24)

∂I12,t

∂ξ̃Vt
= −ρς(1− ωt) (A.25)

∂I21,t

∂ξ̃Vt
= 0 (A.26)

∂I22,t

∂ξ̃Vt
= 0 (A.27)

Turning now to the solution, we have

Qt+1 =
1

Ξt

[
I11,t + I12,tvt

]
(A.28)

q̄t+1 =
1

Ξt

[
I21,t + I22,tvt

]
(A.29)

Therefore,

∂Qt+1

∂ξ̃Vt
|const. = −Ξ−2

t

∂Ξt

∂ξ̃Vt
(I11,t + I12,t) + Ξ−1

t [
∂I11,t

∂ξ̃Vt
+
∂I12,t

∂ξ̃Vt
vt]

= Ξ−1
t

[
−Qt+1

∂Ξt

∂ξ̃Vt
+
∂I11,t

∂ξ̃Vt
+
∂I12,t

∂ξ̃Vt
vt
]

(A.23)−(A.25)
= −ς(1− ωt)Ξ−1

t

[
A0 − d+ ρvt + CεEtm

∗
t+1εt+1 − A1Qt+1

]
= −ς(1− ωt)Ξ−1

t

[
Etm

∗
t+1pt+1 + A1q̄t+1 − d

]
Recall though that Etm

∗
t+1pt+1 = d+ hq̄t+1. Thus,
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∂Qt+1

∂ξ̃Vt
|const. = −ς(1− ωt)Ξ−1

t (A1 + h)q̄t+1 < 0 (A.30)

Proceeding to the derivative of q̄t+1 and using (A.23) and (A.26)-(A.27) we have

∂q̄t+1

∂ξ̃Vt
|const. = −Ξ−1

t

∂Ξt

∂ξ̃Vt
q̄t+1 = ς(1− ωt)Ξ−1

t A1q̄t+1 > 0 (A.31)

Finally, using (A.30) and (A.31), we get

∂Qtotal
t+1

∂ξ̃Vt
|const. =

∂Qt+1

∂ξ̃Vt
|const. +

∂q̄t+1

∂ξ̃Vt
|const. = −ς(1− ωt)Ξ−1

t hq̄t+1 < 0 (A.32)

A.5 Illustration details

Given the uncertainty and timing assumptions, we have the following inverse demand functions:

p0 = A0 − A1(Q0 + q̄0)

p1(ε1) = A0 − A1(Q1 + q̄1) + Cεε1,∀ε1
p2(ε1) = A0 − A1(Q2(ε1) + q̄2(ε1)),∀ε1.

Profits and worst-case beliefs. The period profits of the monopolist for t = 1, 2 are

ΠM
1 (ε1) = p1(ε1)Q1 −

(
eQ1 +

1

2
gQ2

1

)
, ∀ε1

ΠM
2 (ε1) = p2(ε1)Q2(ε1)−

(
eQ2(ε1) +

1

2
gQ2(ε1)2

)
,∀ε1

The period profits of the competitive fringe are

ΠF
1 (ε1) = p1(ε1)q̄1 −

(
dq̄1 +

1

2
hq̄2

1

)
, ∀ε1

ΠF
2 (ε1) = p2(ε1)q̄2(ε1)−

(
dq̄2(ε1) +

1

2
hq̄2(ε1)2

)
,∀ε1
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The worst-case beliefs of the monopolist and the competitive fringe are

n∗1(ε1) =
exp(σRW1(ε1))

E exp(σRW1)
and m∗1(ε1) =

exp(σAV1(ε1))

E exp(σAV1)
, (A.33)

where

W1(ε1) = ΠM
1 (ε1) + βΠM

2 (ε1),∀ε1 (A.34)

V1(ε1) = ΠF
1 (ε1) + βΠF

2 (ε1),∀ε1. (A.35)

Multipliers. Consider now the shadow value of the fringe’s forecast, ξ̃it. We have

ξ̃i0 = − A1

A1 + h− σAC2
ε V ar

F (ε1)
Q1 < 0 (A.36)

ξ̃i1(ε1) = − A1

A1 + h

[
Q2(ε1) + ξ̃V1 (ε1)q̄2(ε1)

]
,∀ε1 (A.37)

Furthermore, ξ̃V0 = 0 and

ξ̃V1 (ε1) = σA
m∗1(ε1)

n∗1(ε1)
Cε[ε1 − Em∗1ε1]ξ̃i0. (A.38)

Note that since ξ̃i0 < 0, the value of the multiplier is positive for “good” shocks (ε1−Em∗1ε1 >
0) and negative for “bad” shocks, (ε1 − Em∗1ε1 < 0). Thus, the monopolist has an incentive to

increase the profits of the fringe in good times, and decrease the profits of the fringe in bad

times.

Matrices. In this three period example we have no persistence, so there is no need to keep

track of vt. Let Ct denote the 2 × 1 vector that is the product of the matrix Bt and (1, vt)
′ in

the right-hand side of (A.14). For our example Ct takes the form,

C0 ≡

(
A0 − e+ CεEn

∗
1ε1

A0 − d+ CεEm
∗
1ε1

)
, C1 ≡

(
A0 − e
A0 − d

)
. (A.39)

Furthermore, the matrix At in (A.15) becomes
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A0 =

[
2A1 + g − A2

1

A1+h−σAC2
ε V ar

F (ε1)
A1

A1 A1 + h

]
(A.40)

A1(ε1) =

[
2A1 + g − A2

1

A1+h
A1

[
1 + h

A1+h
ξ̃V1 (ε1)

]
A1 A1 + h

]
. (A.41)

Algorithm. Make an initial guess for (n∗1(ε1),m∗1(ε1))) and consider the following procedure:

• Given (n∗1(ε1),m∗1(ε1)), determine the respective worst-case moments, and calculate C0 and

A0 from (A.39) and (A.40). Solve for (Q1, q̄1)

(
Q1

q̄1

)
= A0

−1C0.

• Use the solution to calculate multiplier ξ̃i0 and multipliers ξ̃V1 (ε1) (for each ε1) from (A.36)

and (A.38) respectively.

• Given ξ̃V1 (ε1) form A1(ε1) from (A.41) and solve for (Q2(ε1), q̄2(ε1)) as

(
Q2(ε1)

q̄2(ε1)

)
= A1(ε1)−1C1,∀ε1.

• Given the solution for quantities, calculate the profits of the monopolist and the fringe using

(A.34) and (A.35), update the worst-case likelihood ratios (n∗1(ε1),m∗1(ε1)) from (A.33) and

go back to the initial step.

• Iterate till convergence.

We can use unity as an initial guess for the likelihood ratios, n∗1(ε1) = m∗1(ε1) = 1,∀ε1.

Full confidence in the model. Assume that the fringe is not doubting the model, σA = 0.

Then the matrix At becomes

At = A ≡

[
2A1 + g − A2

1

A1+h
A1

A1 A1 + h

]
, t = 1, 2 (A.42)

If the monopolist has also full confidence in the model (σR = 0), then
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(
Q1

q̄1

)
=

(
Q2(ε1)

q̄2(ε1)

)
=

(
Q

q̄

)
≡ A−1

(
A0 − e
A0 − d

)
,∀ε1 (A.43)

Note that quantities at t = 2 do not fluctuate as functions of the demand shock when there

is full confidence in the model. This is a consequence of the lack of persistence (ρ = 0) in the

particular example (otherwise there would be some dependence on the realization of the demand

shock at t = 1). Furthermore, note that, even if the monopolist had doubts about the model

(σR < 0), as long as the fringe had full confidence (σA = 0), we get the matrix A in (A.42).

Thus, the quantities at t = 2 for the case of (σR < 0, σA = 0) are the same as for the full

confidence case of σR = σA = 0 in (A.43). Consequently, any variation across shocks in the

quantities at t = 2 is coming from the desire of the monopolist to manage the expectations of

the fringe (through ξ̃V1 ) and not from any doubts of the monopolist about the model.25

Passive stance of the monopolist. Assume that the monopolist were naive and did not

realize that the worst-case beliefs of the household were endogenous. This would imply ξ̃Vt = 0

and therefore ξ̃it would be given by (45). So, we would have a naive version of matrix At, which

is exactly the same as the respective matrix when the fringe has full confidence in the model

in (A.42), At
naive = A, t = 1, 2. The matrix Bt in (A.16) will remain the same though (and

therefore the respective Ct in (A.39)). We can follow the same algorithm and use matrix A to

solve for quantities and the worst-case beliefs of the monopolist and the fringe. At each iteration

we update the worst-case beliefs and the vector C0 (and not ξ̃V1 (ε1) anymore). Obviously the

quantities at t = 2 are given by (A.43).

Calibration. We use Ljungqvist and Sargent (2004) and Hansen and Sargent (2008) for most

of the parameters. The demand parameters are (A0, A1) = (100, 1) and we set β = 1. The

reference distribution has mean zero, unitary variance and its support is discretized with eleven

points. We set Cε = 0.2/
√

1− 0.82 = 0.33, which is the unconditional variance of the shock in

Ljungqvist and Sargent (2004). The intercepts and slopes of the marginal cost functions are as

in Hansen and Sargent (2008), (d, e) = (20, 20) and (g, h) = (1, 1).

25The quantities at t = 1 would be different from (A.43) in the case of σR < 0, σA = 0:(
Q1

q̄1

)
= A−1

(
A0 − e+ CεEn

∗
1ε1

A0 − d

)
. (A.44)
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B Fiscal policy problem

B.1 Optimality conditions of the fiscal policy problem

Define for convenience

Ω(c, h) ≡ Uc(c, 1− h)c− Ul(c, 1− h)h, (B.1)

which stands for the equilibrium government surplus in marginal utility units.

The Lagrangian of the fiscal policy problem is

L =
∞∑
t=0

∑
gt

βtπt(g
t)
{
Nt(g

t)
(
U(ct(g

t), 1− ht(gt)) + βθR
∑
gt+1

πt+1(gt+1|gt)nt+1(gt+1) lnnt+1(gt+1)
)

+ΦM∗
t (gt)Ω(ct(g

t), ht(g
t))− λt(gt)

[
ct(g

t) + gt − ht(gt)
]

−
∑
gt+1

βπt+1(gt+1|gt)µt+1(gt+1)
[
M∗

t+1(gt+1)− exp(σAVt+1(gt+1))∑
gt+1

πt+1(gt+1|gt) exp(σAVt+1(gt+1))
M∗

t (gt)
]

−ξt(gt)
[
Vt(g

t)− U(ct(g
t), 1− ht(gt))−

β

σA
ln
∑
gt+1

πt+1(gt+1|gt) exp(σAVt+1(gt+1))
]

−β
∑
gt+1

πt+1(gt+1|gt)ρt+1(gt+1)
[
Nt+1(gt+1)− nt+1(gt+1)Nt(g

t)
]

−νt(gt)
[∑
gt+1

πt+1(gt+1|gt)nt+1(gt+1)− 1
]}
− ΦUc(c0, 1− h0)b0,

with ξ0 = 0, M0 = N0 = 1 and g0 given.

The policymaker’s minimization problem with respect to the worst-case beliefs has the same

structure as the minimization problem of the household. See Karantounias (2013) for a detailed

derivation of the household’s worst-case belief distortions in (58). The first-order necessary

conditions for an interior solution arising from the maximization problem are the following:
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ct : (N∗t (gt) + ξt(g
t))Uc(g

t) + ΦM∗
t (gt)Ωc(g

t) = λt(g
t), t ≥ 1 (B.2)

ht : (N∗t (gt) + ξt(g
t))Ul(g

t)− ΦM∗
t (gt)Ωh(g

t) = λt(g
t), t ≥ 1 (B.3)

M∗
t : µt(g

t) = ΦΩ(gt) + β
∑
gt+1

πt+1(gt+1|gt)m∗t+1(gt+1)µt+1(gt+1), t ≥ 1 (B.4)

Vt : ξt(g
t) = σAm

∗
t (g

t)M∗
t−1(gt−1)

[
µt(g

t)−
∑
gt

πt(gt|gt−1)m∗t (g
t)µt(g

t)
]

+m∗t (g
t)ξt−1(gt−1), t ≥ 1 (B.5)

c0 : (N0 + ξ0)Uc(g0) + ΦM0Ωc(g0) = λ0(g0) + ΦUcc(g0)b0 (B.6)

h0 : −(N0 + ξ0)Ul(g0) + ΦM0Ωh(g0) = −λ0(g0)− ΦUcl(g0)b0. (B.7)

Ωi, i = c, h denotes the respective partial derivative of the government surplus. In (B.4)

and (B.5), we used expression (58) for the optimal conditional likelihood ratio m∗t+1 to save

notation. Optimality conditions (70-71), (B.2-B.7), together with constraints (64-69) determine

the Ramsey plan.

By letting ξ̃t ≡ ξt/N
∗
t denote the normalized multiplier and recalling the law of motion (72),

we can rewrite (B.5) as in the law of motion (76) in the text. Furthermore, solving (B.4) forward

and remembering that Ω(gt) stands for the government surplus in marginal utility terms leads

to

µt(g
t) = ΦUc(g

t)
∞∑
i=0

∑
gt+i|gt

qtt+i(g
t+i)[τt+i(g

t+i)ht+i(g
t+i)− gt+i],

where

qtt+i(g
t+i) ≡ qt+i(g

t+i)

qt(gt)
= βiπt+i(g

t+i|gt)
i∏

j=1

m∗t+j(g
t+j)

Uc(g
t+i)

Uc(gt)
,

the equilibrium price of an Arrow-Debreu security at gt. Thus, using the intertemporal budget

constraint at time t, allows us to rewrite µt in terms of debt as µt(g
t) = ΦUc(g

t)bt(g
t).
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B.2 Proof of proposition 4

Proof. Combine (B.2) and (B.3) in order to eliminate the multiplier λt to get

Ul
Uc
·
N∗t + ξt − ΦM∗

t
Ωht
Ult

N∗t + ξt + ΦM∗
t

Ωct
Uct

= 1 (B.8)

Recall that ξ̃t ≡ ξt/N
∗
t . Calculate the derivatives Ωi to get Ωc/Uc = 1 − εcc − εch and

Ωh/Ul = −1− εhh − εhc. We can rewrite (B.8) as

(1− τt) ·
1 + ξ̃t + ΦΛt[1 + εhh,t + εhc,t]

1 + ξ̃t + ΦΛt[1− εcc,t − εch,t]
= 1. (B.9)

Solve in terms of τt to get (73) in the text. Furthermore, by using the expression for Ωh/Ul,

the first-order condition for labor (B.3) can be rewritten as

1 + ξ̃t + ΦΛt[1 + εhh,t + εhc,t] =
λt

UltN∗t
> 0,

since λt > 0. Thus, the denominator in (73) is positive, despite the fact that ξ̃t can take negative

values. When Ucl ≥ 0, the numerator in the optimal tax formula is also positive, so in that case

we get τt ≥ 0. The expressions in (74) and (75) are an application of the formula in (73).
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Benigno, Pierpaolo and Salvatore Nisticò. 2012. International portfolio allocation under model

uncertainty. American Economic Journal: Macroeconomics 4 (1):144–89.

Benigno, Pierpaolo and Luigi Paciello. 2014. Monetary policy, doubts and asset prices. Journal

of Monetary Economics 64:85–98.
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C.1 Logic of expansion and some caveats

We express every endogenous variable (either random or non-random as the multiplier Φ) as

function of the parameter vector σ = (σR, σA). The first-order expansion for a generic variable

xt around (σR, σA) = (0, 0) takes the form

xt(g
t, σR, σA) ' xt(g

t, 0, 0) + σRxσR(gt, 0, 0) + σAxσA(gt, 0, 0) (C.1)

where xt(g
t, 0, 0) refers to the respective variable in the Lucas and Stokey (1983) economy. For

convenience, we use the notation xt(σ) ≡ xt(g
t, σ) and xit(σ) ≡ xσi(g

t, σ), i = R,A, with xt(0)

and xit(0), i = R,A the respective evaluation at σ = (0, 0).

The Lucas and Stokey (1983) plan is easy to calculate because it is essentially static. This is

due to its history-independence property for variables like consumption, labor and the tax rate,

xt(g
t, 0, 0) = x(gt, 0, 0).2 The expansion is focused on the calculation of the partial derivatives

xit(0), i = R,A, which are random variables in most cases. Substantial simplification comes from

the fact that, without doubts about the model, the conditional and unconditional likelihood

ratios become unity, m∗t (0) = n∗t (0) = M∗
t (0) = N∗t (0) = Λt(0) = 1. Futhermore, there is no

room for price manipulation through continuation utilities, so ξ̃t(0) = 0, and the government’s

and household’s utility coincide, Wt(0) = Vt(0), since both the government and the household

share the same reference model.

Caveats and caution. We want to draw here some caution on the results of the small-

doubts expansion. The optimal plan with model uncertainty is driven by the state variables

(Λt, ξ̃t), which summarize the history gt. In the full-confidence economy these state variables

are constant (reflecting the history-independence of Lucas and Stokey (1983)), so this type of

perturbation is singular in the terminology of Holmes (1996). Moreover, the state variables,

which are martingales, become random walks in the expansion, as seen in proposition 5. So,

in a sense, we approximate a non-stationary economy by using information from the stationary

counterpart at σ = (0, 0). We are not worried so much about the persistence indicated by the

random walk result. This was expected, given the martingale nature of the state variables.3

More worrisome that the fact that some variables, like the tax rate, will surpass 100% after a

sufficiently long time.

How should we use the expansion? For both of the reasons stated in the previous para-

graph, we consider the heuristic expansions as valid only for the short-run, that is, for a limited

number of periods, starting from t = 0 (and not from some long-run ‘steady state’). This is

2The history-independence property extends also to debt if we assume Markovian shocks.
3Note that persistence is also very high in problems where a global solution method is used. See for example

Ferrière and Karantounias (2019).
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both to avoid the explosiveness in the long-run, and also to limit the error accumulated from

the expansion. To elaborate on the second point, proposition 5 shows that the increment to the

multiplier ξ̃t is determined by the Lucas and Stokey debt position. But if we had a realization

of good shocks over time, which would lead to an increasing amount of debt over time, the full-

confidence debt position would not be a good approximation anymore. Initializing the economy

from t = 0 and constraining the number of periods deals with these issues.

C.2 Proof of proposition 5

Part 1. Consider first the belief ratio as function of the vector σ ≡ (σR, σA), Λt(σ) ≡ M∗
t (σ)

N∗
t (σ)

.

Differentiate with respect to σi, i = R,A to get

Λi
t(σ) =

M∗i
t (σ)N∗t (σ)−M∗

t (σ)N∗it (σ)

(N∗t (σ))2
, i = R,A

Evaluate at σ = (0, 0) to get

Λi
t(0) = M∗i

t (0)−N∗it (0), i = R,A. (C.2)

Consider the martingale distortions N∗t and M∗
t , with laws of motion N∗t (σ) = n∗t (σ)N∗t−1(σ)

and M∗
t (σ) = m∗t (σ)M∗

t−1(σ), and initial values N0 = M0 ≡ 1. Differentiate the law of motion

of N∗t with respect to σi, i = R,A

N∗it (σ) = n∗it (σ)N∗t (σ) + n∗t (σ)N∗it−1(σ), N∗i0 (0) ≡ 0, i = R,A.

Thus, at σ = (0, 0) we get

N∗it (0) = n∗it (0) +N∗it−1(0), N∗i0 (0) ≡ 0, i = R,A (C.3)

Repeating exactly the same steps for the martingale M∗
t delivers

M∗i
t (0) = m∗it (0) +M∗i

t−1(0),M∗i
0 (0) ≡ 0, i = R,A (C.4)

Consider now the conditional likelihood ratios (n∗t ,m
∗
t ). We have

n∗t (σ) =
exp(σRWt(σ))

Et−1 exp(σRWt(σ))
and m∗t (σ) =

exp(σAVt(σ))

Et−1 exp(σAVt(σ))
.
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The increments n∗it (σ),m∗it (σ), i = R,A to the martingale derivatives are

n∗Rt (σ) = n∗t (σ)
[
Wt(σ) + σRW

R
t (σ)− Et−1n

∗
t (σ)[Wt(σ) + σRW

R
t (σ)]

]
n∗At (σ) = σRn

∗
t (σ)

[
WA
t (σ)− Et−1n

∗
t (σ)WA

t (σ)
]

m∗Rt (σ) = σAm
∗
t (σ)

[
V R
t (σ)− Et−1m

∗
t (σ)V R

t (σ)
]

m∗At (σ) = m∗t (σ)
[
Vt(σ) + σAV

A
t (σ)− Et−1m

∗
t (σ)[Vt(σ) + σAV

A
t (σ)]

]
Evaluating now at σ = (0, 0) delivers

n∗Rt (0) = m∗At (0) = Vt(0)− Et−1Vt(0) (C.5)

n∗At (0) = m∗Rt (0) = 0 (C.6)

Therefore, using (C.5) and (C.6), the unconditional martingale derivatives in (C.3) and (C.4)

become

M∗A
t (0) = N∗Rt (0) =

t∑
j=1

(
Vj(0)− Ej−1Vj(0)

)
(C.7)

N∗At (0) = M∗R
t (0) = 0 (C.8)

Thus, (C.2), (C.7) and (C.8) imply that

ΛA
t (0) = M∗A

t (0) (C.9)

ΛR
t (0) = −N∗Rt (0) = −M∗A

t (0). (C.10)

Use now (C.1) to get

Λt = 1 + σAΛA
t (0) + σRΛR

t (0) = 1 + (σA − σR)M∗A
t (0). (C.11)

Evaluate (C.11) at t−1, take differences and use (C.5) for the martingale derivative increment

to get (80) in the text.

Part 2. Define for convenience the innovation in µt (under the household’s worst-case measure),
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ηt ≡ µt − Et−1m
∗
tµt, (C.12)

and rewrite the law of motion of the multiplier ξ̃t in (76) as

ξ̃t(σ) = σAηt(σ)Λt(σ) +
m∗t (σ)

n∗t (σ)
ξ̃t−1(σ), ξ̃0 ≡ 0

Differentiate with respect to σ to get

ξ̃Rt (σ) = σA
[
ηRt (σ)Λt(σ) + ηt(σ)ΛR

t (σ)
]

+
m∗Rt (σ)n∗t −m∗t (σ)n∗Rt (σ)

(n∗t (σ))2
ξ̃t−1(σ)

+
m∗t (σ)

n∗t (σ)
ξ̃Rt−1(σ) (C.13)

ξ̃At (σ) = ηt(σ)Λt(σ) + σA
[
ηAt (σ)Λt(σ) + ηt(σ)ΛA

t (σ)
]

+
m∗At (σ)n∗t −m∗t (σ)n∗At (σ)

(n∗t (σ))2
ξ̃t−1(σ)

+
m∗t (σ)

n∗t (σ)
ξ̃At−1(σ), (C.14)

with ξ̃i0(0) ≡ 0, i = R,A.

Evaluate (C.13) and (C.14) at σ = (0, 0) (recalling the unitary likelihood ratios and ξ̃t(0) = 0)

to get

ξ̃Rt (0) = 0 (C.15)

ξ̃At (0) = ηt(0) + ξ̃At−1(0)⇒ ξ̃At (0) =
t∑
i=1

ηi(0). (C.16)

Recall definition (C.12) and the fact that µt = ΦUctbt (from (77)) to get

ηt(0) = µt(0)− Et−1µt(0) = Φ(0)
[
Uct(0)bt(0)− Et−1Uct(0)bt(0)

]
, (C.17)

where Φ(0) the respective cost of distortionary taxation in the economy without model un-

certainty. Use now (C.1) to get ξ̃t = σAξ̃
A
t (0), which implies the approximate law of motion in

the text (81).
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C.3 Useful definitions and facts

C.3.1 Second-order conditions

For the rest, bear in mind the following definitions:

Kt(0) ≡ (1 + 2Φ(0))∆(ct(0)) + Φ(0) [∆′(ct(0))ct(0) + Γ′(ct(0))gt] , t ≥ 1 (C.18)

K0(0) ≡ (1 + 2Φ(0))∆(c0(0)) + Φ(0) [∆′(c0(0))c0(0) + Γ′(c0(0))g0 − Z ′(c0(0))b0] ,(C.19)

where

∆(ct) ≡ Ucct − 2Uclt + Ullt < 0 (C.20)

Γ(ct) ≡ Ullt − Uclt (C.21)

Z(ct) ≡ Ucct − Uclt (C.22)

Note that we have already substituted for labor from the resource constraint, so all expressions

above should be understood as functions of consumption only and in particular of the full

confidence consumption allocation, ct(0). The term ∆(ct) is negative due to the concavity of the

period utility function. ∆′() stands for the derivative of the particular expression with respect

to consumption. ∆′t(ct(0)) denotes the evaluation of the derivative at the consumption of the no

doubts economy. The same notational interpretations hold for Γ′, Z ′.

Assumption 1. Kt(0) < 0,∀t ≥ 0.

We will work under assumption 1 for the rest of the expansion. Kt(0) is an expression that is

directly related to the second derivative of the Lagrangian of the problem without doubts about

the model and is intimately connected to the sufficient second-order conditions of the Lucas and

Stokey problem.

Lemma 1. If assumption 1 holds, then the second-order sufficient conditions of the optimal

fiscal policy problem without fear of misspecification are satisfied.

Proof. Let l(c,Φ) ≡ U(c, 1− c− g) + Φ
[
(Uc(c, 1− c− g)− Ul(c, 1− c− g))c− Ul(c, 1− c− g)g

]
denote the period return in the lagrangian for the Lucas and Stokey economy for t ≥ 1 and let

l0(c,Φ, b0) ≡ U(c, 1 − c − g0) + Φ
[
(Uc(c, 1 − c − g0) − Ul(c, 1 − c − g0))c − Ul(c, 1 − c − g0)g0 −

Uc(c, 1− c− g0)b0

]
denote the respective lagrangian for t = 0. It is easy to see that lcc = K and

l0cc = K0 where K and K0 the expressions in (C.18) and (C.19). We drop the 0 notation since it

is clear that we work with the allocation of the no-robustness case. The second-order sufficient

conditions require the Hessian of the Lagrangian with respect to ct(g
t) to be negative definite

on the tangent plane of the constraint space defined by A ≡
{
x :
∑∞

t=0

∑
gt

∂F ({c})
∂ct(gt)

xt(g
t) = 0

}
,
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where F ({c}) ≡
∑∞

t=0

∑
gt πt(g

t)[(Uc(g
t)−Ul(gt))ct(gt)−Ul(gt)gt]−Uc0b0, i.e. the implementabiity

constraint (in terms of ct). All expressions are calculated at {c} that is regular and satisfies the

first-order conditions. The time separability of the utility function with full confidence in π makes

the Hessian diagonal, so the second order conditions take the form
∑∞

t=0 β
t
∑

gt Kt(g
t)x2

t (g
t) < 0

for all x 6= 0, x ∈ A. It is apparent that they are satisfied if Kt < 0,∀t ≥ 0.

Examples with a power function in h or l. Consider K in (C.18) which takes a simple

form for utility functions with Ucl = 0. In particular,

K = T c − T l,

where we have collected the terms involving derivatives of the utility function with respect to

consumption and leisure as follows

T c ≡ (1 + 2Φ)Ucc + ΦUcccc

T l ≡ −(1 + 2Φ)Ull + ΦUlllh.

We show now that assumption 1 holds for the utility functions used in proposition 4,

U(c, 1− h) =
c1−γ − 1

1− γ
− ah

h1+φh

1 + φh
(C.23)

U(c, l) =
c1−γ − 1

1− γ
+ al

l1−ψ − 1

1− ψ
. (C.24)

For the utility function in (C.23) we get

T c = −γc−γ−1
(
1 + Φ(1− γ)

)
(C.25)

T l = ahφhh
φh−1

(
1 + Φ(1 + φh)

)
> 0. (C.26)

For the utility function in (C.24) T c is the same and

T l = alψl
−ψ−1

[
1 + Φ

(
2 + (ψ + 1)

h

l

)]
> 0. (C.27)

Note that by evaluating the first-order condition (B.2) for σ = (0, 0) we get c−γ(1+Φ(1−γ)) =

λ > 0 and therefore 1 + Φ(1−γ) > 0 for the multiplier Φ that corresponds to the full-confidence

economy. Thus, we get T c < 0 from (C.25), so K = T c − T l < 0 for both utility functions.

Going to the initial period K0 in (C.19), K0 = T c0 − T l0, with
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T c0 = (1 + 2Φ)Ucc + ΦUccc(c0 − b0)

and T l0 = T l. So for the utility functions in (C.23) and (C.24) we have

T c0 = −γc−γ−2
0 [(1 + Φ(1− γ))c0 + Φ(γ + 1)b0] (C.28)

Note that when b0 ≥ 0 we have T c0 < 0 and therefore K0 < 0. We are assuming that even in the

case of initial assets b0 < 0, their size is not large enough to violate the K0 < 0 condition.

C.3.2 Optimal wedge

Consider the first-order conditions with respect to (c, h) in (B.2) and (B.3). The partial deriva-

tives of Ω are

Ωc = Uc + Uccc− Uclh (C.29)

Ωh = −Ul + Ullh− Uclc (C.30)

As in the proof of proposition 4, we can eliminate the multiplier λt and combine the two

conditions as

Ul − Uc =
ΦΛt

1 + ξ̃t + ΦΛt

[
Uccct − Ucl(ct + ht) + Ullht

]
, t ≥ 1. (C.31)

Equation (C.31) determines the optimal wedge (Ul − Uc) and is just another way of expressing

the optimal tax rate τt. Using the initial period conditions (B.6) and (B.7) and following similar

steps delivers the optimal wedge at t = 0

Ul0 − Uc0 =
Φ

1 + Φ

[
Ucc0(c0 − b0)− Ucl0(c0 + h0 − b0) + Ull0h0

]
. (C.32)

We can use the resource constraint (49) to eliminate labor ht and rewrite the optimal wedges

as
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Ul − Uc =
ΦΛt

1 + ξ̃t + ΦΛt

[
∆(ct)ct + Γ(ct)gt

]
, t ≥ 1. (C.33)

Ul0 − Uc0 =
Φ

1 + Φ

[
∆(c0)c0 + Γ(c0)g0 − Z(c0)b0

]
, (C.34)

where ∆,Γ, Z defined in (C.20), (C.21) and (C.22) respectively. Note that (C.33) and (C.34)

are function of consumption only.

C.3.3 History independence of the full-confidence allocation

The history independence of the Lucas and Stokey (1983) allocation is a well-known result,

which we include here for completeness. Consider the optimal wedge (C.31) together with

the resource constraint (49) and assume that we are at the full confidence case of σ = (0, 0).

Then, Λt = 1, ξ̃t = 0, and we can solve from these two equations for consumption and labor

as functions only of the current shock and the constant value of the multiplier Φ, ct = c(gt; Φ),

ht = h(gt; Φ), t ≥ 1. Similarly, we can use (C.32) to solve for the initial consumption and labor

as c0 = c(g0, b0; Φ) and h0 = h(g0, b0; Φ). Thus, consumption and labor (and therefore the tax

rate) depend only on the current shock gt. The value of the multiplier Φ has to be adjusted so

that the intertemporal budget constraint of the government holds.4

C.3.4 Some simplifications

Recall from (B.1) that Ω(c, h) stands for the government surplus in marginal utility terms. Use

the resource constraint to write Ω as function of consumption only,

Ω(c) ≡ Ω(c, c+ g) =
[
Uc(c, 1− c− g)− Ul(c, 1− c− g)

]
c− Ul(c, 1− c− g)g (C.35)

Differentiating with respect to consumption delivers

Ω′(c) = ∆(c)c+ Γ(c)g + Uc − Ul (C.36)

The change in the surplus of the government Ω′() will show up repeatedly later. We will

simplify (C.36) using information from the optimal wedges. Evaluate the optimal wedges (C.33)

and (C.34) at the full confidence economy σ = (0, 0) and rearrange to get

4And this optimal value would correspond to Φ(0) in our notation.
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∆(ct(0))ct(0) + Γ(ct(0))gt =
1 + Φ(0)

Φ(0)
(Ult(0)− Uct(0)) (C.37)

∆(c0(0))c0(0) + Γ(c0(0))g0 − Z(c0(0))b0 =
1 + Φ(0)

Φ(0)
(Ul0(0)− Uc0(0)). (C.38)

Not that Uct(0) is shorthand for the evaluation of the marginal utility of consumption at the

full-confidence allocation. The same interpretation holds for Ult(0).

Using facts (C.37) and (C.38) allows us to write Ω′ in (C.36) as

Ω′(ct(0)) =
Ult(0)− Uct(0)

Φ(0)
, t ≥ 1 (C.39)

Ω′(c0(0)) =
Ul0(0)− Uc0(0)

Φ(0)
+ Z(c0(0))b0. (C.40)

C.4 Consumption and labor

Result 1. (’Consumption and labor for small doubts’) The partial derivatives of consumption

and labor evaluated at the full-confidence allocation are

cRt (0) = hRt (0) =
Ult(0)− Uct(0)

Kt(0)

[
M∗A

t (0)− ΦR(0)

Φ(0)

]
, t ≥ 0 (C.41)

cAt (0) = hAt (0) =
Ult(0)− Uct(0)

Kt(0)

[
ξ̃At (0)−M∗A

t (0)− ΦA(0)

Φ(0)

]
, t ≥ 0. (C.42)

Φi(0), i = R,A stands for the derivative of the cost of distortionary taxation and Kt(0) is

defined in (C.18) and (C.19). Hence, using (C.1), we get

ct(σ) = ct(0) +
Ult(0)− Uct(0)

Kt(0)

[
σAξ̃

A
t (0) + (σR − σA)M∗A

t (0)− σRΦR(0) + σAΦA(0)

Φ(0)

]
. (C.43)

Note the presence of Kt(0) < 0 in the determination of the partial derivatives cit(0), i = R,A.

The term (Ul − Uc)/K that shows up in both expressions depends only on the consumption

allocation of Lucas and Stokey at time t, and therefore only on the realization of the government

expenditure shock gt. Note also that if the tax rate is positive with full confidence in the model

(a sufficient condition would be Ucl ≥ 0), then Ul − Uc < 0, and therefore (Ul − Uc)/K > 0.

Expression (C.43) shows that the pessimistic expectation management and the paternalism

affect consumption in the way we expect. A positive innovation in debt (which increases ξ̃At (0)),
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increases the tax rate and therefore reduces consumption. Furthermore, if we assume paternalism

and the government doubts the model less than the household (σR > σA), a positive innovation

in utility (good times) is associated with less taxes (since the less pessimistic government taxes

more bad times and less good times), which increases consumption. Paternalism would act in

the opposite way if σR < σA.

Proof. From the resource constraint (49), we have cit(0) = hit(0), i = R,A. Rewrite the optimal

wedge for t ≥ 1 (C.33) as function of σ,

(Ult(σ)− Uct(σ))
(
1 + ξ̃t(σ) + Φ(σ)Λt(σ)

)
= Φ(σ)Λt(σ)

[
∆(ct(σ))ct(σ) + Γ(ct(σ))gt

]
(C.44)

Derivatives with respect to σR. Differentiate the left-hand side and the right-hand side of

(C.44) with respect to σR and evaluate at (σR, σA) = (0, 0) to get

LHSR(0) = −(1 + Φ(0))∆(ct(0))cRt (0) + (Ult(0)− Uct(0))
[
ΦR(0)− Φ(0)M∗A

t (0)
]

(C.45)

RHSR(0) =
[
ΦR(0)− Φ(0)M∗A

t (0)
]
(∆(ct(0))ct(0) + Γ(ct(0))gt) + Φ(0)

[
∆′(ct(0))ct(0)

+Γ′(ct(0))gt + ∆(ct(0))
]
cRt (0) (C.46)

In deriving these expressions we used the result ξ̃Rt (0) = 0 from (C.13) and that ΛR
t (0) =

−N∗Rt (0) = −M∗A
t (0) from (C.10). Combining the two sides, collecting the terms that multiply

cRt (0) and using the definition of Kt(0) in (C.18) delivers

cRt (0)Kt(0) =
[
Ult(0)− Uct(0)−

(
∆(ct(0))ct(0) + Γ(ct(0))gt

)](
ΦR(0)− Φ(0)M∗A

t (0)
)

(C.47)

Use now (C.37) to simplify (C.47) and get (C.41).

Derivatives with respect to σA. Proceed now to differentiation of the optimal wedge with

respect to σA. At σ = (0, 0) we have

LHSA(0) = −(1 + Φ(0))∆(ct(0))cAt (0) + (Ult(0)− Uct(0))
[
ξ̃At (0) + ΦA(0)

+Φ(0)M∗A
t (0)

]
(C.48)

RHSA(0) = [ΦA(0) + Φ(0)M∗A
t (0)](∆(ct(0))ct(0) + Γ(ct(0))gt) + Φ(0)

[
∆′(ct(0))ct(0)

+Γ′(ct(0))gt + ∆(ct(0))
]
cAt (0), (C.49)

xii



where we used (C.9). Equalize the two sides and collect terms that multiply cAt (0) to get

cAt (0)Kt(0) = (Ult(0)− Uct(0))
[
ξ̃At (0) + ΦA(0) + Φ(0)M∗A

t (0)
]

−
(
ΦA(0) + Φ(0)M∗A

t (0)
)[

∆(ct(0))ct(0) + Γ(ct(0))gt
]

(C.50)

Using (C.37) to simplify (C.50) delivers (C.42).

Initial period. The analysis above used the optimal wedge for t ≥ 1. The initial period is

different due to the possible presence of initial debt b0. Write the optimal wedge (C.34) as

function of σ,

(1 + Φ(σ)) (Ul0(σ)− Uc0(σ)) = Φ(σ)
[
∆(c0(σ))c0(σ) + Γ(c0(σ))g0 − Z(c0(σ))b0

]
. (C.51)

Differentiating now with respect to (σR, σA), evaluating at σ = (0, 0) and using fact (C.38) and

the definition of K0(0) in (C.19) delivers ci0(0) = −Ul0(0)−Uc0(0)
K0(0)

Φi(0)
Φ(0)

, i = R,A, which are the same

expressions as in (C.41) and (C.42), since M∗A
0 = ξ̃A0 = 0.

C.5 Cost of distortionary taxation

Result 2. (‘Cost of distortionary taxation for small doubts’)

The partial derivatives of the cost of distortionary taxation at σ = (0, 0) are

ΦR(0) =
Φ(0)E0

∑∞
t=0 β

tzt(0)M∗A
t (0)

E0

∑∞
t=0 β

tzt(0)
(C.52)

ΦA(0) =
Φ(0)2E0

∑∞
t=0 β

tM∗A
t (0)Ω(ct(0)) + Φ(0)E0

∑∞
t=0 β

tzt(0)
[
ξ̃At (0)−M∗A

t (0)
]

E0

∑∞
t=0 β

tzt(0)
,(C.53)

where

zt(0) ≡ (Ult(0)− Uct(0))2

Kt(0)
, (C.54)

and Ω(.) defined in (C.35). Thus, we get

Φ(σ) = Φ(0) + σRΦR(0) + σAΦA(0). (C.55)
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Proof. The partial derivatives Φi show up in the calculation of the approximate consumption

and labor, (C.41) and (C.42). Note that, in contrast to the other derivatives that we considered,

Φi are not random (because the multiplier Φ is non-stochastic). Rewrite the implementability

constraint (64) as

E0

∞∑
t=0

βtM∗
t (σ)Ω(ct(σ)) = Uc0(σ)b0. (C.56)

Proceeding with differentiation and evaluation at σ = (0, 0), and using (C.7) and (C.8), we

get

σR : E0

∞∑
t=0

βtΩ′(ct(0))cRt (0) = Z(c0(0))cR0 (0)b0

σA : E0

∞∑
t=0

βtM∗A
t (0)Ω(ct(0)) + E0

∞∑
t=0

βtΩ′(ct(0))cAt (0) = Z(c0(0))cA0 (0)b0.

Use now expressions (C.39) and (C.40) to substitute for Ω′ to get

σR : E0

∞∑
t=0

βt
Ult(0)− Uct(0)

Φ(0)
cRt (0) = 0

σA : E0

∞∑
t=0

βtM∗A
t (0)Ω(ct(0)) + E0

∞∑
t=0

βt
Ult(0)− Uct(0)

Φ(0)
cAt (0) = 0.

Finally, using expressions (C.41) and (C.42) for cit(0), i = R,A and solving for Φi(0), i = R,A

delivers (C.52) and (C.53). Note that zt(0) < 0 since Kt(0) < 0. So the denominator in (C.52)

and (C.53) is negative. We need additional information on the specifics of the problem to be

able to sign the numerators.

C.6 Tax rate

Result 3. (‘Tax rate for small doubts’)

• The tax rate is approximately equal to

τt(σ) = τt(0) + αt(0)

[
σAξ̃

A
t (0) + (σR − σA)M∗A

t (0)− σRΦR(0) + σAΦA(0)

Φ(0)

]
, t ≥ 0,(C.57)
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with αt(0) a coefficient that depends only on the current shock gt through the full confidence

allocation. When Ucl ≥ 0, we have αt(0) < 0.

• In the case of the example with constant Frisch elasticity (C.23), the full confidence tax

rate and the coefficient α are constant,

τt(0) =
Φ(0)(γ + φh)

1 + Φ(0)(1 + φh)
(C.58)

αt(0) = − Φ(0)(γ + φh)(
1 + Φ(0)(1 + φh)

)2 . (C.59)

Thus, (C.57) implies that the approximate tax rate becomes a random walk with respect to

π,

τt(σ)− τt−1(σ) = − Φ(0)(γ + φh)

(1 + Φ(0)(1 + φh))2

[
σAΦ(0)

(
Uct(0)bt(0)− Et−1Uct(0)bt(0)

)
+(σR − σA)

(
Vt(0)− Et−1Vt(0)

)]
, t ≥ 1. (C.60)

Proof. Write the tax rate as τt(σ) = 1 − Ult(σ)/Uct(σ). Differentiating and evaluating at (0, 0)

gives

τ it (0) =
Ucct(0)Ult(0) + Ullt(0)Uct(0)− Uclt(0)(Uct(0) + Ult(0))

(Uct(0))2
cit(0), i = R,A

Note that if Ucl ≥ 0, the expression multiplying cit(0) is negative. Using now (C.41) and (C.42)

we get

τRt (0) = αt(0)
[
M∗A

t (0)− ΦR(0)

Φ(0)

]
(C.61)

τAt (0) = αt(0)
[
ξ̃At (0)−M∗A

t (0)− ΦA(0)

Φ(0)

]
, (C.62)

where

αt(0) ≡ Ucct(0)Ult(0) + Ullt(0)Uct(0)− Uclt(0)(Uct(0) + Ult(0))

(Uct(0))2

Ult(0)− Uct(0)

Kt(0)
. (C.63)

Combining (C.61) and (C.62) and using (C.1) delivers (C.57). The coefficient αt(0) depends

only on the realization of the shock the current period gt through the Lucas and Stokey allocation.
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Furthermore, when Ucl ≥ 0 (and thus Ult(0) < Uct(0)), we have αt(0) < 0 as can been seen from

(C.63).

Constant Frisch. At first note how the expression for αt(0) simplifies if we have Ucl = 0.

Drop for simplicity the ‘zero’ notation and rewrite (C.63) as

α =
Ul − Uc
Uc

Ucc
Ul
Uc

+ Ull

K

= −τ Ucc(1− τ) + Ull
K

, (C.64)

where in the second line we used τ = 1− Ul/Uc.
Turn now to the constant Frisch case and recall that the tax rate is given by (74), which

reduces to (C.58) with no doubts about the model. Use expressions (C.25) and (C.26) for period

one onward to get

K = T c − T l = −
[
γc−γ−1(1 + Φ(1− γ)) + ahφhh

φh−1(1 + Φ(1 + φh))
]

= −(1 + Φ(1 + φh))
[
γc−γ−1 1 + Φ(1− γ)

1 + Φ(1 + φh)
+ ahφhh

φh−1)
]

= (1 + Φ(1 + φh))
[
Ucc(1− τ) + Ull

]
, (C.65)

where we used the fact that 1 − τ = 1+Φ(1−γ)
1+Φ(1+φh)

(from (C.58)- recall that we simplified the

notation here). Use now (C.65) and the expression for the tax rate to simplify (C.64) and get

finally (C.59). Take then first differences in (C.57) and use the expressions (C.5) and (C.17) for

the increments m∗At (0) and ηt(0) respectively to get (C.60).

C.7 Debt

Result 4. (‘Debt for small doubts’)

• Let yt ≡ Uctbt denote debt in marginal utility units. The partial derivatives are given by

yRt (0) = A(gt)M∗A
t (0) +BR(gt) (C.66)

yAt (0) = A(gt)
(
ξ̃At (0)−M∗A

t (0)
)

+BA(gt), (C.67)

where the respective coefficients are defined as
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A(gt) ≡ Et
∑∞

i=0 β
izt+i(0)

Φ(0)
(C.68)

BR(gt) ≡ Et

∞∑
i=0

βi
zt+i(0)

Φ(0)

(
M∗A

t+i(0)−M∗A
t (0)

)
− ΦR(0)

(Φ(0))2
Et

∞∑
i=0

βizt+i(0) (C.69)

BA(gt) ≡ Et

∞∑
i=0

βi
zt+i(0)

Φ(0)

[
(ξ̃At+i(0)− ξ̃At (0))− (M∗A

t+i(0)−M∗A
t (0))

]
− ΦA(0)

(Φ(0))2
Et

∞∑
i=0

βizt+i(0) + Et

∞∑
i=1

βim∗At+i(0)yt+i(0), (C.70)

with zt(0) defined in (C.54). Thus, debt in marginal utility is given approximately by

yt(σ) = yt(0) + A(gt)
[
σAξ̃

A
t (0) + (σR − σA)M∗A

t (0)
]

+ σRBR(gt) + σABA(gt). (C.71)

The coefficients A(gt), Bi(g
t), i = R,A depend on the entire history of shocks. If the

reference model π is Markov, then the history-independence of the full-confidence allocation

delivers history-independent coefficients, A(gt) = A(gt), Bi(g
t) = Bi(gt), i = R,A.

• Let ct(σ) = ct(0) + σRc
R
t (0) + σAc

A
t (0) and yt(σ) = yt(0) + σRy

R
t (0) + σAy

A
t (0) denote the

approximate consumption and debt in marginal units. Then, debt to first-order is given by

bt(σ) =
yt(σ)

Uct(0)
− Z(ct(0))

Uct(0)
bt(0)

(
ct(σ)− ct(0)

)
, (C.72)

where Z(.) is defined in (C.22).

Proof. From the dynamic budget constraint of the government we have

yt(σ) = Ω(ct(σ)) + βEtm
∗
t+1(σ)yt+1(σ), t ≥ 1. (C.73)

Debt in Uc units. Differentiate (C.73), evaluate at (0, 0) and use (C.5) and (C.6) to get

σR : yRt (0) = Ω′(ct(0))cRt (0) + βEty
R
t+1(0)

σA : yAt (0) = Ω′(ct(0))cAt (0) + βEtm
∗A
t+1(0)yt+1(0) + βEty

A
t+1(0)
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Solving forward we get

yRt (0) = Et

∞∑
i=0

βiΩ′(ct+i(0))cRt+i(0)

yAt (0) = Et

∞∑
i=0

βiΩ′(ct+i(0))cAt+i(0) + Et

∞∑
i=1

βim∗At+i(0)yt+i(0)

Use now (C.39), (C.41), (C.42) and the definition of zt(0) in (C.54) to get

yRt (0) = Et

∞∑
i=0

βi
zt+i(0)

Φ(0)

[
M∗A

t+i(0)− ΦR(0)

Φ(0)

]
(C.74)

yAt (0) = Et

∞∑
i=0

βi
zt+i(0)

Φ(0)

[
ξ̃At+i(0)−M∗A

t+i(0)− ΦA(0)

Φ(0)

]
+ Et

∞∑
i=1

βim∗At+i(0)yt+i(0) (C.75)

Use now the identities M∗A
t+i(0) =

(
M∗A

t+i(0) −M∗A
t (0)

)
+ M∗A

t (0) and ξ̃At+i(0) =
(
ξ̃At+i(0) −

ξ̃At (0)
)

+ ξ̃At (0) and rewrite (C.74) and (C.75) as (C.66) and (C.67) respectively.

Debt. Write debt in marginal utility units as yt(σ) = Uct(σ)bt(σ). Differentiate and evaluate

at (0, 0) to get

yit(0) = Z(ct(0))bt(0)cit(0) + Uct(0)bit(0), i = R,A.

Thus,

bit(0) =
1

Uct(0)

[
yit(0)− Z(ct(0))bt(0)cit(0)

]
, i = R,A, (C.76)

and therefore,

bt(σ) = bt(0) + σRb
R
t (0) + σAb

A
t (0)

= bt(0) +
1

Uct(0)

[
σRy

R
t (0) + σAy

A
t (0)

]
︸ ︷︷ ︸

yt(σ)/Uct(0)

− Z(ct(0))

Uct(0)
bt(0)

[
σRc

R
t (0) + σAc

A
t (0)

]︸ ︷︷ ︸
ct(σ)−ct(0)

,

by realizing that bt(0) = yt(0)/Uct(0).
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C.8 Formulas for Markov shocks

Assume that the reference probability model of g is a time-invariant Markov chain with tran-

sition matrix Π of dimension N × N . The Markovian assumption, together with the history-

independence of the full confidence allocation, allows us to derive convenient present-value for-

mulas for several coefficients in the expansion. We present formulas for the case of zero initial

debt, which can be easily modified to incorporate the more general case of b0 6= 0.

Martingale increments. At first we need to calculate the increments to the martingale

derivatives M∗A
t and ξ̃At . For that we need to calculate the household’s expected discounted

utility V for the case of no-robustness and the bonds in marginal utility terms, y ≡ Ucb. We are

dropping the ‘0’ notation that indicates the full-confidence economy whenever we use vectors

from now on, but remember that we are always referring to the Lucas and Stokey solution. We

have

V = (I− βΠ)−1U (C.77)

y = (I− βΠ)−1Ω, (C.78)

where V, y, U,Ω column vectors of dimension N , with each element corresponding to the re-

spective state and I the N × N identity matrix.5 We can derive the government debt by

dividing each element of y with the corresponding marginal utility Uc. Let m∗A denote the

matrix that collects the increments to the martingale M∗A
t with corresponding element m∗Aij =

m∗A(j|i) = Vj − E(V |i) and let η denote the matrix that collects the increments to ξ̃At with

element ηij = η(j|i) = Φ(0)(yj − E(y|i)). Given the vectors V and y in (C.77) and (C.78), we

can write these matrices as

m∗A = 1V T −ΠV 1T (C.79)

η = Φ(0)
(
1yT −Πy1T

)
, (C.80)

where 1 is an N × 1 column vector with ones everywhere and the superscript ‘T ’ refers to

transpose. Note that the increments to the martingale derivatives inherit the Markov property.

Let ◦ denote element-by-element multiplication between two matrices with the same dimensions

(or else Hadamard multiplication) and let 0N×1 denote the N-dimensional zero column vector.

Note that (Π◦m∗A)1 = 0N×1 and (Π◦η)1 = 0N×1, since the conditional mean of the increments

is zero.

5We reserve the use of boldface for matrices in this section.

xix



Present values. We want now to calculate the discounted present values that show up in

results 2 and 4. These expressions involve expected discounted sums of products of the history-

dependent martingale derivatives (M∗A
t or ξ̃At ), or the increment m∗At (0), with functions of the

Lucas and Stokey allocation like Ω(ct(0), ht(0)) or zt(0), that are only state-dependent.

For example, consider the sum S ≡ Et
∑∞

i=1 β
im∗At+i(0)yt+i(0) that shows up in (C.70). If we

expand it, we get

S = β
∑
gt+1

π(gt+1|gt)m∗A(gt+1|gt)y(gt+1)

+β2
∑
gt+1

π(gt+1|gt)
∑
gt+2

π(gt+2|gt+1)m∗A(gt+2|gt+1)y(gt+2)

+β3
∑
gt+1

π(gt+1|gt)
∑
gt+2

π(gt+2|gt+1)
∑
gt+3

π(gt+3|gt+2)m∗A(gt+3|gt+2)y(gt+3) + ...

= βeTgt(Π ◦m∗A)y + β2eTgtΠ(Π ◦m∗A)y + β3eTgtΠ
2(Π ◦m∗A)y + ...

= βeTgt(I + βΠ + β2Π2 + β3Π3 + ...)(Π ◦m∗A)y

= βeTgt(I− βΠ)−1(Π ◦m∗A)y,

where egt be a column vector with 1 at position i, when gt = gi and zero otherwise.

The case where we have multiplication with the martingale M∗A
t (0) =

∑t
i=1m

∗A
i (0) is slightly

more complicated. Consider for example the term I ≡ E0

∑∞
t=0 β

tM∗A
t (0)Ωt(0) in the numerator

in (C.53), where Ωt(0) shorthand for Ω(ct(0), ht(0)). I can be rewritten as

I = E0

∞∑
t=1

m∗At (0)
∞∑
j=t

βjΩj(0) = E0m
∗A
1 (0)E1

[
βΩ1(0) + β2Ω2(0) + ...

]
+E0m

∗A
2 (0)E2

[
β2Ω2(0) + β3Ω3(0) + ...

]
+ E0m

∗A
3 (0)E3

[
β3Ω3(0) + β4Ω4(0) + ...

]
+ ...

= βeTg0(Π ◦m∗A)(I− βΠ)−1Ω + β2eTg0Π(Π ◦m∗A)(I− βΠ)−1Ω

+β3eTg0Π
2(Π ◦m∗A)(I− βΠ)−1Ω + ...

= βeTg0(I + βΠ + β2Π2 + ...)(Π ◦m∗A)(I− βΠ)−1Ω

= βeTg0(I− βΠ)−1(Π ◦m∗A)(I− βΠ)−1Ω.

We get similar expressions when the product involves the partial sum ξ̃At (0) =
∑t

i=1 ηi(0).

For example, the term that involves ξ̃At (0) in the numerator of (C.53) becomes
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E0

∞∑
t=0

βtzt(0)ξ̃At (0) = E0

∞∑
t=1

ηt(0)
∞∑
j=t

βjzj(0) = βeTg0(I− βΠ)−1(Π ◦ η)(I− βΠ)−1z,

where z an N × 1 column vector.

We repeat this type of calculations and collect the relevant expressions in the following result.

Result 5. Assume with have Markov shocks with transition matrix Π.

• The coefficients in (C.52) and (C.53) become

ΦR(0) =
Φ(0)eTg0β(I− βΠ)−1(Π ◦m∗A)(I− βΠ)−1z

eTg0(I− βΠ)−1z

ΦA(0) =
Φ(0)eTg0β(I− βΠ)−1

[
Φ(0)(Π ◦m∗A)(I− βΠ)−1Ω +

[
(Π ◦ η)− (Π ◦m∗A)

]
(I− βΠ)−1z

]
eTg0(I− βΠ)−1z

.

• The coefficients in (C.68)-(C.70) become

A(gt) =
eTgt(I− βΠ)−1z

Φ(0)

BR(gt) =
1

Φ(0)
eTgt

[
β(I− βΠ)−1(Π ◦m∗A)− ΦR(0)

Φ(0)
I
]
(I− βΠ)−1z

BA(gt) =
1

Φ(0)
eTgt

[
β(I− βΠ)−1

[
(Π ◦ η)− (Π ◦m∗A)

]
− ΦA(0)

Φ(0)
I
]
(I− βΠ)−1z

+eTgtβ(I− βΠ)−1(Π ◦m∗A)y.

C.9 Quasi-linear utility

C.9.1 No doubts about the model

The utility function we are using is subcase of example (74) in proposition 4 for (γ, ah) = (0, 1).

The relevant variables for σ = (0, 0) are as follows:
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τt(0) = τ ≡ Φ(0)φh
1 + Φ(0)(1 + φh)

(C.81)

ht(0) = h = (1− τ)
1
φh (C.82)

ct(0) = h− gt (C.83)

Vt(0) = (1− β)−1
(
h− h1+φh

1 + φh

)
− Et

∞∑
i=0

βigt+i (C.84)

bt(0) =
τh

1− β
− Et

∞∑
i=0

βigt+i. (C.85)

In order to find the multiplier of the full-confidence economy Φ(0), we solve for the constant

tax rate from the intertemporal budget constraint of the government:

τ(1− τ)
1
φh︸ ︷︷ ︸

Tax revenues

= G, where G ≡ (1− β)
[
b0 + E0

∞∑
t=0

βtgt
]
. (C.86)

We assume that G > 0, which implies that initial assets are not sufficiently large to finance

government expenditures without resorting to distortionary taxes. We are looking for solutions

of (C.86) at the increasing side of the Laffer curve, which implies that we are looking for τ <

τLaffer ≡ φh
1+φh

. For a solution to exist we assume also that G is less than the maximum tax

revenues possible, so G < T Laffer = φh

(1+φh)
1+ 1

φh

.6 Note that if φh = 1, then (C.86) becomes a

quadratic equation, Q(τ) = −τ 2 + τ − G. The root at the proper side of the Laffer curve is

τ = 1−
√

1−4G
2

since τ < τLaffer = 1/2.

C.9.2 Proof of proposition 6

Part 1. Use (C.84) and (C.85) to get

Vt(0)− Et−1Vt(0) = bt(0)− Et−1bt(0) = −(Et − Et−1)
∞∑
i=0

βigt+i

= −
∞∑
i=0

βi(Et − Et−1)gt+i

= −
( ∞∑
i=0

βiγi
)
ugt = −γ(β)ugt . (C.87)

6From (C.81) we see that the tax rate at the top of the Laffer curve τLaffer corresponds to Φ(0) = ∞, which
is excluded by not allowing G to equal TLaffer.
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The third line comes from the fact that given (83), we have (Et − Et−1)gt+i = γiu
g
t , i ≥ 0.

Consequently, from C.5(C.7), (C.14) and (C.17) we have,

m∗At (0) = n∗Rt (0) = Vt(0)− Et−1Vt(0) = −γ(β)ugt (C.88)

ηt(0) = Φ(0)
[
bt(0)− Et−1bt(0)

]
= −Φ(0)γ(β)ugt (C.89)

M∗A
t (0) =

t∑
i=1

m∗Ai (0) = −γ(β)
t∑
i=1

ugi (C.90)

ξ̃At (0) =
t∑
i=1

ηt(0) = −Φ(0)γ(β)
t∑
i=1

ugi . (C.91)

Part 2. Use (C.6) and (C.88) and apply the first-order expansion (C.1) to get

n∗t = 1 + σRn
∗R
t (0) = 1 + σR(Vt(0)− Et−1Vt(0)) = 1 +

1

θR
γ(β)ugt (C.92)

m∗t = 1 + σAm
∗A
t (0) = 1 + σA(Vt(0)− Et−1Vt(0)) = 1 +

1

θA
γ(β)ugt , (C.93)

by using (C.87).

Part 3. Use now (C.92) to get Etn
∗
t+1u

g
t+1 = Etu

g
t+1 + 1

θR
γ(β)Et(u

g
t+1)2 = 1

θR
γ(β)σ2

u, since

Etu
g
t+1 = 0. Turning to the conditional variance, we have V arGov.

t (ugt+1) ≡ Etn
∗
t+1(ugt+1 −

Etn
∗
t+1u

g
t+1)2. Treat the variance as any other function of the parameter vector σ and expand

around (0,0) to get

∂

∂σi
V arGov.

t (ugt+1)|σ=(0,0) = Etn
∗i
t+1(0)(ugt+1 − Etu

g
t+1)2 − 2Et(u

g
t+1 − Etu

g
t+1)Etn

∗i
t+1(0)ugt+1

= Etn
∗i
t+1(0)(ugt+1)2, i = R,A.

Use (C.6) and (C.88) to get

∂

∂σR
V arGov.

t (ugt+1)|σ=(0,0) = −γ(β)Et
(
ugt+1

)3
, and

∂

∂σA
V arGov.

t (ugt+1)|σ=(0,0) = 0,

which, after using (C.1), deliver the expression in (86). We can use (C.93) and perform a similar

approximation for the conditional variance according to the household’s worst-case beliefs, to

get
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∂

∂σR
V arHous.

t (ugt+1)|σ=(0,0) = 0, and
∂

∂σA
V arHous.

t (ugt+1)|σ=(0,0) = −γ(β)Et
(
ugt+1

)3
,

leading to the result stated in the proposition.

A last comment is due. The reader may wonder how the approximation of the conditional

variance is related to the actual conditional variance that we would get according to the approx-

imated beliefs in (C.92). We have

V arGov.
t (ugt+1) = Etn

∗
t+1

(
ugt+1

)2 −
(
Etn

∗
t+1u

g
t+1

)2

(C.92)
= σ2

u +
1

θR
γ(β)Et

(
ugt+1

)3︸ ︷︷ ︸
first-order approx.

− (γ(β))2

θ2
R

σ4
u, (C.94)

which shows that a first-order approximation of the worst-case variance around σ = (0, 0)

ignores terms that are fourth-order in the reference standard deviation of the exogenous shock.

C.9.3 Proof of proposition 7

Part 1. Use formula (C.60) from result 3 for γ = 0 and use also the formulas for the innovations

(84) to get (87). Turning to labor, write it as ht(σ) = (1 − τt(σ))
1
φh , differentiate with respect

to σi, i = R,A and evaluate at (0, 0) to get

hit(0) = − 1

φh

h

1− τ
τ it (0), i = R,A, (C.95)

where τ and h were defined in (C.81) and (C.82) respectively. Then, the first-order approximation

of labor is

ht(σ) = h− 1

φh

h

1− τ
[
σRτ

R
t (0) + σAτ

A
t (0)

]
= h− 1

φh

h

1− τ
(τt(σ)− τ), (C.96)

where in the second line we use the first-order approximation for the tax rate. Evaluate now

(C.96) at t − 1, take first differences, use (87), and simplify by setting 1 − τ = 1+Φ(0)
1+Φ(0)(1+φh)

, to

get (88).

The tax revenues Tt(σ) ≡ τt(σ)ht(σ) have first-order derivatives
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T it (0) = τ it (0)h+ τhit(0) = h
(
1− 1

φh

τ

1− τ
)
τ it (0)

=
h

1 + Φ(0)
τ it (0), i = R,A. (C.97)

In the first line we used (C.95) and in the second line we simplified by using the fact that
τ

1−τ = Φ(0)φh
1+Φ(0)

from (C.81). Thus, the first-order expansion becomes

Tt(σ) = τh+
h

1 + Φ(0)

[
σRτ

R
t (0) + σAτ

A
t (0)

]
= τh+

h

1 + Φ(0)

[
τt(σ)− τ

]
, (C.98)

by using again the first-order approximation of the tax rate. Take first differences in (C.98) and

use (87) to get (89).

Part 2- Preliminaries. For the rest of the section recall from (C.7) and (C.14) and that the

derivatives of the martingales are themselves martingales (with respect to π), i.e. EtM
∗A
t+1(0) =

M∗A
t (0), Etξ̃

A
t+1(0) = ξ̃At (0). The means are zero, EM∗A

t (0) = Eξ̃At = M∗A
0 (0) = ξ̃A0 (0) = 0.

Consider first K, which can be found from formula (C.65) as

K = −φhhφh−1
(
1 + Φ(0)(1 + φh)

)
= −φh

1− τ
h

(
1 + Φ(0)(1 + φh)

)
= −φh

1 + Φ(0)

h
∀t ≥ 0 (C.99)

The second equality comes from using the labor supply condition, i.e. hφh = 1 − τ and the

third equality by using the expression for the tax rate in (C.81). Thus K is constant, a fact

which implies that zt(0) in (C.54) becomes constant,

zt(0) = z̄ =
(Ul − Uc)2

K
= −(hφh − 1)2

K
=
τ 2

K

(C.99)
= − τ 2h

φh(1 + Φ(0))

(C.81)
= − h

1 + Φ(0)

(Φ(0))2φh(
1 + Φ(0)(1 + φh)

)2 . (C.100)

Part 2 - Cost of taxation. Proceed now to the calculation of the derivatives Φi(0), i = R,A

in result 2, which are necessary for the determination of the coefficients of debt in result 4. These
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will be greatly simplified because z is constant. Consider (C.52):

ΦR(0) = Φ(0)
z̄E0

∑∞
t=0 β

tM∗A
t (0)

z̄/(1− β)
= 0, (C.101)

since E0M
∗A
t (0) = M∗A

0 (0) = 0. Similarly, using again the martingale property of M∗A
t (0) and

ξ̃At (0)), ΦA(0) in (C.53) becomes7

ΦA(0) =
(1− β)(Φ(0))2

z̄
E0

∞∑
t=0

βtM∗A
t (0)Ωt(0)

= −(1− β)(Φ(0))2

z̄
E0

∞∑
t=0

βtM∗A
t (0)gt. (C.102)

The second line comes from the fact that Ωt = ct − (1− τ)h = τh− gt. The discounted sum

in (C.102) can be written as

E0

∞∑
t=0

βtM∗A
t (0)gt =

∞∑
t=1

βt
( t∑
i=1

m∗Ai (0)
)
gt = E0

∞∑
t=1

βtm∗At (0)
∞∑
j=0

βjgt+j(0)

(C.88)
= −γ(β)

∞∑
t=1

βt
∞∑
j=0

βjE0u
g
t gt+j

= −γ(β)σ2
u

∞∑
t=1

βt
∞∑
j=0

βjγj = − β

1− β
(γ(β))2σ2

u (C.103)

In the first line we have expanded the cumulative sum and collected terms multiplying each

increment m∗At (0). The third line comes from the fact that E0utgt+j = γjσ
2
u, j ≥ 0. Use now

(C.103) in (C.102) to finally get

ΦA(0) =
βΦ(0)2(γ(β))2

z̄
σ2
u. (C.104)

7Recall that Ωt(0) is shorthand for Ω(ct(0), ht(0)) which is also equal to Ω(ct(0)).
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Part 2 - Debt. The expressions for yit(0), i = R,A, in result 4 are equal to bit(0), i = R,A

since Uc = 1. Using the constancy of z̄, the martingale property and (C.101) we get

A(gt) =
z̄

(1− β)Φ(0)

(C.100)
= −(1− β)−1h

1 + Φ(0)

Φ(0)φh(
1 + Φ(0)(1 + φh)

)2 (C.105)

BR(gt) = 0. (C.106)

Similarly, the expression for BA(gt) in (C.70) simplifies to

BA(gt) = −ΦA(0)

Φ(0)2

z̄

1− β
+ Et

∞∑
i=1

βim∗At+i(0)bt+i(0)

(C.85)
= −ΦA(0)

Φ(0)2

z̄

1− β
+ Et

∞∑
i=1

βim∗At+i(0)
[ τh

1− β
− Et+i

∞∑
j=0

βjgt+i+j
]

= −ΦA(0)

Φ(0)2

z̄

1− β
− Et

∞∑
i=1

βim∗At+i(0)
∞∑
j=0

βjgt+i+j

(C.88)
= −ΦA(0)

Φ(0)2

z̄

1− β
+ γ(β)

∞∑
i=1

βi
∞∑
j=0

βj

γjσ
2
u︷ ︸︸ ︷

Etu
g
t+igt+i+j

= −ΦA(0)

Φ(0)2

z̄

1− β
+

β

1− β
(γ(β))2σ2

u

(C.104)
= − β

1− β
(γ(β))2σ2

u +
β

1− β
(γ(β))2σ2

u = 0. (C.107)

Use now (C.105)-(C.107) in the first-order expansion (C.71) and substitute for the martingale

derivatives by using (C.90) and (C.91) to get the debt policy (90) in the text.
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