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Abstract

Short-term debt is commonly used to fund illiquid assets. A con-
ventional view asserts that such arrangements are run-prone in part
because redemptions must be processed on a �rst-come, �rst-served
basis. This sequential service protocol, however, appears absent in the
wholesale banking sector� and yet, shadow banks appear vulnerable
to runs. We explain how banking arrangements that fund �xed-cost
operations using short-term debt can be run-prone even in the absence
of sequential service. Interventions designed to eliminate run risk may
or may not improve depositor welfare. We describe how optimal poli-
cies vary under di¤erent conditions and compare these to recent policy
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interventions by the Security and Exchange Commission and the Fed-
eral Reserve. We conclude that the conventional view concerning the
societal bene�ts of liquidity transformation and its recommendations
for prudential policy extend far beyond their application to depository
institutions.
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1 Introduction

The use of short-term debt to fund illiquid assets is a common practice in
�nancial markets. The stability of these �banking�arrangements often rests
uncomfortably on the state of creditor con�dence. When con�dence wanes,
the structure collapses. But if this is the case, then what accounts for their
widespread use? And what, if anything, is the role of policy?

A traditional view contends that liquidity mismatch serves certain pri-
vate interests at the expense of the broader community. Proponents of the
Chicago Plan, a group of prominent economists who evidently shared this
sentiment, went so far as to recommend the abolition of fractional reserve
banking (Fisher 1936). The legislation that emerged at the time was, for bet-
ter or worse, considerably less drastic. In particular, the Banking Act of 1935
continued to allow fractional reserve banking, but only with the support of
federal deposit insurance. Several decades later, Diamond and Dybvig (1983)
provided the theoretical justi�cation for exactly this type of solution.

While deposit insurance provides the support needed to comfort small
depositors, suppliers of short-term �nancing outside the commercial banking
sector do not have similar assurances. The 2007-2008 �nancial crisis revealed
the fragility of �nancial intermediaries such as money mutual funds (MMFs)
and investment banks belonging to the so-called shadow banking sector.
These institutions experienced runs by their lenders similar to those in the
traditional retail banking sector in the pre-deposit insurance era (Bernanke
2009, Gorton 2010 and Gorton and Metrick 2010).

It is tempting to conclude that the rationale supplied by Diamond and
Dybvig (1983) applies equally to the banking arrangements we observe in
the wholesale sector. But the application is not so obvious. In particular,
the fragility of the banking arrangements in Diamond and Dybvig (1983)
relies critically on the assumption that depositor withdrawal requests must be
processed on a �rst-come, �rst-served basis. This so-called sequential service
constraint is notably absent in wholesale settings. And absent sequential
service, the use of uninsured short-term �nancing is not unstable in the
Diamond and Dybvig (1983) model.

The purpose of our paper is to demonstrate that sequential service is
not necessary to render banking arrangements unstable in the Diamond and
Dybvig (1983) model when the investments banks �nance are subject to �xed
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costs of production. Fixed costs imply increasing returns to scale at low levels
of production.1 Investments with this property can o¤er creditors attractive
rates of return when production operates at scale. But if production is scaled
back for any reason at all� including a sudden lack of funding� then the net
rate of return on the underlying investment declines as unit production costs
rise. The use of short-term debt to �nance investments in operations with
this property is potentially unstable. In particular, if con�dence vanishes and
investors call their loans, production collapses, unit costs rise, and the net
return on the underlying investment declines� thereby justifying the initial
lack of con�dence. This mechanism is absent in Diamond and Dybvig (1983)
because returns there are assumed to be linear.2

If our theory is correct, then Diamond and Dybvig�s (1983) view concern-
ing the societal bene�ts of liquidity transformation and their recommenda-
tions for prudential policy extend far beyond their application to depository
institutions. And, not surprisingly, legislators and regulators have enacted
several money market reforms since the 2007-08 �nancial crisis. On July 23,
2014, for example, the Securities Exchange Commission announced the re-
quirement of a �oating net asset value (NAV) pricing for institutional money
market funds, as well as the use of liquidity fees and redemption gates to be
administered in periods of stress or heavy redemption activity.3 In an ear-
lier version of this paper (Andolfatto and Nosal 2018) we warned that NAV
pricing would not in itself render money funds stable, though we expressed
a more favorable view of liquidity fees and redemption gates.4 The strains
exhibited by prime MMFs in March 2020, however, suggest we were too opti-

1Our analysis could also be applied to the case in which increasing returns are directly
a property of the business of banking itself, which seems consistent with available evidence
(e.g., Mester 2008, Wheelock and Wilson 2017 and Corbae and D�Erasmo 2018).

2Ennis and Keister (2010) provide a useful survey of the literature spawned by Diamond
and Dybvig (1983).

3A liquidity fee is a payment that the investor incurs to withdrawl
funds; a gate limits the amount of funds an investor can withdraw. See
https://www.sec.gov/News/PressRelease/Detail/PressRelease/1370542347679. These
reforms were motivated largely by an event on September 16, 2008, when the Reserve
Primary Fund �broke the buck.�News of this event triggered a large wave of redemptions
in the money market sector, especially from funds invested in commercial paper. The
wave of redemptions ceased only after the U.S. government announced it would insure
deposits in money market funds. See Kacperczyk and Schnabl (2010).

4Our view on NAV pricing was made in contrast to Cochrane (2014, pg. 198), who
expressed a more optimistic view of the stabilizing e¤ects of NAV pricing.
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mistic on this score.5 Calm was restored to the market only after the Federal
Reserve implemented its emergency lending facilities for commercial paper
and money funds on March 17-18, 2020; see Sengupta and Xue (2020). These
developments suggest that for regulatory purposes, it may be necessary to
treat shadow banks as de facto depository institutions.

While our approach is complementary to explanations of bank instability
that rely on sequential service, it is of some interest to highlight their di¤er-
ent implications along an important dimension. In particular, consider the
risk-free, linear-return asset modeled by Diamond and Dybvig (1983) and,
indeed, employed throughout the literature (e.g., Peck and Shell, 2003). Our
model nests this standard speci�cation when �xed costs are absent. Such an
asset could reasonably be interpreted as a portfolio of illiquid U.S. Treasury
securities. If so, then the Diamond and Dybvig (1983) model predicts that
uninsured narrow banks and government money mutual funds are run-prone,
owing to the sequential service friction. Our setup, in contrast, suggests that
such intermediaries are run-proof. This is because unlike, say, the invest-
ments �nanced through commercial paper, the promised rate of return on
U.S. Treasury securities is not sensitive to the scale of government opera-
tions.

The paper is organized as follows. Section 2 reviews an economic en-
vironment without sequential service and �xed costs that will serve as a
benchmark. We demonstrate that the optimal risk-sharing arrangement in
the basic environment is run-proof. In Section 3 we introduce a �xed cost
into the basic environment and derive the conditions under which risk-sharing
arrangements are run-prone. We then characterize the optimal risk-sharing
arrangement as a function of the �xed cost and report the conditions under
which an optimal risk-sharing arrangement is run-proof or run-prone. Sec-
tion 4 asks if central bank liquidity provision can eliminate shadow bank
runs. We summarize and conclude in Section 5.

5To be fair, we advocated for a rules-based policy, whereas the legislation permits fund
managers to exercise discretion.
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2 Shadow banks with linear returns

2.1 The environment

Our model is based on the Green and Lin (2000, 2003) version of the Dia-
mond and Dybvig (1983) model. We begin by describing their model without
sequential service and without �xed costs.

There are three dates, t = 0; 1; 2 and a �nite number N � 3 of ex ante
identical individuals. Individuals have preferences de�ned over consumption
at dates 1 and 2, denoted c1 and c2; respectively. Individuals receive a pref-
erence shock between t = 0 and t = 1 that determines their type: impatient
or patient. An impatient individual only values consumption in date 1; let
Au(c1) denote the utility payo¤ from consuming c1 for an impatient individ-
ual. A patient individual is indi¤erent between consuming at dates 1 and 2;
let u(c1 + c2) denote the utility payo¤ from consuming c1 + c2 for a patient
individual. Assume u(c) = c1��=(1� �) with � > 1: Ex ante preferences are
given by

E0 [�Au(c1) + (1� �)u(c1 + c2)] ; (1)

where E0 represents an expectations operator at t = 0 and 1 � A � R is a
parameter.6

Each individual is endowed with y units of output at t = 0, which is
invested. Any faction of the investment can be liquidated and consumed at
t = 1 at a unit rate of return. The remaining fraction of investment that is
not liquidated at t = 1 yields rate of return R > 1 at t = 2:

Since individuals are risk averse, they have an incentive to pool risk. In
what follows, we refer to a risk-sharing arrangement where sequential service
is absent as a shadow bank.7 The timing of events is a follows. Individuals
deposit their endowments at the bank at t = 0 in exchange for a contract that
speci�es an allocation. The allocation speci�es (state-contingent) payo¤s for
t = 1; 2. Depositors learn their type between dates t = 0 and t = 1. We

6These preferences are equivalent to Diamond and Dybvig�s (1983) preferences

�u(c1) + (1� �)�u(c1 + c2);

with � = R�1 < 1:
7That is, as distinct from a retail bank, which we think of as employing sequential

service protocols.
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assume that depositors can visit the bank only once, either at t = 1 or at
t = 2, and that they arrive simultaneously (there is no sequential service).
After the t = 1 redemption requests are processed, k units of investment
remain. At t = 2, the maturing investment (interest and principal) equals
Rk and is distributed to depositors arriving at date 2.

An individual is impatient with probability �. The probability that there
are 0 � n � N impatient individuals is �n. If types are i.i.d., then

�n =

�
N

n

�
�n(1� �)N�n;

where 0 < �n < 1 for all n. That is, the distribution of individuals who are
impatient has full support. Given R > 1; it is never optimal for a patient
individual to consume (and therefore visit the bank) at date 1. In addition, if
type is observable, then the time and state-contingent allocation will take the
form (c1; c2) � fc1(n); c2(n)gNn=0; where n denotes the number of impatient
depositors visiting the bank at date 1. Altogether, this implies that ex ante
preferences ranking allocations can be expressed as,

NX
n=0

�n [nAu (c1(n)) + (N � n)u (c2(n))] : (2)

Feasibility requires that aggregate withdrawals at date 1 cannot be neg-
ative and cannot exceed the aggregate endowment, i.e.,

0 � nc1(n) � Ny; (3)

for all n. The resources that remain invested after early redemptions are
satis�ed is given by k(n) = [Ny � nc1(n)] : Feasibility also requires that
aggregate redemptions at date 2 cannot exceed Rk(n): We assume, without
loss, that all of the maturing investment is paid out to depositors at date 2,
so that feasibility also respects,

(N � n) c2(n) = R [Ny � nc1(n)] : (4)

2.2 E¢ cient risk-sharing

An e¢ cient risk-sharing arrangement is an allocation (c1; c2) that maximizes
(2) subject to (3) and (4). Given our CES preference speci�cation, the solu-
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tion is

c�1(n) =
RNy

mR + (N � n) (R=A)1=�
(5)

c�2(n) = (R=A)1=� c�1(n); (6)

for n = 1; 2; :::; N � 1, with

fc�1(0); c�2(0)g = f0; Ryg (7)

fc�1(N); c�2(N)g = fy; 0g: (8)

It will prove convenient to assume, with little loss of generality, A = R:
In this case, it is optimal to equate consumption across periods on a state-
by-state basis. Conditions (5) and (6) imply,

y < c�1(n) = c
�
2(n) < Ry (9)

c�1(n+ 1) < c
�
2(n); (10)

for n = 1; 2; :::; N � 1. Conditions (9) and (10) imply that the withdrawal
amounts in both periods are strictly decreasing in the number of early re-
demptions.

2.3 Private information and the withdrawal game

We now add the restriction that type is private information. Let m 2
f0; 1; :::; Ng be the number of depositors visiting the bank at t = 1. Be-
cause type is private information, m is conceptually distinct from n, the true
number of impatient depositors. As is standard in this literature, we restrict
attention to direct mechanisms that condition t = 1 payouts on m, which is
observable. The allocation now takes the form (c1; c2) � fc1(m); c2(m)gNm=0:
After depositors learn their types, they play the following withdrawal

game. Each depositor j 2 f1; 2; :::; Ng simultaneously chooses an action
tj 2 f1; 2g, where tj denotes the date depositor j visits the bank. Depositor j
only knows the structure of the economy and their own type when choosing tj.
A strategy pro�le t � ft1; t2; :::; tNg implies an m 2 f0; 1; :::; Ng, the number
of depositors that visit the bank at date t = 1. A truth-telling strategy is
a strategy pro�le in which impatient depositors visit the bank at t = 1 and
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patient depositors at visit at t = 2. If all depositors play a truth-telling
strategy, then m = n.

An allocation (c1; c2) and strategy pro�le t constitutes a Bayes-Nash equi-
librium to the withdrawal game if tj = ftjg is a best response for depositor j
against t�j � ft1; :::; tj�1;tj+1; :::; tNg for all j 2 f1; 2; :::; Ng. An allocation
(c1; c2) is said to be incentive-compatible if the truth-telling strategy is an
equilibrium of the withdrawal game.

Note that it is a strictly dominant strategy for impatient depositors to
visit the bank at t = 1 since they do not value consumption t = 2. If all
patient depositors are expected to visit the bank at t = 2; then each patient
depositor has no incentive to deviate from the truth-telling strategy if the
following incentive-compatibility condition holds,

N�1X
n=0

�nu (c2(n)) �
N�1X
n=0

�nu (c1(n+ 1)) ; (11)

where �n is the conditional probability that there are n impatient individuals
given there is at least one patient individual. Since type realizations are i.i.d.,
we have

�n =

�
N�1
n

�
(1� �)N�n�nPN�1

n=0

�
N�1
n

�
(1� �)N�n�n

:

Note that condition (10) continues to hold when n is replaced by m, i.e.,

c�1(m+ 1) < c
�
2(m) for m = 1; 2; :::; N � 1: (12)

Condition (12) implies that regardless of how other depositor report their
type via their choice of withdrawal date, a patient depositor will always
receive a higher level of consumption by withdrawing at t = 2. This im-
plies that allocation (c�1; c

�
2) satis�es the incentive-compatibility condition

(11) with strict inequality.

Conclusion 1 The e¢ cient risk-sharing arrangement is incentive-compatible.

2.4 Run-proof and run-prone allocations

We label an allocation (c1; c2) that satis�es (3), (4) and (11) incentive-
feasible. It is clear that for any incentive-feasible allocation, there exists

9



an equilibrium where all depositors play the truth-telling strategy. There
may, however, exist other equilibrium outcomes associated with the with-
drawal game. Of particular interest is an equilibrium where depositors play
a run strategy as de�ned by the strategy pro�le t � f1; 1; :::; 1g. That is, a
run strategy implies that all depositors visit the bank at t = 1. We say that
an incentive-feasible allocation is run-prone if it admits a run strategy as an
equilibrium and is run-proof if it does not.

Consider an incentive-feasible allocation (c1; c2) with the property,

c2(N � 1) < c1(N): (13)

It is straightforward show that such allocations exist. Since (c1; c2) is incentive-
feasible, truthtelling is an equilibrium for the withdrawal game. But the al-
location is also run-prone. To see this, consider patient depositor j�s best
response to a proposed run strategy pro�le t = 1. If j visits the bank early,
tj = 1, then his return is y since everyone else visits at t = 1. If, instead, j
visits the bank at later, tj = 2, his return is c2(N � 1) < c1(N). Depositor j
will therefore choose to visit at t = 1, which implies that a run equilibrium
exists.8 It follows that a run-proof allocation must satisfy,

c2(N � 1) � c1(N): (14)

2.5 The e¢ cient risk-sharing arrangement is run-proof

While a large set of incentive-feasible allocations are run-prone, we want to
establish the stability properties of the e¢ cient incentive-feasible allocation.
As it turns out, Green and Lin (2000, 2003) have already shown that the
e¢ cient risk-sharing arrangement here is run-proof.

To see this, consider the solution presented in (5)�(6) and, in particular,
the property of this solution as described by condition (12). This latter
condition implies that truth-telling is a strictly dominant strategy, so that
the allocation (c�1; c

�
2) strictly satis�es the incentive-compatibility condition

(11). In particular, note that condition (12) combined with the solution

8Interestingly, incentive-feasible allocations can be run-prone even in the absence of
sequential service. Note that an ine¢ cient allocation (contractual arrangement) is not
necessarily run-prone. The autarkic allocation, for example, is both ine¢ cient and run-
proof.
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implies,

c�2(N � 1) =
�

RN

(N � 1)R + 1

�
y > c�1(N) = y;

where the inequality follows because R > 1: This latter condition is the re-
quirement for stability, (14). It therefore follows that (c�1; c

�
2) can be uniquely

implemented as a truth-telling equilibrium.

Note that the allocation (c�1; c
�
2) is run-proof even though liquidity prefer-

ence is not observable and depositors can withdraw on demand. Intuitively,
the e¢ cient allocation places increasingly stringent limits on the amount that
can be withdrawn at date 1 as the number of depositors requesting with-
drawal (m) increases. That is, the withdrawal amount c�1(m) is decreasing
in m so that su¢ cient resources, R[yN � c�1(m)m], remain those who would
rather withdraw at a later date. Evidently, patient depositors are assured of
superior payo¤s by waiting so that (10) does not bind.

Conclusion 2 Absent �xed costs of production and sequential service, the
e¢ cient risk-sharing arrangement is run-proof.

The result above supports Diamond and Dybvig�s (1983) conclusion that
a banking system with deposit insurance is run-proof. To make the mapping
between their paper and ours, note that our mechanism-design approach
takes no stand on how economic organization is divided across private and
public sectors. This is in contrast to Diamond and Dybvig (1983) who assume
that while banks are subject to sequential service, the government is not.
Because banks are subject to sequential service, the e¢ cient and run-proof
risk-sharing arrangement we describe above is not feasible for banks. If banks
attempted to replicate the e¢ cient allocation, sequential service would render
the arrangement run-prone. The public sector in their model is not subject
to sequential service. In particular, taxes can be used to recover funds that
depositors have already withdrawn (sequential service implies that a private
bank has no such recourse). In this way, a tax-supported deposit insurance
scheme can support private banks in a way that renders the e¢ cient risk-
sharing arrangement run-proof. Our mechanism-design approach e¤ectively
consolidates their private-public sector risk-sharing arrangement.

The Diamond and Dybvig (1983) model is appealing, in part, because
the vision of desperate depositors forming physical queues to withdraw their
funds resonates for those of us familiar with the way people behaved in
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historical retail-level bank runs. Sequential service, however, seems a poor
description of how exchange occurs at the wholesale level. For example,
money mutual funds trade once at the end of every business day. Since all
buy and sell orders for the fund are simultaneously executed and all sell orders
receive the same per share payout, there is no sequential service associated
with withdrawal requests submitted in a given period.9

Since some types of mutual funds exhibit the symptoms of being run-
prone (even those with NAV-pricing protocols), some property other than
sequential service must be responsible this apparent instability.

3 Banking with �xed costs

Fixed costs are a salient feature of virtually every organization and produc-
tion process, including �nancial intermediation. In what follows, we assume
that production is subject to a �xed cost.

3.1 The e¢ cient risk-sharing arrangement

We model the �xed cost in production as follows. An investment of k � 0
units of output at date 1 now delivers maxfRk � �; 0g units of output at
date 2, where � � 0 is the �xed cost parameter, where � < RNy.10 The date
2 feasibility constraint, formerly (4), is now given by

(N � n) c2(n) = R [Ny � nc1(n)]� �. (15)

The e¢ cient risk-sharing arrangement is now an allocation that maxi-
mizes (2) subject to (3) and (15). Let (c�1 ; c

�
2) � fc�1(m); c�2(m)gNm=0 denote

the e¢ cient risk-sharing arrangement when m = n. This allocation inherits

9The per unit payout that sellers receive may depend on how many other fund investors
want to sell. Nevertheless, whatever that amount is, each seller receives the same payout
per share sold. Our model of shadow banking is consistent with this pricing protocol. It
is also consistent with the way short-term repo arrangements work. Speci�cally, the repo
lender is repaid either in cash or collateral, without any sequential service consideration.
10If � > RNy, investment will never be undertaken. In this case the economy is char-

acterized by autarky, where all individuals consume y at date 1.
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the same qualitative form as (5) and (6) which is given by

c�1(m) =
RNy � �

mR +N �m (16)

c�2(m) = c�1(m); (17)

for m = 1; 2; :::; N � 1, together with

fc�1(0); c�2(0)g = f0; Ry � �=Ng (18)

fc�1(N); c�2(N)g = fy; 0g: (19)

Note that c�1(m) and c
�
2(m) as de�ned in (16)-(17) are strictly decreasing

in the number of early redemptions for m = 1; 2; :::; N � 2: This, in turn,
implies

c�1(m+ 1) < c
�
2(m) (20)

for m = 1; 2; :::; N�2: Condition (20) is similar to condition (12) except that
the former condition does not necessarily hold for m = N � 1: In particular,
for m = N � 1 we have

c�2(N � 1) =
RNy � �

(R� 1)(N � 1) +N ? c�1(N) = y; (21)

where the direction of the inequality above is determined by the size of the
�xed cost, �: De�ne �0 as the solution to

c�02 (N � 1) = y; (22)

which is easily calculated to be

�0 = (R� 1)y > 0: (23)

Note that (23) can be rearranged to y > Ry � �0. This inequality has an
important implication. In particular, a patient individual in autarky that
chooses between consuming y at date 1 or investing y and consuming Ry��
at date 2, will choose to consume at date 1 when � > �0.

Is the e¢ cient risk-sharing allocation (c�1 ; c
�
2) incentive compatible? It

follows that for small �x costs, � < �0, condition (20) is identical to condition
(12) and the e¢ cient risk-sharing arrangement is incentive-compatible on
a state-by-state basis. Hence, the incentive-compatibility condition (11) is
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satis�ed. When �xed costs are large, � > �0, the state-by-state incentive-
compatibility conditions are violated (only) in state m = N � 1. We show in
an Appendix that incentive-compatibility condition (11) is not likely to bind
for economically relevant parameters when �xed costs are large, � > �0.

Conclusion 3 The e¢ cient risk-sharing arrangement (c�1 ; c
�
2) is incentive-

compatible.

We now identify the range of �xed costs for which risk-sharing, i.e.,
shadow banking, remains an economically viable proposition. Intuitively,
there should exist a cut-o¤ value �1 > �0 such that autarky is weakly pre-
ferred to the e¢ cient risk-sharing arrangement (c�1 ; c

�
2) for any � � �1. When

� > �0, the payo¤s associated with autarky are Ru(y) and u(y) for impa-
tient and patient individuals, respectively (since a patient individual prefers
to consume y at date 1 than Ry � � at date 2). For convenience we denote
the autarky allocation as (ca1; c

a
2). The expected (date 0) payo¤ associated

with autarky, V (ca1; c
a
2), is

V (ca1; c
a
2) � V A �

NX
n=0

�n [(R� 1)n+N ]u(y): (24)

The critical cut-o¤ �1 is determined by equating V A with V (c�1 ; c
�
2), the

expected expected utility associated with the e¢ cient allocation (c�1 ; c
�
2) when

depositors play truth-telling strategies.11 The latter is de�ned by,

V (c�1 ; c
�
2) �

NX
n=0

�n [(R� 1)n+N ]u[c�(n)]; (25)

where c�(n) = c�1(n) = c
�
2(n) for n = 1; 2; :::; N � 1, c�1(0) = 0 and c�2(0) =

Ry � �=N and c�1(N) = y and c�2(N) = 0. Since V (c01; c
0
2) > V A and

V (c�1 ; c
�
2) is monotonically decreasing in �, there exists a 0 < �1 < RNy

that satis�es V (c�11 ; c
�1
2 ) = V A. If depositors play truth-telling strategies,

allocation (c�1 ; c
�
2) is preferred to autarky only if � � �1.

We now establish that �0 < �1. By construction, c�0(N�1) = c�0(N) = y
and c�0(m) > y for all m � N � 1. Therefore, V (c�01 ; c�02 ) > V A. Since

11The operator V (�) evaluates the expected utility of an incentive-feasible allocation
assuming that agents play truth-telling strategies.
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V (c�1 ; c
�
2) is strictly decreasing in � and V (c

�1
1 ; c

�1
2 ) = V A, it follows that

�0 < �1. In what follows, we restrict attention to �xed costs less than �1
since � > �1 implies that autarky is the equilibrium outcome.

Conclusion 4 The e¢ cient risk-sharing allocation (c�1 ; c
�
2) is strictly pre-

ferred to autarky for any �xed cost � < �1; where �0 < �1 < RNy satis�es
V (c�11 ; c

�1
2 ) = V

A.

To this point, we have demonstrated that the e¢ cient risk-sharing arrange-
ment delivers gains to trade and is incentive-compatible for all �xed costs in
the range 0 � � < �1: Next, we check the stability properties of the alloca-
tion. As it turns out, some of the work has already been done in this regard.
In particular, since c�1(N) = y for all �, c

�0
2 (N �1) = y by condition (22) and

c�2(N � 1) is decreasing in �, it follows that c�2(N � 1) � c�1(N) for all � � �0
and that c�2(N � 1) < c�1(N) for all � > �0: These conditions correspond to
the run-proof (14) and run-prone (13) conditions, respectively. Hence,

Conclusion 5 When �xed costs are small, 0 � � � �0, the e¢ cient risk-
sharing allocation (c�1 ; c

�
2) is run-proof. When �xed costs are large, �0 < � �

�1, the e¢ cient risk-sharing allocation (c�1 ; c
�
2) is run-prone.

3.2 Can a run-prone bank attract depositors?

Diamond and Dybvig (1983, pp. 409-410) suggest that investors may be
willing to fund run-prone banks if run risk is su¢ ciently small because the
risk-sharing services delivered in the non-run event dominates what is avail-
able in autarky (direct investing). They go on to suggest that this explains
why such arrangements are used in spite of the danger of runs. The same
rationale applies in our analysis if we assume depositors must choose between
a run-prone arrangement and autarky.

In what follows, we adopt the �sunspot�equilibrium concept described in
Peck and Shell (2003) and also alluded to in Diamond and Dybvig (1983, pg.
410). That is, assume there exists an extrinsic event� a �sunspot�� that is
observed by all depositors with some probability �: A sunspot is a theoretical
device that coordinates depositors�beliefs about how all other depositors are
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expected to behave in the withdrawal game.12 The sunspot, if it occurs, is
observed after individuals deposit their endowments but before they learn
their types.

A sunspot equilibrium is characterized by an incentive-feasible allocation
(c1; c2), a probability �, and a set of strategy pro�les contingent on the
occurrence of the sunspot, with the following properties. When the sunspot
is not observed, each depositor believes that the other N � 1 depositors play
truthfully: since (c1; c2) is incentive-compatible, in equilibrium, impatient
depositors visit the bank at date 1 and patient depositors at date 2. When the
sunspot is observed, each depositor believes that the other N � 1 depositors
will visit the bank period 1. If allocation (c1; c2) is characterized by c

�
2(N �

1) < c�1(N) = y, then, in equilibrium, depositors will play run strategies.

Let W (c�1 ; c
�
2 ; �) denote the expected utility associated with allocation

(c�1 ; c
�
2) when depositors play the sunspot strategies just described, i.e.,

W (c�1 ; c
�
2 ; �) � (1� �)V (c�1 ; c�2) + �V A: (26)

Notice that allocation (c�1 ; c
�
2) generates an expected utility that is higher

than the autarkic allocation (ca1; c
a
2) sinceW (c

�
1 ; c

�
2 ; �) > V

A for all � < 1 with
W (c�1 ; c

�
2 ; 1) = V A.13 It follows that the e¢ cient risk-sharing arrangement

will attract depositors regardless run risk because, in this environment at
least, the most pain a run can in�ict on depositors is the autarkic outcome.

Conclusion 6 The e¢ cient risk-sharing arrangement (c�1 ; c
�
2) will attract

depositors even if the allocation is run-prone, independent of the perceived
probability of a run.

The discussion above is predicated on the assumption that depositors
can only choose between the e¢ cient risk-sharing arrangement and autarky.

12There is nothing here that fundamentally determines the value of �: It may or may not
correspond to the actual probability of observing the sunspot. We interpret � as indexing
the cultural propensity of a society� depositors in this case� to lose faith in their fellow
citizens. That is, 1� � measures the degree to which a community is con�dent that each
will �do the right thing�when the time comes.
13This result is in contrast to Peck and Shell (2003), where in their model if � is suf-

�ciently large individuals strictly prefer autarky. This is because their model assumes
sequential service, which implies that the expected utility associated with playing the run
equilibrium is strictly less than autarky.
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There is, in fact, another possibility to consider. In particular, for �xed costs
in the range �0 < � � �1, it is feasible to construct a run-proof allocation
at the expense of some risk-sharing. In what follows, we interpret such an
allocation as arising from a regulatory intervention designed to render the
shadow bank sector more stable.

3.3 Run-proof shadow banks

The best run-proof risk-sharing arrangement is an allocation that maximizes
(2) subject to (3), (11), (14) and (15). The solution to this problem, (ĉ�1 ; ĉ

�
2);

is given by fĉ�1(m); ĉ�2(m)g = fc�1(m); c�2(m)g for all m 6= N � 1 and

ĉ�1(N � 1) =
RNy � �� y
R(N � 1) < y (27)

ĉ�2(N � 1) = y:

The allocation in state m = N � 1, given by (27), penalizes those who wish
to withdraw funds early. As such, it can be thought of as a �liquidity fee,�
equal to y � (RNy � �� y)=[R(N � 1)], similar to what prime institutional
funds are now permitted to apply at the discretion of fund managers. If the
application of the liquidity fee is credible (something that may need to rely
on legislation, rather than the discretion of management), then it ensures
that su¢ cient resources will be made available for those not in dire need of
liquidity. Notice that allocation (ĉ�1 ; ĉ

�
2) is characterized by ĉ

�
2(m) � ĉ�1(m+1)

for all n � N � 1, which implies that it is a dominant strategy for patient
depositors to visit the bank at date 2. This property, in turn, implies that
allocation (ĉ�1 ; ĉ

�
2) can be implemented as a unique equilibrium.

There remains the question of whether such an intervention might actu-
ally improve depositor welfare. To explore this possibility, let V (ĉ�1 ; ĉ

�
2) de-

note the expected utility payo¤ associated with the allocation (ĉ�1 ; ĉ
�
2) when

depositors play truthtelling strategies, where

V (ĉ�1 ; ĉ
�
2) �

N�2X
n=0

�n [(R� 1)n+N ]u[c�(n)] (28)

+�N�1f(N � 1)Ru [ĉ�1(N � 1)] + u(y)g+ �NNRu(y):

Since allocation (ĉ�1 ; ĉ
�
2) departs from optimal risk-sharing in state n = N�1

only, we necessarily have: (i) W (c�11 ; c
�1
2 ; �) = V A > V (ĉ�11 ; ĉ

�1
2 ) and (ii)
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V (ĉ�01 ; ĉ
�0
2 ) = V (c

�0
1 ; c

�0
2 ) > V

A since, by construction, (ĉ�01 ; ĉ
�0
2 ) = (c

�0
1 ; c

�0
2 ).

Because V (ĉ�1 ; ĉ
�
2) is decreasing in �, there exists a �xed cost �̂ that satis-

�es V (ĉ�̂1 ; ĉ
�̂
2) = V A, where �0 < �̂ < �1. It follows that for � 2 (�0; �̂),

we have V (ĉ�1 ; ĉ
�
2) > V A and for � 2 (�̂; �1), we have V (ĉ�1 ; ĉ

�
2) < V A.

The best run-proof allocation therefore delivers expected utility V RP =
maxfV (ĉ�1 ; ĉ�2); V Ag, where the best allocation is (ĉ�1 ; ĉ�2) when � 2 (�0; �̂]
and (ca1; c

a
2) when � 2 (�̂; �1).

Conclusion 7 The best run-proof risk-sharing arrangement (ĉ�1 ; ĉ
�
2) is pre-

ferred to autarky for �xed costs in the range �0 < � � �̂; and is autarkic for
�xed costs �̂ < � � �1; where �̂ solves V (ĉ�̂1 ; ĉ�̂2) = V A:

The result above implies that the intervention harms depositor welfare if
�xed costs are in the range �̂ < � � �1: This is because �rst, the best run-
proof allocation is autarkic in this range of �xed costs and second, run-prone
allocations generically dominate autarky. However, for �xed costs less than
�̂; the run-proof allocation does o¤er a considerable degree of risk-sharing
together with the bene�t of ensured stability. It is therefore possible that
the intervention improves welfare over some regions of the parameter space.
We now demonstrate that this is indeed the case.

Consider now �xed cost is in range � 2 (�0; �̂]. Then we know V RP =
V (ĉ�1 ; ĉ

�
2) > V

A, which implies that the best run-proof allocation (ĉ�1 ; ĉ
�
2) is

preferred to autarky. Since W (ĉ�1 ; ĉ
�
2 ; �) is strictly decreasing in � and since

W (ĉ�1 ; ĉ
�
2 ; 0) > V (ĉ

�
1 ; ĉ

�
2) > W (ĉ

�
1 ; ĉ

�
2 ; 1) = V

A, there exists a critical proba-
bility �̂(�) such that W (ĉ�1 ; ĉ

�
2 ; �̂(�)] = V (ĉ

�
1 ; ĉ

�
2). If the probability of a run

is less than this critical value, � < �̂(�), then W (ĉ�1 ; ĉ
�
2 ; �) > V (ĉ�1 ; ĉ

�
2). In

this situation, depositors prefer the run-prone allocation, so that the inter-
vention reduces welfare. However, if the probability of a run is higher than
the critical cuto¤value, � > �̂(�), thenW (ĉ�1 ; ĉ

�
2 ; �) < V (ĉ

�
1 ; ĉ

�
2). In this situ-

ation, the intervention resulting in the run-proof allocation (ĉ�1 ; ĉ
�
2) improves

depositor welfare.14

Conclusion 8 A run-proof shadow bank improves depositor welfare for run
risks � and �xed costs � satisfying �0 < � � �̂ and � > �̂(�), where �̂(�)

14We have chosen to label this situation as a government intervention but, of course,
it may also be an arrangement that emerges voluntarily from within the shadow bank.
Either way, what is important is the e¢ cient contractual form and not on its source (i.e.,
whether the regulatory protocols emerge from within or from without the organization).
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satis�es W (ĉ�1 ; ĉ
�
2 ; �̂(�)] = V (ĉ�1 ; ĉ

�
2). For any � in this range, a run-proof

shadow bank lowers depositor welfare if the run risk is su¢ ciently small,
� < �̂(�):

Let us examine the properties of �̂(�), which is de�ned byW (ĉ�1 ; ĉ
�
2 ; �̂(�)] =

V (ĉ�1 ; ĉ
�
2) or

[1� �̂(�)]V (ĉ�1 ; ĉ�2) + �̂V A = W [ĉ�1 ; ĉ�2 ; �̂(�)] (29)

over the range � 2 [�0; �̂]. Using (29), we can solve explicitly for this critical
value,

�̂(�) =
V (ĉ�1 ; ĉ

�
2)�W [ĉ�1 ; ĉ�2 ; �̂(�)]
V (ĉ�1 ; ĉ

�
2)� V A

(30)

It is straightforward to show that �̂(�) is increasing in � when � 2 [�0; �̂).
In other words, as the �xed cost is increased over the range � 2 [�0; �̂],
the perceived run risk has an ever-higher hurdle to clear before run-proo�ng
the risk-sharing arrangement improves depositor welfare. As we established
earlier, for �xed costs beyond �̂; run-proo�ng the risk-sharing arrangement
reduces depositor welfare for any � < 1:

3.4 Endogenous complacency

Suppose that a society is characterized by a �true�� but that the true value
is unknown. Suppose further that the economy described above is repeated
over time, t = 0; 1; 2; :::1: People enter into the initial period with a prior
believe of the value of �; say, �0: Let st 2 f0; 1g denote the sunspot variable
observed at date t; where st = 1 indicates that a sunspot appeared. Then it
is reasonable to expect people to form posterior beliefs that depend on the
history of sunspot realizations together with their initial belief, i.e.,

�t = Pr [� j st�1; st�2; :::s1; �0] (31)

In case that � does not change over time (unlikely), and that prior beliefs
are passed on to future generations in a perfect manner (unlikely), then
society can reasonably be expected to learn of the true propensity to run
over a su¢ ciently long period of time. If the true � is close to zero, even in
this optimistic scenario, learning could take a very long time.
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The choice of the best allocation described above now takes place with
�t replacing �: Imagine a scenario at some date t in which �0 < � � �̂ and
�t > �̂(�), which is a parameter con�guration where depositors are made bet-
ter o¤ by choosing the e¢ cient risk-sharing run-proof arrangement, (ĉ�1 ; ĉ

�
2).

Next, imagine that depositors do not observe sunspots for several subsequent
periods. Under any reasonable learning protocol, the posterior belief �t will
decline over time. After a su¢ cient period of tranquility, it is possible that
�t falls below the threshold �̂(�). At that time depositors will lobby to have
the onerous regulation relaxed. If successful, the run-proof shadow bank be-
comes run-prone, as run risk is perceived to be su¢ ciently small. If and when
a sunspot with its associated run is actually observed, �t may very well jump
back over the threshold �̂(�), leading to calls for stricter regulation.

4 Central bank liquidity provision

As already mentioned, the intervention we described above resembles a vol-
untary/mandatory liquidity fee and NAV pricing stipulations similar to what
is presently imposed on institutional money market funds. As we also men-
tioned in the introduction, these provisions seemed insu¢ cient to stem the
growing �nancial panic associated with COVID-19 pandemic. In March of
2020, the U.S. Federal Reserve intervened to restore calm.

To think about how a central bank might be modeled in this economy, we
step beyond the �closed�system studied above and introduce another actor
into the model that we interpret as a central bank or treasury. The central
bank is endowed with resources that can be used to provide �liquidity� to
the shadow bank at date 1. The way this is done is via a repo contract
with the shadow bank. For simplicity, we assume that the value of the repo
contract to the central bank is zero. Therefore, a repo contract speci�es that
the central bank exchanges x units of output at date 1 for a claim on the
shadow bank�s output at date 2 of equal value, x. The contract is unwound
at date 2 when the shadow bank repurchases its claim for x units of output.

The resources the central bank brings to the �nancial market can poten-
tially help shadow banks manage risk over all possible states of the world.
But here, we assume, realistically, that the central bank�s only goal is to pre-
vent banks runs with the minimal �footprint�possible. Speci�cally, subject
to eliminating fragility, the central bank minimizes both the number of states
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m it provides liquidity support to the shadow bank and the level of liquidity
provision xm.

As a result, the central bank never intervenes when the shadow bank
is run-proof. In our model, the shadow bank is run-proof if: (i) the �xed
cost � is less than the critical value �0; or (ii) �0 < � < �̂ and the equilib-
rium is characterized by the run-proof allocation (ĉ�1 ; ĉ

�
2). Regarding (ii), the

equilibrium allocation is (ĉ�1 ; ĉ
�
2) whenever the probability of a sunspot � is

less than �̂(�). If conditions (i) or (ii) are not met, then the equilibrium�
in the absence of central bank intervention or regulation� is characterized
by the run-prone allocation (c�1 ; c

�
2). This allocation is run-prone because

c�2(N � 1) < y.
When the equilibrium is characterized by allocation (c�1 ; c

�
2), the shadow

bank does not o¤er the run-proof allocation (ĉ�1 ; ĉ
�
2) because the expected

utility associated with it, V (ĉ�1 ; ĉ
�
2), is less than the payo¤associated with the

run-prone allocation,W (c�1 ; c
�
2 ; �). The central bank may be able to eliminate

shadow bank fragility by providing liquidity xm � 0 to the shadow bank
when m depositors withdraw at date 1. Intuitively, the provision of liquidity
may increase the expected utility associated with a run-proof contract to the
point where it equals or exceeds that of the run-prone allocation. We now
investigate this possibility.

An allocation is run-proof if the payo¤ to the single depositor who visits
the shadow bank at date 2 satis�es c2(N � 1) � y. Consider the best run-
proof allocation when the central bank provides liquidity x > 0 if m = N �1
via a repo contract, with x = 0 otherwise. Denote this allocation as (~c�1 ;~c

�
2)

and assume that [~c�1(m); ~c
�
2(m)] = [c�1(m); c

�
2(m)] for all m 6= N � 1. To

ensure that this allocation is run-proof, the date 1 investment must produce
output at date 2 equal to at least y + x + �. That is, depositors arriving at
date 2 must be promised at least y, with x repaid to the central bank and
� to cover the �xed cost. The allocation for m = N � 1 can determined as
follows. Since the amount of resources that will be invested at date 1 equals
Ny+x� (N � 1)~c1(N � 1), to ensure that x is repaid, �xed cost � is covered
and that depositors arriving at date 2 receive y, it must be the case that
R[Ny + x� (N � 1)~c�1(N � 1)] = y + x+ �. Hence we have

~c�1(N � 1) =
RNy + (R� 1)x� �� y

R(N � 1) (32)

~c�2(N � 1) = y:
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Notice that the date 1 payo¤ ~c�1(N � 1) is strictly increasing in x and that if
x = 0, then ~c�1(N � 1) = ĉ�1(N � 1), i.e., compare (32) with (27).
Suppose the central bank chooses x so that the expected utility associated

with the (run-proof) allocation (~c�1 ;~c
�
2) equals the expected utility associated

with run-prone allocation (c�1 ; c
�
2), i.e., V (~c

�
1 ;~c

�
2) = W (c

�
1 ; c

�
2 ; �).

15 Since: (i)
V (~c�1 ;~c

�
2) = W (c�1 ; c

�
2 ; �); (ii) V (c

�
1 ; c

�
2) > V (ca1; c

a
2); (iii) [~c

�
1(m); ~c

�
2(m)] =

[ĉ�1(m); ĉ
�
2(m)] for all m 6= N �1; and (iv) ~c�2(m) = y > ĉ�2(m), we necessarily

have ~c�1(N � 1) < c�1(N � 1). This latter result is important because it
implies that allocation (~c�1 ;~c

�
2) is state-by-state incentive-compatible. More

speci�cally, since we constructed ~c�1(N � 1) to ensure that ~c�2(N � 1) = y,
we have to check that ~c�2(N � 2) > ~c�1(N � 1).16 This inequality is valid
since ~c�2(N � 2) = c�2(N � 2) > c�1(N � 1) > ~c�1(N � 1). Hence, a footprint-
minimizing central bank can eliminate shadow bank fragility by providing
liquidity x > 0 only in state m = N � 1, where x is chosen to equate
V (~c�1 ;~c

�
2) with W (c

�
1 ; c

�
2 ; �).

5 Summary and conclusion

While short-term debt provides creditors with the �exibility they desire, it
exposes debtors to the possibility of runs. Diamond and Dybvig (1983) pro-
vide a theory that simultaneously explains the bene�t of liquidity transfor-
mation and why banks are run-prone. The fundamental properties of the
environment responsible for instability are private information and sequen-
tial service. While it is always possible to render risk-sharing arrangements
run-proof, doing may come at a cost (Peck and Shell, 2003).

Our paper explores whether there are properties other than sequential
service that may be responsible for banking instability. We were motivated
by the fact that shadow banks in the wholesale sector often appear to display
the fragility highlighted by Diamond and Dybvig (1983) but without the se-
quential service protocol characteristic of retail-level banking. We identi�ed
a heretofore neglected property of real-world organizations; namely, the ex-
istence of �xed costs of production. When �xed costs are present, a large

15The central bank intervention here is structured in a way to eliminate the possibility
of a run without bene�ting the shadow bank or its investors.
16By construction, all of the other states are state-by-state incentive-compatible.
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contraction in the level of output increases unit costs of production and low-
ers the net return investors can expect on the underlying project. If a bank�s
asset portfolio consists of loans to organizations subject to �xed costs, then
the use of short-term �nancing can be run-prone. If loans are called, produc-
tion collapses, unit costs rise, and net returns decline. In this way, a collapse
in investor con�dence can become a self-ful�lling prophecy.17

We think our explanation of run-prone �nancial arrangements compares
favorably to Diamond and Dybvig (1983) because in our model, unlike in
theirs, a bank run leads to an actual deterioration in asset quality. As we
already mentioned, the asset in Diamond and Dybvig (1983) and Peck and
Shell (2003) could be interpreted as a U.S. Treasury security. The runs that
occur in those models are largely about depositors scrambling for a share of
an asset whose quality remains invariant to the volume of early redemptions.

Nevertheless, our theory is broadly consistent with the policy implica-
tions that emerge from Diamond and Dybvig (1983) and Peck and Shell
(2003) and indeed, as we argued above, these implications could be extended
to a broader set of intermediaries than commonly considered. Interventions
that render run-prone �nancial arrangements run-proof may or may not be
consistent with improving depositor welfare. As is often the case, it is di¢ -
cult to make conclusive statements about the merits of any given intervention
without knowing approximately where we are in the parameter space. It is
also possible, as explained above, that our perceptions of where the economy
is located in the parameter space evolves over time. In particular, our as-
sessment of run risk may depend mostly on whether we experienced �nancial
crisis in recent history. This latter possibility adds an additional complicating
factor to an already di¢ cult regulatory problem.

17Although a scale economy assumption may in itself imply multiple equilibria in a
game where ex ante individuals decide how much to deposit at the bank, as in Cooper and
Corbae (2002), this sort of multiple equilibrium/instability result is conceptually di¤erent
from our withdrawal game. Multiple equilibria in our withdrawal game relies on type-
misrepresentation after funds are deposited in the bank.
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7 Appendix: Incentive compatibility

We can not �nd model parameters where allocation (c�1 ; c
�
2) violates (11). To

provide some insight for this outcome, rewrite constraint (11) as

N�2X
n=0

�nfu [c�2(n)]�u [c�1(n+ 1)]g � �N�1(1��)fu(y)�u [c�2(N � 1)]g: (33)

Notice that the di¤erences on the left and right sides are strictly positive and
the di¤erence on the right side is weighted by �N�1(1��) while the aggregate
weight on the left side is 1� �N�1(1� �)� �N�1(1� �). If, for example, N
is reasonably large� and �large�can be as small as N = 2� then since the
right-side weight is very small compared to the sum of weights on the left
side, incentive constraint (11) is satis�ed. We now formalize this intuition
by example.

It is straightforward to show that when u(c) = c1��=(1 � �), u [c�2(n)] �
u [c�1(n+ 1)] is decreasing. This implies that

N�2X
n=0

�nfu [c�2(n)]� u [c�1(n+ 1)]g >

[1� �N�1(1� �)] 1

� � 1[(
(N � 1)R + 1
RNy � � )��1 � ((N � 2)R + 2

RNy � � )��1]; (34)

where the right side of this equality is u [c�2(N � 2)]� u [c�1(N � 1)], which is
the smallest di¤erence on the left-side of (33), multiplied by

N�2X
n=0

�n = 1� �N�1(1� �):

Using our CES utility function (33) can be rewritten as

N�2X
n=0

�n
1

1� �f(
RNy � �
nR +N � n)

1�� � ( RNy � �
(n+ 1)R +N � (n+ 1))

1��g �

�N�1(1� �) 1

1� �fy
1�� � ( RNy � �

(N � 1)R +N � 1)
1��g
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and re-arranged to

N�2X
n=0

�n
1

1� �f(nR +N � n)
��1 � ((n+ 1)R +N � (n+ 1))��1g �

�N�1(1� �) 1

1� �f(
RNy � �

y
)��1 � [(N � 1)R +N � 1]��1g:

Notice that the right side is strictly increasing in �. We will choose � large; in
particular we will choose � so that the expected utility of allocation (c�1 ; c

�
2)

is less than or equal to autarky for any probability weight �. This necessarily
implies that � � �1. If (33) holds for this value of �, then it holds for all
� 2 (�0; �1) where the incentive constraint (33) is relevant. We set y =
c�1(1) = c�2(1), which implies that the expected (c

�
1 ; c

�
2) is strictly less than

autarky (the best consumption state, n = 1, provides the autarky payo¤,
meaning that all other states provide less than autarky). If, for convenience,
we set y = 1, then y = c�1(1) = c

�
2(1) implies

� = (R� 1)(N � 1):

We will choose � so that the probability on the right side of (33) is maximized
(if 33 holds for this �, it will hold for any �). The probability �N�1(1 � �)
is maximized for

� =
N � 1
N

:

For convenience let � = 2. Then if

[NN � (N � 1)N�1]f(N � 1)R + 1� [(N � 2)R + 2]g �
(N � 1)N�1f(N � 1)R + 1� [RNy � (R� 1)(N � 1)]g (35)

holds, (33) holds. (35) is obtained by substituting the right side of (34) for
the right side of (33), setting � = (N � 1)=N and � = (R � 1)(N � 1), and
then rearranging. (35) can be further simpli�ed to

[NN � (N � 1)N�1](R� 1) > (N � 1)N�1(R� 1)(N � 2)

or
NN � (N � 1)N�1 > (N � 1)N�1(N � 2)

which is a valid inequality. Hence, we have chosen � and � and replaced with
left side of (33) in a way that �works against� inequality (33) holding. Yet
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we we still �nd that this highly restricted inequality, and hence, inequality
(33), is satis�ed.

Suppose that we have somehow overlooked a reasonable model parame-
terization that implies allocation (c�1 ; c

�
2) violates (11). In this case the ef-

�cient contract is determined by maximizing (2) subject to (3), (11) and
(15). The solution to this problem necessarily implies that the allocation
is run-prone. Intuitively, the e¢ cient contract is determined by increasing
c2(m) from c�2(m) , m = 0; :::; N � 1 and decreasing c1(m) from c�1(m),
m = 1; :::; N � 1, until (11) is just satis�ed with equality. This necessarily
implies that if c�2(N�1) < c�1(N) = y, the e¢ cient incentive compatible con-
tract will also be characterized by c2(N � 1) < c1(N) = y, i.e., the e¢ cient
contract is run-prone. The important point here is that if the run-prone al-
location (c�1 ; c

�
2) is not incentive compatible, i.e., does not satisfy (11), then

the e¢ cient incentive-compatible contract will also be run-prone. This is
important because, qualitatively speaking, our results� which are derived on
this basis that (c�1 ; c

�
2) satis�es (11)� remain valid for the e¢ cient incentive

compatible allocation if (c�1 ; c
�
2) does not satisfy (11).
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