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1 Introduction

In the month of March 2020, in many of the hotspots for COVID-19 around the

world, daily deaths from the disease grew very fast — doubling every 2-3 days in

the most severely impacted locations. In contrast, in other locations, early on in

this pandemic, daily deaths from the disease grew much more slowly. This pattern

of high and highly dispersed growth rates of daily deaths from COVID-19 ended

very rapidly. Relatively slow growth or even shrinkage of daily deaths from the

disease was observed in every location that we study 20-30 days after that location

first experienced 25 cumulative deaths, and the dispersion in growth rates of daily

deaths across locations fell even more rapidly. Now, in late July 2020, while di↵erent

locations su↵er widely di↵erent levels of daily deaths from COVID-19, relatively slow

growth or even shrinkage of daily deaths from the disease continues to be observed

worldwide and the dispersion in growth rates of daily deaths across locations remains

at a low level.

In this paper, we document these facts regarding COVID deaths using both simple

data smoothing procedures and a Bayesian estimation procedure that allows us to

construct probability bands around our estimates of the growth of COVID deaths.

We then use an SIR epidemiological model based on that in Kermack and McK-

endrick (1927) to interpret these data on the growth rate of COVID deaths as indi-

cating that the e↵ective reproduction number of COVID-19, here denoted by R(t),

has fallen from initial values of 3 or more in many locations to levels close to one or

even lower everywhere in the world. We invert a calibrated version of our simple SIR

model to argue that the vast majority of the observed decline in the level and cross

sectional variation of the e↵ective reproduction number has been due to a decline in

the transmission rate of the disease and not due to the progression of the population

towards herd immunity.1 We also report results using more complex epidemiological

1The transmission rate of the disease is defined as the average rate at which an infected indi-
vidual contacts others and spreads the virus to those contacted. The e↵ective reproduction number
R(t) is defined as the average number of secondary cases infected by a single infected individual
during his or her period of infectiousness when there are both susceptible and immune people among
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models including one similar to that considered by Fernandez-Villaverde and Jones

(2020) and show that our conclusions about the worldwide decline in the transmission

rate for COVID-19 are not much a↵ected by the choice of epidemiological model.2

This finding of a rapid decline in the transmission of COVID-19 within the first 30

days of the progression of the pandemic in widely heterogeneous countries worldwide

and the persistence of these low transmission rates over the past few months has

important implications for studies of the impact of policy interventions on the pro-

gression of this epidemic. Several prominent studies, including Dehning et al. (2020),

Hsiang et al. (2020), and Flaxman et al. (2020), have studied empirically the role

of government-mandated non-pharmaceutical interventions (NPIs) in reducing the

transmission of COVID-19, and many of these studies argue that these NPI’s had a

large impact on the transmission rate of the disease in the early phase of the pan-

demic.3 Given the observation that transmission rates for COVID-19 fell virtually

everywhere in the world during this early pandemic period, we are concerned that

these studies may substantially overstate the role of government-mandated NPI’s

in reducing disease transmission due to an omitted variable bias. Moreover, given

the observation that disease transmission rates have remained low with relatively

low dispersion across locations worldwide for the past several months as NPI’s have

been lifted, we are concerned that estimates of the e↵ectiveness of NPI’s in reducing

disease transmission from the earlier period may not be relevant for forecasting the

impact of the relaxation of those NPI’s in the current period, due to some unobserved

switch in regime.

What might this omitted variable or variables be? While we cannot answer this

those contacted by this infected individual. Note that since a person who is no longer susceptible
to the disease does not become infected even if he or she takes in the virus from contact with an
infected individual, the e↵ective reproduction number can vary due to changes in the transmis-
sion rate and changes in the portion of susceptible people among those contacted by infectious
individuals.

2See also Okell et al. (2020) for a discussion of whether European countries experienced slowing
growth rates of deaths due to herd immunity.

3See also Allcott et al. (2020), Fang et al. (2020), Deb et al. (2020), Askitas et al. (2020),
Bonardi et al. (2020), Weber (2020), Conyon et al. (2020), Chernozhukov et al. (2020), Wieland
(2020), Rubin et al. (2020), Donohue and Miller (2020) and many others.
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question ourselves, the literatures in both epidemiology and economics o↵er several

candidates. COVID-19 is not the first epidemic for which transmission rates have

fallen faster than would be predicted by simple epidemiological models. Chowell

et al. (2016) and Eksin et al. (2019) are two of many studies indicating that this

rapid drop in transmission rates is a pervasive feature of human epidemics. These

studies and many others point to two hypotheses as to why transmission rates for

human epidemics might fall rapidly that we argue deserve further study when applied

to COVID-19.

The first of these hypotheses is that humans spontaneously take action to avoid

disease transmission once an epidemic breaks out.4 For COVID-19, a great deal

of real-time mobility and economic data indicate that human social and economic

interactions have fallen substantially across a large number of locations.5 Further

research is required, however, to determine whether this decline in human interactions

is su�ciently large and widespread to account for the apparent decline in transmission

rates for COVID-19 worldwide.6

The second of these hypothesis is that the network structure of human interactions

naturally leads to a slowdown in disease transmission faster than would be predicted

from a simple epidemiological model in which the population interacts uniformly with

each other.7 Further research is required to determine whether a network structure of

4For expositions of this hypothesis, see Eksin et al. (2019), Keppo et al. (2020) (slides
available at https://www.lonessmith.com/wp-content/uploads/2020/04/pandemic-slides.
pdf), John Cochrane’s discussion at https://johnhcochrane.blogspot.com/2020/05/
an-sir-model-with-behavior.html, Farboodi et al. (2020), Eichenbaum et al. (2020), Guerri-
eri et al. (2020), Kaplan et al. (2020), Toxvaerd (2020), Phillipson and Posner (1993) and many
others.

5See, for example, Cronin and Evans (2020), Goolsbee and Syverson (2020), Fetzer et al. (2020),
Gupta et al. (2020).

6The data in Lecocq et al. (2020) indicate that the decline in human mobility has indeed been
global.

7For expositions of this hypothesis, see Chowell et al. (2016), Ellison (2020), Bisin and
Moro (2020), and Britton et al. (2020). For an application of this hypothesis to the spread
of COVID-19 in cities, see Akbarpour et al. (2020) and the associated website at https://
reopenmappingproject.com/ as well as Fajgelbaum et al. (2020) and Glaeser et al. (2020). For
an application of this hypothesis to the worldwide spread of COVID-19, see Siwiak et al. (2020)
and https://www.gleamproject.org/.
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human interactions can indeed explain the global decline in transmission of COVID-

19.

Finally, we must consider the possibility that unexplained natural forces might

account for the observed decline in transmission rates for COVID-19. As discussed

in Moore et al. (2020), the transmission of COVID-19 bears resemblance to that for

pandemic influenza. These authors observe that of eight major influenza pandemics

that have occurred since the early 1700’s (including the Spanish Flu of 1918-19),

seven had an early peak that disappeared over the course of a few months without

significant human intervention. Unfortunately, each of those seven had a second

substantial peak approximately six months after the first. This final hypothesis

suggests that some unobserved natural factor may have driven the decline to date in

the transmission of COVID-19. Clearly, the existence of such an unobserved factor

would complicate empirical studies of the causal driving forces behind COVID-19

transmission.

In this paper, we characterize the empirical regularities in the regional data on

deaths for COVID-19 with a focus on countries and states of the United States that

have experienced more than 1000 cumulative deaths from the disease late July 2020.

This gives us a list of 23 countries and 25 U.S. states.

The data on daily deaths are quite noisy, with substantial day-of-the-week e↵ects,

and large jumps due to revisions in the criteria used to attribute COVID-19 as the

cause of death. We consider two procedures for estimating deaths from these noisy

data.8 The first uses a simple seven-day moving average of daily deaths and a finite

di↵erence to estimate the growth rate of daily deaths.9 In our second procedure, we

fit a mixture of Weibull distributions to the daily deaths data in each region using a

Bayesian estimation procedure described here and in greater detail in Atkeson et al.

8See Baqaee et al. (Forthcoming) for a third procedure for smoothing the data on daily deaths.
9One can plot a seven-day moving average of daily deaths on a logarithmic scale (useful for

measuring the growth rate of this statistic) for a large number of countries and U.S. states here https:
//ig.ft.com/coronavirus-chart. One can readily identify virus hotspots early on in the epidemic as
steep curves in these charts. One can also readily see that, more recently, there are no regions with
such rapid growth in daily deaths anywhere in the world from these charts.

4

https://ig.ft.com/coronavirus-chart
https://ig.ft.com/coronavirus-chart


(2020).10 This second procedure allows us to compute probability bands around

our estimates of daily deaths as well as the higher order derivatives of daily deaths

that are needed to invert the more complex epidemiological models considered in our

appendix.

We use a simple SIR epidemiological model to interpret these observations on

deaths due to COVID-19 in terms of the e↵ective reproduction number and trans-

mission rate of the disease. In doing so, we invert the model with a time-varying

transmission rate to fit the estimated deaths data exactly.11 In our simple SIR model,

the e↵ective reproduction number is a linear transformation of the growth rate in

logarithms of daily deaths, with the model implied e↵ective reproduction number

equal to one when this growth rate is equal to zero and the slope of the relationship

equal to the average number of days during which an infected individual is infec-

tious to others. With our model inversion procedure, we are also able to recover

an estimate of the evolution of the fraction of the population remaining susceptible

over time.12 With this fraction estimated, we show that the decline in the e↵ective

reproduction number (and its cross sectional variation) is largely due to a decline in

the transmission rate (and a decline in the cross sectional variation in transmission

rates).

In our empirical work, we focus on data on deaths for our estimates of the trans-

mission rates for COVID-19. In this regard, we follow others such as Murray (2020),

Hay (2020), Korevaar et al. (2020), and Flaxman et al. (2020) who argue that data on

COVID related deaths is more accurate than testing data on cases.13 Related work

by Buckman et al. (2020) and Beenstock and Dai (2020) find a large decline in the

10This procedure bears some similarity to that used by Murray (2020) who use a mixture of
error functions to model cumulative COVID deaths.

11See also Atkeson (2020) and Atkeson et al. (2020). Baqaee et al. (Forthcoming) use this
procedure in their estimation of the e↵ective reproduction number in the United States.

12We confirm our model estimates of this fraction by comparing them with findings from
widespread serology studies for New York, Connecticut, Louisiana, and Spain.

13See also Aspelund et al. (2020) and https://www.cdc.gov/coronavirus/2019-ncov/
cases-updates/about-serology-surveillance.html for a discussion of possible measurement errors in
confirmed cases data.
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e↵ective reproduction number for COVID-19 across countries when estimated using

data on confirmed cases.14 The websites https://rt.live/ and https://covidestim.org

provide estimates of the e↵ective reproduction number for U.S. states using data on

confirmed cases.15 These estimates also show a large and widespread decline in the

e↵ective reproduction number for the disease for all U.S. states.

The remainder of the paper is organized as follows. In section 2 we present our

procedure for interpreting COVID deaths data with an SIR epidemiological model.

We then present our estimation procedures in section 3. We present our findings in

section 4. Finally, we conclude.

2 Interpreting deaths data with an SIR model

The SIR epidemiological model we use to interpret the data on deaths from COVID-

19 is as follows.

The population is set to N . At each moment of time, the population is divided into

four categories (states) that sum to the total population. These states are susceptible

S, infected I, resistant R , and dead D. Agents that are susceptible are at risk of

getting the disease. Agents that are infected are contagious and may pass it on to

others through some form of interaction with susceptible agents. Agents that are

resistant are not at risk of getting the disease, either because they have immunity

built up from a vaccine or from previous experience with this or similar diseases.

Likewise, those who have died from the disease are no longer at risk of getting the

disease. We normalize the total population N = 1, so all results regarding S, I, R

and D should be interpreted as fractions of the relevant population.

We use R(t) to denote the e↵ective reproduction number of the disease at date t.

This e↵ective reproduction number is the ratio of the rate at which infected agents

14See also Liu et al. (2020).
15The commonly used method of Cori et al. (2013) for estimating reproduction numbers requires

accurate data on new cases.
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infect susceptible agents to the recovery rate of infected agents from the disease at

date t.

The equations of the model can be stated in terms of the e↵ective reproduction

number as

dS(t)/dt = �R(t)�I(t) (1)

dI(t)/dt = (R(t)� 1) �I(t) (2)

dR(t)/dt = (1� ⌫)�I(t) (3)

dD(t)/dt = ⌫�I(t) (4)

The parameter � governs the rate at which agents who are infected stop being

infectious and hence stop transmitting the disease. We refer to this parameter as

the recovery rate. This parameter is considered a fixed parameter determined by the

biology of the disease. We denote the fatality rate from the disease by ⌫.

The parameter �(t) is the rate at which infected agents spread the virus to others

that they encounter at date t. We refer to this parameter as the transmission rate.

We define the ratio �(t)/� to be the normalized transmission rate. It is standard to

refer to the value of the normalized transmission rate at the start of the pandemic

before any mitigation measures and use of prophylactics are undertaken as the basic

reproduction number of the disease. We denote this basic reproduction number by

R0 ⌘ �(0)/�.

We assume that infected agents interact randomly with other agents in a uniform

manner so that the e↵ective reproduction number of the disease is given by the

product of the normalized transmission rate and the fraction of agents who remain
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susceptible to the disease:

R(t) =
�(t)

�

S(t)

1�D(t)
. (5)

We see from equation (5) that the e↵ective reproduction number can fall either due

to changes in the normalized transmission rate or changes in the fraction of the

population remaining susceptible to the disease.

To invert this model to interpret data on deaths note that from (4), we have

I(t) =
1

⌫�
dD(t)/dt. (6)

Using (3) and (4) together and the assumption that R(0) = D(0) = 0, we have that

R(t) =
1� ⌫

⌫
D(t). (7)

Using that the states must sum to one, we have

S(t) = 1� 1

⌫
D(t)� 1

⌫�

dD(t)

dt
. (8)

To obtain the e↵ective reproduction number implied by deaths data, note that from

equations (2), (6), and the time derivative of this second equation, we have

R(t) = 1 +
1

�

d2D(t)
dt2

dD(t)
dt

(9)

where the last term in this equation can be interpreted as the time derivative of the

logarithm of daily deaths.

Note that this equation (9) implies that there is a linear relationship between the

growth rate of daily deaths (here measured as the time derivative to the logarithm

of daily deaths) and the model-implied e↵ective reproduction number. This repro-

duction number is equal to one when the growth rate of daily deaths is equal to zero.
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The slope of this relationship is given by 1/� corresponding to the number of days

on average that an infected individual remains infectious. To compute estimates of

the e↵ective reproductive number that are consistent with our estimated paths for

the growth rate of daily deaths, we set � = 0.2. This value implies that if the growth

rate of daily deaths is 30 percent initially, the basic reproduction number, the value

of the e↵ective number at date t = 0, is 2.5. These values are inline with CDC

estimates.

Given these equations, one can obtain an estimate of the normalized transmission

rate of the disease from equations (5) and (8). Thus, one can use this estimate to

determine the extent to which the model-implied e↵ective reproduction number has

changed due to changes in the transmission rate versus a reduction in the fraction of

the population remaining susceptible to the disease. For this exercise we also need

to set a value for ⌫. We use the CDC’s preferred estimate of this parameter and set

⌫ = 0.004.

3 Death Data and Estimation

The data sources for daily deaths are New York Times for U.S. states and Johns Hop-

kins University for other countries. We select U.S. states and other countries that

have experienced more than 1000 cumulative deaths due to COVID-19 by July 22,

2020. For each location i, our estimation period begins at the location specific date

when cumulative deaths reached 25 in that location and ends on July 22, 2020. The

24 countries that we study are Argentina, Belgium, Brazil, Canada, Chile, France,

Germany, India, Iran, Ireland, Italy, Japan, Mexico, Netherlands, Panama, Peru,

Portugal, Russia, Spain, Sweden, Switzerland, Denmark, Turkey, the United King-

dom, and the United States excluding the states listed next. The 25 U.S. states that

we study are Alabama, Arizona, California, Colorado, Connecticut, Florida, Geor-

gia, Illinois, Indiana, Louisiana, Maryland, Massachusetts, Michigan, Mississippi,

Minnesota, Missouri, New Jersey, New York, North Carolina, Ohio, Pennsylvania,
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South Carolina, Texas, Virginia, and Washington. The rest of the U.S. is counted

as another region.

One problem that we face is that the data on daily deaths due to COVID-19

is noisy. In many regions, there are both substantial day-of-the-week e↵ects and

occasional large spikes in reported deaths due to, among other things, changes in the

criteria used to classify deaths as being due to COVID-19. To estimate the trend

growth of daily deaths from these noisy data, we assume that the trend path of daily

deaths in each location is given by a mixture of Weibull density functions which we

estimate using a Bayesian procedure.16 We assume that observed daily deaths are

the sum of a mixture of Weibull density functions and a residual whose magnitude

is regime-specific. The regime-switching residuals allow us to e↵ectively deal with

erratic noises in the data. The Bayesian procedure allows us to construct posterior

probability bands around the estimate. It also allows us to derive smooth estimates

of the first and higher derivatives of daily deaths that we need to recover estimates of

the e↵ective reproduction numbers and transmission rates of the disease from several

structural SIR models.

Our estimation methodology begins by scaling the cumulative death data in lo-

cation i so that Di(t)/(1 + di)Di(T ) lies between zero and one, where Di(T ) is the

cumulative number of deaths in location i at the end of the estimation period and

di > 0 is a scale parameter to be estimated as described in the appendix. Let �D
Data
i,t

be the daily measured object for dDi(t)/dt and denote

� eDData
i,t =

�D
Data
i,t

(1 + di)DData
i,T

.

Given the daily death data and the value of di, we run a non-linear regression with

16Due to its flexibility, the Weibull distribution is commonly used in survival and failure analysis
to model the time until an event such as death or mechanical failure. See, for instance, Bučar et al.
(2004), Doksum and Lindqvist (2003), Pinder III et al. (1978), and Tsionas (2002).
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a mixture of Weibull density functions and regime-switching heteroskedastic errors:

� eDData
i,t =

JX

j=1

wi,j f (t� t0,i � ci,j, ai,j, bi,j) + �i,kt"i,t,

where "i,t is an iid standard normal random residual, weights wi,j are non-negative

and sum to one across j, and

f (t� t0,i � ci,j, ai,j, bi,j) =
bi,j

ai,j

✓
t� t0,i � ci,j

ai,j

◆bi,j�1

exp

 
�
✓
t� t0,i � ci,j

ai,j

◆bi,j
!

when t � t0,i � ci,j � 0 and t0,i is the time when the cumulative death toll reached

25 for location i. The switching state kt 2 {1, . . . ,K} follows a Markov-switching

process and can accommodate both an expectedly large surge in daily deaths and a

low death volatility typically associated with a low number of deaths.17

Given the estimates of our death model parameters, we construct the estimates of

death growth rates by taking the time derivative of our estimated mixture of Weibull

densities

ĝi(t) =

PJ
j=1 wi,j

@
@tf (t� t0,i � ci,j, ai,j, bi,j)

PJ
j=1 wi,j f (t� t0,i � ci,j, ai,j, bi,j)

.

The left panels of Figure 1 shows the fit of our Weibull estimation to the noisy

daily death data for four selected locations from four di↵erent continents: New York

State, Sweden, Panama, and Iran. These locations span the range of daily death

patterns observed in the data and illustrate that our flexible specification is able

to fit disparate patterns. New York had a steep initial rise in deaths followed by

a decline that slowed considerably over time. Sweden experienced a flatter wave of

deaths. Panama’s daily deaths were nearly flat for several weeks and then began to

rise, a similar pattern to that observed in some U.S. states like Texas and Florida.

Iran, which has struggled to contain the pandemic, was well into a second and larger

wave of daily deaths by the end of our estimation period. The x-axis of these panels

17For the selection of K and estimation details, see Appendix A and Atkeson et al. (2020).
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also show the starting date at which each of these regions first reached 25 cumulative

deaths.

The right panels of Figure 1 shows the corresponding estimates for the growth

rate of daily deaths (on the left axis) and the of the e↵ective reproduction number

implied by equation (9) (on the right axis). In these panels, we see the rapid decline

of the growth rates of daily deaths in these locations in the 30 days after each of

these regions reached 25 cumulative deaths.

The smoothed daily death series in the left column of Figure 1 are based on 7-day

moving averages following Baqaee et al. (Forthcoming) using a procedure described

in Appendix A). We present these non-parametric estimates of the trend in daily

deaths as a check on our estimation procedure. As one can see, the 0.90 probability

bands capture most of the movements in the smoothed series. However, the smoothed

series are heavily influenced by large spikes in the noisy daily death data. As a result,

the growth rates of smoothed daily deaths can fluctuate wildly (see Figure A.1 in

Appendix A).

4 Findings

Our estimation results yield the following four stylized facts about the COVID-19

epidemic.

Fact 1. The growth rate of daily deaths from COVID-19 fell rapidly everywhere

within the first 30 days after each region reached 25 cumulative deaths.

Fact 1 is shown in the top panel of Figure 2. The solid black line shows that

the median estimated growth rate of daily deaths fell rapidly from an initial level of

about 40 percent to zero within the first 30 days of the estimation period. Notice

that the 0.90 posterior probability intervals computed across all locations that we

consider, the dashed lines in the figure, follow a similar pattern.18 The estimated

18The posterior probability intervals in Figure 2 include both location uncertainty and sampling
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half-life of the growth rate during this period is 2.7 days with a 0.90 probability

interval ranging from 1.3 to 7.1.

Fact 2. After this first period of rapid decline, the growth rate of daily deaths in all

regions has hovered around zero or slightly below.

As Figure 2 shows, after the initial 30 day period, the median growth rate of daily

deaths has been nearly flat and slightly below zero. The 0.90 posterior probability

interval has also been low relative to its initial range. Notice in the right column of

Figure 1 that the growth rate of daily deaths has followed a pattern consistent with

Facts 1 and 2 in all four of our example regions despite the heterogeneity in both

their geographic locations and daily death patterns.

Fact 3. The cross-regional standard deviation of growth rates of deaths fell rapidly

in the first 10 days of the epidemic and has, subsequently, remained low relative to

its initial level.

Fact 3 can also be seen in Figure 2. The shrinking of the two-thirds and 0.90

posterior probability intervals shows that the dispersion in death growth rates across

locations fell sharply within the initial 10 days of the epidemic. While there has been

some increase in dispersion towards the end of the estimation period, overall levels

of dispersion remain small relative to their initial values.

Facts 1 - 3, when taken together, demonstrate important di↵erences in the patterns

of daily death growth rates early on versus later on in the epidemic. In particular, the

facts indicate that there is a structural break in the COVID-19 death data occurring

roughly 30 days after 25 cumulative deaths occur. Prior to the structural break is a

period characterized by rapidly declining growth rates of daily deaths and high cross-

regional dispersion. The period after the structural break features growth rates of

daily deaths that mostly hover near but slightly below zero. This latter period also

features substantially less cross-regional dispersion compared to the early period.

uncertainty. However, most of the cross-sectional dispersion in growth rates in the figure is driven
by location uncertainty as sampling uncertainty within a location is small (see the right column of
Figure 1).
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Fact 4. When interpreted through a range of epidemiological models, Facts 1 - 3

imply that both the e↵ective reproduction numbers and transmission rates of COVID-

19 fell rapidly from widely dispersed initial levels during the 30 days after cumulative

deaths reached 25. After this initial period of rapid decline, the e↵ective reproduction

number has hovered around one everywhere in the world.

Fact 4 is obtained by deriving the implications of our estimated daily death paths

for the paths of the e↵ective reproduction number and transmission rates using four

variants of an SIR model. The baseline version is described above, and the e↵ective

reproduction number and normalized transmission rates implied by this model are

obtained from the deaths data using equations (8), (5), and (9). The parameter �

is set to 0.2 such that a growth rate of daily deaths of 30 percent corresponds to

a basic reproduction number of 2.5. The right y-axis in Figure 2 shows that the

median e↵ective reproduction number fell from an initial level of nearly 3 to 1 in 30

days and has, subsequently, remained slightly below 1.

Equation (5) illustrates that the e↵ective reproduction number can fall due to

both declines in the normalized transmission rate and declines in the fraction of the

population remaining susceptible to the disease. We use our estimated paths for daily

deaths and the equations of the SIR model to determine the relative contributions

of each. We find that the rapid decline in daily death growth rates early on in the

epidemic is primarily due to a rapid fall in the transmission rate of the disease as

illustrated by the bottom panel of Figure 2. Disease transmission rates, like the

e↵ective reproduction numbers, fell early on in the epidemic from widely dispersed

initial levels and and have since remained close to 1.

To explore the robustness of our results to model uncertainty, we consider three

variants of the baseline SIR model: an SEIR model which extends the SIR model by

assuming agents first become exposed to the disease before becoming infectious, an

SIHR model which allows for a longer period between infection and death by adding

a hospitalized state, and an SEIHR model which extends the SIR model by adding

both the exposed state and the hospitalized state. Following a similar procedure as

14



with the baseline SIR model, for each model extension we are able to express the

e↵ective reproduction number as a function of model parameters, as well as, daily

deaths and its derivatives.19

Figure 3 shows that our findings are robust to variations in the baseline SIR

model. The left panel of the figure shows that, across all four model variations,

estimated e↵ective reproduction numbers fell rapidly in the first period before the

structural break. In the second period after the structural break, the median e↵ective

reproductive ratios implied by each model, hover slightly below 1. The first period is

also characterized by more cross-region dispersion in reproductive ratios. The right

column in the figure shows that, regardless of model, the cross-regional standard

deviation of e↵ective reproduction numbers fell substantially within the first 10 days

of the estimation period and, subsequently, remained stable and relatively low.

5 Conclusion

One of the central policy questions regarding the COVID-19 pandemic is the question

of which non-pharmeceutical interventions governments might use to influence the

transmission of the disease. Our ability to identify empirically which NPI’s have what

impact on disease transmission depends on there being enough independent variation

in both NPI’s and disease transmission across locations as well as our having robust

procedures for controlling for other observed and unobserved factors that might be

influencing disease transmission. The facts that we document in this paper cast

doubt on this premise.

Our finding in Fact 1 that early declines in the transmission rate of COVID-19

were nearly universal worldwide suggest that the role of region-specific NPI’s imple-

mented in this early phase of the pandemic is likely overstated. This finding instead

suggests that some other factor(s) common across regions drove the early and rapid

transmission rate declines. While all three factors mentioned in the introduction,

19Details on these model extensions are provided in Appendix B.

15



voluntary social distancing, the network structure of human interactions, and the

nature of the disease itself, are natural contenders, disentangling their relative roles

is di�cult.

Our findings in Fact 2 and Fact 3 further raise doubt about the importance in

NPI’s (lockdown policies in particular) in accounting for the evolution of COVID-19

transmission rates over time and across locations. Many of the regions in our sample

that instated lockdown policies early on in their local epidemic, removed them later

on in our estimation period, or have have not relied on mandated NPI’s much at

all. Yet, e↵ective reproduction numbers in all regions have continued to remain low

relative to initial levels indicating that the removal of lockdown policies has had little

e↵ect on transmission rates.

The existing literature has concluded that NPI policy and social distancing have

been essential to reducing the spread of COVID-19 and the number of deaths due

to this deadly pandemic. The stylized facts established in this paper challenge this

conclusion. We argue that research going forward should account for these facts when

assessing how important NPI policy is in shaping the progression of COVID-19.
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Figure 1: Left column: estimated trend of death with 0.90 probability (credible) bands. The
smoothed death (the solid blue line) is a 7-day average. Right column: growth rates of death with
0.90 probability (credible) bands. E↵ective reproduction number is based on the SIR model.
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Figure 2: Location and sampling uncertainty. The black solid line in both charts represents the
median posterior estimate. The solid magenta line in the top chart represents the median growth
rate of 7-day smoothed daily deaths for all 50 locations and corresponds only to the left scale. The
two dash-dotted bands in both charts contain two thirds of the posterior probability at each point
in time and the two dashed bands, 0.90 of the posterior probability. The growth rates of death is
estimated according to the fitted Weibull function. E↵ective reproduction numbers and normalized
transmission rates are based on the SIR model. Day 0 is the earliest date when the cumulative
death toll reached 25 in each location.
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Figure 3: Model uncertainty: e↵ective reproduction numbers estimated from the four epidemio-
logical models. The estimated median and standard deviations for each model are based on all 50
locations. Day 0 is the earliest date when the cumulative death toll reached 25 in each location.
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A Estimation Details

The procedure we use to estimate the trend in daily deaths with a seven day moving

average is as follows. Let Di(t) denote the reported data on cumulative COVID

deaths in region i at date t and �Di,t = Di(t)�Di(t� 1) denote the data on daily

deaths. We estimate the level of daily deaths from these noisy data with a 7-day

moving average

á�Di,t =
1

7

6X

s=0

�Di,t�s,

starting from the day t0,i at which cumulative deaths in region i, Di(t), first reaches

25. We then smooth the growth rate of daily deaths with a finite di↵erence

ḡi(t) =
1

7á�Di,t

⇥ á�Di,t+3 � á�Di,t�4

⇤
.

The choice for computing the growth rate of daily deaths from a 7-day di↵erence in

smoothed daily deaths is to smooth estimates of the growth rate represented by ḡi(t)

(double-smoothing).

In Section 3, we discuss potential problems with the method of smoothing daily

deaths over 7 days because such a smoothed series is still heavily influenced by large

and noisy spikes of reported daily deaths despite the smoothing. Figure A.1 shows

how wild the fluctuation of growth rates of 7-day smoothed daily deaths for all 50

locations can become.

By contrast, our Bayesian approach avoids the erratic movements driven by noisy

daily death data. Let �D
Data
i,t be the daily measured object for dDi(t)/dt and denote

� eDData
i,t =

�D
Data
i,t

(1 + di)DData
i,T

,

� eDt,Data
i ⌘

n
� eDData

i,t , � eDData
i,t�1, � eDData

i,t�2, . . . � eDData
i, ti,0

o
,
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Figure A.1: Growth rates of 7-day smoothed daily deaths for all 50 locations. The left panel plots
the day-to-day growth rates and the right panel plots the rolling smoothed day-to-day growth rate
over the 7-day period. Both plots are based on a time series of 7-day average death numbers. Due
to this smoothing, time 0 corresponds to the fourth day after the cumulative death reached 25 in
each location.

� eDData
i ⌘

n
� eDData

i, t0,i , · · · , eD
Data
i,T

o
.

Given the daily discrete-time data and the value of di, we estimate the following

non-linear regression

� eDData
i,t = fi (t� t0,i, ⇠i) + �i,kt"i,t, (A.1)

where "i,t is a state-dependent standard normal random residual and independent of

each other across i. The switching state kt 2 {1, . . . ,K} can accommodate both an

expectedly large surge in daily deaths and a low death volatility typically associated

with a low number of deaths. The transition matrix Qk for kt is unrestricted except

that each column of Qk sums to one. For our deterministic SIR model to o↵er an

accurate account of health consequences of the pandemic, we set ti,0 at the time when

the number of deaths accumulates to 25 for each location i.

Let ✓i represent a collection of ⇠i, �i,1, · · · , �i,K, and all the free parameters in
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the transition matrix Qk. From equation (A.1) one can derive the (log) conditional

likelihood function for � eDt,Data
i as

logL
⇣
� eDData

i,t | � eDt�1,Data
i , kt, ✓i

⌘
=

logL
⇣
� eDData

i,t | kt, ✓i
⌘
= �T � t0,i

2
log(2⇡)�

TX

t=t0,i

log(�i,kt)

�
TX

t=t0,i

h
� eDData

i,t � fi (t� t0,i, ⇠i)
i2

2�2
i,kt

,

(A.2)

L
⇣
� eDData

i,t | � eDt�1,Data
i , ✓i

⌘
=

KX

kt=1

h
L
⇣
� eDData

i,t | � eDt�1,Data
i , kt, ✓i

⌘
p

⇣
kt | � eDt�1,Data

i , ✓i

⌘i
.

(A.3)

Given the initial condition p

⇣
kt0,i�1 | � eD

t0,i�1,Data
i , ✓i

⌘
= 1/K, the predictive proba-

bility of regime, p
⇣
kt | � eDt�1,Data

i , ✓i

⌘
, can be updated recursively through Hamilton

(1989)’s filter as

p

⇣
kt | � eDt�1,Data

i , ✓i

⌘
=

KX

kt�1=1

qkt,kt�1 p

⇣
kt�1 | � eDt�1,Data

i , ✓i

⌘

and

p

⇣
kt | � eDt,Data

i , ✓i

⌘
=

L
⇣
� eDData

i,t | � eDt�1,Data
i , kt, ✓i

⌘
p

⇣
kt | � eDt�1,Data

i , ✓i

⌘

PK
kt=1

h
L
⇣
� eDData

i,t | � eDt�1,Data
i , kt, ✓i

⌘
p

⇣
kt | � eDt�1,Data

i , ✓i

⌘i .

It follows from equations (A.2) and (A.3) that the likelihood function for �D
Data
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is

L
⇣
� eDData

i | ✓i
⌘
=

TY

t=ti,0

L
⇣
� eDData

i,t | � eDt�1,Data
i , ✓i

⌘
. (A.4)

We impose a Bayesian prior on the parameters of this model. Let p(✓i) denote

the prior pdf. We keep the prior di↵use enough to be agnostic. Specifically, ai has

the Gamma distribution with the hyperparameter values 40 and 1 and bi with the

hyperparameter values 4 and 1. The parameter ci has the normal distribution with

mean zero and variance 10. The parameter �i,kt has the uniform distribution between

0 and 0.1.20 The weight parametrer wi,j (j = 1, · · · ,J ) and the elements of Qk all

have the Dirichlet distribution with the hyperparameter values 2 and 2. It follows

that the log posterior density function of ✓i is

log p
⇣
✓i | � eDData

i

⌘
= logL

⇣
� eDData

i | ✓i
⌘
+ log p(✓i)� log p

⇣
� eDData

i

⌘
, (A.5)

where p
⇣
� eDData

i

⌘
is the marginal likelihood. We use the Schwarz criterion (Bayesian

information criterion) to select J , the numbers of mixtures. The following results

show the number of Weibulls that is needed to fit each location of the U.S. states

and other countries used in our estimation:

J = 1 Colorado, Connecticut, Georgia, Illinois, Indiana, Maryland, Massachusetts,

Minnesota, Missouri, New Jersey, North Carolina, Ohio, Pennsylvania, Vir-

ginia, Washington, Spain, Brazil, Canada, Ireland, Japan, Mexico, Nether-

lands, Peru, Russia, Sweden, Switzerland, and India.

J = 2 Alabama, Arizona, California, Florida, Louisiana, Michigan, Mississippi, New

York, South Carolina, Texas, the rest of the U.S., Argentina, Belgium, France,

Germany, Iran, Italy, Panama, Portugal, Turkey, Denmark, United Kingdom,

20The linear regression literature only uses the inverse Gamma distribution for �i,kt as conjugate
prior. For our nonlinear regression here, the inverse Gamma prior is no longer conjugate. Moreover,
since the death data implies that the values of �i,kt are far less than one, the inverse Gamma prior
only with no moments can cover such small values. This makes the inverse Gamma prior not only
undesirable but also impractical.
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and Chile.

The above estimation procedure is conditional on the value of di, which does not

a↵ect the dynamics of the model’s variables except scaling the cumulative deaths

Di(t). We propose the following algorithm to find the scaling parameter di.

Algorithm 1. Let d(0)i > 0 be the initial value of di and ✓
(0)
i be the estimate condi-

tional on d
(0)
i , and denote � bD(0)

i,t = fi

⇣
t� t0,i, ⇠

(0)
i

⌘
. For ` = 1, 2, · · · , the algorithm

proceeds as follows.

1. Find di that minimizes

log
TX

t=t0,i

2

4DData
i,t �

tX

s=t0,i

� bD(`�1)
i,s (1 + di)D

Data
i,T

3

5
2

and denote this value by d
(`)
i > 0.

2. Estimate ✓i conditional on d
(`)
i > 0 as described in this section and denote the

estimate by ✓
`
i .

3. Repeat the last two steps until d(`)i converges.

The left column of Figure 1 in the main text reports estimation results for four

selected locations. For all other locations, the fit is as good as Figure 1.21 The

computation is expensive: it takes about 24 hours to finish 100,000 posterior draws

for each location. There are a total of 50 locations. We use a cluster of computers

to accomplish this task with a total of 5 million posterior draws. For each posterior

draw of ai, bi, and ci, we invert the four SIR-related structural models to obtain

the e↵ective reproduction number and transmission rate. The computation is also

expensive if the number of estimated Weibull functions is greater than one. For a

mixture of two Weibull functions, for instance, solving each structural model with

21See also Atkeson et al. (2020) for detailed results from the estimation with earlier death data.
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1,000 posterior draws takes at least two hours for each location. Figure A.2 report

the results from the four structural models based on the median estimates of Weibull

parameters.

Figure A.2: E↵ective reproduction numbers across all 50 locations, estimated from the four
extended models. The day 0 is the earliest date when the cumulative death toll reached 25 in each
location.
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B Extensions of the SIR model

In this section we describe the three extensions of the standard SIR model that we

consider.

B.1 SEIR model

The SEIR model extends the SIR model by assuming agents first become exposed to

the disease before becoming infected (infectious). At each moment in time, the pop-

ulation N is divided into five states: susceptible S, exposed E, infected I, recovered

R, and dead D. Susceptible agents are at risk of becoming exposed to the disease.

Agents in the exposed state are not infectious but transition to the infectious state at

rate �. Note that 1/� is the average number of days that an agent has been exposed

to the disease but is not yet infectious.

The equations of the model are given by

dS(t)

dt
= �R(t)�I(t), (B.1)

dE(t)

dt
= R(t)�I(t)� �E(t), (B.2)

dI(t)

dt
= �E(t)� �I(t), (B.3)

dR(t)

dt
= (1� ⌫)�I(t), (B.4)

dD(t)

dt
= ⌫�I(t). (B.5)
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As in the SIR model, the e↵ective reproduction number of the disease is

R(t) ⌘ �(t)

�

S(t)

1�D(t)
.

We assume that E(0) = R(0) = D(0) = 0, S(0) is slightly below N and I(0) is

slightly above 0.

The model can be inverted as follows. As before, we have from equations B.4 and

B.5 that
dR(t)

dt
=

1� ⌫

⌫

dD(t)

dt
.

Integrating this expression over time and using the initial conditionsD(0) = R(0) = 0

gives

R(t) =
1� ⌫

⌫
D(t).

Equation B.5 gives

I(t) =
1

⌫�

dD(t)

dt
,

and di↵erentiating this equation we have

dI(t)

dt
=

1

⌫�

d
2
D(t)

dt2
.

Thus, from equation B.3, we have

E(t) =
1

�


1

⌫

dD(t)

dt
+

1

⌫�

d
2
D(t)

dt2

�
.

Using the constraint that categories sum to one gives

S(t) = 1� E(t)� I(t)�R(t)�D(t).

Note that the model implications for the numbers infected and recovered are the same

as the SIR model. The number still susceptible, however, is adjusted to account for

the stock of exposed agents.

35



Now consider the e↵ective reproduction number. Note that if we sum equations

B.2 and B.3, we get
dE(t)

dt
+

dI(t)

dt
= [R(t)� 1] �I(t).

Di↵erentiating the equation for E(t) and plugging the other expressions in to the

equation above gives

1

�


d
2
D(t)

dt2
+

1

�

d
3
D(t)

dt3

�
+

1

�

d
2
D(t)

dt2
= [R(t)� 1]

dD(t)

dt
.

Thus, we get the following expression for the e↵ective reproduction number

R(t) = 1 +

✓
1

�
+

1

�

◆ d2D(t)
dt

dD(t)
dt

+
1

��

d3D(t)
dt3

dD(t)
dt

.

Notice that the e↵ective reproduction number is now a function of both the first and

second derivatives of daily deaths.

We choose the two parameters � and � so that the model is consistent with typical

observed doubling times of daily deaths early on in the epidemic and a basic repro-

duction number of around 2.5. If we have daily deaths growing exponentially in the

early phase of the epidemic with growth rate �, then

dD(t)

dt
= exp(d̄+ �t).

From our formula for the e↵ective reproduction number above

R(0) = 1 +

✓
1

�
+

1

�

◆
� +

�
2

��
.

We set � to 0.5 which implies that the average number of days between exposure

and infection is 2. The recovery rate � is set at 0.4. At this value, a 30% growth

rate of daily deaths (doubling time of 2.3 days) corresponds to a basic reproduction

number of 2.8.
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B.2 SIHR model

We now extend the SIR model by adding a state H corresponding to hospitalized.

This additional state allows for a longer period from infection to death than in the

simpler SIR model. Infected agents flow from state I to either hospitalized, H, or

recovered, R. Agents in state H can flow to death, D, or recovery, R. At each

moment in time, the total population N is divided between the five states: S, I, H,

R, D.

The dynamics of the model are given by

dS(t)

dt
= �R(t)�I(t), (B.6)

dI(t)

dt
= [R(t)� 1] �I(t), (B.7)

dH(t)

dt
= ⌘�I(t)� ⇣H(t), (B.8)

dR(t)

dt
= (1� ⌫)⇣H(t) + (1� ⌘)�I(t), (B.9)

dD(t)

dt
= ⌫⇣H(t), (B.10)

where the definition of the e↵ective reproduction number, R(t), is the same as in the

SIR and SEIR versions of the model. Note that the parameter ⌫ is now the fatality

rate conditional on hospitalization and ⌘ is the fraction of the infected population

that ends up hospitalized. The parameter ⇣ determines the duration of hospital

stays. For initial conditions, we assume that D(0) = R(0) = 0, S(0) is slightly below

N , I(0) is slightly above 0, and H(0) may be greater than 0.

We now show how to invert this version of the model to express the e↵ective

reproduction number in terms of total deaths and its time derivatives. From equation
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B.10 we have

H(t) =
1

⌫⇣

dD(t)

dt
.

Di↵erentiating this equation gives

dH(t)

dt
=

1

⌫⇣

d
2
D(t)

dt2
.

These results together with equation B.8 give

I(t) =
1

⌘�


1

⌫

dD(t)

dt
+

1

⌫⇣

d
2
D(t)

dt2

�
.

Integrating B.9 and the initial conditions imply

R(t) = (1� ⌫)⇣

Z t

s=0

H(s)ds+ (1� ⌫)⇣H(0) + (1� ⌘)�

Z t

s=0

I(s)ds+ (1� ⌘)�I(0),

or

R(t) =
1� ⌫

⌫
D(t) +

1� ⌘

⌘


1

⌫
D(t) +

1

⌫⇣

dD(t)

dt

�
+ (1� ⌫)⇣H(0) + (1� ⌘)�I(0).

where

H(0) =
1

⌫⇣

dD(0)

dt
,

and

I(0) =
1

⌘�


1

⌫

dD(0)

dt
+

1

⌫⇣

d
2
D(0)

dt2

�
.

Using the constraint that categories sum to one gives

S(t) = 1� I(t)�H(t)�R(t)�D(t).

Having inverted the model, we can now turn to the e↵ective reproduction number.
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Di↵erentiating our expression for I(t) gives

dI(t)

dt
=

1

⌘�


1

⌫

d
2
D(t)

dt2
+

1

⌫⇣

d
3
D(t)

dt3

�
,

and combining these two expressions with equation B.7 yields

1

�


d
2
D(t)

dt2
+

1

⇣

d
3
D(t)

dt3

�
= [R(t)� 1]


dD(t)

dt
+

1

⇣

d
2
D(t)

dt2

�
.

Thus,

R(t) = 1 +
1

�

h
d2D(t)
dt2 + 1

⇣
d3D(t)
dt3

i

h
dD(t)
dt + 1

⇣
d2D(t)
dt2

i .

As in the SEIR model, the reproductive ratio depends on daily deaths and both its

first and second derivatives. It also depends on the rate at which agents transition

out of hospitalization, ⇣. We set this rate to 1/7 such that the average duration

of hospital stays is one week consistent with values reported on the CDC website.

We choose � so that our model is consistent with observed doubling times of daily

deaths in the early phase of the epidemic when the basic reproduction number in the

model is in line with CDC estimates of R(0) = 2.5. If we have daily deaths growing

exponentially in the early phase of the epidemic, then

dD(t)

dt
= exp(d̄+ �t),

so

R(0) = 1 +
1

�

h
� + 1

⇣ �
2
i

h
1 + 1

⇣ �

i = 1 +
�

�
,

which is the same expression as for the simple SIR model. Thus, we set � = 0.2,

the same value we used for the SIR version. With � set to this value, a 30% daily

growth rate of new deaths, � = 0.3, corresponds to a basic reproduction number of

2.5.
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B.3 SEIHR Model

The SEIHR model extends the SIR model by adding both the exposed state E and

the hospitalized state H. In this version of the model the total population N is

given by the sum of susceptible agents in state S, exposed in state E, infected in I,

hospitalized in H, recovered in R, and dead in D. The dynamics of the model are

given by
dS(t)

dt
= �R(t)�I(t), (B.11)

dE(t)

dt
= R(t)�I(t)� �E(t), (B.12)

dI(t)

dt
= �E(t)� �I(t), (B.13)

dH(t)

dt
= ⌘�I(t)� ⇣H(t), (B.14)

dR(t)

dt
= (1� ⌫)⇣H(t) + (1� ⌘)�I(t), (B.15)

dD(t)

dt
= ⌫⇣H(t), (B.16)

where the e↵ective reproduction number is as defined for the other versions of the

model. Initial conditions are E(0) = R(0) = D(0) = 0, S(0) slightly below N , I(0)

slightly above 0, and H(0) � 0.

We proceed as before with inverting the model. From equation B.16 we have

H(t) =
1

⌫⇣

dD(t)

dt
.
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Di↵erentiating this equation gives

dH(t)

dt
=

1

⌫⇣

d
2
D(t)

dt2
.

These results together with equation B.14 give

I(t) =
1

⌘�


1

⌫

dD(t)

dt
+

1

⌫⇣

d
2
D(t)

dt2

�
.

Integrating B.15 and the initial conditions imply

R(t) = (1� ⌫)⇣

Z t

s=0

H(s)ds+ (1� ⌫)⇣H(0) + (1� ⌘)�

Z t

s=0

I(s)ds+ (1� ⌘)�I(0),

or

R(t) =
1� ⌫

⌫
D(t) +

1� ⌘

⌘


1

⌫
D(t) +

1

⌫⇣

dD(t)

dt

�
+ (1� ⌫)⇣H(0) + (1� ⌘)�I(0),

where

H(0) =
1

⌫⇣

dD(0)

dt
,

and

I(0) =
1

⌘�


1

⌫

dD(0)

dt
+

1

⌫⇣

d
2
D(0)

dt2

�
.

Note that di↵erentiating our expression above for I(t) gives

dI(t)

dt
=

1

⌘�


1

⌫

d
2
D(t)

dt2
+

1

⌫⇣

d
3
D(t)

dt3

�
.

Equation B.13 implies that

E(t) =
1

�


dI(t)

dt
+ �I(t)

�
,
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and combining with our expressions for I(t0 and dI(t)/dt we have

E(t) =
1

�⌘⌫


1

�


d
2
D(t)

dt2
+

1

⇣

d
3
D(t)

dt3

�
+


dD(t)

dt
+

1

⇣

d
2
D(t)

dt2

��
.

Finally, we have

S(t) = 1� E(t)� I(t)�H(t)�R(t)�D(t).

In terms of measuring the e↵ective reproduction number, this model shares with

the SEIR model that the growth of exposed and infected individuals is determined

by
dE(t)

dt
+

dI(t)

dt
= [R(t)� 1] �I(t).

Di↵erentiating the expression for E(t), plugging it and the expressions for I(t) and

dI(t)/dt into the above equation, and rearranging terms gives

R(t) = 1 +

⇣
1
� + 1

�

⌘
d2D(t)
dt2 +

⇣
1
�� + 1

�⇣ +
1
�⇣

⌘
d3D(t)
dt3 + 1

��⇣
d4D(t)
dt4

dD(t)
dt + 1

⇣
d2D(t)
dt2

.

Notice that the reproductive ratio now depends not only on the first two derivatives

of daily deaths but also the third derivative.

To calibrate the parameters �, �, and ⇣ we proceed as before. The parameter ⇣ is

set to 1/7 so that the average duration of a hospital stays is 7 days in line with CDC

reports. The parameters � and � are set to 0.4 and 0.5. These are the same values

used in the SEIR version of the model. This combination of parameter values implies

that a 30% growth rate of new daily deaths corresponds with a basic reproduction

number, R(0), of 2.8.
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