Unit Cost Expectations and Uncertainty: Firms’ Perspectives on Inflation

Brent H. Meyer, Nicholas B. Parker, and Xuguang Simon Sheng

Working Paper 2021a
March 2021 (Revised December 2021)

Abstract: We propose a proxy for the inflation expectations of firms based on aggregating own-firm probabilistic unit cost expectations. Unlike other surveys of firms or households that elicit “aggregate” expectations, we focus on idiosyncratic costs that firms are well aware of, plan for, and matter for price setting. We document five key findings. First, in aggregate, firms’ unit cost expectations significantly outperform households’ inflation expectations and are at least as accurate as the expectations of professional forecasters in out-of-sample forecasting exercises. Second, once aggregated, firms’ unit cost realizations closely comove with US inflation statistics. Third, using a novel, flexible technique to parametrically estimate firms’ unit cost uncertainty, we find that up until early 2020, the evolution of firms’ views was similar to other survey and market-based measures of inflation uncertainty. Fourth, using special questions, we find evidence that information treatments about aggregate inflation and policymakers’ forecasts do little to alter firms’ unit cost expectations. And, last, we show that unit costs at the firm level are an important determinant of their own price setting behavior.

JEL classification: E6, E31, E52, L2

Key words: bimodality, inflation expectations, probability distributions, randomized controlled trials, uncertainty, unit cost

https://doi.org/10.29338/wp2021-12a

First draft: March 17, 2021. The authors give special thanks to Brian Prescott for excellent research assistance. The authors also thank the Federal Reserve Bank of Atlanta for its ongoing support of the Economic Survey Research Center (ESRC) and the Business Inflation Expectations (BIE) survey. They remain heavily indebted to Mike Bryan for founding the BIE. They thank Jose Maria Barrero (discussant), Carola Binder (discussant), Ewa Stanisawska (discussant), Bernie Andrade, Wojtek Charemza, Oli Coibion, Jon Willis, and participants at the Philadelphia Fed Conference on “Real-Time Data Analysis, Methods, and Applications,” the 21st IWH-CIREQ-GW Macroeconometric Workshop, the 23rd Federal Forecasters Conference, the ESCoE Conference on Economic Measurement, the 41st International Symposium on Forecasting, the IAAE 2021 Annual Conference, the CEBRA 2021 Annual Conference, the 35th CIRET Conference, and seminars at George Washington University, Renmin University of China, and the University College Dublin for helpful comments. Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the Federal Reserve Bank of Atlanta or the Federal Reserve System. All results have been reviewed to ensure that no confidential information was disclosed.

Please address questions regarding content to Brent H. Meyer, Federal Reserve Bank of Atlanta, 1000 Peachtree Street NE, Atlanta, GA 30309, brent.meyer@atl.frb.org.

Federal Reserve Bank of Atlanta working papers, including revised versions, are available on the Atlanta Fed’s website at www.frbatlanta.org. Click “Publications” and then “Working Papers.” To receive e-mail notifications about new papers, use frbatlanta.org/forms/subscribe.
Price stability is that state in which expected changes in the general price level do not effectively alter business or household decisions.

–Federal Reserve Chairman Alan Greenspan, July 1996, FOMC Meeting

1 Introduction

Inflation expectations play a central role in many macroeconomic models. For monetary policymakers, monitoring and understanding the public’s inflation expectations are crucial to achieving their policy goals. However, much of the literature on survey measures of inflation expectations reveals that the public has trouble holding well-formed expectations that conform to economists’ notions of aggregate inflation. For households, expectations suffer from demographic differences (Bryan and Venkatu, 2001), are persistently biased relative to actual inflation (Thomas, 1999), are dispersed (Mankiw et al., 2004), reflect personal expenditure bundles (Cavallo et al., 2017) or salient price changes (D’Acunto et al., 2019), and contain respondents that may not fully comprehend the question at hand (Bruine de Bruin et al., 2010). In eliciting quantitative aggregate inflation expectations from firms, Coibion et al. (2018) and Candia et al. (2021) find many of these issues are present among business decision makers as well. In short, the existing literature points toward the existence of informational or processing impediments in the aggregate inflation expectations of the public, especially in the U.S. These impediments cast doubt on the ability for monetary policymakers to fully trust these expectations. As former Federal Reserve Chairman Alan Greenspan’s quote implies, during (or following) times of low, stable inflation, inattention may be a feature of price stability. Unfortunately, that also implies tracking survey measures of aggregate inflation expectations in a stable inflation environment may not be a useful exercise for policymakers to undertake.

In this paper, we take a different approach, building a proxy for the inflation expectations of businesses by eliciting own-firm unit cost expectations and then aggregating these responses up. We utilize the Federal Reserve Bank of Atlanta’s Business Inflation Expectations (BIE) Survey, which has been continuously collecting subjective probability distributions over own-firm future unit costs from a panel of business executives (CFOs, CEOs, and business owners) monthly since October 2011. The BIE is unique across several dimensions, choosing to focus on firms’ own anticipated unit costs rather than an aggregate inflation expectation to gauge the expectations of business decision makers that matter for their price-setting behavior. In addition to its unique focus, the BIE elicits firm-level expectations in a probabilistic format.

We demonstrate the usefulness of this bottom-up approach to eliciting expectations in comparison to current well-known survey measures of inflation expectations. We also elicit own-firm unit cost growth over the past year and create an aggregated index of that as well. Unit cost realizations

1https://www.federalreserve.gov/monetarypolicy/files/FOMC19960703meeting.pdf
and expectations differ significantly across industry in means, volatility, and time-series behavior. However, once aggregated, firms’ unit cost realizations covary strongly with official U.S. inflation statistics (i.e. CPI, PCE price index, and GDP deflator) and firms’ unit cost expectations are tightly correlated with the inflation expectations of professionals.

In out-of-sample forecasting exercises, we find that businesses’ unit cost expectations significantly outperform the aggregate inflation expectations of households and are roughly as accurate as the expectations of professional forecasters. Also, the timeseries evolution of unit cost expectations tends to co-move strongly with the inflation expectations of professional forecasters. Firms’ unit cost expectations are essentially unrelated with households’ inflation expectations at least in low, stable inflation environments.

We elicit unit cost expectations in a probabilistic format, following Manski (2004), and utilize a novel, flexible technique to parametrically estimate a given firm’s unit cost uncertainty. We adopt the bimodal asymmetric power normal (BAPN) distribution proposed by Bolfarine et al. (2018) that allows us simultaneously to handle open intervals at the end points and instances of bimodality (respondents assigning positive probabilities to non-adjacent bins). Utilizing the BAPN allows us to calculate the variance, hence the unit cost uncertainty, held by each firm in our panel at successive point in time. Aggregating across firms in each month yields a measure of firms’ unit cost uncertainty, which we view as a proxy for firms’ inflation uncertainty. We compare firms’ unit cost uncertainty to other survey and market-based measures of aggregate inflation uncertainty and find that up until early 2020 (the onset of the pandemic), all the measures we considered followed a similar (declining) evolution over the prior decade. Since the onset of the pandemic, however, our proxy for firms’ inflation uncertainty has performed differently than other measures.

Through unique randomized controlled trials posed to respondents in special questions, we find evidence that information treatments about aggregate inflation and policymakers’ forecasts do little to alter firms’ unit cost expectations or uncertainty. In separate experiments, spaced exactly one year apart, we provide firms with information on the projections (first-moment) and attendant uncertainty (second-moment) from the FOMC’s Summary of Economic Projections.

Firms report that unit costs matter more than aggregate inflation or the Consumer Price Index (CPI) for pricing and business decisions. Firm-level panel data are consistent with that notion. We find that unit cost realizations and expectations are related to realized and expected price changes. Although, firms over our sample period tend to overpredict realized cost growth. And, firms that operate in highly cyclical or volatile cost environments tend to be more uncertain ex ante and have larger absolute forecast errors, ex post.

One clear implication from our results is that even when firms are inattentive to aggregate conditions, it is possible to create a proxy for firms’ inflation expectations by eliciting firm-specific (idiosyncratic) information related to the inflation process and then aggregating across firms. The theoretical and empirical literature on rational inattention and information rigidities such as Sims
Woodford (2003), Mackowiak and Wiederholt (2009), Bachmann et al. (2015) and Afrouzi (2020) suggest the aggregate inflation expectations of agents in the economy (firms in this case) are not well-formed or meaningfully connected to their decisions. Rational inattention appears to be a feature of low, stable inflation environments like the U.S. has enjoyed since the mid-1990s. Mackowiak and Wiederholt (2009), in particular, develop a model where firms face a trade-off between paying attention to firm-specific or aggregate conditions and, in calibrating their model of rational inattention to micro pricing data, find evidence that prices react much more swiftly and forcefully to idiosyncratic shocks. Particularly relevant to our work is a recent paper by Chen et al. (2021). They find information rigidities are much more prevalent in Japanese firms' forecasts of macro variables than their own-firm unit costs. Bachmann et al. (2015), using the University of Michigan Survey of Consumers, note that idiosyncratic determinants of household spending decisions matter for economic decision making but, aggregate inflation expectations are either “reported truthfully, but do not matter for spending decisions, or they are reported inaccurately, because there are unimportant to households.”

Indeed, studies like Coibion et al. (2018) on New Zealand firms or Candia et al. (2021) on a panel of U.S. CEO’s, document the pervasiveness of aggregate inflation inattention in surveys of firms. And, Cavallo et al. (2017), through a series of survey experiments investigating rational inattention among households, suggest that if central banks wanted to affect household expectations, they should disseminate information about the price changes of specific products salient in the minds of households.

However, rather than send central bankers on the daunting and somewhat uncertain task of communicating information about aggregate inflation to businesses, our results suggest a potentially more fruitful alternative. Survey firms on economic quantities that they care about and are connected to the aggregate phenomena that central bankers endeavor to monitor. Our work can be seen as the first firm-level survey to attempt to proxy for firms’ inflation expectations despite the challenges of inattention to aggregate inflation or official price statistics.

Eliciting own-firm quantities to make inference about the aggregate economy or overall business activity is the direction that many firm-level studies of agent perceptions and expectations are heading. For example, Bachmann et al. (2021) and Altig et al. (2021) elicit business expectations and uncertainty on own-firm quantities (i.e. sales revenue and employment growth) to make inferences for the aggregate economy. This is among the broader set literature that uses firm-level survey to study properties of agent perceptions and expectations. Notable examples also include Enders et al. (2019), Ma et al. (2020), Barrero (2021), Chen et al. (2021) and Fiori and Scoccianti (2021).

Our paper also contributes to the growing literature that uses probability forecasts to elicit agent perceptions and expectations. This literature is related to density forecasts made by professional forecasters in the surveys conducted by the Philadelphia Fed and European Central Bank; see,
e.g. Engelberg et al. (2009) and Rich and Tracy (2010). New York Fed’s Survey of Consumer Expectations adopts a similar methodology in eliciting a household’s distribution of inflation beliefs and Armentier et al. (2013) provide a comprehensive review of this initiative. Our density forecasts take a similar form by assigning probabilities to pre-specified bins as is the case for professional forecasters and households. To our knowledge, the BIE survey is the first monthly survey of businesses in the United States that elicits probabilistic expectations.

The rest of the paper proceeds as follows. Section 2 describes the Atlanta Fed’s Business Inflation Expectations Survey and motivates the usage of unit costs to proxy for firms’ inflation expectations. Section 3 describes our approach to parametric estimation of firm-level unit cost beliefs and their associated uncertainty using the bimodal asymmetric power normal distribution in fitting probability forecasts. Section 4 compares our proxy for firms’ inflation expectations to well-known surveys of expectations and measures of inflation uncertainty. In this section we run simple out-of-sample forecasting exercises relative to an ARMA(1,1). We also provide a short overview of the dynamics of our proxy for firms’ inflation expectations relative to other survey measures of inflation expectations during the COVID-19 pandemic. Section 5 further motivates the use of unit cost as a relevant variable for firm-level pricing decisions and includes results from randomized controlled trials that provide information treatments about aggregate inflation and policymakers’ forecasts. Section 6 concludes. Additional tables and figures are relegated to an online appendix.

2 Eliciting Unit Cost Expectations

2.1 The Business Inflation Expectations Survey

For this study, we utilize the Atlanta Fed’s Business Inflation Expectations (BIE) Survey. The BIE is an online panel survey of roughly 500 CFOs, CEOs, and business owners of firms headquartered within the 6th Federal Reserve District in the southeastern United States. The BIE has fielded monthly since October 2011. For this paper, we use data from October 2011 through October 2021, a total of 121 successive monthly wave (just over 1 full decade worth of data). Nearly 75 percent of the panel consists of C-suite executives and business owners; see Figure A.1. Another roughly 20 percent of respondents carry titles like “Controller”, “Director of Finance”, and “Director of Forecasting”. Given the forward-looking probabilistic nature of the BIE’s main question of interest, it is important to reach decision makers within a firm engaged in strategic operations and planning for the future of the firm.

Panel coverage includes firms in every major industry in the private nonfarm sector and a full range of firm sizes (provided that the firm is an employer). The Atlanta Fed engages in a purposive

\[\text{Specifically, the 6th Federal Reserve District’s footprint consists of Alabama, Florida, and Georgia, the eastern two-thirds of Tennessee, 38 parishes of southern Louisiana, and 43 counties of southern Mississippi.}\]
sampling methodology in finding and recruiting new panel members, oversampling firms with 100 employees or more and from cyclically-sensitive industries (manufacturing, construction, retail, etc.), yet still attempting to maintain an industry and size composition that is broadly reflective of the national economy at the two-digit North American Industry Classification System (NAICS) level.

Table 1 reports the industry and size characteristics of the BIE survey panel. Relative to the physical count of establishments in the U.S. – according to the Census Bureau’s Statistics of U.S. Businesses – the BIE panel is underweighting small firms. Yet, despite their large share of establishments, small firms account for roughly 1/4 of annual payroll in the U.S., whereas firms with 500 or more employees are a much small fraction of U.S. establishments but account for the lion’s share of employment and payroll. The composition of the BIE panel is broadly reflective of the U.S. economy with the exception of manufacturing, which due to its capital-intensive nature is a small share of establishments and employment, but accounts for a relatively large share of value-added output in the U.S. It is also worth noting that the 6th Federal Reserve district closely mirrors the composition of U.S. businesses in terms of firm size and industrial mix.

Importantly, the BIE survey is a relatively short and simple survey for business decision makers to complete. The core questionnaire consists of just six questions and takes roughly 3-5 minutes to complete. We view the simplicity and brevity of the questionnaire as crucial elements to maintaining our relatively high response rate (see Figure A.2) and retention rate (see Figure A.3). As Figure A.2 shows, the response rates have stayed steady around 40 percent for the past 6 years. Our response rates compare favorably to other, voluntary surveys of businesses. For example, Coibion et al. (2018), in surveying New Zealand firms achieved a response rate of 20 percent in their first wave. The typical BIE survey respondent stays with the panel of 1 to 2 years. Less than 5 percent of respondents fail to complete one survey once they agree to join the panel. And, we have two respondents that have stayed with the panel since its inception – completing every month survey we have fielded.

Our main question of interest from the BIE survey is the probabilistic 1-year ahead unit cost

3With the exception of the Census Bureau, practical probability sampling of firms in the United States is largely unfeasible, as business database providers such as Dunn and Bradstreet have difficulty capturing small firms and startups.

4One potential criticism of the BIE panel is that it only represents firms headquartered in the Southeast U.S. We address this criticism in two ways. First, many firms headquartered in the U.S. have national or international sales footprints or exposure beyond the Southeast U.S. through supply chains. See Appendix B for a more direct response. The aggregated unit cost expectations and measured uncertainty from the BIE panel are highly correlated with those from the Survey of Business Uncertainty, which is a larger, national panel of U.S. firms’ expectations and uncertainty.

5The question wording and response options can be found in Appendix D. We include the core questionnaire, quarterly rotating questions, and special questions used in this paper.

6An AAPOR response rate 2 calculation is the second most restrictive (out of 6 levels) way to calculate response rates. It does include partial responses. For an overview of AAPOR response rates see: https://www.aapor.org/

7There are myriad reasons for response rates to differ including survey mode, quality of contact information, and method of first contact. See Lessler and Kalsbeek (1992) for a fulsome discussion of nonresponse error.
expectation question (see Figure 1 for the screenshot of how the question appears to respondents). The response quality to this question appears to be relatively high. Out of 24,734 observations there are just 496 cases (2.0 percent) where the probabilities did not sum to 100 percent. We also find only 218 instances of respondents assigning 20 percent to each bin.

The BIE elicits probabilistic unit cost expectations by asking firms to assign probabilities to pre-specified intervals (bins) for anticipated unit cost growth over the year ahead. This approach follows Manski (2004), Engelberg et al. (2009) and Armantier et al. (2013). These probability distributions provide richer detail than point forecasts on the uncertainty with which respondents hold expectations. Despite some efforts to quantify qualitative responses, such as the approach outlined in Mankiw et al. (2004), it is difficult to extract quantitative measures of expectations. In contrast, the subjective probability distributions in the BIE survey enable us to directly measure expected unit costs and attending uncertainty for each firm.

2.2 Why Unit Costs and Not Aggregate Inflation?

As we noted at the outset, the current literature on households’ and firms’ aggregate inflation expectations clearly highlights the existence of numerous informational and processing impediments that cast doubt on the reliability of these measures. Our decision to track firms’ unit costs to proxy for the inflation expectations that matter for firms was motivated by those numerous issues with the public seems to have in holding well-formed aggregate inflation expectations and informed by conversations with businesses themselves.

Our approach is informed by conversations with businesses in early development of the BIE survey that led us to conclude that firm pricing decisions generally begin with their expectation of future costs.\footnote{The setup of the survey also allows us to monitor cost expectations and changes in margin pressures as independent decision points in the price decisions by firms.} Indeed, that prices depend on costs is far from controversial. The new Keynesian Phillips curve has firms set price as a markup over their nominal marginal cost and adjust prices based on expected future marginal costs (Calvo, 1983; Clarida et al., 1999).

One impediment to this approach is firms’ understanding of the term “marginal costs.” Alan Blinder, in his landmark 1994 study, notes: “This turned out to be a tricky question because the term marginal cost is not in the lexicons of most business people...For purpose of the survey, we translated ‘marginal cost’ into ‘variable costs of producing additional units’. ” In specific questions, Blinder (1994) shortens that to “variable costs per unit.” In the BIE questionnaire, we employ more parsimonious phrasing of “variable costs per unit,” shortening that to “unit costs.” In eliciting unit cost expectations, we are eliciting firms’ views of the future growth in nonlabor and labor costs per unit of the year ahead, hence, firms’ expected future nominal marginal costs.

On a fundamental level, the micro-foundations of the New Keynesian model only require individual firms, denoted by f, set prices as a markup μ_f, over their own nominal marginal costs...
Without frictions that would delay a firm’s ability to adjust prices, a given firm’s pricing decision is represented by

$$P_{f,t} = \mu_f MC_{f,t}. \quad (1)$$

Taking the logs of equation (1) and assuming a constant elasticity of demand, equation (1) becomes:

$$\ln P_{f,t} = \gamma_f + \ln MC_{f,t}, \quad (2)$$

where γ_f is the log of the firm-specific (constant) markup over nominal marginal costs.

To make the above more tractable and allow for price-setting frictions of the Calvo (1983)-type – where only a subset of firms can adjust prices in a given period, equation (2) becomes dependent on firms’ expectations. Firms will consider the (nearly) optimal price today, taking into consideration expected changes in nominal marginal costs between today and an opportunity to adjust price in the future (with some attendant positive probability). As noted by Carlsson and Nordstrom Skans (2012), the popular Calvo economy representation of equation (2) can be expressed as:

$$\ln P_{f,t} = \gamma_f + (1 - \beta \theta) E_t \sum_{k=0}^{\infty} (\beta \theta)^k \ln MC_{f,t+k}, \quad (3)$$

where β is a discount factor and θ is the probability that a firm will be allowed to engage in a price adjustment. In the Calvo case, a firm sets prices based on a markup over the weighted average of the discounted stream of nominal marginal costs, where the weight of the kth term reflects the probability of being stuck with the reset price ($P_{f,t}$) over the next k periods.

From the perspective of individual firms, pricing decisions in the New Keynesian framework are based on expected future nominal marginal costs. This exposition does not preclude firms from holding expectations about some notion of aggregate inflation measure as an input into firms’ formulation of their own nominal marginal cost expectations. Indeed, that process is akin to Afrouzi (2020), where firms with multiple competitors have a greater likelihood of holding an inflation expectation closer to what economists consider “aggregate” inflation. However, as appears to be the case with rationally inattentive firms in a low inflation environment, the micro-foundations of the New Keynesian framework do not necessitate that firms hold an aggregate inflation expectation. In building a proxy for firms’ inflation expectations by aggregating up their unit cost expectations, it is also important to note that should a firm hold an aggregate inflation expectation it is likely to be nested in their own unit cost expectations.\(^9\)

\(^9\)Other potential considerations in our question design would include attempting to, in aggregate, tease out the nominal inflation expectations component and the real marginal cost component of unit cost expectations. We leave for future research. That said, the empirical performance of the aggregated unit cost expectations provides empirical support for the observed flatness of the Phillips curve. See Kiley (2015) for an overview or 2018 speech by Chairman Powell addressing, “Monetary Policy and Risk Management at a Time of Low Inflation and Low Unemployment.” https://www.federalreserve.gov/econresdata/notes/feds-notes/2015/low-inflation-in-the-
Perhaps as importantly, firms themselves indicate that unit costs are an important input into their price setting behavior, much more so than aggregate inflation concepts or metrics. In separate special questions we elicited firms’ views of the importance of unit costs, aggregate inflation, or a price statistic such as the CPI.

In September 2015, we asked,

“On a scale of 1 to 5, with 1 being “no influence,” please indicate what level of influence, if any, your expectation regarding the [economy’s overall rate of inflation] or [unit costs] has (have) on your pricing decisions?”

The panel was split at random with half of the respondents receiving the “economy’s overall rate of inflation” and the other half receiving “unit costs.”

And, in January 2015, we posed the following,

“On a scale of 1 to 5, with 1 being “no influence,” please indicate what level of influence, if any, price statistics such as the Consumer Price Index have on your business decisions?”

The results, shown in Figure 2 indicate only a small minority of firms we sampled view the Consumer Price Index or the “economy’s overall rate of inflation” as having a significant influence on their firm’s business and pricing decisions. These results are consistent with the literature on rational inattention. Firms operating in, what was at the time a low, stable inflation environment viewed unit costs as a more informative input into their pricing decisions than aggregate inflation or the CPI.

Related to concerns over relevancy and the potential for social desirability bias, Kim and Binder (2020) find significant panel conditioning effects for both household and firm inflation expectations. Respondents’ inflation forecasts and attendant uncertainty decline with the number of previous responses, suggesting what they call “learning-through-survey” effects.¹⁰ Yet, when it comes to households’ own-earnings expectations, this effect does not exist. One interpretation is that aggregate inflation is a concept that holds little relevance in the minds of respondents, yet out of a desire to appear informed, these respondents appear to be educating themselves on the topic. Just as panel conditioning appears to be nonexistent for a relevant concept like households’ own-earnings, we do not find a conditioning effect in the BIE when asking firms for their own unit cost expectations (see Figure A.4). Lack of survey tenure effects in the BIE gives us further confidence in the suitability of eliciting own-firm unit costs.

Business decision makers also appear to focus keenly on costs, planning for and forecasting potential cost changes. In March 2015, roughly 94 percent of respondents indicated they plan for

¹⁰ They also find evidence that repeated respondents in a panel of CEOs carry nearly 1/2 percent point lower aggregate inflation expectations.
or forecast unit cost changes, with the 71 percent noting a planning frequency between daily and quarterly (see Figure A.5).

2.3 Using Special Questions to Relate Aggregate Inflation Expectations to Unit Cost Expectations

One additional factor that motivated the BIE survey to elicit an alternative approach that would be capable of monitoring firms’ inflation expectations across low and high inflation states of the economy, was the understanding of concept of inflation. As Shiller (1997) highlighted rather famously, the concept of inflation held by the public differs markedly from its textbook definition. Namely, households tend to think of inflation as a real phenomenon – something that lowers their standard of living.

Given the importance that inflation expectations have in models of the macroeconomy and that inflation appears to be conceptually challenging to grasp, it becomes crucial to demonstrate in surveys of inflation expectations that 1) the respondent understands the concept (i.e. the wording of the question appropriately elicits the concept the surveyors are attempting to elicit) and 2) once properly identified, that concept of inflation influences their decision making.

Wording and comprehension issues involving the concept of aggregate inflation are well known in the survey literature (see Armantier et al. (2013) and the references therein). Coibion et al. (2018) highlight that these issues extended beyond households to business owners and C-suite executives as well. Business decision makers in the BIE panel are no different in this regard. Aggregate inflation appears to be a concept that is not well-defined or relevant in the minds of business decision makers. More importantly, aggregate inflation expectations (especially when phrases like “prices in general” or “prices overall in the economy” used to elicit those expectations) are unrelated to their own-firm unit cost expectations.

In September 2014, the following special question was asked:

“During the next twelve months, by how much do you think prices will change overall in the economy? Please provide a quantitative answer.”

Firms in the BIE panel expected “prices overall in the economy” to increase by 4.6 percent over the year ahead, compared to a 3.7 percent increase reported by the University of Michigan in September 2014. As shown in the upper panel of Figure 3, there was a tremendous amount of heterogeneity and digit-preference (especially at 2, 3, 5, and 10 percent). Importantly, responses to this special question suggest that inflation expectations are quite heterogeneous and upwardly biased relative to measured inflation rates. These features have been used by Kumar et al. (2015) and Binder (2017) to suggest that firms’ inflation expectations exhibit many of the same properties.

11Note that BIE responses were not truncated, nor were follow-up prompts given to respondents with price expectations in excess of 25 percent as the University of Michigan does with its Survey of Consumers (Curtin, 1996).
as households’ inflation expectations, concluding that the public is not well informed about the concept of inflation and that central bank communication is lacking.

In October 2014, the following special questions were asked of the BIE panel:

“Please indicate what probabilities you would attach to the various possible percentage changes to the Core (ex food and energy) Consumer Price Index over the next 12 months. (Values should sum to 100%)”

The lower panel of Figure 3 plots the distributions of core CPI expectations over the year ahead. Firms’ mean expectation for the core CPI over the year-ahead in October 2014 was 1.9 percent, compared to 2.0 percent for professional forecasters during that quarter. The median response was 2.0 percent and the standard deviation was 0.9 percent.

Firms’ responses to the October 2014 core CPI expectations question were in stark contrast to panelists’ responses to “prices overall in the economy” which occurred just one month prior. As Table A.1 and Figure A.6 show, by restricting the panel to only firms that have answered both sets of special questions in addition to the standard monthly question on unit costs, the correlation between firms’ expectations for “prices overall in the economy” and their own unit costs or expectations for core CPI inflation are insignificant. This is clear evidence that in the minds of business decision makers the concept of “overall prices” is unrelated to expectations of future unit costs.

3 Analyzing the Probability Forecasts

Two issues arise in using firm’s subjective distributions. First, the histograms have open intervals at both ends. We close these open intervals by using the same width of the middle intervals. Second, many firms assign probabilities to one or two intervals, implying very small degrees of freedom. This concern prompts us to consider reconstructing the histograms by simulating observations. Specifically, we generate 1,000 samples uniformly within each interval, with supports equal to the range of the interval and the sample size being proportional to the probability assigned to each interval. The histograms of the reconstructed data sets are indistinguishable from the originals.

We estimate the mean and variance of each firm’s density forecast both parametrically and non-parametrically. For nonparametric estimation, we assume that the probability is concentrated at the midpoint of each interval. Following Giordani and Söderlind (2003) and Engelberg et al. (2009), we fit normal and beta distributions to the histograms. Compared to nonparametric estimation, fitting these two distributions enables sharper empirical analysis, but imposes assumptions about

12 The same 10 response options (bins) ranging from “will decline” to “4.0 percent or more” used in the Philadelphia Fed’s Survey of Professional Forecasters (SPF) were presented to BIE panelists.

13 Perhaps incidentally, the 12-month growth rate in the core CPI through October 2015 was 1.9 percent.
the shapes of the histograms – in particular, that they are unimodal. While the assumption of unimodality is not problematic in SPF density forecasts, some firms in the BIE survey assign positive probabilities to non-adjacent bins.14

To accommodate the bimodality, we adopt the bimodal asymmetric power normal (BAPN) distribution, proposed by Bolfarine \textit{et al.} (2018). Let ϕ be the probability density function of standard normal distribution, and Φ be its cumulative distribution function. The density of the BAPN model is given by

$$h(x) = 2\gamma c_\gamma \phi(x)\Phi(|x|)\gamma^{-1}\Phi(\lambda x),$$

for $x \in \mathbb{R}$ with $c_\gamma = \frac{2^{\gamma-1}}{2^{\gamma-1} - 1}$, $\gamma > 0$ and $\lambda \in \mathbb{R}$. The distribution is bimodal if $\gamma > 1$, with larger γ denoting greater separation between modes. λ controls the amount of skewness, with left skewness for $\lambda > 0$. Note that, as $|\lambda|$ increases, bimodality becomes less pronounced. The BAPN model, denoted by $BAPN(\gamma, \lambda)$, nests two other popular distributions, with $BAPN(1, 0)$ being standard normal and $BAPN(1, \lambda)$ being skew normal distribution. A desirable feature of the BAPN model is its non-singular information matrix that guarantees large sample properties of the maximum likelihood estimators.

As an illustration, we make comparisons between BAPN, normal and beta model fitting in Appendix C; see Figures C.1–C.3. For histograms being moderately bimodal and strongly bimodal, the BAPN provides the best fit when compared with normal and beta models. This visual inspection is further collaborated by descriptive measures and formal tests, such as Bayesian Information Criterion, Mean Squared Error between the fitted and the empirical cumulative distribution function, and the Kolmogorov-Smirnov test having the fitted model as the null model against the two-sided alternative; see Table C.1.

Bimodality appears to be somewhat unique to business expectations. Professional forecaster expectations from the SPF do not exhibit any material bimodality; see Binder \textit{et al.} (2020). Approximately 2 percent of firms’ subjective probabilistic year-ahead unit cost distributions exhibit bimodality (Table 2). Instances of bimodality in the BIE exist across every major private industrial sector, although they are slightly more prevalent in durable and nondurable manufacturing sectors, and in “other” services. We contacted a small subsample (10-15 respondents) regarding the bimodality they expressed in their probabilistic unit cost expectations. Nearly every respondent was able to articulate a scenario-based reason for reporting anticipated bimodality. It also appears that, in this small handful of responses, bimodality was meant to convey some sort of conditionality to their forecasts (i.e. “If transportation costs rise by X, then my costs will likely be Y”). Not only do these instances of bimodality justify the BAPN estimator, but the responses to follow-up interviews indicate that respondents are putting thought into their responses around unit

14Binder \textit{et al.} (2020) find that this bimodality does not exist for surveys of professionals in ECB SPF dataset, since in all cases where professional forecasters assign probability to multiple bins, these bins are adjacent.
costs (and that unit costs are a meaningful concept followed closely by business decision makers). Also, as shown in Table A.2, nonparametrically calculating unit cost uncertainty systematically underestimates uncertainty relative to a parametric approach.

Therefore, in all subsequent analysis, we fit the BAPN model to histograms – with $\gamma > 1$ to capture the bimodality and $0 < \gamma \leq 1$ to capture the unimodality. We use the mean and variance of the BAPN distribution as the first- and second-moment of inflation expectations at the firm level, and compare these parametric estimates to nonparametric counterparts when appropriate.

Panel (a) in Figure 4 compares bin-scatters for the parametric mean of the 5-bin probabilistic distribution of a given firm’s 1-year ahead unit cost growth to a given firm’s ex post perceived unit cost growth over the past year. The unit cost expectations are on the horizontal axis and the vertical axis plots unit cost growth over the ensuing 12 month time period. The bin-scatters show a tight positive relationship between firm’s unit cost forecasts and their realized unit cost growth over that 12 month period. Using the parametric method, we see that the mean error (i.e. unit cost growth at time t minus expected cost growth at $t-12$) is slightly negative.15 Firms, especially larger ones, over this period have been a bit too pessimistic with their unit cost expectations.

Panel (b) in Figure 4 shows that the more uncertain a given firm is about their future unit costs – that is, the higher the variance of their subjective probability distribution – the larger their absolute forecast errors tend to be. In other words, firms tend to know what they don’t know. Furthermore, firms that are highly cyclical or volatile industries (manufacturing, construction, mining and finance) tend to have larger absolute forecast errors.

4 Unit Costs Provide a Useful Lens into Inflation Developments

In this section, we show that aggregating own-firm unit cost realizations and expectations yields useful information about inflation developments in the U.S. Firms’ unit costs realizations – unit cost growth over the previous year – comove closely with aggregate U.S. inflation statistics. In comparison to other well-known surveys of inflation expectations, we find that firms’ unit cost expectations significantly outperform the inflation expectations of households and are about as accurate as the expectations of professional forecasters in out-of-sample forecasting exercises. While others such as Kumar et al. (2015) highlight that firms’ aggregate inflation expectations more closely resemble those of households, the timeseries behavior of our proxy for firms’ inflation expectations behaves similarly to that of professional forecasters. We also exploit the probabilistic nature of the BIE’s inflation expectations question to compare firms’ subjective uncertainty over unit costs with other survey and market-based measures of inflation uncertainty.

15The forecast error averaged across firms is -0.18 from the parametric method and -0.17 from the nonparametric method.
4.1 Unit Cost Realizations and Overall Inflation

Firms’ realized unit cost growth over the previous year varies across industry and firm size (see Figure 5).\footnote{Importantly, this heterogeneity across and within industries extends to firms’ unit cost expectations as well. See Figure A.7.} This heterogeneity across and within industries can reflect differing conditions due to idiosyncratic, industry-level, or economy-wide differences (see Table A.2). Over the October 2011 through October 2021 time period, construction costs outpaced costs in the financial services and insurance industry. Unit costs in the mining and utilities sector fluctuate with prices in energy markets. And, in the first quarter of 2021, amid intensifying supply chain disruption and shortages of qualified labor, unit costs for nearly every broad-industry grouping have risen sharply.

Despite this observed heterogeneity, aggregating up year-over-year unit cost growth across all firms in the panel each month and weighting by industry’s share of overall gross output, yields an index of firms’ unit cost growth that closely mirrors overall inflation. Figure 6 plots the timeseries of firms’ year-over-year unit cost growth along with the year-over-year growth rate in the GDP deflator produced by the Bureau of Economic Analysis. The GDP deflator is the broadest measure of inflation as it tracks price changes of all goods and services newly produced in the U.S.\footnote{For purposes of comparison to the BIE panel, which includes firms operating in the business-to-business space, the GDP deflator is a more appropriate comparison metric than a measure of consumer price growth like the CPI or PCE price index. Still, firm’s unit cost expectations also covary highly with the PCE price index (correlation of 0.86) and the core PCE price index (0.88), calculated on a quarterly basis with data from 2011Q4 until 2021Q3.} Firms’ unit cost growth covaries quite closely with changes in the GDP deflator, carrying a correlation coefficient of 0.93 using quarterly data from 2011Q4 through 2021Q3. The tightness of this relationship is exaggerated by exceedingly sharp increases in measured inflation rates and unit cost growth over the past two quarters. Still, prior to the onset of the pandemic, the correlation between firms’ unit cost growth and the GDP deflator was still quite strong (0.8). This strong relationship is reassuring from our point of view. It suggests that changes in firms’ unit costs are closely related to the changes in prices we observe through aggregate inflation statistics and provides validity to our approach of aggregating up own-firm information.

4.2 Comparing Unit Cost Expectations with Other Survey Measures of Inflation Expectations

We compare aggregated 1-year ahead unit cost expectations from firms in the BIE panel to well-known and long-standing survey measures of inflation expectations. The BIE proxy for firms’ inflation expectations is calculated as the industry-weighted average expected value from individual firms’ 1-year ahead subjective probability distributions. Quarterly estimates are calculated by averaging over the three months in a given quarter. For household expectations, we use 1-year ahead price expectations from the University of Michigan’s Survey of Consumers. And, for professional forecasters, we use the Blue Chip Panel of Economic Forecasters for monthly frequencies and the
Philadelphia Fed’s Survey of Professional Forecasters for quarterly comparisons.

Table 3 reports the pairwise correlations between inflation expectation measures along with the statistical significance. We report these correlations over two sample periods. The first begins in 2011Q1 and ends in 2020q4. The second includes the developments over the first three quarters of 2021, a tumultuous period for inflation that included sharp pandemic-induced price changes (induced by widespread supply chain disruption, lack of labor availability, and the reopening of the economy). Business unit cost expectations are highly correlated with the forecasts of professional forecasters, especially the SPF’s forecasts for the GDP deflator. This finding suggests firms’ aggregated views over future costs contain much of the same signal about the year-ahead inflationary environment that professional forecasters anticipate. Figure 7 provides a timeseries visual of how tightly the BIE proxy for firms’ inflation expectations co-moves with the expectations of professionals. Conversely, our proxy for firms’ inflation expectations is uncorrelated with households’ inflation expectations prior to the first three quarters of 2021. On an aggregate scale, this mirrors our findings in section 2.3 that show firms’ aggregate inflation expectations are unrelated to their unit cost expectations. This finding is also similar to Coibion et al. (2018), who use the disconnect between a firm’s cost expectations and aggregate inflation expectation in low inflation countries to argue for rational inattention.

Monetary policymakers pay a lot of attention to inflation expectations. In a 2007 speech, then Chairman Ben Bernanke noted, “Undoubtedly, the state of inflation expectations greatly influences actual inflation and thus the central bank’s ability to achieve price stability.” Thomas (1999) and Ang et al. (2007) find that survey measures of inflation expectations generally outperform timeseries benchmarks in forecasting inflation. Recent work by Verbrugge and Zaman (2021) was the first to include the BIE proxy for firms’ inflation expectations in tests of in-sample fit and forecasting performance, finding that the BIE measure performs about as well as professional forecasters. Our own analysis demonstrates the usefulness of the BIE proxy for firms’ inflation expectations in out-of-sample forecasting exercises.

We compare the forecasting performance of the BIE proxy for firms’ inflation expectations (i.e. weighted mean 1-year ahead unit cost expectations) to the median and mean 1-year ahead inflation expectations from the University of Michigan (UM) Survey of Consumers, the Blue Chip panel of forecasters median 1-year ahead inflation forecasts, and the Philadelphia Fed’s median 1-year ahead inflation forecasts. As is the case with many (pseudo) out-of-sample forecasting exercises,
we employ an ARMA(1,1) benchmark to anchor our comparisons (Stock and Watson, 2007).

We investigate relative forecasting performance on both a monthly and quarterly frequency. Our out-of-sample forecasting horizon is 1-year ahead and the sample runs from late 2011 until the third quarter of 2020. Different from many studies, we extend these analyses by including disaggregate subgroupings of the BIE and UM data. For the BIE’s proxy of firms’ inflation expectations we include 4 industrial subgroupings 1-digit NAICS supersectors.22 For households, we include subgroups of inflation expectations by income, motivated by Binder (2015). Also, as firms’ inflation expectations are proxied by their views of future unit costs and households are asked for their “prices in general” expectation, we compare forecasting performance for a variety of often used inflation statistics (CPI, core CPI, PCE, core PCE, and, on a quarterly frequency we include the GDP deflator).

Tables 4 and 5 report the out-of-sample root mean squared errors (RMSE) and mean absolute errors (MAE) relative to an ARMA(1,1) benchmark at the monthly and quarterly frequency, respectively.23 The top row of these tables report the actual RMSE and MAE from the timeseries benchmark, and subsequent rows report the relative performance of the survey-based measures. A numerical value in these cells lower than 1 indicates more accurate forecasting performance and an asterisk symbol indicates superior performance using the Diebold and Mariano (1995) test statistic. The BIE proxy for inflation expectations significantly outperforms the ARMA(1,1) benchmark for a variety of inflation metrics including CPI, core CPI and GDP deflator on both a monthly and quarterly frequency. When PCE or core PCE inflation is the object of interest, the BIE measure tends to perform about as well as the ARMA(1,1) benchmark, but carries RMSEs and MAEs that are at most 40\% of that of households. One potential explanation for the differences in forecasting performance when forecasting a PCE-based metric relative to a CPI-based inflation metric may be the inclusion of nonmarket based components for health care and financial service prices that carry a large weight in the PCE-based measures.24

The forecasting exercises provide clear evidence of the usefulness of eliciting firms’ own unit cost expectations and aggregating these up into a proxy for firms’ inflation expectations. The BIE measure outperforms the inflation expectations of households and, in most situations, is at least as

22The BIE supersectors are defined as follows: (1) Construction, mining and utilities, and real estate, rental and leasing; (2) Durable and non-durable goods manufacturing; (3) Retail and wholesale trade and transportation and warehousing; (4) Educational services, finance and insurance, healthcare and social assistance, information, leisure and hospitality, other services except government, and professional and business services.

23We generate ARMA(1, 1) forecasts using all available data each period. For example, when forecasting CPI for October 2012 our estimation sample is March 1947 to October 2011. We then forecast 12 months ahead and then use the average of those forecasts as our point estimate. The same procedure is done for the quarterly frequency data. The estimation sample is updated recursively each month with the initialization being the price index’s earliest observation. We generate forecasts of this type for the periods spanning October 2012 to August 2021.

24Roughly 20 percent of the PCE price index contain these nonmarket-based prices. The GDP deflator includes these prices as well, but they receive a much lower weight given the broad-based nature of this price index.
accurate as the forecasts stemming from professional forecasters.

4.3 Comparing Firms’ Unit Cost Uncertainty to Other Measures of Inflation Uncertainty

While the usefulness of gathering and monitoring firms’ unit cost expectations should already be clear on the basis of firms’ first-moment expectations, the BIE survey also offers unique insight into how uncertain firms’ view of their future cost environment will be. Using the parametric estimate of firms’ own unit cost uncertainty calculated in Section 3, we take the weighted average across panelists to create a proxy for firms’ inflation uncertainty. We compare this proxy to available measures of inflation uncertainty from households and financial markets. Specifically, we compare to 1-year ahead inflation uncertainty from the New York Fed’s Survey of Consumer Expectations. We also compare our proxy for firms’ inflation uncertainty to the inflation uncertainty embedded in the implied volatility in the prices of inflation swaptions.25

Figure 8 plots a comparison of these measures. A few interesting patterns emerge from this (admittedly visual) analysis. First, prior to the onset of COVID-19, all these measures indicate a lessening of inflation uncertainly (a tightening up in the subjective probability distributions for firms and households) over the previous business cycle.26 In other words, firms, households, and market-participants all saw the uncertainty attached to their inflation outlooks as waning in the years following the Great Recession. The pre-COVID correlation between the BIE measure and option-implied inflation uncertainty is 0.64. Our proxy for firms’ inflation uncertainty is also highly correlated with the NY Fed’s measure from households. However, since the onset of the COVID-19 pandemic, these measures of inflation uncertainty have diverged.

4.4 Inflation Expectations and Uncertainty Since the Onset of COVID-19

The onset of the COVID-19 pandemic in early 2020 has ushered in a quite disruptive and disparate economic period for firms and households. The pandemic itself, attendant measures to control the virus (including shutdowns), and massive policy responses embody elements of both an aggregate demand shock and an aggregate supply shock. As highlighted by Meyer et al. (2020), in the early months of the pandemic, firms, on net, saw COVID-19 as largely a demand shock – lowering their unit cost expectations, actual and expected prices and wages, and was a large negative hit to sales revenue (for most firms). In these early months, both the BIE proxy for inflation expectations and

\[^{25}\text{Market-based inflation uncertainty is estimated from a closed-form model and assumes changes in log prices are normally distributed. Estimation is performed jointly for 1 and 3 year maturities using caps with 1\%-6\% strikes and floors with -2\% to 3\% strikes. We are grateful to Brian Robertson at the Atlanta Fed for providing these estimates to us.}\]

\[^{26}\text{In the firm-level data, we can trace the decline in uncertainty to a tightening up in the upper tail of firms’ subjective probability distributions beginning in 2012. In short, firms slowly began to assign less and less probability mass in the upper two bins of the discrete distribution.}\]
the inflation expectations of professionals fell sharply, with the BIE measure falling to a series low by April 2020. During this period, the disconnect between firms’ (and professionals’) expectations and the expectations of households widened considerably. Households’ inflation expectations jumped markedly at the onset of the pandemic, despite an observed stark decline in measured inflation, alongside a sharp increase in the prices of grocery store items (which, over the first 4 months of the pandemic comprised the entirety of the upper tail of the CPI price change distribution). Meyer et al. (2020) highlight that households may have disproportionately responded to sharp increases in these salient grocery store items rather than expressing a belief that aggregate inflation would rise (a finding also consistent with D’Acunto et al. (2019)).

However, as the pandemic wore on, global supply chain disruption and shipping bottlenecks grew more and more severe. As these disruptions, along with a growing disruption to labor supply, grew more widespread and increased in intensity, we repeatedly elicited firms’ views on the impact these supply issues were having on business activity. In March 2021, June 2021, and August 2021, we extended a set of special questions utilized by the Census Bureau’s Small Business Pulse Survey, designed to measure the multi-dimensional breadth and intensity of the disruptions in business activity. In March 2021, two-thirds of firms in our panel indicated that supplier delays were impacting business activity and 1/3 of firms indicated a lack of available labor. By August, supplier delays were felt by 2/3 of firms and more than half were experiencing constraints in labor supply. Moreover, we were able to measure the intensity of the disruption. For supply bottlenecks, under 40 percent of firms indicated “moderate-to-severe” disruption in March 2021. By August 2021, that share had grown to over half. Using these responses, we developed a disruption index and related the level of disruption a given firm felt to their 1-year unit cost expectations and uncertainty. A bin-scatter of these impacts is shown in Figure 9. Although supply chain disruption isn’t the only factor influencing year-ahead unit cost expectations, we can see a strong positive relationship between supply chain and operating capacity disruption and year-ahead unit cost expectations. Conversely, this disruption appears unrelated to firms’ unit cost uncertainty. In sharp contrast to firms’ views early in the crisis, firms’ one-year ahead unit cost expectations appear to have risen sharply alongside their views on supply chain and operating capacity disruption. Our interpretation is that the dramatic rise in firms’ year-ahead unit cost expectations largely reflects the level of supply chain and labor disruption experienced. These results are related to Cavallo

28 See Appendix D for the exact question wording and response options.
29 https://www.atlantafed.org/blogs/macroblog/2021/03/22/inflation-expectations-reflect-concerns-over-supply-disruptions-crimped-capacity
30 We calculated the disruption index across 11 categories, on a scale of 1 to 4 for the intensity of disruption. In cases where firms did not indicate disruption, we gave them a zero. The disruption index ranged from zero to 44 in level of intensity. In March 2021, the mean disruption index value for firms in goods-producing industries is 9.3 and 6.6 for service-providing firms. And consistent with anecdotes and news stories, the disruption is highest in manufacturing industries (9.75) and trade and transportation industries (9.1). By August 2021, the value of this index had grown to 10.4.
and Kryvtsov (2021), who study the recent supply chain disruption from a different angle, using high-frequency data on product shortages and stockouts to document their association with cost shocks and temporary inflationary pressure. At the time of this analysis, firms anticipated these disruptions to persist well into 2022, a fact not lost on monetary policymakers.\footnote{https://www.piie.com/events/outlook-inflation}

Another interesting development during the COVID-19 pandemic has been the evolution of firms’ unit cost uncertainty relative to other measures. As shown in Figure 8, households’ inflation uncertainty rose quite dramatically, while firms’ unit cost uncertainty remained relatively low. While a fulsome investigation of these differences is outside the scope of this paper, one tentative takeaway is that firms appear to have been fairly confident about the likely impact of the pandemic on their future unit costs. During the course of the pandemic firms’ view flipped from anticipating low unit cost outcomes to increasingly higher outcomes, leaving unit cost uncertainty largely unchanged. Interestingly, these stark shifts in views are mirrored by market participants.\footnote{https://www.minneapolisfed.org/banking/current-and-historical-market--based-probabilities} Inflation densities for CPI inflation derived from caps and floors show that the probability of inflation over a 5-year horizon averaging below 1 percent shot up to roughly 80 percent at the onset of the pandemic, while the probability of seeing above 3 percent inflation was nearly zero. As of the end of October 2021, the situation has flipped, with market participants assigning an 80 percent likelihood to inflation over 3 percent and near zero of inflation below 1 percent over the next 5 years.\footnote{These sharp changes in expectations, leaving overall uncertainty unchanged may be related to overconfidence, which appears to be a feature of firms’ expectations (Barrero, 2021; Altig et al., 2021).}

5 Unit Costs Matter for Firms

5.1 Unit Costs and Pricing: Firm-level Evidence

For unit cost expectations to be an important determinant of future inflation, these expectations must feed through into expectations and realizations for price changes. Surveying firms regarding price change expectations can be complicated by nominal frictions (i.e. price stickiness). For example, over the course of 2019 and into 2020 a battery of special questions were posed to the BIE panel that included a question eliciting firms’ recent (3-month) price changes for the product/product line or service responsible for the largest share of the firm’s revenue (a “representative” price). This question was fielded once per quarter over a four quarter period and out of the resulting 1,112 usable responses, 367 or 1/3 were zero (indicating the potential presence of nominal frictions). This is consistent with studies such as Bils and Klenow (2004) and Klenow and Kryvtsov (2008) that suggest firms typically change their selling price less often than once a quarter (excluding temporary sale prices, the typical frequency of price change rises to nearly once a year). This is also consistent with theoretical treatments of nominal frictions, particularly rational inattention models proposed by Woodford (2003) and Mackowiak and Wiederholt (2009), where firms pay much more
attention to their own unique conditions rather than aggregate conditions. In surveys, this price stickiness is first documented by Blinder (1991). In part for this reason, for reasons related to the microfoundations of the New Keynesian model, and for reasons related to firm’s survey responses, the BIE chose to elicit unit costs instead of prices in its core questionnaire.\footnote{Given the time constraints in the survey, responses to price expectations and realizations were gathered from special questions.}

Firms’ unit cost expectations are related to their representative price change expectations. We aggregate the responses to special questions on the year-ahead price expectations of firms and relate them to year-ahead unit cost expectations.\footnote{In June 2013, the BIE elicited probabilistic year-ahead expectations of firms’ average prices using the same format as the core BIE unit cost expectations question. In February 2019, the BIE elicited probabilistic year-ahead “representative” price change expectations using the SBU format (see Altig et al. (2021)). And, in December 2020, April 2021, July 2021, and November 2021 firms were asked to provide their point estimates for the percentage change in the product/product line or service responsible for the largest share of revenue. Detailed wording for these special questions can be found in Appendix D. And, a full list of all special question posed to the BIE panel can be found here: https://www.frbatlanta.org/research/inflationproject/bie/special-questions} Table 6 shows the results of simple OLS regressions of year-ahead price change expectations (for the given month) against firms’ unit cost expectations and trailing year-over-year unit cost realizations. Figure A.9 shows a binscatter of the results from specification (8) in Table 6.

As indicated by the regression results and binscatter, firms’ year-ahead unit cost expectations covary strongly with year-ahead price expectations across all seven periods. As suggested by the empirical investigation of unit costs and price changes of Carlsson and Nordstrom Skans (2012), expectations of future unit costs appear to play a role in firms’ price formation strategies. However, this relationship is not one-for-one (likely due to aforementioned impediments to continuous price adjustments).

Importantly, in a series of special questions elicited over the course of January 2019 through January 2020, we find little evidence that firms’ year-ahead ex ante aggregate inflation expectations are related to their ex post year-over-year price changes. Table 7 shows the simple correlations between firms’ realized price changes over the past year, aggregate (CPI-based) inflation expectations (elicited in January 2019), firms’ year-ahead expected price changes as of February 2019, lagged unit cost expectations, and firms’ unit cost growth over the past year. In stark contrast to firms’ year-ahead price expectations, firms’ expectations for aggregate (CPI) inflation are uncorrelated with reported price changes in the cross section. This result conforms to the notion that aggregate inflation expectations are not relevant (or central) to firms’ price-setting behavior. As they reported to direct questions on the usefulness of aggregate inflation (see Figure 2), firms appear to pay more attention to their own idiosyncratic conditions.

The results from our firm-level investigation of price changes are also consistent with the Mackowiak and Wiederholt (2009) rational inattention model. Firms in this model allocate almost all attention to idiosyncratic rather than aggregate conditions. As evidence of the dominance of idiosyncratic conditions, we decompose the variation in realized unit cost growth into its common

(19)
(aggregate), sectoral, and idiosyncratic (firm-specific) components using the panel variance decomposition methods. We find that the relative standard deviation of the sector-specific component is about 4 times as large as the aggregate component of unit cost growth. The relative variation of the idiosyncratic component is approximately 7 times that of the aggregate. These are similar to what Carlsson and Nordstrom Skans (2012) found using Swedish firm-level production data. Extending their work by applying this decomposition to firm-level unit cost expectations reveals a relative standard deviation of the sectoral component and the idiosyncratic component of 4 times and 9 times as large as the aggregate variation, respectively.

5.2 Informing Firms of the Policymakers’ Views Does Not Change Firms’ Unit Cost Expectations

Of key interest to monetary policymakers and economists alike is whether businesses respond to and incorporate information on the inflation projections and attendant uncertainty when forming their own expectations. Studies such as Coibion et al. (2018) and Coibion et al. (2020) find mixed evidence that firms in a RCT setting incorporate information on the inflation expectations of professionals or the inflation projections (and goals) of monetary policymakers into firm’s point estimates of inflation expectations. And, importantly, whether this new information provides a lasting, significant impact on key firm decisions, such as hiring plans. We advance these RCTs to study the impact of information about monetary policymakers’ inflation expectations and the associated uncertainty on firms’ own unit cost expectations and uncertainty.

In October 2020, we asked firms for their highest and lowest potential expectations for PCE inflation in 2021. In this experiment, we wanted to test whether giving business decision makers information on the uncertainty (in the form of confidence intervals) around monetary policymakers’ projections influenced their inflation projections in October, and to see if this information impacted firms’ own unit cost expectations over the year ahead a month later in November 2020. To make sure that the information we were supplying was about the second moment only, we provided both the control and the treatment groups with the median expectation for PCE inflation over calendar year 2021 from the FOMC’s Summary of Economic Projections on September 15, 2020. For the treatment group we provided the 70 percent confidence interval around those projections based on the historical forecast errors of professionals (excerpted from the minutes of the September 2020 FOMC meeting).

Specifically, we asked

“The median expectation of monetary policymakers for inflation over calendar year 2021
was 1.7 percent (as of September 15th). [Treatment: Based on forecasts over the past 20 years, there is a 70 percent chance that actual inflation will be in the range of 0.7 percent to 2.7 percent over calendar year 2021.] What is your best estimate for the highest and lowest potential rate of inflation over calendar year 2021?"

Panel A of Table 8 provides some simple descriptive statistics on firms’ inflation expectations for 2021, separated by whether they received the uncertainty treatment. Two interesting facts emerge from Panel A. First, firms’ lowest and highest potential inflation expectations for 2021 are higher, on average, than that of professionals. This finding, in the light of other literature on household and business inflation expectations, is not all that unusual. However, firms’ spread between “highest possible” and “lowest possible” is fairly similar to the 70 percent confidence interval provided to the treatment group. And, perhaps more interesting, is that the control group had a nearly identical spread between their projections for the highest and lowest possible inflation in calendar year 2021.

There is another, rather important, aspect of these results that we need to point out. Table A.4 recreates Table 8 without excluding outliers. There were a handful of firms (four respondents in the treatment group and two in the control group) that, even after receiving policymakers’ expectations for 2021 (and, for the treatment group a 70 percent confidence interval), responded with expectations for lowest or highest possible anticipated 2021 inflation in excess of 10 percent. We find this interesting because it implies that these firms either hold expectations for aggregate inflation that are roughly an order of magnitude above that of monetary policymakers, they still don’t understand the guidance, or, perhaps most likely, that the concept of aggregate inflation isn’t meaningful enough for them to answer thoughtfully.

The uncertainty information treatment had little impact on firms’ aggregate inflation expectations and uncertainty for 2021. And, as shown in panel B of Table 8, we can still see the information provided to firms in October had no discernible impact on their own unit cost expectations and uncertainty.

In October 2021, one year after our first RCT, we performed a similar experiment that asked firms for their “annual rate of inflation” in 2022. The purpose of this RCT was to test whether giving business decision makers information on the monetary policymakers’ first-moment expectations of inflation influenced their aggregate inflation projections and their own unit cost expectations. For the treatment group we provided the policymaker’s inflation projections from the most recent FOMC’s Summary of Economic Projections from the September 2021 meeting.

Specifically, we asked

“[Treatment: The median expectation of monetary policymakers (as of September 22) for the annual rate of inflation over calendar year 2022 is 2.2 percent.] What do you think the annual rate of inflation will be over calendar year 2022?”

Note that the RCT in October 2021 is different from the one we performed a year ago in two
aspects. First, the inflation environment changed rapidly. In the early months of the pandemic, firms, on net, saw COVID-19 as largely a demand shock – lowering their unit cost expectations. In contrast, as the pandemic wore on, global supply chain disruption and shipping bottlenecks made firms increase their unit cost expectations. Second, the information treatment is different. Firms were treated with information on the uncertainty (second moment) around monetary policymakers’ inflation projections in October 2020, but, in October 2021, were treated with information on the median (first moment) inflation expectations of monetary policymakers.

Table 9 reports the results from this new experiment. Despite the differences in two RCTs, the results are remarkably similar. The new information treatment had little impact on firms’ aggregate inflation expectations (panel A) and no impact on their own unit cost expectations (panel B). Taking advantage of the panel dimension of the BIE survey, we can compare the responses from three different groups of firms: those who were in the control group in 2020, those who were in the treatment group in 2020, and the rest of newly-added firms (who did not participate the experiment in 2020). For example, the firms who received the treatment in both 2020 and 2021 predicted a 3.8% aggregate inflation rate in 2022. Despite the small size of these groups, we are able to detect a statistically significant difference in the means. Cavallo et al. (2017) find the impact of informational treatments given to households to be short-lived. Here, we find similar (albeit suggestive, given the size of the groups) evidence. It appears that only the group that was repeatedly given policymakers’ first-moment projections responded to treatment. One might be tempted to conclude that repeated communication on the part of monetary policymakers is needed to “break through the veil of inattention”, as Candia et al. (2021) put it. However, again consistent with Cavallo et al. (2017), much like consumers who chose to pay attention to specific prices at the supermarket, we find these treatments leave unit cost expectations unaltered.

Firms themselves tell us that providing information about aggregate inflation through the projections of monetary policymakers does not heavily influence unit costs and prices forecasts (see Figure 10 on influence of monetary policymakers’ inflation projections). Only 1 percent of respondents suggested these inflation projections directly influenced their own-firm cost or price expectations. Again, as our other results on the relevancy of “aggregate inflation” suggest, policymakers’ views of the inflationary environment are not a material input into businesses’ forecasts for unit costs or prices. In sum, U.S. firms operating in a low inflation environment appear to be rationally inattentive to aggregate inflation, and thus, policymakers’ expectations for aggregate inflation do not alter firms’ unit cost expectations.

6 Conclusion

The viewpoint espoused by Chairman Greenspan on price stability that opened this paper has direct implications for monetary policymakers attempting to measure the extent to which inflation
expectations are “anchored.” In particular, if firms do not pay attention to aggregate inflation (perhaps due to the lack of a perceived benefit to acquiring this information) or if aggregate inflation measures such as the CPI are not significant inputs into pricing decisions, then monitoring firms’ *aggregate* inflation expectations is not a useful exercise. Instead, we show that by asking business decision makers about price-setting determinants they care about – in this case their own-firm unit costs – we can aggregate these firm-specific views into series that are closely related to the aggregate inflation dynamics central bankers care about.

We find that firms are well aware of, plan for, and form expectations for their own unit costs. Using the Atlanta Fed’s Business Inflation Expectations Survey, we build a proxy for the inflation expectations of firms by aggregating their own-firm probabilistic unit cost expectations. This proxy is a useful predictor of future aggregate inflation – outperforming statistical benchmarks and household inflation expectations in out-of-sample forecasting exercises. And, own-firm unit cost realizations aggregate up into a series that comoves closely with official inflation statistics, further highlighting the real-world connection between these survey responses and official (measured) inflation. In addition, we also find unit cost realizations and expectations matter at the firm level in price-setting behavior.

Our proxy for firms’ inflation expectations does not resemble the inflation expectations of households. Instead, this measure is highly correlated with the inflation expectations of professional forecasters. Informing businesses about the aggregate inflation expectations and attendant uncertainty of policymakers’ forecasts, via a series of randomized controlled trials, do little to alter firms’ unit cost expectations.

Utilizing a novel, flexible technique to parametrically estimate firms’ unit cost uncertainty, we find that up until early 2020, the evolution of firms’ views was similar to other survey and market-based measures of inflation uncertainty. However, since early 2021, these measures have diverged somewhat, with household’s inflation uncertainty rising sharply while our proxy for firms’ inflation uncertainty has remained low despite a stark shift in first-moment expectations.
References

Panel A: Representativeness by Firm Size

<table>
<thead>
<tr>
<th></th>
<th>Establishments</th>
<th>Employment</th>
<th>Annual Payroll</th>
<th>Establishments</th>
<th>Employment</th>
<th>Annual Payroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small (1–99 employees)</td>
<td>50.9</td>
<td>78.0</td>
<td>33.0</td>
<td>26.7</td>
<td>77.2</td>
<td>31.2</td>
</tr>
<tr>
<td>Medium (100–499 employees)</td>
<td>27.4</td>
<td>4.9</td>
<td>14.1</td>
<td>13.6</td>
<td>4.4</td>
<td>12.7</td>
</tr>
<tr>
<td>Large (500+ employees)</td>
<td>21.6</td>
<td>17.1</td>
<td>52.9</td>
<td>59.7</td>
<td>18.4</td>
<td>56.2</td>
</tr>
</tbody>
</table>

Panel B: Representativeness by Industry

<table>
<thead>
<tr>
<th></th>
<th>Establishments</th>
<th>Employment</th>
<th>Annual Payroll</th>
<th>Establishments</th>
<th>Employment</th>
<th>Annual Payroll</th>
<th>Private (Nonfarm) GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>11.9</td>
<td>9.1</td>
<td>5.1</td>
<td>5.9</td>
<td>8.5</td>
<td>5.1</td>
<td>5.9</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>18.0</td>
<td>3.7</td>
<td>9.1</td>
<td>10.2</td>
<td>3.0</td>
<td>8.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Educational services</td>
<td>1.7</td>
<td>1.3</td>
<td>2.9</td>
<td>2.1</td>
<td>1.2</td>
<td>2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Finance and Insurance</td>
<td>11.9</td>
<td>6.1</td>
<td>5.0</td>
<td>9.6</td>
<td>6.5</td>
<td>4.4</td>
<td>7.5</td>
</tr>
<tr>
<td>Health care and social assistance</td>
<td>3.2</td>
<td>11.5</td>
<td>15.8</td>
<td>14.8</td>
<td>11.1</td>
<td>14.5</td>
<td>15.6</td>
</tr>
<tr>
<td>Information</td>
<td>1.3</td>
<td>2.0</td>
<td>2.7</td>
<td>5.3</td>
<td>1.8</td>
<td>2.2</td>
<td>3.7</td>
</tr>
<tr>
<td>Leisure and hospitality</td>
<td>3.0</td>
<td>11.1</td>
<td>12.8</td>
<td>5.3</td>
<td>10.1</td>
<td>13.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Mining and utilities</td>
<td>2.0</td>
<td>0.6</td>
<td>1.0</td>
<td>1.8</td>
<td>0.5</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Other services except government</td>
<td>2.8</td>
<td>9.8</td>
<td>4.3</td>
<td>2.7</td>
<td>9.4</td>
<td>4.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Professional and business services</td>
<td>13.0</td>
<td>17.8</td>
<td>18.9</td>
<td>23.8</td>
<td>18.8</td>
<td>22.4</td>
<td>26.4</td>
</tr>
<tr>
<td>Real estate and rental and leasing</td>
<td>7.8</td>
<td>5.2</td>
<td>1.7</td>
<td>1.7</td>
<td>5.7</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>Retail and wholesale trade</td>
<td>18.4</td>
<td>18.8</td>
<td>17.0</td>
<td>13.1</td>
<td>20.3</td>
<td>17.2</td>
<td>13.4</td>
</tr>
<tr>
<td>Transportation and warehousing</td>
<td>5.0</td>
<td>3.0</td>
<td>3.8</td>
<td>3.6</td>
<td>3.0</td>
<td>4.0</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Sources: Census Bureau Statistics of U.S. Businesses 2017; Bureau of Economic Analysis; Federal Reserve Bank of Atlanta’s Business Inflation Expectations Survey.

Notes: This table reports the share of U.S. firms. The Atlanta Fed territory covers the Sixth Federal Reserve District, which includes Alabama, Florida, Georgia, and portions of Louisiana, Mississippi, and Tennessee.

Table 1: BIE Panel Representativeness
Panel A: Instances of Bimodality

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>Unit Cost Expectation</th>
<th>Unit Cost Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bimodal distributions</td>
<td>366</td>
<td>1.929</td>
<td>5.718</td>
</tr>
<tr>
<td>Unimodal distributions</td>
<td>23785</td>
<td>1.975</td>
<td>2.157</td>
</tr>
</tbody>
</table>

Panel B: Distribution of Bimodality

<table>
<thead>
<tr>
<th>Sector</th>
<th>Count</th>
<th>Share of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods-producing</td>
<td>141</td>
<td>2.03</td>
</tr>
<tr>
<td>Construction</td>
<td>29</td>
<td>7.92</td>
</tr>
<tr>
<td>Durable manufacturing</td>
<td>51</td>
<td>13.93</td>
</tr>
<tr>
<td>Nondurable manufacturing</td>
<td>59</td>
<td>16.12</td>
</tr>
<tr>
<td>Mining and Utilities</td>
<td>2</td>
<td>0.55</td>
</tr>
<tr>
<td>Service-providing</td>
<td>225</td>
<td>1.30</td>
</tr>
<tr>
<td>Educational services</td>
<td>1</td>
<td>0.27</td>
</tr>
<tr>
<td>Finance and Insurance</td>
<td>27</td>
<td>7.38</td>
</tr>
<tr>
<td>Health Care & Social Assistance</td>
<td>20</td>
<td>5.46</td>
</tr>
<tr>
<td>Information</td>
<td>12</td>
<td>3.28</td>
</tr>
<tr>
<td>Leisure and Hospitality</td>
<td>4</td>
<td>1.09</td>
</tr>
<tr>
<td>Retail and wholesale trade</td>
<td>78</td>
<td>21.31</td>
</tr>
<tr>
<td>Transportation and Warehousing</td>
<td>5</td>
<td>1.37</td>
</tr>
<tr>
<td>Professional and business services</td>
<td>24</td>
<td>6.56</td>
</tr>
<tr>
<td>Real Estate & Rental, Leasing</td>
<td>30</td>
<td>8.20</td>
</tr>
<tr>
<td>Other services (excluding government)</td>
<td>24</td>
<td>6.56</td>
</tr>
</tbody>
</table>

Firm size

<table>
<thead>
<tr>
<th>Size</th>
<th>Count</th>
<th>Share of responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small (1-99)</td>
<td>173</td>
<td>47.27</td>
</tr>
<tr>
<td>Medium (100-499)</td>
<td>147</td>
<td>40.16</td>
</tr>
<tr>
<td>Large (500+)</td>
<td>46</td>
<td>12.57</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations.

Table 2: Instances of Bimodality in Firms’ 1-Year Ahead Unit Cost Expectations
Panel A: 2011Q4 – 2020Q4

<table>
<thead>
<tr>
<th>Surveys</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) BIE</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) UM</td>
<td>-0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) SPF CPI</td>
<td>0.647***</td>
<td>-0.336**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) SPF PCE</td>
<td>0.734***</td>
<td>-0.072</td>
<td>0.760***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) SPF PGDP</td>
<td>0.876***</td>
<td>-0.197</td>
<td>0.805***</td>
<td>0.775***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) SPF Core CPI</td>
<td>0.620***</td>
<td>-0.309*</td>
<td>0.750***</td>
<td>0.799***</td>
<td>0.755***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) SPF Core PCE</td>
<td>0.638***</td>
<td>-0.256</td>
<td>0.756***</td>
<td>0.851***</td>
<td>0.758***</td>
<td>0.932***</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Panel B: 2011Q4 – 2021Q3

<table>
<thead>
<tr>
<th>Surveys</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) BIE</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) UM</td>
<td>0.677***</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) SPF CPI</td>
<td>0.657***</td>
<td>0.140</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) SPF PCE</td>
<td>0.829***</td>
<td>0.480***</td>
<td>0.785***</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) SPF PGDP</td>
<td>0.785***</td>
<td>0.253</td>
<td>0.841***</td>
<td>0.802***</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) SPF Core CPI</td>
<td>0.706***</td>
<td>0.371**</td>
<td>0.684***</td>
<td>0.843***</td>
<td>0.680***</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>(7) SPF Core PCE</td>
<td>0.785***</td>
<td>0.429***</td>
<td>0.745***</td>
<td>0.910***</td>
<td>0.751***</td>
<td>0.950***</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Note: The sample period starts in 2011q1 and ends in 2021q3. The comparisons use the mean BIE and the median measures for the University of Michigan’s Survey of Consumers (UM) and Philadelphia Fed Survey of Professional Forecasters (SPF), as the medians are more widely cited in academic research, by policymakers, and in newswires. Using the mean UM and SPF measures does not qualitatively (or quantitatively) alter the results. Additionally, we use the highest frequency data available when estimating the correlation. This implies that the SPF comparisons use quarterly data while the comparison between the BIE and UM measures use monthly data. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Table 3: Time Series Correlations between One-year Ahead Inflation Expectations
<table>
<thead>
<tr>
<th></th>
<th>RMSE</th>
<th></th>
<th></th>
<th>MAE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPI</td>
<td>Core</td>
<td>PCE</td>
<td>Core</td>
<td>PCE</td>
</tr>
<tr>
<td>Benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMA(1, 1)</td>
<td>1.25</td>
<td>0.62</td>
<td>0.97</td>
<td>0.56</td>
<td>0.96</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.74</td>
<td>0.90</td>
<td>0.56</td>
<td>0.96</td>
<td>0.41</td>
</tr>
<tr>
<td>Firms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIE</td>
<td>0.82**</td>
<td>0.83</td>
<td>0.92</td>
<td>0.93</td>
<td>0.75***</td>
<td>0.74*</td>
</tr>
<tr>
<td>BIE:Supersector 1</td>
<td>0.86**</td>
<td>0.90****</td>
<td>1.00</td>
<td>1.09</td>
<td>0.78**</td>
<td>0.72***</td>
</tr>
<tr>
<td>BIE:Supersector 2</td>
<td>0.81**</td>
<td>0.98</td>
<td>0.93</td>
<td>1.06</td>
<td>0.80***</td>
<td>1.06</td>
</tr>
<tr>
<td>BIE:Supersector 3</td>
<td>0.89</td>
<td>0.92</td>
<td>1.03</td>
<td>1.12</td>
<td>0.85</td>
<td>0.91</td>
</tr>
<tr>
<td>BIE:Supersector 4</td>
<td>0.82*</td>
<td>0.77</td>
<td>0.94</td>
<td>0.93</td>
<td>0.74**</td>
<td>0.70*</td>
</tr>
<tr>
<td>Consumers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC:Mean</td>
<td>1.75</td>
<td>2.69</td>
<td>2.33</td>
<td>3.47</td>
<td>2.03</td>
<td>3.79</td>
</tr>
<tr>
<td>MSC:Median</td>
<td>1.29</td>
<td>1.67</td>
<td>1.70</td>
<td>2.33</td>
<td>1.42</td>
<td>2.30</td>
</tr>
<tr>
<td>MSC:Low income</td>
<td>2.21</td>
<td>3.67</td>
<td>2.94</td>
<td>4.57</td>
<td>2.61</td>
<td>5.23</td>
</tr>
<tr>
<td>MSC:Medium income</td>
<td>1.74</td>
<td>2.67</td>
<td>2.31</td>
<td>3.43</td>
<td>1.99</td>
<td>3.70</td>
</tr>
<tr>
<td>MSC:High income</td>
<td>1.39</td>
<td>1.90</td>
<td>1.83</td>
<td>2.58</td>
<td>1.55</td>
<td>2.60</td>
</tr>
<tr>
<td>Professional forecasters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCEI</td>
<td>0.87</td>
<td>0.86</td>
<td>1.05</td>
<td>1.18</td>
<td>0.82*</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Note: The forecast exercises compare the survey of agents expectations with an ARMA(1, 1) in forecasting month-over-month annualized inflation. We do this by comparing, for example, the BIE unit cost expectation in October 2011 to realized inflation in October 2012. The ARMA(1, 1) model is estimated using all data available for a given price index prior to August 2020. Therefore, the estimation sample start date varies depending on the price index and the end date is always the month we are generating the forecast for. For example, the estimation period for CPI in October 2011 would be March 1947 to October 2011. We generate year-ahead forecast for each month from October 2012 through August 2021 which are then taken as the benchmark values. The estimation sample is updated recursively each period with the initialization being the price index’s earliest observation. The reported values, with the exception of the benchmark, are the ratio of the forecasts accuracy statistic to that of the benchmark. Therefore, if the value is less than 1, then that survey did better than the ARMA(1, 1). The exception is the benchmark value which is the raw accuracy statistic value. The Blue Chip Economic Indicators (BCEI) series reports the average forecast for CPI inflation specifically. We apply it to other measures of inflation since it is the only monthly frequency measure of professional expectations. With the exception of “MSC:Median”, all reported Michigan Survey of Consumers (MSC) values are the mean. The BIE supersectors are defined as follows: (1) Construction, mining and utilities, and real estate, rental and leasing; (2) Durable and non-durable goods manufacturing; (3) Retail and wholesale trade and transportation and warehousing; (4) Educational services, finance and insurance, healthcare and social assistance, information, leisure and hospitality, other services except government, and professional and business services. The stars in the table represent the significance of the Diebold-Mariano test for the forecast accuracy between the survey and the benchmark. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Table 4: Pseudo Out-of-sample Forecasting at the Monthly Frequency with ARMA(1, 1) Benchmark
<table>
<thead>
<tr>
<th>Model</th>
<th>CPI</th>
<th>Core CPI</th>
<th>PCE</th>
<th>Core PCE</th>
<th>PGDP</th>
<th>RMSE</th>
<th>CPI</th>
<th>Core CPI</th>
<th>PCE</th>
<th>Core PCE</th>
<th>PGDP</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>1.47</td>
<td>0.77</td>
<td>1.04</td>
<td>0.86</td>
<td>0.98</td>
<td>1.16</td>
<td>0.52</td>
<td>0.78</td>
<td>0.50</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firms</td>
<td></td>
</tr>
<tr>
<td>BIE</td>
<td>0.74***</td>
<td>0.76*</td>
<td>0.82</td>
<td>0.55</td>
<td>0.70**</td>
<td>0.63***</td>
<td>0.62**</td>
<td>0.80*</td>
<td>0.68*</td>
<td>0.68***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIE:Supersector 1</td>
<td>0.76***</td>
<td>0.79**</td>
<td>0.89</td>
<td>0.66</td>
<td>0.79**</td>
<td>0.64***</td>
<td>0.58**</td>
<td>0.89</td>
<td>0.85</td>
<td>0.72***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIE:Supersector 2</td>
<td>0.71***</td>
<td>0.83</td>
<td>0.81</td>
<td>0.63</td>
<td>0.68*</td>
<td>0.67***</td>
<td>0.85</td>
<td>0.87</td>
<td>0.84</td>
<td>0.73***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIE:Supersector 3</td>
<td>0.80***</td>
<td>0.82</td>
<td>0.92</td>
<td>0.68</td>
<td>0.79</td>
<td>0.73***</td>
<td>0.77</td>
<td>0.96</td>
<td>0.90</td>
<td>0.81***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIE:Supersector 4</td>
<td>0.74***</td>
<td>0.71*</td>
<td>0.83</td>
<td>0.56</td>
<td>0.71*</td>
<td>0.63***</td>
<td>0.69***</td>
<td>0.82</td>
<td>0.71</td>
<td>0.69***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumers</td>
<td></td>
</tr>
<tr>
<td>MSC:Mean</td>
<td>1.45</td>
<td>2.10</td>
<td>2.14</td>
<td>2.23</td>
<td>1.97</td>
<td>1.65</td>
<td>2.90</td>
<td>2.65</td>
<td>3.61</td>
<td>2.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC:Median</td>
<td>1.08</td>
<td>1.51</td>
<td>1.56</td>
<td>1.49</td>
<td>1.36</td>
<td>1.16</td>
<td>1.78</td>
<td>1.86</td>
<td>2.39</td>
<td>1.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC:Low income</td>
<td>1.90</td>
<td>3.03</td>
<td>2.82</td>
<td>3.08</td>
<td>2.69</td>
<td>2.21</td>
<td>4.21</td>
<td>3.54</td>
<td>5.05</td>
<td>3.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC:Low-med income</td>
<td>1.53</td>
<td>2.27</td>
<td>2.26</td>
<td>2.39</td>
<td>2.10</td>
<td>1.74</td>
<td>3.11</td>
<td>2.80</td>
<td>3.86</td>
<td>2.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC:Med-high income</td>
<td>1.34</td>
<td>1.87</td>
<td>1.95</td>
<td>2.00</td>
<td>1.78</td>
<td>1.48</td>
<td>2.53</td>
<td>2.38</td>
<td>3.20</td>
<td>2.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSC:High income</td>
<td>1.14</td>
<td>1.44</td>
<td>1.64</td>
<td>1.60</td>
<td>1.46</td>
<td>1.23</td>
<td>1.93</td>
<td>1.96</td>
<td>2.55</td>
<td>1.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional forecasters</td>
<td></td>
</tr>
<tr>
<td>BCEI</td>
<td>0.71**</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>0.55**</td>
<td>0.65***</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>0.52***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPF</td>
<td>0.75***</td>
<td>0.79*</td>
<td>0.81</td>
<td>0.54</td>
<td>0.73**</td>
<td>0.68***</td>
<td>0.71***</td>
<td>0.83*</td>
<td>0.66***</td>
<td>0.70***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The forecast exercises compare the survey of agents expectations with an ARMA(1, 1) in forecasting quarter-over-quarter annualized inflation. We do this by comparing, for example, the BIE unit cost expectation in 2011q4 to realized inflation in 2012q4. The ARMA(1, 1) model is estimated using all data available for a given price index prior to 2020q3. Therefore, the estimation sample start date varies depending on the price index and the end date is always the quarter we are generating the forecast for. For example, the estimation period for PGDP in 2011q4 would be 1948q1 to 2011q4. We generate year-ahead forecast for each quarter from 2012q4 through 2021q3 which are then taken as the benchmark values. The estimation sample is updated recursively each period with the initialization being the price index’s earliest observation. The reported values, with the exception of the benchmark, are the ratio of the forecasts accuracy statistic to that of the benchmark. Therefore, if the value is less than 1, then that survey did better than the ARMA(1, 1). The exception is the benchmark value which is the raw accuracy statistic value. The Blue Chip Economic Indicators (BCEI) series reports the average forecast for CPI and PGDP inflation specifically. With the exception of “MSC:Median”, all reported Michigan Survey of Consumers (MSC) values are the mean. The BIE supersectors are defined as follows: (1) Construction, mining and utilities, and real estate, rental and leasing; (2) Durable and non-durable goods manufacturing; (3) Retail and wholesale trade and transportation and warehousing; (4) Educational services, finance and insurance, healthcare and social assistance, information, leisure and hospitality, other services except government, and professional and business services. The stars in the table represent the significance of the Diebold-Mariano test for the forecast accuracy between the survey and the benchmark. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Table 5: Pseudo Out-of-sample Forecasting at the Quarterly Frequency with ARMA(1, 1) Benchmark
Table 6: Relationship Between Unit Cost Expectations and Price Change Expectations

<table>
<thead>
<tr>
<th>Sector FE</th>
<th>Period</th>
<th>Observations</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>Y</th>
<th>Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>184</td>
<td>90</td>
<td>240</td>
<td>200</td>
<td>197</td>
<td>175</td>
<td>181</td>
<td>1,267</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>0.196</td>
<td>0.180</td>
<td>0.120</td>
<td>0.047</td>
<td>0.190</td>
<td>0.252</td>
<td>0.253</td>
<td>0.295</td>
</tr>
</tbody>
</table>

Notes: In Columns (1) to (7), regressions are estimated via OLS of the form: $E_{p,t+h} = \beta E_{uc,t+1} + \theta u_{perc}^{t+1} + \lambda s_{f,t} + \epsilon_{f,t}$, where $E_{p,t+h}$ is year-ahead price change expectations (for a given month), $E_{uc,t+1}$ is firms’ unit cost expectations, u_{perc}^{t+1} is year-over-year unit cost realizations, and $s_{f,t}$ is sales level. Columns (1) through (7) use the responses to special questions on expected prices elicited in June 2013, February 2019, November 2019, December 2020, April 2021, July 2021 and November 2021, respectively. Column (8) reports the result from a pooled regression across these seven special surveys. Given changes in question formatting, responses to all covariates except the discrete “Sales level” variable were normalized. For the period corresponding to February 2019, we only consider price expectations less than or equal to 10 percent. We then normalize the values reported. For periods after February 2019, the price expectations were also winsorized at the 5% and 95% levels prior to normalization. The “Sales level” variable is a qualitative core monthly question. We transform it into an indicator variable denoting whether a firm had sales levels that were higher than “normal” during the given month. Heteroskedasticity-robust standard errors are reported in parenthesis for Columns (1)–(7). Cluster-robust standard errors are reported in Column (8) and they are are clustered at the firm-level. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.
<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Realized Price Change</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Aggregate Inflation Expectation</td>
<td>0.010</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Expected Price Change</td>
<td>0.468***</td>
<td>0.046</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Lagged Unit Cost Expectation</td>
<td>0.101</td>
<td>0.065</td>
<td>0.235**</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>(5) Unit Cost Growth</td>
<td>0.171**</td>
<td>0.031</td>
<td>0.248**</td>
<td>0.307***</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Source: FRBA Business Inflation Expectations (BIE) Survey.

Notes: (1) Realized price change is the winsorized (2.5%, 97.5%) and annualized 3-month price change realizations gathered from respondents quarterly from January 2019 to January 2020. (2) Aggregate Inflation is probabilistic 1-year ahead CPI expectations elicited in January 2019. (3) Expected price change is the probabilistic 1-year ahead price change expectations elicited in February 2019. (4) Lagged 1-year ahead unit cost expectations were gathered from respondents in January 2019. (5) Unit cost growth is the perceived unit cost growth over the past 12 months from the January 2020 survey. Pairwise correlations reported. ***, **, and * correspond to statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 7: Realized Price Changes and Expectations: January 2019 to January 2020
Panel A: Forecasts for 2021 Aggregate Inflation

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>P25</th>
<th>P75</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest potential rate of inflation</td>
<td>1.22</td>
<td>1.00</td>
<td>1.50</td>
<td>101</td>
</tr>
<tr>
<td>Highest potential rate of inflation</td>
<td>3.07</td>
<td>2.50</td>
<td>3.50</td>
<td>101</td>
</tr>
<tr>
<td>Spread (highest - lowest)</td>
<td>1.85</td>
<td>1.00</td>
<td>2.00</td>
<td>101</td>
</tr>
<tr>
<td>Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest potential rate of inflation</td>
<td>1.17</td>
<td>1.00</td>
<td>1.50</td>
<td>99</td>
</tr>
<tr>
<td>Highest potential rate of inflation</td>
<td>3.01</td>
<td>2.00</td>
<td>3.50</td>
<td>99</td>
</tr>
<tr>
<td>Spread (highest - lowest)</td>
<td>1.84</td>
<td>1.00</td>
<td>2.50</td>
<td>99</td>
</tr>
</tbody>
</table>

Panel B: Revisions to Unit Cost Expectations and Uncertainty

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>P25</th>
<th>P75</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference in unit cost expectations (Nov - Oct)</td>
<td>0.13</td>
<td>-0.40</td>
<td>0.70</td>
<td>84</td>
</tr>
<tr>
<td>Difference in unit cost uncertainty (Nov - Oct)</td>
<td>-0.18</td>
<td>-0.56</td>
<td>0.32</td>
<td>84</td>
</tr>
<tr>
<td>Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference in unit cost expectations (Nov - Oct)</td>
<td>0.03</td>
<td>-0.40</td>
<td>0.23</td>
<td>80</td>
</tr>
<tr>
<td>Difference in unit cost uncertainty (Nov - Oct)</td>
<td>-0.06</td>
<td>-0.28</td>
<td>0.10</td>
<td>80</td>
</tr>
</tbody>
</table>

Note: Results obtained via RCT special questions posed to the panel during October 2020. The median expectation of monetary policymakers for inflation over calendar year 2021 was 1.7 percent (as of September 15th, 2020). Treatment: [Based on forecasts over the past 20 years, there is a 70 percent chance that actual inflation will be in the range of 0.7 percent to 2.7 percent over calendar year 2021.] Question: What is your best estimate for the highest and lowest potential rate of inflation over calendar year 2021? 206 panelists responded to the BIE special questions in October 2020. Responses above 10% were excluded from these tables (4 from the treatment group and 2 from the control group). We conducted the t-tests on each outcome pairing between the treatment and control group. In all instances, we fail to reject the null hypothesis that the reported values are equal.

Table 8: RCT: Impact of Monetary Policymakers’ Inflation Forecast Uncertainty on Unit Cost and/or Price Expectations
<table>
<thead>
<tr>
<th>Panel A: Forecasts for 2022 Aggregate Inflation</th>
<th>Mean</th>
<th>P25</th>
<th>P75</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2021 Treatment Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All firms</td>
<td>4.40</td>
<td>3.00</td>
<td>5.00</td>
<td>92</td>
</tr>
<tr>
<td>Existing firms that received the treatment in 2020</td>
<td>3.77</td>
<td>3.00</td>
<td>5.00</td>
<td>40</td>
</tr>
<tr>
<td>Existing firms in the control group in 2020</td>
<td>4.27</td>
<td>2.95</td>
<td>5.00</td>
<td>35</td>
</tr>
<tr>
<td>Newly added firms</td>
<td>6.14</td>
<td>3.70</td>
<td>6.25</td>
<td>17</td>
</tr>
<tr>
<td>October 2021 Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All firms</td>
<td>4.92</td>
<td>3.00</td>
<td>5.00</td>
<td>89</td>
</tr>
<tr>
<td>Existing firms that received the treatment in 2020</td>
<td>5.12</td>
<td>3.00</td>
<td>5.50</td>
<td>33</td>
</tr>
<tr>
<td>Existing firms in the control group in 2020</td>
<td>4.67</td>
<td>3.00</td>
<td>5.00</td>
<td>46</td>
</tr>
<tr>
<td>Newly added firms</td>
<td>5.42</td>
<td>3.25</td>
<td>7.50</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Revisions to Unit Cost Expectations (Nov 2021 − Oct 2021)</th>
<th>Mean</th>
<th>P25</th>
<th>P75</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2021 Treatment Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All firms</td>
<td>3.30</td>
<td>2.18</td>
<td>4.60</td>
<td>92</td>
</tr>
<tr>
<td>Existing firms that received the treatment in 2020</td>
<td>3.27</td>
<td>2.18</td>
<td>4.48</td>
<td>40</td>
</tr>
<tr>
<td>Existing firms in the control group in 2020</td>
<td>3.30</td>
<td>2.15</td>
<td>4.60</td>
<td>35</td>
</tr>
<tr>
<td>Newly added firms</td>
<td>3.36</td>
<td>2.20</td>
<td>4.00</td>
<td>17</td>
</tr>
<tr>
<td>October 2021 Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All firms</td>
<td>3.02</td>
<td>2.00</td>
<td>4.00</td>
<td>89</td>
</tr>
<tr>
<td>Existing firms that received the treatment in 2020</td>
<td>2.79</td>
<td>1.60</td>
<td>4.00</td>
<td>33</td>
</tr>
<tr>
<td>Existing firms in the control group in 2020</td>
<td>3.19</td>
<td>2.10</td>
<td>4.00</td>
<td>46</td>
</tr>
<tr>
<td>Newly added firms</td>
<td>3.00</td>
<td>2.20</td>
<td>3.80</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Results obtained via RCT special questions posed to the panel during October 2021. Treatment: [The median expectation of monetary policymakers (as of September 22) for the annual rate of inflation over calendar year 2022 is 2.2 percent.] Question: What do you think the annual rate of inflation will be over calendar year 2022? T-tests were performed on all control-treatment pairings above with the exception of “Newly added firms” due to the small sample size. We fail to reject the null hypothesis of equal expectations in all instances with one exception. The exception is firms who were treated in both periods. For these firms, we reject the null hypothesis of equal aggregate inflation expectations (highlighted in bold) at the 5% significance level. However, we fail to reject the hypothesis of equal unit cost expectations.

Table 9: Another RCT: Influence of Monetary Policymakers’ Inflation Projections on Unit Costs and/or Prices Expectations
Projecting ahead, to the best of your ability, please assign a percent likelihood to the following changes to **UNIT COSTS** over the next twelve months. (Values should sum to 100%)

For example, if you think each of these is equally likely, you might answer 20% for each:

| Probabilistic Unit Cost Expectations |
|-------------------------------------|---|
| Unit costs down (less than -1%) | 20 |
| Unit costs about unchanged (-1% to 1%) | 20 |
| Unit costs up somewhat (1.1% to 3%) | 20 |
| Unit costs up significantly (3.1% to 5%) | 20 |
| Unit costs up very significantly (more than 5%) | 20 |

Total: 100

Source: FRBA Business Inflation Expectations (BIE) Survey.
Notes: The above figure is a screenshot of the actual current questionnaire fielded using Qualtrics. A sum of probabilities is calculated in real-time and shown in red if it does not sum to 100 percent. A respondent is not required to have probabilities sum to 100 percent before continuing on with the questionnaire. In practice, approximately 2 percent of responses to this question sum to something other than 100 percent.

Figure 1: BIE Survey Questionnaire: Probabilistic Unit Cost Expectations

37
(a) Influence of Inflation on Firms’ Pricing Decisions

Notes: The above bar graph plots the results of a September 2015 special question. Question: On a scale from 1 to 5, with 1 being “no influence,” please indicate what level of influence, if any, your expectation regarding [the economy’s overall rate of inflation (given to panel A)] [your own unit costs (given to panel B)] has(have) on your pricing decisions? 1 - no influence; 2, 3- moderate influence, 4, 5-significant influence.

(b) Influence on Business Decisions

Notes: The above bar graph plots Likert scale responses to a January 2015 special question that elicits what level of influence do price indexes (like the Consumer Price Index, or CPI) have on your business decisions. Response options ranged from 1 (none) to 5 (significant).

Figure 2: Influence of Inflation on Business Decisions and Pricing Decisions
(a) Firms’ Expectations for “Prices Overall in the Economy”

Source: FRBA Business Inflation Expectations (BIE) Survey. Special question results from September 2014.
Note: The above histogram plots the results of a special question in the September 2014 survey.

(b) Firms’ Year-Ahead Core CPI Inflation Expectations

Source: FRBA Business Inflation Expectations (BIE) Survey.
Notes: The above histogram plots the results of a special question in the October 2014 survey. Specifically, this is
a distribution of firm’s expected values of probabilistic core CPI projections. The expected value was calculated
nonparametrically by taking the weighted average of the share of the probability mass in each bin multiplied by
its midpoint. Values of -1 and 5 were used for the left-censored and right-censored bins, respectively.

Figure 3: Expectations for Overall Prices and Core CPI
(a) Firm’s Unit Cost Expectations vs. Realizations (Perceptions)

(b) Firm’s Uncertainty vs. Absolute Forecast Errors

Source: FRBA Business Inflation Expectations (BIE) Survey

Note: The binscatters (51 bins) in panel (a) compare respondents’ 1-year ahead unit cost expectations (lagged by 12 months) to their realized (perceived) year-over-year unit cost growth outcomes. For panel (a), the regression statistics are: \(\beta = 0.546, R^2 = 0.158, t\text{-value} = 53.77, \) and \(N = 15359. \) The binscatters (51 bins) in panel (b) compare respondents’ 1-year ahead unit cost uncertainty (lagged by 12 months) to their realized absolute forecast errors (unit cost outcome minus 12-month lagged unit cost projection). For panel (b), the regression statistics are: \(\beta = 0.092, R^2 = 0.018, t\text{-value} = 17.09, \) and \(N = 15359. \)

Figure 4: Firms’ Unit Cost Expectations, Uncertainty and Realizations
Source: FRBA Business Inflation Expectations (BIE) Survey.
Notes: The sample period is 2012q1 to 2021q3. The term “FIRE” refers to finance and insurance and real estate, rental and leasing firms.

Figure 5: Sectoral-level Year-over-year Unit Cost Growth
Sources: Bureau of Economic Analysis; FRBA Business Inflation Expectations (BIE) Survey.
Notes: The sample period begins in 2011q3 and ends in 2021q3. The BIE series are weighted by industry-share of GDP and quarterly averages are plotted. Given the nature of the panel, the most apt comparison is to the broadest notion of overall inflation (i.e. GDP price index). The BIE series is plotted on the left axis and the GDP Price Index is plotted on the right axis.

Figure 6: Firms’ Realized Unit Cost Growth vs Actual Inflation
Sources: FRBA Business Inflation Expectations (BIE) Survey; FRBP Survey of Professional Forecasters
Notes: These responses are quarterly, beginning in 2011q1 (for the Survey of Professional Forecasters) and 2011q3 for the BIE and running through 2021q3.

Figure 7: Year-Ahead Inflation Expectations of Firms and Professionals
Sources: FRBA Business Inflation Expectations (BIE) Survey; FRBNY Survey of Consumer Expectations (SCE); Bloomberg

Note: For each graph above, the BIE series is plotted on the left-hand axis and the comparison series on the right.

Figure 8: Measures of Inflation Uncertainty
Sources: FRBA Business Inflation Expectations (BIE) Survey
Notes: These binscatters (30 bins) compare respondents’ unit cost expectations and uncertainty with their level of disruption. The level of disruption is based on a disruption index derived from three waves of special questions conducted in March 2021, June 2021, and August 2021. During these months, respondents were asked to list all of the supply chain and business operation disruptions they had experienced as well as the intensity of the disruption. The intensity could range from “Little to none” to “Severe.” We then turned these responses into an additive disruption index by assigning a value from 0 (“None” and “Little to none”) to 4 (“Severe”) for their responses and taking the sum across all of their listed disruptions. That is to say, if a respondent only listed one disruption outcome between the two categories and it was “Severe” then they received a value of 4, if they chose two and they were “Mild” then they received a 2, etc. The maximum possible value the index could take is 44, though no respondent experienced this.

Figure 9: Impact of Supply Chain Disruptions on Unit Cost Expectations and Uncertainty
Figure 10: Influence of Monetary Policymakers’ Inflation Projections on Unit Costs and/or Prices
Online Appendix
Unit Cost Expectations and Uncertainty: Firms’ Perspectives on Inflation
by Meyer, Parker and Sheng

This online appendix contains four sections. In Appendix A we provide additional tables and graphs. In Appendix B we compare the Atlanta Fed’s BIE Survey probabilistic binned response approach to a more flexible approach used by the Survey of Business Uncertainty. Appendix C illustrates fitting the bimodal asymmetric power normal distribution to three histograms, compared to fitting the normal and beta distribution. Finally, Appendix D provides the screenshot of additional questions posed to respondents in the BIE survey.
Appendix A Additional Tables and Graphs

<table>
<thead>
<tr>
<th>Variables</th>
<th>Unit Cost</th>
<th>Core CPI</th>
<th>Price Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Cost</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core CPI</td>
<td>0.265**</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Price Overall</td>
<td>0.062</td>
<td>0.046</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Source: FRBA Business Inflation Expectations (BIE) Survey.

Notes: This table reports the correlations between the same firms’ unit costs, “prices overall in the economy,” and core CPI inflation expectations. The results are from the main survey and successive special questions in September and October 2014. The sample is restricted to the 151 firms that responded to all three questions. *, **, *** denote significance at the 10%, 5%, and 1% levels.

Table A.1: Correlations between 1-Year Ahead Firm Inflation Expectations Measures
<table>
<thead>
<tr>
<th></th>
<th>Unit cost expectations</th>
<th>Unit cost perceptions</th>
<th>Nonparam. uncertainty</th>
<th>Param. uncertainty</th>
<th>Forecast error</th>
<th>Abs. forecast error</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall BIE panel</td>
<td>2.016</td>
<td>1.826</td>
<td>2.140</td>
<td>2.475</td>
<td>-0.0851</td>
<td>1.205</td>
<td>15,366</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.01)</td>
<td></td>
</tr>
</tbody>
</table>

By Firm Size

<table>
<thead>
<tr>
<th>Firm Size</th>
<th>Unit cost expectations</th>
<th>Unit cost perceptions</th>
<th>Nonparam. uncertainty</th>
<th>Param. uncertainty</th>
<th>Forecast error</th>
<th>Abs. forecast error</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small (1-99 employees)</td>
<td>2.123</td>
<td>1.952</td>
<td>2.006</td>
<td>2.342</td>
<td>-0.0618</td>
<td>1.109</td>
<td>6,589</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.019)</td>
<td>(0.013)</td>
<td></td>
</tr>
<tr>
<td>Medium (100-499 employees)</td>
<td>2.007</td>
<td>1.779</td>
<td>2.364</td>
<td>2.695</td>
<td>-0.118</td>
<td>1.383</td>
<td>4,415</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.027)</td>
<td>(0.029)</td>
<td>(0.020)</td>
<td></td>
</tr>
<tr>
<td>Large (500+ employees)</td>
<td>1.836</td>
<td>1.655</td>
<td>2.121</td>
<td>2.459</td>
<td>-0.0880</td>
<td>1.169</td>
<td>4,362</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.024)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td>(0.025)</td>
<td>(0.017)</td>
<td></td>
</tr>
</tbody>
</table>

By Nonfarm Private Industry (2-Digit NAICS)

<table>
<thead>
<tr>
<th>Industry</th>
<th>Unit cost expectations</th>
<th>Unit cost perceptions</th>
<th>Nonparam. uncertainty</th>
<th>Param. uncertainty</th>
<th>Forecast error</th>
<th>Abs. forecast error</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>2.518</td>
<td>2.390</td>
<td>2.309</td>
<td>2.651</td>
<td>0.0252</td>
<td>1.322</td>
<td>1,273</td>
</tr>
<tr>
<td>Durable goods manufacturing</td>
<td>2.877</td>
<td>2.905</td>
<td>2.863</td>
<td>2.599</td>
<td>-0.108</td>
<td>1.681</td>
<td>427</td>
</tr>
<tr>
<td>Educational services</td>
<td>2.207</td>
<td>1.803</td>
<td>1.902</td>
<td>2.246</td>
<td>-0.234</td>
<td>0.909</td>
<td>471</td>
</tr>
<tr>
<td>Finance and insurance</td>
<td>1.362</td>
<td>1.012</td>
<td>1.930</td>
<td>2.268</td>
<td>-0.296</td>
<td>1.184</td>
<td>1,451</td>
</tr>
<tr>
<td>Health care and social assistance</td>
<td>1.950</td>
<td>1.699</td>
<td>2.699</td>
<td>3.043</td>
<td>-0.179</td>
<td>1.172</td>
<td>644</td>
</tr>
<tr>
<td>Leisure and hospitality</td>
<td>2.082</td>
<td>1.788</td>
<td>1.617</td>
<td>1.949</td>
<td>-0.250</td>
<td>1.054</td>
<td>471</td>
</tr>
<tr>
<td>Nondurable goods manufacturing</td>
<td>1.952</td>
<td>1.809</td>
<td>2.633</td>
<td>2.932</td>
<td>-0.0290</td>
<td>1.490</td>
<td>1,097</td>
</tr>
<tr>
<td>Other services except government</td>
<td>2.355</td>
<td>2.025</td>
<td>2.064</td>
<td>2.945</td>
<td>0.0420</td>
<td>1.105</td>
<td>162</td>
</tr>
<tr>
<td>Professional and business services</td>
<td>2.345</td>
<td>2.064</td>
<td>2.207</td>
<td>2.546</td>
<td>-0.175</td>
<td>1.139</td>
<td>1,943</td>
</tr>
<tr>
<td>Real estate and rental and lease</td>
<td>1.828</td>
<td>1.647</td>
<td>1.898</td>
<td>2.232</td>
<td>-0.0795</td>
<td>1.102</td>
<td>1,547</td>
</tr>
<tr>
<td>Retail and wholesale trade</td>
<td>1.989</td>
<td>1.903</td>
<td>2.139</td>
<td>2.475</td>
<td>0.0435</td>
<td>1.150</td>
<td>3,200</td>
</tr>
<tr>
<td>Transportation and warehousing</td>
<td>2.266</td>
<td>2.061</td>
<td>1.756</td>
<td>2.095</td>
<td>-0.148</td>
<td>1.053</td>
<td>620</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations.
Note: This sample begins in October 2011 and runs through October 2021 but restricts the observations to those for which we are able to calculate direct(t, t+12) forecast errors. The resulting 15,366 observations comprise approximately 63 percent of all useable observations (complete responses to the questionnaire). Responses are weighted by industry-share of GDP.

Table A.2: Descriptive Statistics
<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) BIE 1yr</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) BlueChip 1yr CPI</td>
<td>0.376***</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) BlueChip 1yr PGDP</td>
<td>0.691***</td>
<td>0.479***</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) UM 1yr</td>
<td>0.066*</td>
<td>-0.112</td>
<td>-0.224**</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>(5) TIPS 5yr forward</td>
<td>0.303***</td>
<td>-0.047</td>
<td>0.091</td>
<td>0.727***</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Sources: FRBA Business Inflation Expectations (BIE) Survey; Blue Chip Economist Panel; University of Michigan’s Survey of Consumers; Haver Analytics
Notes: The sample starts in October 2011 and ends in January 2021. The comparisons use the mean BIE and the median measures for the University of Michigan’s Survey of Consumers (UM). The Blue Chip 1-year ahead is calculated from consensus forecasts. TIPS breakeven and forward inflation rate calculated by Haver Analytics.
*, **, *** denote significance at the 1%, 5%, and 10% levels, respectively.

Table A.3: Time-series Correlations between Monthly Inflation Expectations
Panel A: Lowest and Highest Forecasts for 2021 inflation

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>P25</th>
<th>P75</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest rate of potential inflation</td>
<td>1.77</td>
<td>1.00</td>
<td>2.00</td>
<td>105</td>
</tr>
<tr>
<td>Highest rate of potential inflation</td>
<td>4.37</td>
<td>2.50</td>
<td>3.50</td>
<td>105</td>
</tr>
<tr>
<td>Spread (highest - lowest)</td>
<td>2.60</td>
<td>1.00</td>
<td>2.00</td>
<td>105</td>
</tr>
<tr>
<td>Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest rate of potential inflation</td>
<td>3.19</td>
<td>1.00</td>
<td>1.70</td>
<td>101</td>
</tr>
<tr>
<td>Highest rate of potential inflation</td>
<td>4.89</td>
<td>2.00</td>
<td>4.00</td>
<td>101</td>
</tr>
<tr>
<td>Spread (highest - lowest)</td>
<td>2.66</td>
<td>1.00</td>
<td>3.00</td>
<td>101</td>
</tr>
</tbody>
</table>

Panel B: Revisions to Expectations and Uncertainty

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>P25</th>
<th>P75</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference in unit cost expectations (Nov - Oct)</td>
<td>0.14</td>
<td>-0.40</td>
<td>0.70</td>
<td>85</td>
</tr>
<tr>
<td>Difference in unit cost uncertainty (Nov - Oct)</td>
<td>-0.19</td>
<td>-0.60</td>
<td>0.32</td>
<td>85</td>
</tr>
<tr>
<td>Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference in unit cost expectations (Nov - Oct)</td>
<td>0.02</td>
<td>-0.40</td>
<td>0.20</td>
<td>82</td>
</tr>
<tr>
<td>Difference in unit cost uncertainty (Nov - Oct)</td>
<td>-0.03</td>
<td>-0.28</td>
<td>0.15</td>
<td>82</td>
</tr>
</tbody>
</table>

Source: FRBA Business Inflation Expectations (BIE) Survey

Notes: Results obtained via RCT special questions posed to the panel in October 2020. The median expectation of monetary policymakers for inflation over calendar year 2021 was 1.7 percent (as of September 15th, 2020). Treatment: [Based on forecasts over the past 20 years, there is a 70 percent change that actual inflation will be in the range of 0.7 percent to 2.7 percent over calendar year 2021.] Question: What is your best estimate for the highest and lowest potential rate of inflation over calendar year 2021? 206 panelists responded to the core BIE questionnaire in October 2020. T-tests fail to reject the hypothesis that the treatment group expected outcomes that were different from the control group.

Table A.4: RCT: Influence of Monetary Policymakers’ Inflation Forecast Uncertainty on Unit Costs and/or Prices Expectations (With All Observations)
Figure A.1: BIE Panel Member Composition by Title

Source: FRBA Business Inflation Expectations (BIE) Survey
Notes: These shares are reflective of the existing panel as of December 2019. Titles are reported and confirmed during the recruiting process. Of “C-suite” respondents, we aim at garnering participation from CFOs in particular.
Figure A.2: BIE Survey Monthly Response Rate
Figure A.3: Survey Retention: Number of Complete Responses by Panelist
Source: FRBA Business Inflation Expectations (BIE) Survey
Notes: These binscatters (50 bins) compare respondents’ (a) forecast error, (b) squared forecast error, and (c) uncertainty. Statistics below the figure correspond to the population OLS regression. Data are from October 2011 through January 2021.

Figure A.4: Tenure Effects
Figure A.5: Firms Planning and Forecasting Frequencies

Source: FRBA Business Inflation Expectations (BIE) Survey
Note: Elicited from panelists as of March 2015.
Source: FRBA Business Inflation Expectations (BIE) Survey.
Notes: Comparison between firms’ unit costs, prices “overall in the economy,” and core CPI inflation expectations utilizing core survey results and results to special questions posed in September and October 2014. The sample is restricted to the 151 firms that responded to all three questions.

Figure A.6: Alternative Measures of Firm Inflation Expectations
Figure A.7: Sectoral-level Year-ahead Unit Cost Expectations

Source: FRBA Business Inflation Expectations (BIE) Survey.
Notes: The sample period is 2012q1 to 2021q3. The term “FIRE” refers to finance and insurance and real estate, rental and leasing firms.
Sources: Blue Chip Economist Panel; University of Michigan Survey of Consumers; FRBA Business Inflation Expectations (BIE) Survey

Note: The sample period goes from January 2011 through January 2021. For each graph above, the BIE series is plotted on the left-hand axis and the comparison series on the right.

Figure A.8: Short-Run (1-year ahead) Survey Inflation Expectations (Monthly Frequency)
Source: FRBA Business Inflation Expectations (BIE) Survey.
Notes: The above binscatter (30 bins) compare respondents’ 1-year ahead unit cost expectations to their 1-year ahead representative price expectations. Special questions on expected prices were elicited in June 2013, February 2019, November 2019, December 2020, April 2021, July 2021, and November 2021. Given changes in question formatting, responses were normalized and winsorized at the 2.5% and 97.5% levels.

Figure A.9: Unit Cost and Price Expectations
Appendix B Comparison of BIE to SBU

Two potential concerns arise in using the BIE survey. First, because the BIE only covers firms in the Southeast, it might not be nationally representative and the signal quality of the survey will likely suffer. Second, the question design itself – which is favored by Manski (2004) – is subject to framing bias. Because the quantitative suggestions for each bin width may be too narrow relative to the observed (perceived) distribution of actual unit cost expectations, the binned approach may potentially bias the results.

In an attempt to address both of these concerns, we compare the Atlanta Fed’s BIE Survey probabilistic binned response approach to a more flexible approach used by the Survey of Business Uncertainty (SBU); see Altig et al. (2021) for details regarding this survey. The SBU is a national survey of businesses that draws from every major industry in the nonfarm private sector and covers a full range of firm sizes. From its inception in 2014 until April of 2019, the SBU elicited responses for 1-year ahead unit costs expectations from a very flexible probabilistic setup – first asking firms for 5 quantitative estimates (support points) ranging from “lowest” to “highest” for the possible outcomes of unit costs over the year ahead and then asking respondents to fill in the attendant probabilities that correspond to each one of those outcomes.37

Figure B.1 addresses, to a large extent the framing bias in the BIE relative to the SBU, as the mean for the aggregate time series for BIE unit costs expectations is roughly a full percentage point lower than its SBU counterpart. However, there appears to be a tradeoff between framing bias and inflation signal. Table B.1 shows the correlations between the BIE and SBU unit cost 1-year ahead expectations and uncertainty measures over various moving averages (1-, 3-, 6-, and 12-month growth rates). The BIE aggregate is a simple weighted average and the SBU aggregate is either a 2-percent winsorized (1-percent on each tail) weighted average or weighted median. All series are weighted by industry share of GDP.

Table B.1 reveals that the BIE aggregate is more highly correlated with the SBU median than the mean and that correlations between the two surveys grows over time. This holds for both the first and second moments of these survey responses. The results suggest that while framing bias from a probabilistic binned approach may alter the level of the aggregate expectation and uncertainty, it comes with a positive tradeoff of a stronger signal-to-noise ratio.

37 The SBU group, including researchers at Stanford University, the University of Chicago’s Booth School, and the Federal Reserve Bank of Atlanta, jointly agreed to retire the unit-cost question in April 2019, in an effort to streamline the survey instrument and in large part due to the seeming redundancy between the BIE and SBU output for unit costs.
Sources: FRBA Business Inflation Expectations (BIE) Survey and Survey of Business Uncertainty (SBU).

Notes: The BIE data are the smoothed average of the cross section of individual expected values. The SBU data are the smoothed median of the cross section of individual expected values. SBU data sample runs from October 2014 through April 2019. Both data series are weighted by industry-share of GDP.

Figure B.1: Comparison between BIE and SBU Unit Cost Expectations and Uncertainty
<table>
<thead>
<tr>
<th>BIE 1-year Ahead Unit Cost Expectations</th>
<th>BIE 1-year Ahead Unit Cost Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-month growth rates</td>
<td>1-month averages</td>
</tr>
<tr>
<td>SBU: Median</td>
<td>SBU: Median</td>
</tr>
<tr>
<td>0.68</td>
<td>0.43</td>
</tr>
<tr>
<td>SBU: Winsorized Mean</td>
<td>SBU: Winsorized Mean</td>
</tr>
<tr>
<td>0.26</td>
<td>0.40</td>
</tr>
<tr>
<td>3-month growth rates</td>
<td>3-month averages</td>
</tr>
<tr>
<td>SBU: Median</td>
<td>SBU: Median</td>
</tr>
<tr>
<td>0.84</td>
<td>0.66</td>
</tr>
<tr>
<td>SBU: Winsorized Mean</td>
<td>SBU: Winsorized Mean</td>
</tr>
<tr>
<td>0.34</td>
<td>0.57</td>
</tr>
<tr>
<td>6-month growth rates</td>
<td>6-month averages</td>
</tr>
<tr>
<td>SBU: Median</td>
<td>SBU: Median</td>
</tr>
<tr>
<td>0.90</td>
<td>0.78</td>
</tr>
<tr>
<td>SBU: Winsorized Mean</td>
<td>SBU: Winsorized Mean</td>
</tr>
<tr>
<td>0.42</td>
<td>0.64</td>
</tr>
<tr>
<td>12-month growth rates</td>
<td>12-month averages</td>
</tr>
<tr>
<td>SBU: Median</td>
<td>SBU: Median</td>
</tr>
<tr>
<td>0.93</td>
<td>0.81</td>
</tr>
<tr>
<td>SBU: Winsorized Mean</td>
<td>SBU: Winsorized Mean</td>
</tr>
<tr>
<td>0.44</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Sources: FRBA Business Inflation Expectations (BIE) Survey and Survey of Business Uncertainty (SBU).

Notes: The Survey of Business Uncertainty (SBU) fielded probabilistic unit cost expectations questions from its inception until April 2019. The data period we analyze is from October 2014 through April 2019. The 3-, 6-, and 12-month samples begin in December 2014, March 2014, and September 2015, respectively. For more information on the SBU, see ?.

Table B.1: Comparison between BIE and SBU Probabilistic Inflation Expectations

The higher correlation between the mean BIE measures and the median SBU measures suggests that there are some idiosyncratic responses to unit cost growth that are pushing the averages away from the median. This type of idiosyncratic volatility is bounded in the BIE survey (as a response of “unit costs up significantly” is coded as 6 percent). Also encouraging from the standpoint of the BIE survey is that time series smoothing leads to very high correlations (coefficients as high as 0.93 over 12-month windows) between the BIE and the SBU median. These results suggest that at the very least directionally the BIE survey is yielding actionable information on the inflation expectations and uncertainty of firms. Eliciting this information using a probabilistic binned response approach dampens the inflation and its volatility when compared to a much more flexible probabilistic question design. Perhaps as important is that, while the BIE is a regional survey, the inflation expectations signal is very similar to that we would take from a national surveying effort.
Appendix C Fitting the Bimodal Asymmetric Power Normal Distribution to Histograms

This appendix illustrates fitting the bimodal asymmetric power normal (BAPN) distribution to three histograms, compared to fitting the normal and beta distribution. Figures C.1 - C.3 display the histograms and the fitted curves. For unimodal histogram (case a), the beta model seems to be more appropriate than other models. For histograms being moderately bimodal (case b) and strongly bimodal (case c), the BAPN provides the best fit when compared with normal and beta models. This visual inspection is further collaborated by descriptive measures and formal tests, as discussed below.

Following Andrade and Rathie (2016), we calculate three summary statistics in fitting parametric distributions to histograms. Bayesian Information Criterion (BIC) is obtained from the likelihood function when fitting each parametric distribution; see Table C.1. The second measure is the Mean Squared Error (MSE) between the fitted and the empirical cumulative distribution function. The third is the \(p \)-value from the Kolmogorov-Smirnov (KS) test having the fitted model as the null model against the two-sided alternative. For the unimodal histogram (case a), the beta model fits the data well according to BIC and KS test. For the two cases with bimodality, all statistics point strongly to the BAPN model: the lowest BIC and MSE, and the largest \(p \)-value for the KS test.

<table>
<thead>
<tr>
<th>Illustration 1</th>
<th>Illustration 2</th>
<th>Illustration 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta</td>
<td>Normal</td>
</tr>
<tr>
<td>BIC</td>
<td>4684</td>
<td>4774</td>
</tr>
<tr>
<td>MSE</td>
<td>0.016</td>
<td>0.018</td>
</tr>
<tr>
<td>KS</td>
<td>0.11</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table C.1: Summary Statistics for Three Examples

Therefore, in our analysis, we fit the BAPN model to histograms – with \(\gamma > 1 \) to capture the bimodality and \(0 < \gamma \leq 1 \) to capture the unimodality. We use the mean and variance of the BAPN distribution as the first- and second-moment of inflation expectations at the firm level, and compare these parametric estimates to nonparametric counterparts when appropriate.
Figure C.1: Fitting Normal Distribution
Figure C.2: Fitting Generalized Beta Distribution
Figure C.3: Fitting Bimodal Asymmetric Power Normal Distribution
Appendix D Business Inflation Expectations (BIE) survey questions

D.1 BIE core monthly questions

Question: How do your current SALES LEVELS compare with sales levels during what you consider to be “normal” times?

Response options:

- Much less than normal
- Somewhat less than normal
- About normal
- Somewhat greater than normal
- Much greater than normal

Question: How do your current PROFIT MARGINS compare with “normal” times?

Response options:

- Unit costs down (less than -1%)
- Unit costs about unchanged (-1% to 1%)
- Unit costs up somewhat (1.1% to 3%)
- Unit costs up significantly (3.1% to 5%)
- Unit costs up very significantly (more than 5%)
Question: Projecting ahead, to the best of your ability, please assign a percent likelihood to the following changes to UNIT COSTS over the next twelve months. (Values should sum to 100%)
For example, if you think each of these is equally likely, you might answer 20% for each:

20% Unit costs down (less than -1%)
20% Unit costs about unchanged (-1% to 1%)
20% Unit costs up somewhat (1.1% to 3%)
20% Unit costs up significantly (3.1% to 5%)
20% Unit costs up very significantly (more than 5%)

Response options:

☐ % Unit costs down (less than -1%)
☐ % Unit costs about unchanged (-1% to 1%)
☐ % Unit costs up somewhat (1.1% to 3%)
☐ % Unit costs up significantly (3.1% to 5%)
☐ % Unit costs up very significantly (more than 5%)

D.2 BIE core quarterly questions

Question: Projecting ahead, to the best of your ability, please assign a percent likelihood to the following changes to UNIT COSTS per year, over the next five to 10 years. (Values should sum to 100%)

Response options:

☐ % Unit costs down (less than -1%)
☐ % Unit costs about unchanged (-1% to 1%)
☐ % Unit costs up somewhat (1.1% to 3%)
☐ % Unit costs up significantly (3.1% to 5%)
☐ % Unit costs up very significantly (more than 5%)

Question: By roughly what percent are your firm’s sales levels ABOVE “normal”?

Response options:

☐ Percent

69
Question: By roughly what percent are your firm’s sales levels BELOW “normal”?
Response options:

□ Percent

Question: You indicated that your sales levels are “about normal.” By roughly what percent are your firm’s sales levels above/below “normal”, if at all?
Response options:

□ Above/Below/Neither

□ Percent

D.3 Special questions

Projecting ahead, over the next 12 months, please assign a percent likelihood to the following changes to the AVERAGE PRICE of the products and/or services you sell? values should sum to 100%

<table>
<thead>
<tr>
<th>Change</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average price down (less than -1%)</td>
<td>0 %</td>
</tr>
<tr>
<td>Average price about unchanged (-1% to 1%)</td>
<td>0 %</td>
</tr>
<tr>
<td>Average price up somewhat (1.1% to 3%)</td>
<td>0 %</td>
</tr>
<tr>
<td>Average price up significantly (3.1% to 5%)</td>
<td>0 %</td>
</tr>
<tr>
<td>Average price up very significantly (more than 5%)</td>
<td>0 %</td>
</tr>
<tr>
<td>Total</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Sources: FRBA Business Inflation Expectations (BIE) Survey; June 2013.

Figure D.1: June 2013: Own-price expectations
During the next twelve months, by how much do you think prices will change overall in the economy? Please provide a quantitative answer (in percentage terms).

Sources: FRBA Business Inflation Expectations (BIE) Survey; September 2014.

Figure D.2: September 2014: University of Michigan sequence with “prices overall in the economy”
On a scale from 1 to 5, with 5 being "very familiar", please choose the option that best describes your level of familiarity with the Consumer Price Index, commonly referred to as CPI.

1 - Unfamiliar 2 3 4 5 - Very familiar

Please indicate what probabilities you would attach to the various possible percentage changes to the CORE (excluding food and energy) CONSUMER PRICE INDEX over the next 12 months. (Values should sum to 100%)

<table>
<thead>
<tr>
<th>Percentage Change</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 percent or more</td>
<td>0 %</td>
</tr>
<tr>
<td>3.5 to 3.9 percent</td>
<td>0 %</td>
</tr>
<tr>
<td>3.0 to 3.4 percent</td>
<td>0 %</td>
</tr>
<tr>
<td>2.5 to 2.9 percent</td>
<td>0 %</td>
</tr>
<tr>
<td>2.0 to 2.4 percent</td>
<td>0 %</td>
</tr>
<tr>
<td>1.5 to 1.9 percent</td>
<td>0 %</td>
</tr>
<tr>
<td>1.0 to 1.4 percent</td>
<td>0 %</td>
</tr>
<tr>
<td>0.5 to 0.9 percent</td>
<td>0 %</td>
</tr>
<tr>
<td>0 to 0.4 percent</td>
<td>0 %</td>
</tr>
<tr>
<td>Will decline</td>
<td>0 %</td>
</tr>
<tr>
<td>Total</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Sources: FRBA Business Inflation Expectations (BIE) Survey; October 2014.

Figure D.3: October 2014: SPF’s probabilistic core CPI question
On a scale from 1 to 5 with 1 being "no influence," please indicate what level of influence, if any, price statistics such as the Consumer Price Index have on your business decisions?

1 - No influence 2 3 - Moderate influence 4 5 - Significant influence

Sources: FRBA Business Inflation Expectations (BIE) Survey; January 2015.

Figure D.4: January 2015: CPI's influence on pricing decisions
<table>
<thead>
<tr>
<th></th>
<th>daily</th>
<th>weekly</th>
<th>monthly</th>
<th>quarterly</th>
<th>semiannually</th>
<th>annually</th>
<th>less often than annually</th>
<th>never</th>
<th>Unsure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Revenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profit Margins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Investment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: FRBA Business Inflation Expectations (BIE) Survey; March 2015.

Figure D.5: March 2015: Frequency of firm planning/forecasting activity
On a scale from 1 to 5, with 1 being "no influence," please indicate what level of influence, if any, your expectation regarding the economy’s overall rate of inflation has on your pricing decisions?

Sources: FRBA Business Inflation Expectations (BIE) Survey; September 2015.

Note: In September 2015, we split the panel at random, asking half for the influence of the “overall rate of inflation” on their pricing decisions and the other half was asked for the influence of “your own unit costs” have on pricing decisions.

Figure D.6: September 2015: Overall rate of inflation/Unit Costs’ Influence on pricing decisions
Looking ahead, over the next 12 months, what aggregate rate of inflation, as measured by the Consumer Price Index, would you assign to each of the following scenarios?

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>The LOWEST aggregate rate of inflation would be about:</td>
<td>1%</td>
</tr>
<tr>
<td>A LOW aggregate rate of inflation would be about:</td>
<td>2%</td>
</tr>
<tr>
<td>A MIDDLE aggregate rate of inflation would be about:</td>
<td>3%</td>
</tr>
<tr>
<td>A HIGH aggregate rate of inflation would be about:</td>
<td>4%</td>
</tr>
<tr>
<td>The HIGHEST aggregate rate of inflation would be about:</td>
<td>5%</td>
</tr>
</tbody>
</table>

Please assign a percentage likelihood to the potential aggregate rates of inflation you entered. (Values should sum to 100%)

<table>
<thead>
<tr>
<th>Rate of Inflation</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>10%</td>
</tr>
<tr>
<td>2%</td>
<td>20%</td>
</tr>
<tr>
<td>3%</td>
<td>40%</td>
</tr>
<tr>
<td>4%</td>
<td>20%</td>
</tr>
<tr>
<td>5%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Total: 100%
<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>The LOWEST percentage change in my price would be about:</td>
<td>1%</td>
</tr>
<tr>
<td>A LOW percentage change in my price would be about:</td>
<td>2%</td>
</tr>
<tr>
<td>A MIDDLE percentage change in my price would be about:</td>
<td>3%</td>
</tr>
<tr>
<td>A HIGH percentage change in my price would be about:</td>
<td>4%</td>
</tr>
<tr>
<td>The HIGHEST percentage change in my price would be about:</td>
<td>5%</td>
</tr>
</tbody>
</table>

Please assign a percentage likelihood to the percentage price changes you entered in the prior question. (Values should sum to 100%)

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOWEST: The likelihood of about a 1% change in my price would be:</td>
<td>10%</td>
</tr>
<tr>
<td>LOW: The likelihood of about a 2% change in my price would be:</td>
<td>20%</td>
</tr>
<tr>
<td>MIDDLE: The likelihood of about a 3% change in my price would be:</td>
<td>40%</td>
</tr>
<tr>
<td>HIGH: The likelihood of about a 4% change in my price would be:</td>
<td>20%</td>
</tr>
<tr>
<td>HIGHEST: The likelihood of about a 5% change in my price would be:</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Sources: FRBA Business Inflation Expectations (BIE) Survey; February 2019.

Figure D.8: February 2019: Own-Price Expectations
By what percentage has your firm changed the price of the product/product line or service responsible for the largest share of sales revenue over the last 3 months?

%

By what percentage has your firm changed its total number of employees (full and part time) over the last 3 months?

%

What do you think the aggregate rate of inflation, as measured by the Consumer Price Index, will be over the next 12 months?

%

Sources: FRBA Business Inflation Expectations (BIE) Survey; April 2019.

Figure D.9: April 2019: Price and Aggregate Inflation Expectations
By what percentage has your firm changed the price of the product/product line or service responsible for the largest share of sales revenue over the last 3 months?

%

By what percentage has your firm changed its total number of employees (full and part time) over the last 3 months?

%

Sources: FRBA Business Inflation Expectations (BIE) Survey; July 2019, October 2019, and January 2020.

Figure D.10: July 2019, October 2019, and January 2020: Own-Price and Employment Expectations
Do you expect the price of the product/product line or service responsible for the largest share of your revenue to increase, remain the same, or decrease over the next 12 months?

<table>
<thead>
<tr>
<th>Option</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase</td>
<td></td>
</tr>
<tr>
<td>Remain the same</td>
<td></td>
</tr>
<tr>
<td>Decrease</td>
<td></td>
</tr>
</tbody>
</table>

If the respondent indicated increase, we asked:

By roughly what percentage do you expect the price of the product/product line or service responsible for the largest share of your revenue to **increase** over the next 12 months?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | %

If the respondent indicated decrease, we asked:

By roughly what percentage do you expect the price of the product/product line or service responsible for the largest share of your revenue to **decrease** over the next 12 months?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | %

Sources: FRBA Business Inflation Expectations (BIE) Survey; November 2019.
For the next question, we’d like you to think about a "normal" 12 month period.

In a normal 12 month period, by roughly what percentage do you change the price of the product/product line or service responsible for the largest share of your revenue?

%

Sources: FRBA Business Inflation Expectations (BIE) Survey; December 2020, July 2021, and November 2021.
Note: We only elicited firms’ “normal” price perceptions in December 2020.

Figure D.12: December 2020, July 2021, and November 2021: Own-Price Realizations and Expectations (part 1)
Now, think about the last 12 months.

Did the price of the product/product line or service responsible for the largest share of your revenue increase, remain the same, or decrease over the last 12 months?

- Increase
- Remain the same
- Decrease

Sources: FRBA Business Inflation Expectations (BIE) Survey; December 2020, July 2021, and November 2021. Note: We only elicited firms’ “normal” price perceptions in December 2020.

Figure D.13: December 2020, July 2021, and November 2021: Own-Price Realizations and Expectations (part 2)
If the respondent indicated increase, we asked:

By roughly what percentage did you **increase** the price of the product/product line or service responsible for the largest share of your revenue over the **last** 12 months?

%

If the respondent indicated decrease, we asked:

By roughly what percentage did you **decrease** the price of the product/product line or service responsible for the largest share of your revenue over the **last** 12 months?

%

Sources: FRBA Business Inflation Expectations (BIE) Survey; December 2020, July 2021, and November 2021.
Note: We only elicited firms’ “normal” price perceptions in December 2020.

Figure D.14: December 2020, July 2021, and November 2021: Own-Price Realizations and Expectations (part 3)
Finally, think about the **next** 12 months.

Do you expect the price of the product/product line or service responsible for the largest share of your revenue to increase, remain the same, or decrease over the **next** 12 months?

- Increase
- Remain the same
- Decrease

Sources: FRBA Business Inflation Expectations (BIE) Survey; December 2020, July 2021, and November 2021. Note: We only elicited firms’ “normal” price perceptions in December 2020.

Figure D.15: December 2020, July 2021, and November 2021: Own-Price Realizations and Expectations (part 4)
If the respondent indicated increase, we asked:

By roughly what percentage do you expect the price of the product/product line or service responsible for the largest share of your revenue to increase over the next 12 months?

%

If the respondent indicated decrease, we asked:

By roughly what percentage do you expect the price of the product/product line or service responsible for the largest share of your revenue to decrease over the next 12 months?

%

Sources: FRBA Business Inflation Expectations (BIE) Survey; December 2020, July 2021, and November 2021. Note: We only elicited firms’ “normal” price perceptions in December 2020.

Figure D.16: December 2020, July 2021, and November 2021: Own-Price Realizations and Expectations (part 5)
In the last week, did your business have any of the following?

Select all that apply:

- Production delays at this business
- Delays in delivery/shipping to customers
- Supplier delays

Sources: FRBA Business Inflation Expectations (BIE) Survey; March, June, and August 2021.

Figure D.17: March, June, and August 2021: Supply Disruption and Labor Constraints (part 1)
If they answered yes, respondents received this follow-up:

How would you describe the impact of each disruption your business encountered?

<table>
<thead>
<tr>
<th></th>
<th>Little to none</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier delays</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Production delays at your business</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Delays in deliver/shipping to customers</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

And were asked how long they anticipated the disruption to persist:

How long do you anticipate these disruptions will continue to impact your business?

<table>
<thead>
<tr>
<th></th>
<th>Less than a month</th>
<th>1-3 months</th>
<th>3-6 months</th>
<th>6-12 months</th>
<th>Longer than one year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier delays</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Production delays at your business</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Delays in deliver/shipping to customers</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Sources: FRBA Business Inflation Expectations (BIE) Survey; March, June, and August 2021.

Figure D.18: March, June, and August 2021: Supply Disruption and Labor Constraints (part 2)
Respondents were also asked:

In the last week, was your business’s operating capacity affected by any of the following?

Note: Operating capacity is the maximum amount of activity your business could conduct under realistic operating conditions.

Select all that apply:

- Availability of employees to work
- Ability to re-hire furloughed or laid off employees and/or hire new employees
- Ability of employees to work from home
- Availability of Personal Protective Equipment (PPE) and/or related equipment or supplies
- Availability of other supplies or inputs used to provide good or services
- Physical distancing of customers or clients and/or limits on the number of concurrent customers or clients
- None of the above

Sources: FRBA Business Inflation Expectations (BIE) Survey; March, June, and August 2021.

Figure D.19: March, June, and August 2021: Supply Disruption and Labor Constraints (part 3)
If they answered yes, respondents received this follow-up:

How would you describe the impact on operating capacity of each disruption your business encountered?

<table>
<thead>
<tr>
<th>Physical distancing of employees</th>
<th>Little to none</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

And were asked how long they anticipated the disruption to persist:

How long do you anticipate these disruptions will continue impact your business?

<table>
<thead>
<tr>
<th>Physical distancing of employees</th>
<th>Less than one month</th>
<th>1-3 months</th>
<th>3-6 months</th>
<th>6-12 months</th>
<th>Longer than one year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Sources: FRBA Business Inflation Expectations (BIE) Survey; March, June, and August 2021.

Figure D.20: March, June, and August 2021: Supply Disruption and Labor Constraints (part 4)
The median expectation of monetary policymakers for inflation over calendar year 2021 was 1.7 percent (as of September 15th). [Treatment: Based on forecasts over the past 20 years, there is a 70 percent chance that actual inflation will be in the range of 0.7 percent to 2.7 percent over calendar year 2021.]

What is your best estimate for the highest and lowest potential rate of inflation over calendar year 2021?

| lowest potential rate of inflation over calendar year 2021 | % |
| highest potential rate of inflation over calendar year 2021 | % |

Which of the following best describes how useful, if at all, the inflation forecasts of monetary policymakers are when formulating your expectations for potential changes in your own unit costs and/or prices?

- The inflation forecasts of monetary policymakers do not influence my expectations
- The inflation forecasts of monetary policymakers have some influence on my expectations
- The inflation forecasts of monetary policymakers directly influence my expectations
- Unsure

Sources: FRBA Business Inflation Expectations (BIE) Survey; October 2020.

Figure D.21: October 2020: Randomized control trial (RCT) - Policymakers’ views on uncertainty
“The median expectation of monetary policymakers (as of September 22) for the annual rate of inflation over calendar year 2022 is 2.2 percent.”

What do you think the annual rate of inflation will be over calendar year 2022?

%

Which of the following best describes how useful, if at all, the inflation forecasts of monetary policymakers are when formulating your expectations for potential changes in your own unit costs and/or prices?

- The inflation forecasts of monetary policymakers *do not influence* my expectations
- The inflation forecasts of monetary policymakers have *some influence* on my expectations
- The inflation forecasts of monetary policymakers have *significant influence* on my expectations

Sources: FRBA Business Inflation Expectations (BIE) Survey; October 2021.

Figure D.22: October 2021: Randomized control trial (RCT) - Policymakers’ views on inflation expectations