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1 Introduction

Cross-sectional heterogeneity among households and firms is at the heart of many important
economic phenomena. In general, it is impossible to aggregate a cross-section of agent
characteristics in dynamic heterogenous-agent economies, especially in the presence of con-
straints (e.g., financial constraints) or un-hedgeable sources of risk (e.g., idiosyncratic labor
income shocks). In such models, endogenous quantities, such as risk premia, depend on the
cross-sectional distribution of agent characteristics, such as household wealth or firm capital.
Since the cross-sectional distribution is an infinite dimensional state-variable, it is typically
impossible to solve exactly for equilibrium in this class of models. Under the common solution
approach, introduced in the highly influential paper by Krusell and Smith (1998), agents
follow relatively simple approximate policies that avoid the burden of solving a dynamic
optimization problem with a high-dimensional state space. Specifically, agents summarize the
state of the economy by a low-dimensional state vector, typically keeping track of only a few
cross-sectional moments.! The approximate solution of the original model can be viewed as
an exact equilibrium in a near-rational economy, in which agents pursue suboptimal policies
(see Krusell and Smith (1998), page 874). If agents suffer small welfare losses from failing to
fully optimize, expanding further resources on improving the policies is unproductive, and
approximate policies are plausible as a description of near-rational behavior. This argument
is in the spirit of modeling economic agents as satisficing rather than optimizing, as in Simon
(1978).

Do approximate solutions thus constructed describe near-rational equilibria? A significant
limitation of the commonly used approaches, including the one by Krusell and Smith, is
that currently there are no reliable general methods for verifying the degree of welfare loss
under candidate near-rational equilibria in heterogeneous-agent models. In this paper we
propose such a method. Our technique allows one to compute provable bounds on the degree
of welfare loss under approximate policies. It is straightforward to implement and has general

applicability, being usable in conjunction with various approximation algorithms.

IThis approximation method is widely used, see e.g., Heathcote, Storesletten, and Violante (2009) and
Guvenen (2011) for a survey of the solution methodology and applications.



The key to tractability of our approach is that it establishes an upper bound on the
agents’ welfare loss without computing the optimal policies. This is essential when dealing
with infinite-dimensional models, where optimal individual policies are infeasible to compute,
even in a candidate near-rational equilibrium. The main idea of our approach is the following.
We alter the original problem of an agent by enlarging her information set to allow for perfect
knowledge of the future path of prices (more generally, the aggregate state process of the
economy ), while simultaneously penalizing the agent’s objective for such foresight. The
modified problem is much more tractable than the original problem, because the aggregate
state of the economy in the modified problem follows a deterministic process. Moreover, if
the penalty for perfect foresight is chosen properly (we discuss the precise requirement in the
main body of the paper), the value function of the modified problem is always higher than
the value function of the original problem. We thus obtain an upper bound on the agent’s
welfare. The lower bound results from following the sub-optimal policy prescribed by the
approximate solution. The gap between the two bounds limits the agent’s welfare loss from
above. A narrow gap indicates that the degree of sub-optimality is economically small, and
the approximate equilibrium is indeed near-rational. A large gap does not necessarily imply
that the sub-optimal policy is grossly inefficient, as it may result from the value function
of the modified problem being significantly higher than the value function of the original
problem.

To illustrate the potential of our method, we apply it to two well-known models, which
feature an approximate equilibrium with aggregate uncertainty. First, we consider the
incomplete markets model of Krusell and Smith (1998). This is a stochastic growth model
in which individual agents face uninsurable labor income risk as well as aggregate shocks
to the productivity of capital. Krusell and Smith compute an approximate equilibrium by
summarizing the cross-sectional distribution of wealth among the agents using only the
average per capita level of wealth. Our second application of the information relaxation
approach is to the model of Khan and Thomas (2008). Their model features a heterogeneous
cross-section of firms in general equilibrium. In the approximate equilibrium, Khan and

Thomas summarize the cross-sectional distribution by the mean capital stock of all firms in



the economy. We provide accompanying code which shows our approach applied to these two
models and to the simpler illustrative example in Section 2 of this paper.?

We quantify the degree of sub-optimality of agents’ policies under both models. We
establish that in both settings the original solutions imply relatively low individual welfare
losses for most initial configurations of the economy. Thus, for the calibrated models under
consideration, our method confirms that their approximate solutions describe a near-rational
equilibrium. This is especially important for the model of Khan and Thomas (2008), because
we are able to show that the key finding of that paper that non-linearities in individual firm
policies do not have a quantitatively large effect on aggregate dynamics is not a result of
firms adopting grossly sub-optimal policies.

Next, we stress-test the approximation algorithms in the above applications by introducing
transitional dynamics in an economy perturbed away from its steady state. Since the standard
solution methods, such as that of Krusell-Smith, are not intended to approximate equilibrium
dynamics accurately when the economy is away from its steady state, it is not clear a-
priori how well such methods may perform. For both models, we consider the following
two transitional dynamics experiments. Starting from the steady-state of the model, we
consider: (i) an unanticipated five-fold permanent increase in the volatility of aggregate
productivity shocks; or, (ii) an unanticipated 50% reduction in capital stock of all agents
in the Krusell-Smith economy and a similar reduction in capital stock of every firm in the
Khan-Thomas economy. In the first case, the economy transitions to a new steady state
following a permanent regime shift. In the second case, the economy reverts to the original
steady state following a large transient shock. Our methodology shows the welfare bound in
each experiment to be larger than in the steady-state case, in some instances rising by more

than an order of magnitude, thus indicating potentially large welfare losses.

Related literature

The basic idea of using information relaxations and martingale multipliers to formulate a

2See https://www.dropbox.com/sh/rqe859kstso6vk0/AACBZNNuxCIqUY7BZRJfqti4a?dl=0.



dual stochastic optimization problem can be traced back to Bismut (1973) (in a continuous-
time setting) and Rockafellar and Wets (1976) and Pliska (1982) (in the discrete-time finite
horizon setting). Back and Pliska (1987) apply this technique to single-agent problems in
financial economics. Most of the existing applications of information relaxations deal with
the optimal stopping problems, typically in the context of pricing American or Bermudan
options, e.g., Davis and Karatzas (1994), Rogers (2002), Haugh and Kogan (2004), and
Andersen and Broadie (2004). Rogers (2007) and Brown, Smith, and Sung (2010) extend
the information-relaxation idea to general dynamic optimization problems. We use the
formulation in Brown et al. (2010), which incorporates both perfect and partial information
relaxations and derives penalty processes from the value function of the original problem.
Our paper is the first to apply the information relaxation approach to approximate solutions
of heterogeneous-agent equilibrium models.

The existing literature on approximate solutions of equilibrium models uses several
approaches to evaluating approximate solutions. One common approach is to compare
forecasts of aggregate states of the economy with actual realizations from the simulation,
and to judge the approximation quality by the accuracy of the forecasts, e.g., their R2. A
well-known limitation of this approach is that a high forecast R? does not guarantee that the
approximation quality is high (den Haan, 2010). Krusell and Smith (1998) evaluate multi-
period forecasts as a more stringent test, and den Haan (2010) develops a yet more stringent
procedure for comparing the law of motion used to formulate agents’ policy functions to the
true law of motion implied by the approximate solution of the model. These approaches have
two main limitations relative to the method we propose in this paper: they do not provide a
guarantee of approximation quality and do not describe the welfare cost of approximation
€rrors.

Another popular approach, due to den Haan and Marcet (1994), evaluates Euler equation
residuals of the approximate solution along the simulated path of the economy. Under the
null hypothesis that the agent’s policies are optimal, the £2 norm of the Euler equation errors
is distributed as a x? random variable, and a standard hypothesis test can be carried out. The

limitation of this method is that small Euler equation errors do not imply low welfare loss.



As we show in the Appendix, Euler equation errors can be small while sub-optimal policies
are infinitely costly in welfare terms. The inadequacy of Euler residuals as a measure of the
approximation quality of equilibrium solutions is also highlighted in Kubler and Schmedders
(2003).

Santos (2000) shows that small Euler equation errors do imply small policy function
errors for a restricted class of models — importantly, this result is limited to the models
in which equilibria correspond to the solution of the central planner’s problem. In more
general models, theoretical guarantees on the accuracy of policy functions are not available.
In such situations, our approach allows one to compute a generally applicable bound on the
approximation accuracy of agents’ policies. Kubler and Schmedders (2005) propose a method
of error analysis where the quality of the approximation to the equilibrium is judged by its
proximity to an exact equilibrium in a close-by economy. In contrast to this approach, our
method establishes an upper bound on the welfare loss in the original economy, which is due
to agents following suboptimal policies.

In the language of numerical analysis, estimates of the errors in equilibrium policies, as in
Santos (2000), represent forward error analysis — where the quality of the approximation is
judged by how close the approximate solution (including agents’ policies and endogenous
processes, such as prices) is to the exact solution. In comparison, Kubler and Schmedders
(2005) use the logic of backward error analysis, where one evaluates how much the inputs
of the model need to be modified to make the approximate solution satisfy all equilibrium
conditions exactly. One can view our method as a form of forward error analysis with
provable guarantees of approximation quality, where the distance between the approximate
and exact solution is measured in economic terms — in terms of individual welfare loss under
approximate policies. Judd, Maliar, and Maliar (2017) provide a complementary view of the
solution quality. They establish a lower bound on the (forward) error of an approximate
solution to an equilibrium model. While our approach provides a sufficient condition for the
accuracy of an approximate solution, the lower bound provides a necessary condition since
the true errors are larger than the lower bound.

The rest of the paper is organized as follows. In Section 2 we formulate the relaxed



problem and outline the construction of penalty functions. To illustrate our approach, we
apply it to a model for which the optimal policy is known in closed form. In Sections 3
and 4, we apply our method to the Krusell-Smith model and the model of Khan-Thomas,

respectively. Section 5 concludes.

2 Information relaxation: The main idea

In our analysis of approximate equilibria, we apply the information relaxation method
proposed in Brown et al. (2010). We introduce the main ideas of this method in this section,
and refer the readers to Brown et al. (2010) for full technical details.

Consider a standard finite-horizon consumption-savings problem. Time is discrete, t =
(0,---,T). Each period the agent receives a random labor income which takes two possible
values {yg,yr} with yg > y;. The probability of receiving yy is p each period. The agent
chooses consumption ¢; and stores the rest in a risk-free asset with constant total return R.
We denote the agent’s feasible consumption policy by C' = (co, ¢1, ..., cr).

At each date ¢, the agent observes the history of income shocks realized up to and including
this date (but not the future shocks). We denote this history by ' = (vo,y1,...,4:). All
feasible consumption policies must be adapted to the information structure of the agent, i.e.,
consumption choices are functions of the observed past histories of income shocks. Thus,
making the agent’s information structure explicit, C' = (co(y°), c1(y), ..., er(y?)).

The agent has a time-separable constant relative risk aversion utility function with
curvature . Let w; denote the agent’s wealth at the beginning of period ¢, including the
realized income in the current period. The agent solves the dynamic optimization problem:

E t 1
e [Zﬁ 1_7] ’ W

where the agent’s wealth and consumption satisfy the dynamic budget constraint:

Wt = ('LUt_l — Ct_l)R + Y. (2)



We denote the value function of the above problem by V;(wy):

i 55—15 (C:)l_’y

Vt(wt) =L, 1_ ~

: (3)

s=t
where C* is the optimal consumption policy.

We formulate a relaxed problem by allowing the agent to have access to information about
the future realizations of income shocks. The name “information relaxation” reflects the
notion that this formulation relaxes information constraints placed on the agent. Specifically,
consider a complete information relaxation, whereby we allow the agent to condition her
consumption choices on the knowledge of the entire future sequence of income shocks. To
distinguish the feasible policies of the relaxed problem from those of the original problem, we
denote the former by C* = (¥ (y"), R (yT), ..., F(y")).

While providing the agent with such informational advantage compared to that in the
original problem, we impose a penalty on the objective function, designed to offset the
effect of information relaxation. The penalty is a stochastic process \;, which depends on
the consumption policy and the entire path of income shocks, y*: \(C®,yT). The only
requirement we impose on the penalty process is that if the consumption process is chosen to
depend only on the information available to the agent, the resulting penalty is non-positive
in expectation, i.e.,

Eq [ (CF.7)] <0 ()

It is easy to see that the value function of the relaxed problem:

- t (CF)lﬂ_ R T
> B e ICOUDN I E (5)

t=0

VR (wp) = max E
0( 0) {CR: cF<w]} 0

subject to the dynamic budget constraint:
wi = (W = )R+, (6)

is at least as high as the value function of the original problem. The reason is that the

consumption policy C*, optimal under the agent’s original problem (1-2), is also a feasible



policy for the relaxed problem (5-6), and the expected penalty under such policy adds a

non-negative term to the agent’s expected utility, according to (4). Thus, we establish that:
Vo< (wo) = Vo(wo). (7)

Next, consider a feasible but suboptimal consumption policy C. Under this suboptimal

policy, the expected utility of the agent is given by:

T

Z Btm] : (8)

‘70(100) = Eq
t=0 1—7y

which results in a welfare loss of Vy — 170. To estimate this welfare loss resulting from a
suboptimal strategy, we use the inequality (7) to conclude that the agent’s welfare loss is
bounded above by the difference between the value function of the relaxed problem (5-6) and

the expected utility under the suboptimal policy ¢ (y"):

Vo(wo) — Vo(wo) < V¥ (wo) — Vo(wo) . (9)

We thus have a framework for computing bounds on welfare loss resulting from sub-optimal
strategies: define a valid penalty process for the relaxed problem, and then compare the
expected utility of the agent under information relaxation with her expected utility under
the suboptimal policy of interest. This approach is especially useful where it is infeasible to
solve for the optimal policies of the original problem.?

While this formulation is rather general, it is only useful as long as the resulting bound is
relatively tight, i.e., as long as the value function of the relaxed problem V¥ is not much
higher than the expected utility of the agent under the optimal consumption policy, V.
Brown et al. show that it is possible to make the difference V;* — Vp, i.e. the duality gap
arbitrarily small. In particular, they show (using backwards induction) that under an ideal
penalty, V& — 1y = 0.

The definition of an ideal penalty by Brown et al. adopted to our example is as follows.

3For complete information relaxation, the relaxed problem is deterministic and hence easy to solve.



The penalty is defined for each possible sequence of income shocks, and each possible sequence
of consumption choices, without requiring the consumption policy to be non-anticipating.
Specifically, consider an arbitrary path of income shocks ¢y, and a budget-feasible positive

T = (¢g,c1,- -+ ,cr). Note that ¢! is not a consumption

sequence of consumption choices ¢
policy, it denotes a sequence of positive real numbers representing a particular path of
consumption. The corresponding values of agent’s wealth (wo, wy, - - -, wy) satisfy the dynamic
budget constraint equation (6). Given wy, each term in the ideal penalty, i (¢, yT), is defined

based on the value function of the original problem:

A y") = Vg ((we — ) R+ ye1) — E[Viga (we — co) R+ Geg) | ¥ (10)

Yo, - ,Yrr1 in the above expression are non-random. These are the values of income shocks
from the particular path of shocks y? for which we are defining the ideal penalty. In contrast,
the labor income shock at time ¢ + 1, i.e., §;11, is a random variable. The second term
on the right in (10) is an expectation of V;,; over the possible values of 7;.1, taking the
realizations of income shocks yo, - - - , 4, and consumption choices ¢y, - - - , ¢; as given. Thus,
the second term depends only on ¢! and y', and so the penalty \f depends on ¢! and y**!. In
particular, \f(c?,y") depends on the contemporaneous consumption choice ¢; and the future

1 and income shocks

income shock g1 explicitly, and on the earlier consumption choices ¢~
y' implicitly, through w; and the dynamic budget constraint. Going forward, we use more

concise notation for the penalty:

A (e y") = Viga (wen) = Ee[Visr (wega)] - (11)

To develop intuition for how the penalty affects the solution of the relaxed problem,
consider the dependence of the ideal penalty on the contemporaneous consumption choice ¢;.
For this numerical example, we choose the parameters shown in Table 1. The time-1 penalty
A7, is shown in Figure 1. It depends on c;, the income in the following period y», and current
wealth wy, where w; captures the dependence of the penalty on prior consumption choices

and income shocks. We plot the penalty for two different levels of current wealth, w, = 4



and w; = 5, in Panels A and B of Figure 1, respectively. Each line in these figures shows the
penalty as a function of ¢; and the two possible values of y,: the solid line corresponds to
Yo = Yy, while the dash-dot line corresponds to yo = yy.

To see how the penalty discourages the agent from using information about future income,
consider a relaxed problem with the agent observing the time-2 income shock in advance and
using this information in his time-1 consumption decision. Without the penalty, the agent
can take advantage of his knowledge of the future. In particular, if the agent knows that the
time-2 income shock is high, i.e., yo = yp, it is optimal to choose higher time-1 consumption
than if yo = y. Figure 1 shows that the ideal penalty discourages such behavior. If the agent
chooses higher consumption in the ys = yy state relative to the y, = y;, state, the expected
penalty is positive (shown by the solid line). An ideal penalty has the property that the
benefit of perfect foresight is exactly offset by the negative effect of the penalty, and the
agent finds it optimal to chose a non-anticipative consumption policy while knowing future
realizations of income shocks. As long as the consumption choice is non-anticipating, i.e., ¢;
does not depend on 7, the expected value of the penalty is zero (shown by the dash line),
and the welfare of the agent is not impaired by the penalty.

Next we show how the ideal penalty discourages the agent from conditioning the time-0
consumption choice on knowledge of ¥y, to achieve a smoother consumption path. To see this
compare panels A and B of Figure 1. From these figures we see that for both realizations of s,
the gradient of the penalty A} is larger in absolute value for w; = 4 than for w; = 5. Selecting
higher ¢y in the yo = yg state relative to the y, = y,, state raises the expected penalty term
A7, making it positive even if the consumption choice at time 1 is non-anticipative. This
illustrates the inter-temporal connections between various penalty terms and consumption
choices.

An ideal penalty is as difficult to compute as the solution of the original problem. We

therefore define the penalty based on an approximation to the value function:
MR yT) = Vi (wl) = B [V (wly)] | (12)

where we define ‘Z to be the expected utility resulting from the agent’s consumption policy.

10



This is a feasible penalty because it satisfies equation (4). However, this penalty choice
results in an upward biased estimate of the actual welfare loss of the agent. We see this from
Panel A of Figure 2. In this figure, the value function of the relaxed problem V7*(w) (shown
by the dot-dash line), is greater than the value function V(w) (shown by the dashed line).
This duality gap arises from a sub-optimal choice of penalty; had we used the ideal penalty,
A*, the two value functions would have coincided and the duality gap would have been zero.
The solid line in this figure is the expected utility of the agent ‘A/(w), from adopting the
sub-optimal policy. We estimate it by simulating many paths of shocks and computing the
sample mean of realized utilities from adopting the agent’s policy. The information relaxation
approach provides us with an estimate of the difference V= (w) — V(w); this difference is an
upper bound on the actual welfare loss V(w) — V (w) (see equation (9)).

Panel B of Figure 2 shows an estimate of the upper bound on welfare loss of an agent
using sub-optimal policies and compares this with the actual welfare loss. The agent uses a
consumption policy based on the optimal solution of the model with the probability of the
high state equal to p = 0.89, whereas the true probability is p = 0.9. Throughout our paper
we report welfare loss of an agent as a fractional certainty equivalent loss, 1. For our current
example, we define 7:

wj — Wy

n(wo) = . (13)

where wyj is computed by solving:
Vo(wh) = Vi (wo) . (14)

The numerator of 1 in equation (13) is therefore the additional amount of time-0 wealth,
wy, needed by an agent following a sub-optimal policy to obtain the level of expected utility
equal to the value function of the relaxed problem with time-0 wealth equal to wy, keeping
all other state variables the same. The solid line in Figure 2 shows an estimate of the upper
bound on welfare loss of the agent 7, computed using the information relaxation approach.
We obtain this estimate in three steps: (i) by simulating 500 paths of income shocks, (ii)

solving the relaxed problem (i.e., equations (5) and (6)) along each path thereby obtaining an

11



estimate of V*(w,y”) along each path, and (iii) taking the sample mean, V%(w) over all 500
paths.* For this simple, partial equilibrium example, since we are able to solve for the actual
welfare loss, we plot it in the same figure (the dot-dash line) alongside the upper-bound in
panel B of Figure 2. We define the actual welfare loss, n*, using the value function Vj(w)
instead of VR (w), i.e. w) in equation (13) is the root of the equation Vo(w)) = Vo(wp) instead
of equation (14). In this example, the agent’s welfare loss relative to the optimal policy is
less than 0.27% in certainty equivalent terms. Information relaxation bounds the maximum
welfare loss at less than 0.3%.

In order for information relaxation to be useful, it is necessary that the duality gap
between V% (w) and Vy(w) be small. Put differently, applying a more sub-optimal penalty
results in a larger duality gap and a less informative upper bound on welfare loss. To see this,
consider a penalty function that is identically zero, for example. In other words, the agent is
not penalized for foresight. Note that a zero penalty is a feasible penalty since it satisfies
equation (4). We see from Panel C of Figure 2 that when we re-estimate the maximum
welfare loss with a zero penalty, the upper bound on welfare loss is quite inflated. With this
sub-optimal penalty choice, information relaxation bounds the maximum welfare loss at less
than 65%, whereas the actual welfare loss is less than 0.27%.

Next, we vary the degree of sub-optimality of policies adopted by the agent and we
estimate the welfare loss for each of these policies. In particular, we compare the welfare loss
to the agent from adopting policies corresponding to p = 0.87, p = 0.88, and p = 0.89 and
report both the upper bound (solid line) and the actual welfare loss (dot-dash line) in panels
A, B, and C, respectively of Figure 3. From these figures we see that the upper bound on
welfare loss declines as the agent’s policy approaches the optimal policy. For example, the
maximum value of the upper bound on welfare loss is less than 2.3% when p = 0.87, while it
is less than 0.3% when p = 0.809.

Comparing across Panels A through C of Figure 3, we see that the duality gap between

VR(w) and V(w) decreases as the agent’s policy approaches the optimal policy. This is

4We do not show the 5% and 95% confidence intervals for the estimated upper bound on welfare loss in
this example because this estimate is so precise that the confidence band is not visible separately from the
estimated mean.
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because when the agent adopts a policy that is closer to the optimal policy, the expected
utility V(w) improves and approaches the value function V' (w). This, in turn, implies that the
penalty A approaches the ideal penalty \*, and therefore, the duality gap decreases. In other
words, the estimated upper bound on welfare loss declines as the agent’s policy approaches
the optimal policy both because of a decline in the actual welfare loss and also because of a
decline in the duality gap.

The general information relaxation approach follows the same logic as the basic example
above, with a multivariate state vector potentially replacing the wealth of the agent as an
argument in the value function, and multiple choice variables potentially replacing the single
choice variable, ¢. In addition, the general approach allows for partial information relaxations,
where the agent receives some but not complete information about the future. Formally,
we describe the structure of the agent’s information as a filtration F = {Fy, Fi,...Fr}, and
the information set of the relaxed problem as a finer filtration G = {Gy, Gi,...Gr}, where
Fi; € Gy C Fr. Then, we define the relaxed problem under the information structure G, and

we define the penalty process as:
A =B [V(230)|G] — Ee[V(ze1) | F] (15)

where the two expectation operators above are conditional on the corresponding information
sets, and x4, denotes the time-(¢ 4 1) state vector (to avoid introducing more notation, we
suppress the dependence of the penalty process on the choice variables and the exogenous
shocks).

Before we apply the information relaxation approach to specific models, we note that, in
general, there are two potential sources of numerical error in the solution of an equilibrium
model. First, errors are introduced by approximating a high dimensional state space of a
problem with a lower dimensional proxy. A second source of error arises when a continuous
state space is approximated by a finite number of points on a discrete grid. Our focus in

this paper is on the former, i.e., we provide an approach to obtain an upper bound on errors

13



introduced by the curse of dimensionality.’

3 Application 1: imperfect insurance with aggregate

uncertainty

We demonstrate the potential of the information relaxation methodology by computing
bounds on the welfare loss of individual agents in the incomplete market model of Krusell
and Smith (1998) (henceforth, KS). This model is a canonical example of a model with an
infinite dimensional state space. We review the model, the equilibrium concept, and their

solution approach briefly. We refer the reader to the original paper for details.

3.1 The model

The KS model is the Aiyagari model (Aiyagari, 1994) with aggregate uncertainty. Time is
discrete, t = (0,1,--- ,00). There is a continuum of agents of unit measure with identical

constant relative risk aversion preferences:
o[ S (16
0 T—~|
t=0
There is a single consumption good produced using a Cobb-Douglas production function:
ye = kil ", (17)

where the capital share parameter, 0 < a < 1, k and [ are capital and labor inputs, respectively,
and z is aggregate productivity. All agents are exposed to the aggregate shock z, which takes
one of two values z = {2, z} (with 2z, > z) and follows a Markov chain. Each period’s

output is partly used for consumption and partly added to the next-period capital stock,

®Discretization of a continuous state variable introduces a subtlety. Strictly speaking, our method produces
an upper bound only if the dual problem can be solved exactly. Otherwise, the welfare loss resulting from
discretization no longer guarantees that the value function of the discrete approximation of the relaxed problem
is an upward biased estimate of the value function of the original problem. Therefore, the dual problem has
to be solved exactly to obtain a provable upper bound of the welfare loss from adopting heuristic policies.
This can be achieved by providing the agent with perfect foresight and solving the resulting deterministic
problem exactly.
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resulting in the capital accumulation constraint:
ke =1 —=0)ki—1 + Y1 — 1. (18)

where ¢ is the capital depreciation rate.

Households collect capital rent and labor income each period. Individual labor income is
exposed to idiosyncratic employment shocks, ;. We assume that each agent supplies [ units
of labor if employed (g, = 1), and zero units if unemployed (¢; = 0). Employment shocks
are cross-sectionally independent, conditionally on the aggregate productivity shock. Thus,
based on the law of large numbers, the unemployed fraction of the population depends only
on the aggregate state. We denote the equilibrium unemployment rate conditional on z;, and
21 by up, and wu;, respectively. Then the aggregate labor supply in the two states u;, and u;
are given by Lj, = (1 —uy)l and L; = (1 — w;)l, respectively.

We look for a competitive recursive equilibrium. Let v, (k, €) denote the cross-sectional
distribution function at time ¢, defined over individual capital stock and employment status.
Aggregate output depends on the aggregate capital stock, K; = fw(k,e)dkde, and the
aggregate supply of labor. Input prices in competitive equilibrium are determined by their

marginal product, hence the capital rent » and the wage rate w are given by:

Ky

a—1 o
K,
r(Ky, Ly, Zt) = Oézt(—L ) ) w(Kt>Lt72t) = (1 - Oé)zt<—Lt) . (19)
t t

Individuals optimize their consumption-investment policies under rational expectations

about market prices, i.e., we assume that they correctly forecast the law of motion of the

equilibrium cross-sectional distribution of agents, denoted by:

Ve = H(r1,2-1) - (20)

Thus, optimal individual policies depend on the cross-sectional distribution of capital.
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The value function of the agents satisfies the Bellman equation:

I—y
c
Vilke,er, ze,00) = max : + BE; [Vig1 (ke €415 2041, Yrt1)]

c>0ki11>0 | 1 — y

Where kt-ﬁ-l = (]_ — (5 + Tt)k:t + wtl_i‘:t — Ct,

Vi1 = H(%; Zt); (21)

The main difficulty in computing the competitive equilibrium arises because of the dependence
of equilibrium prices on the cross-sectional distribution of agents. Thus, to solve for the

equilibrium, we must determine the law of motion, 111 = H (¢4, 2;)-

Solution approach. To make the problem tractable, KS use a low-dimensional approxi-
mation to the infinite-dimensional cross-sectional distribution 1);. This approach, introduced
in Krusell and Smith (1998), approximates all relevant information about the cross-sectional
distribution by its first K moments, {my,ms,- -, mg}. This results in a low-dimensional
fixed-point problem. In particular, in their analysis, KS restrict their attention to the cross-
sectional mean m;. For notational simplicity, from now on, we omit the sub-script in m; and
denote the distribution’s mean simply by m. To speed up computation further, KS posit an

approximate law of motion for m that is log-linear:
H : log myys = a® + b logmy z={zg, 2} (22)

In an approximate equilibrium, the equilibrium dynamics of the cross-sectional distribution
of capital in the economy must conform closely to the assumed law of motion, equation (22).

To solve the fixed-point problem, we start with an initial guess for the four constants
{a#,b*}. The individual optimization problem, i.e., equation (21), is solved for optimal policies
ki1 (ke, €, 20, my). With these policies, we simulate a long time series of the cross-sectional
distribution using a large sample cross-section of agents and compute the time-series of the

cross-sectional mean, m.% Next, we compute the ordinary least squares regression estimates

6See also, Young (2010), who uses a histogram over the capital grid to obtain the time-series of m, instead
of the simulating the path of m using a cross-section. While this approach speeds up the computation, the
equilibrium is approximate since agents approximate the cross-sectional distribution by its mean.
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of {a®,b*} based on equation (22). We re-solve the individual problem, i.e., equation (21),
with these updated estimates of {a*, b*}, and the new optimal policies are used to simulate a
new time-series of m. This is used to update {a® %}, and this process is continued till the

system converges.” In solving for the approximate equilibrium, we use parts of the code in

Maliar, Maliar, and Valli (2010).

3.2 The relaxed problem

We apply the approach that we described in Section 2 to compute an upper bound on the
welfare loss of individual agents by relaxing the information set of the agents. In particular, we
start with an initial cross-sectional distribution of capital across agents and draw a sequence
of aggregate shocks zg,--- , zr_1 and a panel of idiosyncratic employment shocks. Given the
aggregate and individual shocks in each period, we use the approximate equilibrium policies
of the agents and compute their choice of capital stock for the following period, which, in
turn, gives us the cross-sectional mean of the distribution of capital stock in the following
period, myyq. Using equation (19), we compute the prices, i.e., capital returns r and wages
w, corresponding to the realized sequence of aggregate shocks. To minimize the gap between
the value function of the relaxed problem and the value function of the original problem of
the agent, we apply a partial relaxation, revealing only future aggregate shocks but not the
agent’s idiosyncratic employment shocks.

We define the penalty according to equation (15):
A = By [‘Z+1<kt+1, Et41, 2415 mt+1)|gt} — B D/}t—&-l(k:t—l—l:ét—&—lv Zt—f—l:mt—i—l)l‘/—';f} ) (23)

where G, denotes the information set of the agent. In equation (23), G; contains the following
period’s realization of the aggregate shock z;,1 and the cross-sectional mean of capital m; 1,
but not £;,1. Therefore, we average over possible employed and un-employed future states.
Knowledge of the transition probabilities for z and e allows us to compute both the terms in

(23) above explicitly as a function of the decision variables of the relaxed problem, (k% ,, cf)

"We stop when the maximum change in the policy function k;;1 between successive iterations is less than
1078, and the change in the norm of the vector {a*,b*} between successive iterations is less than 1075.
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Finally, we use the budget constraint to eliminate k. Along a particular path, the penalty

)¢ is then a function of consumption ¢ only.

3.3 Results

We carry out our baseline analysis using the same parameters as in Krusell and Smith (1998).
The preference parameters are 5 = 0.99, and v = 1. On the production side, the parameters
are: the capital share a = 0.36, the depreciation rate § = 0.025, aggregate productivity
shocks take values z, = 1.01, z; = 0.99, and the corresponding aggregate unemployment rates
are up = 0.04, u; = 0.10. The transition probability matrix for (z,¢) is in Table 2.

All of our simulation results use a sample cross-section of N = 10° agents. Sample paths
are T = 103 long, and we average over 500 paths to compute unbiased estimates of the value
function of the relaxed problem, V*. In choosing the number of paths, we face a trade-
off —using more paths provides more precise estimates of V™, but increases the computational
time since the relaxed problem is solved path-by-path. We use a simulation-based approach to
estimate the expected utility, \A/, under the sub-optimal policy of the agent in the approximate
equilibrium. In particular, we simulate 10° future paths of aggregate and idiosyncratic shocks.
For each path, we compute realized prices r and w, as well as the realized utility. The sample
mean of the realized utilities is our estimate of V.

As in Section 2, we report the welfare loss as a fractional certainty equivalent. The
definition is analogous to equation (13):

K, — ko

k =
T]( 0) k(/) ?

(24)

where k£, is the root of the equation ‘70(14;(’)) = V¥ (ko). The numerator of 7 is the extra capital
needed by an agent following a sub-optimal policy to obtain the level of expected utility
equal to the value function of the relaxed problem with initial capital kg, keeping all other

state variables the same.
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Baseline results

The welfare loss of an agent depends on the current state: the agent’s capital stock, em-
ployment status, and the state of the aggregate economy captured by the realization of the
aggregate shock and the cross-sectional distribution of capital across the agents. In our
baseline results, we report welfare loss for an agent in a typical state of the economy, i.e.,
where the cross-sectional distribution of capital corresponds to the stochastic steady state.
Figure 4 summarizes the results. Panels A and B correspond to the state in which the
agent is unemployed (i.e., ¢ = 0) and employed (i.e., ¢ = 1), respectively. The aggregate
shock z is low. We see from both figures that individual welfare losses are small, especially
for high levels of initial capital. For example, an agent who is unemployed (Panel A) and has
capital stock equal to the bottom 5% of the distribution of capital stock, suffers a welfare loss
that is at most 0.13% in fractional certainty equivalent terms. This number drops to 0.04%
for an agent whose capital stock is equal to the distribution’s median. These numbers are
similar for an agent who is currently employed (Panel B). Thus, our results verify that the
approximation of Krusell and Smith based on moment truncation, produces an approximate
equilibrium in which agents come very close to fully optimizing their objectives when the

economy is in a typical initial state.

Transitional dynamics

Next, we consider how accurately the approximate solutions describe the transitional dynamics
of the economy following an unanticipated aggregate shock. The transitional dynamics of
equilibrium models is often of great interest. Yet the standard solution methods, such as that
of K8, are not intended to approximate equilibrium dynamics accurately when the economy
is away from its steady state. It is therefore unclear a priory how well such approximation
approaches perform under such experiments. This becomes an important issue when drawing
conclusions about transitional dynamics of the economy based on approximate numerical
solutions. The information relaxation approach is useful in this context because it provides a
provable upper bound which quantifies the approximation accuracy of numerical solutions in

such experiments.
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We illustrate this approach using two examples in which we compute the transitional
dynamics of the KS economy following two kinds of unanticipated shocks. In our first
experiment, the economy experiences a large transitory shock: a sudden loss of 50% of capital
stock of every agent. The second shock is a regime change: the economy gradually transitions
from its baseline equilibrium to the new stochastic steady state following an unanticipated,
five-fold, permanent increase in the volatility of the aggregate shock z.

Figure 5 shows the result for the scenario in which all agents suddenly lost half of their
capital stock. We assume that every agent knows that the economy has experienced the shock
which has depleted the aggregate capital stock of the economy to half its value. In other
words, they observe the mean m decline. Accordingly, they adopt the policy corresponding
to the new value of m, in the period in which the shock is realized. Since all structural
parameters of the economy have stayed unchanged, agents rebuild their capital stock over
the next several periods. Panels A and B correspond to the welfare loss of an agent who
is unemployed and employed, respectively, in the period in which the unanticipated shock
arrives. From these two figures we see that the upper bound to the welfare loss is larger
relative to the baseline scenario. For example, an agent who is unemployed (Panel A) and
has capital stock equal to the bottom 5% of the distribution, suffers a welfare loss that is at
most 0.30% in fractional certainty equivalent terms. The corresponding value was 0.13% in
the stochastic steady-state. Comparing Panels A and B, we see that the welfare losses are
similar in magnitude. Thus, our information relaxation method establishes that, following
the shock to capital stock, the moment truncation approximation generates relatively low
individual welfare loss.

Next we use the information-relaxation algorithm to quantify how well the Krusell-Smith
algorithm performs following a permanent five-fold increase in the volatility of the aggregate
shock, z. We assume that agents re-optimize and immediately switch to new policies following
the regime change. Figure 6 shows the result. Panels A and B correspond to the welfare loss
of an agent who is unemployed and employed, respectively, when the unanticipated shock
arrives. From these figures we see that the welfare loss is now larger by an order of magnitude

compared to that in the stochastic state. For example, an agent who is unemployed (Panel A)
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and has capital stock equal to the bottom 5% of the distribution, suffers a welfare loss that is
at most 3.0% in fractional certainty equivalent terms. The corresponding value was 0.13% in
the stochastic steady-state. These losses are similar in magnitude for an unemployed (Panel
A) and an employed agent (Panel B). Thus, our information relaxation method establishes
that, following the increase in aggregate volatility, the moment truncation approximation

potentially results in large welfare losses of individual agents.

4 Application 2: heterogeneous firms with aggregate

uncertainty

In this section we apply our method to the general equilibrium model of Khan and Thomas
(2008). This model features a heterogeneous cross-section of firms facing non-convex adjust-
ment costs and exposed to persistent aggregate and firm-specific productivity shocks. We use
information relaxation to estimate the upper bound to the loss in firm value from following
suboptimal investment policies. We briefly outline the model using the notation of Khan and

Thomas (2008). We refer the reader to the original paper for more details.

4.1 The model

A continuum of firms of unit mass use a decreasing returns to scale technology with production
function:

Y = Zt5tktantya (25)

where 0 < o < 1 and a4+ v < 1. Productivity has an aggregate component z and a
firm-specific component ¢. Both follow a Markov process, where z; € {z!,...,2":} and
Pz = 2|z = 2') = mij, ey € {e',...,e™e} and P(eyqy = €'ley = ') = ©;.® The firm hires
labor n; in period t after observing that period’s productivity. The capital accumulation
constraint is:

/th+1 = (]. - 6)kt + it y (26)

8These transition probabilities are computed using the discretization method of Rouwenhorst (1995)
applied to the AR(1) processes: logz’ = p,logz + 7. and loge’ = p.logz + n., where n, ~ N(0,0’%z) and

n. ~N(0,07 ).
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where i; is investment, ¢ is the depreciation rate of capital, and ~ is a constant which
captures the growth rate of labor-augmenting technological progress. Firms face non-convex
adjustment cost of capital: there are no adjustment costs if investment is within a small
range i; € [aky, bk;], where the parameters a < 0 < b. However, if investment is outside this
range, then the adjustment cost is equal to w;, where w; is the real wage rate and & is a
uniformly distributed random variable & ~ /[0, £] that is independent across firms and over

time.

Each period a firm chooses labor and investment to maximize its net present value:

1t €R, nt >0

V1(€t7 kt, &g, 2ty ,ut) = max |: (Ztétkf‘n;' — Wihy — Y:t — wt& ]{Zt ¢ [Clk't, bkt]})pt

N. N.
+ B Z Tij Z TV (€™ ku1s 27 pre41)
I=1

=1

Myl = H(Mm Zt)

3
V(5t7k?t;2t,,ut) = /f__lvl(ﬁtaktaf§ztaﬂt)d§7 (27)
0

where I{} is the indicator function, V(e k¢, &; 24, j1¢) is the present value of a firm with
idiosyncratic productivity &; and realized adjustment cost &, V' (e, ky; 2, f1¢) is the present
value of the firm prior to the realization of the adjustment cost &, p; is the price at which
current output is valued, and p is the cross-sectional distribution over individual firms’ capital
stock and idiosyncratic shocks. The presence of non-convex adjustment costs and persistent
differences in firm-productivity lead to non-linear firm policies. This prevents aggregation of
the cross-section of firms into a representative firm. Equilibrium prices, therefore, depend on
the cross-sectional distribution of capital stock and idiosyncratic shocks p; of all firms in the
economy, in addition to current aggregate productivity z;. Firms optimize under rational
expectations about market prices, i.e., we assume that firms correctly forecast the equilibrium
law of motion of the distribution, g1 = H (e, 2¢)-

The model is closed by assuming that a representative household owns all firms in the

economy. The household maximizes expected lifetime utility over consumption C; and labor
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Eq [i BU(C, Lt)] = Ey {i B (log C; — @Lt)} . (28)

t=0 t=0

An exact solution of equilibrium policies is infeasible in this model because of the
dependence of prices on the cross-sectional distribution of capital . Khan and Thomas (2008)
adopt the solution approach of Krusell and Smith (1998) and approximate the cross-sectional
distribution by its mean. To solve the model, they make two more approximations. First,

they assume that the mean m follows a log-linear law of motion:
H :logmyiy = a* + b logmy z={z .., 2N} (29)

Second, they assume that the dependence of the price p; on the mean takes the form:

log pr = a, + b} log my z={z' ... 2N}, (30)
The solution algorithm iteratively solves for optimal firm policies and the constants {a*, 0%, a7, b} N

such that the decision rules of individual firms are consistent with the aggregate savings and
leisure decisions of the representative household. For exact details see Khan and Thomas

(2008).

4.2 The relaxed problem

To compute the value function V% (e, k; 29, 110) of the relaxed problem for a particular initial
state of the economy (zo, o), we simulate paths of the economy starting from this state. The
relaxed information set contains the realization of all future aggregate productivity shocks;
however, it does not include future realizations of idiosyncratic productivity and adjustment

costs shocks. We define the penalty in the relaxed problem according to equation (15):

Av = Et[‘/}t+1(5t+1akt+1;2t+17ﬁt+1)|gt]_Et[‘A/t+1(5t+17k?t+15227ﬁt+1)|~7:t]

N¢ N, Ne
_ e 17/l . e 17/l ot
= E TV (€', Kia1s 21, Myg1) — E Tij E T V(€' kig1; 2", mygn) (31)
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Along a particular path zg, zq,--- , zr of the aggregate shock z, the time-t penalty \; is
therefore a function of the control k,. We solve for the optimal control of this relaxed
problem and obtain a single realization of the value function of the relaxed problem. We
repeat this over many simulated paths of aggregate shocks; the sample mean over these paths

is our estimate of VX(e, k; 20, fi0).

4.3 Results

We carry out our baseline analysis using the same parameters as in Khan and Thomas
(2008) (see Table 3 of this paper). We choose the number of states for the aggregate and
idiosyncratic shocks equal N, = 11 and N, = 15, respectively, as in their original paper. All
of our simulation results use a sample cross-section of N = 10° firms. Sample paths are
T = 103 long, and we average over 15000 paths to compute unbiased estimates of the value
function of the relaxed problem, V= (e, k; 29, ). Similar to our approach for the KS model in
Section 3, we use a simulation-based approach to estimate the expected utility, ‘7(5, k; 20, %0),
under the sub-optimal policy of the firm in the approximate equilibrium. In particular, we
simulate 10° future paths of aggregate and idiosyncratic shocks, and compute the realized
utility along each path. The sample mean of the realized utilities is our estimate of V. Since
there are no optimizations involved, this step is fast.

As in Section 2, we report the welfare loss as a fractional certainty equivalent. The
definition is analogous to equation (13):

77: k6 Y

(32)

where kj is the root of the equation %(k:é) = V®(ko). The numerator of 7 in equation (32),
is the extra capital needed by a firm following a sub-optimal policy to obtain the level of
expected utility equal to the value function of the relaxed problem with initial capital kg,

keeping all other state variables the same.
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Baseline Results

The loss in firm value depends on the aggregate state of the economy, i.e. the realization of
the aggregate shock and the cross-sectional distribution u, as well as the firm’s current state,
i.e. the capital stock £ and the idiosyncratic shock €. In our baseline results, we report the
loss in firm value in a typical state of the economy, i.e., where the cross-sectional distribution
corresponds to the stochastic steady state. In Figure 7 we present upper bounds on the loss
in firm value in three different idiosyncratic productivity states: the lowest state ¢ = ¢! in
Panel A, the middle state e = €% in Panel B, and the highest state ¢ = £'® in Panel C, all as
functions of the firm’s capital stock, k.

We see from Figure 7 that information relaxation bounds the welfare losses from following
sub-optimal policies in the near-rational equilibrium to be economically negligible. For
example, comparing across Panels A through C, we see that the upper bound is largest in
Panel A, corresponding to the state ¢ = €!. Even in this state, a firm with capital stock
equal to the bottom 5% of the distribution suffers a welfare loss that is at most 0.02% in
fractional certainty equivalent terms. In the same figure we see that a firm with capital stock
equal to the median of the distribution suffers a welfare loss that is less than 0.01%. For
higher firm-specific shocks, the upper bound is even smaller. In Panel C which corresponds
to e = !9, for example, the loss is essentially zero. In sum, this shows that firms do not incur
significant loss by following suboptimal policies under circumstances they typically encounter

in the near-rational equilibrium.

Transitional Dynamics

Next, we test the efficiency of the suboptimal policies by considering transitional dynamics
of the economy away from the stochastic steady-state. As in Section 3, we consider two
unanticipated shocks. In our first experiment, the economy experiences a large transitory
shock: a sudden destruction of 50% of capital stock of every firm in the economy. The second
shock is a regime change: the economy gradually transitions from its baseline equilibrium to
the new stochastic steady state following an unanticipated, five-fold, permanent increase in

the volatility of the aggregate shock z.
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Figure 8 shows the upper bound on welfare loss for the unanticipated destruction of 50%
of capital stock of firms. We see from these figures that the upper bound is now larger than
in the stochastic steady-state. For example, in Panel A which corresponds to the state e = €?,
a firm with capital stock equal to the bottom 5% of the distribution suffers a welfare loss
that is bounded at 1% in fractional certainty equivalent terms. The corresponding value in
the stochastic steady-state was 0.02%. The potential losses to firm value are even larger in
Panels B and C of Figure 8.

Figure 9 shows the upper bound on welfare loss for the unanticipated five-fold increase in
the volatility of aggregate productivity. We see from these figures that the upper bound is
once again much larger than in the stochastic steady-state. For example, in Panel A which
corresponds to the state ¢ = ¢!, a firm with capital stock equal to the bottom 5% of the
distribution suffers a welfare loss which is bounded from above by our information relaxation
approach at 1% in fractional certainty equivalent terms. The corresponding value in the
stochastic steady-state was 0.02%. The potential losses to firm value are slightly smaller in
Panels B and C of Figure 9.

The results of these two transitional dynamics experiments therefore indicate potentially
large losses in firm value in the Khan and Thomas economy when the economy experiences

large, unanticipated shocks.

5 Conclusion

Our analysis shows that information relaxation techniques can be effectively used to establish
the accuracy of approximate solutions for equilibria in heterogeneous-agent models. This
methodology is general, easy to implement, and has a wide range of potential applications
beyond the scope of this paper. For instance, information relaxation could be used to evaluate
the accuracy of solutions obtained using perturbation techniques. The latter approach is
widely used for DSGE models (for a recent application, see Mertens and Judd (2012) and
Mertens (2011)) because of its ability to handle models with high-dimensional state vectors,

and is supported by the computational software Dynare. More recently, Boppart, Krusell,
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and Mitman (2018) and Auclert, Barddczy, Rognlie, and Straub (2020) introduce an efficient
method to solve for the approximate equilibrium of a large class of heterogenous agent
models using a first-order perturbation around the stochastic steady-state. They assume
that the equilibrium is well approximated as a linear system in the space of perfect-foresight
shock sequences of finite length. Our method can be used to guarantee the quality of the
linearization assumption when their method is applied to solve for the equilibrium of a
particular model. Yet another natural application of our approach is to evaluating welfare
loss resulting from heuristic policies motivated by behavioral biases of the agents.

Finally, our objective has been to establish near-rationality of individual policies under
approximate solutions of equilibrium models, as measured by the associated welfare loss. A
small welfare loss implies that individual agents have little to gain by refining their strategies.
However, there is no guarantee that price dynamics in such a near-rational economy is similar
to that in an exact equilibrium of the original model. Small mistakes by individual agents may
potentially lead to large differences in equilibrium outcomes (e.g., Akerlof and Yellen (1985),
Jones and Stock (1987), Naish (1993), Krusell and Smith (1996), Hassan and Mertens (2011)).
An important and challenging task for future research is to develop general quantitative tools
for evaluating the effect of small deviations from individual rationality on equilibrium price

dynamics.
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Appendix

A Euler equations and welfare loss: an example

The following example highlights the distinction between Euler equation errors and welfare
loss. Consider the consumption and portfolio choice problem of an infinitely lived agent with
CRRA preferences (Samuelson (1969) and Merton (1971)). The agent has access to a single
risk-free asset and a single risky asset with independent and identically distributed returns.
Optimal consumption and portfolio policies solve the Bellman equation:

0o Olf’y
_ t Lt
V(1Wo) = max By [25 — (33)
subject to the budget constraint:
Wi =W = Gy) (Rf + ¢ (Risr — Rf)) : (34)

In equation (33), 3 is the time-preference parameter and ~ is the coefficient of relative risk
aversion. ¢ is the share of the investor’s wealth in the risky asset. In equation (34), R, and
R are gross returns of the risk-free and risky asset, respectively. The optimal portfolio policy
in this setting is a constant ¢ which maximizes the certainty equivalent of next period wealth
(see Samuelson (1969)):

1—
Bl-7 = mqe}x E, |:<Rf + ¢<Rt+1 — Rf)) Py} .

The optimal consumption policy is to consume a constant fraction of wealth, i.e., C; = (*W,.

As suboptimal policies, consider budget-feasible policies with a constant consumption-
wealth ratio ¢ = Cy/W,;. Assume v > 1. The expected utility under such policies, indexed by
(¢, is given by

o0 Cl—’y Wl—ry 17,}/ [e’e)
U(Ws,¢) = Ey [Z Btt_] = ol_g S pH(1 - U RO
t=0 -7 -7 t=0
1/~ o
While the optimal choice is ¢* =1 — | fB'™? , there is a critical value Cuje = 1 — 2 .

such that for any ¢ > (. the expected utility of the investor is infinitely negative.
We now show that the Euler residuals remain finite even with infinite loss in utility. The
Euler equation errors are

- -
qo=1-ms( )R] = 1-m (-0 o)) Bl =12,
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where R}, = Ry, and R}, = Ry41 is the return on the risky asset. Since

Bif5((= )R+ olRes = Rp)) R =1 (3)

g =1— (11__5*)7. (36)

Thus, the Euler equation errors are finite for (* < ¢ < 1, while the utility loss is infinite.

we conclude that
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Table 1: Parameter values used in the consumption-saving problem of Section 2.

Parameter Symbol Value
Probability of high state D 0.9
Labor income, high state YH 4
Labor income, low state YL 1
Risk-free interest rate R 1.02
Agent’s time-preference parameter 16 0.9
Agent’s risk aversion ¥ 5
Horizon T 100

Table 2: Transition matrix for the model of Krusell and Smith in Section 3.

z, €/, € (2,0) (2, 1) (24,0) (24, 1)

(2p,0) 0.525000 0.350000 0.031250 0.093750
( ) 0.038889 0.836111 0.002083 0.122917
(z4,0) 0.093750 0.031250 0.291667 0.583333
( ) 0.009115 0.115885 0.024306 0.850694

Table 3: Baseline parameters of the Khan and Thomas (2008) model.

g B 0 o v ¢ P Oy, Pe One b §
1.016 0.977 0.069 0.256 0.640 2.400 0.859 0.014 0.859 0.022 0.011 0.0083
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Figure 1: Ideal penalty. The ideal penalty A} for the consumption-saving problem of Section 2,
plotted as a function of time-1 consumption choice ¢;. We use the parameters shown in Table 1.
The agent believes the probability of yz is 0.89. Panel A corresponds to the time-1 wealth wy = 4,
while Panel B corresponds to w; = 5. The solid line is the penalty function in the state yo = yp,
while the dash-dot line is the penalty in the state yo = yr. The dash line shows the expected value
of the penalty over the two possible realizations of 5. This expectation is identically equal to zero.

A. Value functions B. Penalty using V C. No penalty

',—.~~\

Figure 2: Welfare loss, upper bound. Panel A shows the relative ordering of the upper bound
VR, the agent’s value function under the optimal policy V, and an unbiased estimate of the agent’s
expected utility from adopting sub-optimal policies V. While the true probability p of a high income
shock, y is 0.9, the sub-optimal policies correspond to the optimal policy for realization of yy that
equals p = 0.89. The solid line in Panel B shows the upper bound of certainty equivalent loss from
adopting the sub-optimal policy, while the dot-dash line shows the actual certainty equivalent loss.
The upper bound is computed using V. Panel C shows the upper bound and the actual certainty
equivalent loss with no penalty for foresight. We use the parameters shown in Table 1.
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15 20

Certainty equivalent loss for different sub-optimal policies. Panels A, B, and C

correspond to the certainty equivalent loss from adopting policies with varying degrees of sub-
optimality. While the true probability p of a high income shock, yyr is 0.9, the sub-optimal policies
in panels A, B, and C correspond to the optimal policy where the agent’s belief for realization of
yg equals p = 0.87, p = 0.88, and p = 0.89, respectively. We use the parameters shown in Table 1.
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Figure 4: Upper bound on welfare loss: Model of Krusell and Smith, stochastic steady-state.
Panels A and B show the upper bound of an agent’s welfare loss as a function of his capital stock,
k, when he is unemployed and employed, respectively. The welfare loss is measured as a fractional
certainty equivalent loss 7, which is defined in equation (24). The aggregate state of the economy
is low. The value function of the relaxed problem is estimated by averaging over 500 paths of
aggregate shocks. The shaded area shows the cross-sectional distribution of capital and corresponds

to the stochastic steady-state distribution. Dashed lines are 95% Monte Carlo confidence bounds.
All parameters values are identical to those in Krusell and Smith (1998).
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Figure 5: Upper bound on welfare loss: Model of Krusell and Smith, transitional dynamics
following 50% destruction of capital stock of all agents. Panels A and B show the upper bound of
an agent’s welfare loss as a function of his capital stock, &, when he is unemployed and employed,
respectively. The welfare loss is measured as a fractional certainty equivalent loss 7, which is defined
in equation (24). The aggregate state of the economy is low. The area under the shaded curve shows
the cross-sectional distribution of capital after the permanent shock is realized. The value function
of the relaxed problem is estimated by averaging over 500 paths of aggregate shocks. Dashed lines

are 95% Monte Carlo confidence bounds. All parameters values are identical to those in Krusell and
Smith (1998).

36



B:e=1
6 6
\
\
a AEEEA\Y
:‘E\ \ j'é‘ W
g W z '\
5 W\ 5 A\
& b 2, b
g W\ g 0\
= =
\ 3
2F Qe 2F \N o
D\ N
\:~~ \:~~‘
— e B R e T T pe—
\5_: ________ - —
0 0
25 50 75 25 50 75
k

Figure 6: Upper bound on welfare loss: Model of Krusell and Smith, transitional dynamics
following five-fold increase of aggregate volatility. Panels A and B show the upper bound of an
agent’s welfare loss as a function of his capital stock, k, when he is unemployed and employed,
respectively. The welfare loss is measured as a fractional certainty equivalent loss 7, which is defined
in equation (24). The aggregate state of the economy is low. The area under the shaded curve
shows the cross-sectional distribution of capital in the stochastic steady-state. The value function of
the relaxed problem is estimated by averaging over 500 paths of aggregate shocks. Dashed lines are

95% Monte Carlo confidence bounds. All parameters values are identical to those in Krusell and
Smith (1998).
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Figure 7: Upper bound on welfare loss: Model of Khan and Thomas, stochastic steady-state.
Panels A, B, and C show the upper bound of loss in firm value as a function of the firm’s capital
stock, k, for three different idiosyncratic shocks, e = 1, ¢ = 8, and € = 15, respectively. The loss is
measured as a fractional certainty equivalent loss 7, which is defined in equation (32). The aggregate
state of the economy is low. The area under the shaded curve shows the cross-sectional distribution
of capital in the stochastic steady-state, conditional on e. The value function of the relaxed problem
is estimated by averaging over 15000 paths of aggregate shocks. Dashed lines are 95% Monte Carlo

confidence bounds. All parameters values are identical to those in Khan and Thomas (2008) and
are also reported in Table 3.
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Figure 8: Upper bound on welfare loss: Model of Khan and Thomas, transitional dynamics
following 50% destruction of capital stock of all firms. Panels A, B, and C show the upper bound
of loss in firm value as a function of the firm’s capital stock, k, for three different idiosyncratic
shocks, ¢ = 1, ¢ = 8, and ¢ = 15, respectively. The loss is measured as a fractional certainty
equivalent loss 7, which is defined in equation (32). The aggregate state of the economy is low.
The area under the shaded curve shows the cross-sectional distribution of capital immediately after
the economy-wide capital loss is realized. The value function of the relaxed problem is estimated
by averaging over 15000 paths of aggregate shocks. Dashed lines are 95% Monte Carlo confidence

bounds. All parameters values are identical to those in Khan and Thomas (2008) and are also
reported in Table 3.
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Figure 9: Upper bound on welfare loss: Model of Khan and Thomas, transitional dynamics
following five-fold increase of aggregate volatility. Panels A, B, and C show the upper bound of
loss in firm value as a function of the firm’s capital stock, k, for three different idiosyncratic shocks,
e =1, e =8, and € = 15, respectively. The loss is measured as a fractional certainty equivalent loss
71, which is defined in equation (32). The aggregate state of the economy is low. The area under
the shaded curve shows the cross-sectional distribution of capital in the stochastic steady-state,
conditional on €. The value function of the relaxed problem is estimated by averaging over 15000
paths of aggregate shocks. Dashed lines are 95% Monte Carlo confidence bounds. All parameters
values are identical to those in Khan and Thomas (2008) and are also reported in Table 3.
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