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1 Introduction

The equity premium puzzle (Mehra and Prescott, 1985) and the risk-free rate puzzle (Weil,
1989) are two major puzzles in the asset pricing literature. In standard representative-agent
asset pricing models with the power utility function, risk aversion and the intertemporal
elasticity of substitution (IES) are reciprocally related. This reciprocal relation poses a
challenge to jointly explain these puzzles. On the one hand, the large equity premium in the
data requires the representative agent to be implausibly risk averse. On the other hand, such
strong risk aversion—needed to generate the large equity premium—generates an implausibly
high risk-free rate, which is at odds with the low rate observed in the data.

The long-run risks (LRR) model proposed in Bansal and Yaron (2004) constitutes an
important contribution in the asset pricing literature for its ability to jointly explain the
above two puzzles, as well as the return predictability puzzle that dividend yields predict
the stock market return. The Epstein-Zin preferences used in the LRR model sever the tight
link between risk aversion and the IES. As a result, both risk aversion and the IES can be
made large enough that the standard LRR model can generate the large equity premium
and the low risk-free rate simultaneously. Furthermore, the preference for early resolution
of uncertainty and the aversion to the long-run consumption risk help to further amplify
the equity premium, and drive both the price-dividend ratio and the stock market return,
thereby giving rise to the return predictability of the price-dividend ratio.

The standard LRR model is, however, silent about the variance premium puzzle: (i) the
variance premium—defined as the difference between the expected stock market variances
under the risk-neutral and objective measures—is too large and volatile in the data to be
explained by consumption-based asset pricing models; and (ii) the variance premium predicts
the stock market return.

In this paper we generalize the standard LRR model in Bansal and Yaron (2004) by
incorporating recursive smooth ambiguity aversion preferences from Klibanoff et al. (2005,
2009) to further account for the variance premium puzzle in addition to the aforementioned
puzzles. The recursive smooth ambiguity aversion preferences allow for a three-way sepa-
ration between ambiguity aversion, risk aversion, and the IES. The Epstein-Zin preferences
are embedded as a special case when ambiguity aversion is equal to risk aversion. As the
Epstein-Zin preferences contribute to the success of the standard LRR model by separating
between risk aversion and the IES, the further separation of ambiguity aversion achieved by
the recursive smooth ambiguity aversion preferences enhances the flexibility of the general-
ized LRR model. The generalized LRR model can explain all of the aforementioned asset
pricing puzzles (including the variance premium puzzle) with risk aversion less than 5.
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In our generalized LRR model, the representative agent is averse to ambiguity about
economic volatility. Consistent with the notation of “Knightian uncertainty” (Knight, 1921;
Keynes, 1936), we refer to ambiguity as the situation where the decision maker is uncertain
about probability measures due to, for example, very imprecise information, and refer to
risk as the situation where there exists a probability measure for certain to guide choice.
Specifically, we assume that there exists a set of possible conditional probability distributions
regarding economic volatility and the agent is ambiguous about which conditional distribu-
tion will occur. Roughly speaking, the size of the set of possible distributions measures the
degree of ambiguity. Our notation of ambiguity can also be interpreted as model uncertainty
in the robustness theory developed by Hansen (2007) and Hansen and Sargent (2001, 2007,
2008), which is about decision-making that is robust to possible model misspecification.

The generalized LRR model is not only flexible but also tractable. Specifically, the eq-
uity premium, the risk-free rate, and the variance premium all admit closed-form expressions
under the log-linearized model. The closed-form expressions are similar to those in Bansal
and Yaron (2004), but differ by an important additional term that captures the ambiguity
aversion channel. This additional term in the expression of the equity or variance premium
measures ambiguity-induced compensation, which increases with either ambiguity or ambi-
guity aversion. We thus refer to this term as the “ambiguity premium.” Quantitatively, we
show that the standard LRR model with an ambiguity-neutral agent has difficulty matching
the mean and volatility of the variance premium in the data. Introducing smooth ambi-
guity preferences results in an eightfold increase in the level of the model-implied variance
premium to match the data, and also enables the model to reproduce about 25% of the
volatility of the variance premium in the data. Furthermore, we find that the ambiguity
premium component accounts for 77% of the variance premium, and for 40% of the equity
premium. Our findings suggest that a large portion of the variance premium is attributable
to the ambiguity aversion channel, and that ambiguity aversion has a much larger effect on
the variance premium than on the equity premium.

The ambiguity aversion channel amplifies the variance premium by distorting the ambiguity-
averse agent’s beliefs. As detailed later, the variance premium in the generalized LRR model
can be written as a weighted average of the model-specific variance premiums that would
prevail under a specific probability distribution (i.e., model). The corresponding weight is
the distorted probability of the specific scenario; that is, the real probability distribution
distorted or tilted toward bad states. The distortion is caused by the agent’s pessimistic
beliefs. The more ambiguity averse the agent is or the more ambiguity there is, the more
tilted toward bad states the weights are. As a result, if the agent is more ambiguity averse
or the environment becomes more ambiguous, more compensation is demanded, resulting in
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a higher variance premium. A similar intuition applies to other asset pricing moments. As
such, the ambiguity aversion channel arising from the three-way separation provides a new
amplification mechanism that helps the generalized LRR model to better match the asset
pricing moments in the data.

In the standard LRR model, the equity premium is sizable and time-varying, but the
variance premium is small and constant. This outcome implies that the variance premium has
zero volatility and no power of predicting the stock market return. Through the ambiguity
aversion channel, the generalized LRR model generates a time-varying variance premium
and the return predictability as more ambiguity drives up both the variance premium and
the stock market return. The generalized LRR model is able to match about 25% of the
volatility of the variance premium observed in the data. Our findings suggest that both time
variation and the return predictability of the variance premium are both closely tied to time
variation in ambiguity, rather than the underlying economic volatility.

Lastly, we make inferences about the latent long-run risks and ambiguity via particle
filtering based on Schorfheide et al. (2018). Specifically, we derive a nonlinear state-space
system that relates the unobserved state to the observables based on the annual data of
consumption and dividend growth rates, the market return, the risk-free rate, the price-
dividend ratio, and the variance premium. The state-space system is linear conditional on
the latent volatility and ambiguity states, and it can be used to back out the latent state
variables via particle filtering (see Herbst and Schorfheide, 2015). Using the filtered state
variables, we find that the generalized LRR model tracks the observed data series reasonably
well, particularly the evolution of the variance premium over time. The state-space approach
also allows us to conduct variance decomposition to analyze the relative contributions of the
long-run risks, economic volatility, and ambiguity to the volatilities of the stock market
return, the risk-free rate, the price-dividend ratio, and the variance premium. The variance
decomposition results suggest that almost all time variation in the variance premium is
driven by time variation in ambiguity. Moreover, the variabilities of the stock market return
and the risk-free rate are, in almost equal parts, attributable to the variations in economic
volatility and ambiguity.

This paper contributes to the literature on the long-run risks asset pricing models. Fol-
lowing the seminal work by Bansal and Yaron (2004), there have been important subsequent
work to explain asset pricing puzzles for the term structure (Piazzesi and Schneider, 2007),
for bond risk premiums (Bansal and Shaliastovich, 2013), for credit spreads (Chen, 2010),
for option prices ((Drechsler and Yaron, 2011; Eraker and Shaliastovich, 2008), for cross-
sectional stock returns (Bansal et al., 2005; Hansen et al., 2008; Bansal et al., 2009), for
the wealth-consumption ratio (Ai, 2010), and for exchange rate (Colacito and Croce, 2011).
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Building upon the literature on ambiguity, robustness, and asset pricing,1 this paper intro-
duces smooth ambiguity preferences into the long-run risks model in an attempt to solve
the variance premium puzzle. The present paper is thus closely related to Branger et al.
(2016) and Gallant et al. (2018). These papers also introduce smooth ambiguity preferences
into the long-run risks model. Branger et al. (2016) assumes that the conditional volatility
of consumption growth is unobservable and constructs the distribution of the unobserv-
able volatility based on analysts’ GDP forecasts in the Survey of Professional Forecasters.
Gallant et al. (2018) assumes that the long-run risks component is unobservable and in-
fers the distribution of the unobservable long-run risks component via Kalman filtering.
Complementing these studies, the present paper takes a dramatically different approach to
incorporate smooth ambiguity preferences. Both of the above papers assume that the agent
is ambiguous about the value of a specific variable. Our approach instead models the agent
as facing ambiguity about the distribution of a certain variable. Our notion of ambiguity is
based on Knightian uncertainty; that is, ambiguity refers to the situation where no known
probabilities are available.

Our paper also contributes to the literature on the variance premium (e.g., Bakshi et al.,
2015; Bollerslev et al., 2009; Carr and Wu, 2009; Todorov, 2009). In order to explain the
variance premium puzzle, Drechsler and Yaron (2011) introduce jumps into the standard
LRR model and show that the extended model is able to generate many of the quantita-
tive features of the variance premium. Rather than generalizing cash flow processes in the
standard LRR model, these authors note that one could generalize the preferences further:
“[a] possible direction for generating interesting transient dynamics like the ones documented
here is by generalizing preferences to include features of ambiguity aversion and a desire
for robustness.” A few prior studies provide ambiguity-based explanations for the variance
premium puzzle. Drechsler (2013) extends the Bansal-Yaron model in a continuous-time ro-
bust control framework to further explain anomalies in the option market, namely the large
magnitude of the variance premium and the “volatility skew.” To account for these anoma-
lies and properties of equity returns and the risk-free rate, Drechsler (2013) develops a very
flexible framework in which ambiguity operates through multiple channels. So it is very dif-
ficult to know which channels are important to explain a certain anomaly (e.g., the variance
premium). In contrast, our model is parsimonious, aiming to primarily explain the variance

1See Epstein and Wang (1994), Chen and Epstein (2002), Cao et al. (2005), Garlappi et al. (2007),
Epstein and Schneider (2008), Leippold et al. (2008), Routledge and Zin (2009), Drechsler (2013), Collard
et al. (2018), and Shi (2019) for asset-pricing applications of multiple-priors models, and Ju and Miao
(2012), Jahan-Parvar and Liu (2014), Ai and Bansal (2018), Miao et al. (2019) for asset-pricing applications
of smooth ambiguity models. See Hansen and Sargent (1999), Hansen and Sargent (2001), Anderson et al.
(2003), Uppal and Wang (2003), Maenhout (2004), Liu et al. (2005), and Cagetti et al. (2015) for models of
robustness and applications.
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premium puzzle through the channel of ambiguity in economic volatility. Furthermore, our
model reproduces the large variance premium without introducing jumps, whereas shutting
off the jumps channel in Drechsler (2013) would reduce the variance premium by an order of
magnitude. Lastly, the multiple-priors approach used in Drechsler (2013) is embedded as a
special case of smooth ambiguity preferences in this paper in which the ambiguity aversion
coefficient is infinitely large. As a result, relative to Drechsler (2013), we can separately
examine the role of ambiguity aversion in generating the dynamics of the variance premium,
and estimate the magnitude of the ambiguity aversion coefficient based on particular filter-
ing. Miao et al. (2019) show that the regime-switching model in Ju and Miao (2012) can
generate a sizable variance premium as in the data. However, due to lack of tractability,
their model does not admit closed form expressions for the variance premium and can only
be numerically solved. In contrast, our generalized model is not only tractable, but can also
distinguish between risk and ambiguity which are inseparable in their paper in which the
agent’s belief, the only state variable, drives both.

The rest of the paper is organized as follows. Section 2 presents the generalized LRR
model. We then discuss its asset pricing implications using analytical log-linearization ap-
proximations in Section 3. In Section 4, we describe the data sample, our calibration method-
ology, and we discuss our central findings. Section 5 concludes. We delegate proofs and
details in the log-linearization analysis to Appendix A and particle-filter-based estimation
to Appendix B.

2 A Generalized Long-Run Risks Model

We generalize the standard long-run risks model of Bansal and Yaron (2004) by introducing
recursive smooth ambiguity aversion preferences. Our generalized LRR model departs from
the Bansal-Yaron model in terms of modeling of ambiguity and ambiguity aversion.

As in the standard LRR model, the dynamics for consumption and dividend growth rates,
∆ct+1 ≡ log (Ct+1/Ct) and ∆dt+1 ≡ log (Dt+1/Dt), respectively, are given by

∆ct+1 = µc + xt + σtεc,t+1, (1)

∆dt+1 = µd + φxt + ϕdσt(ρdεc,t+1 +
√

1− ρ2
dεd,t+1), (2)

xt+1 = ρxxt + ϕxσtεx,t+1, (3)

where εc,t+1, εd,t+1, and εx,t+1 have independent standard normal distributions, µc and µd

represent their respective unconditional average growth rates, and σt represents fluctuating
economic volatility. The small persistent component xt captures the long-run consumption
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risks in the economy. Dividend growth is exposed to the long-run risks, but also to short-run
consumption risks captured by the coefficient of correlation ρd.

Ambiguity. As one of key departures from Bansal and Yaron (2004), we introduce
ambiguity into the model such that the agent is ambiguous about economic volatility σ2

t .
Specifically, the economic volatility follows the following process

σ2
t+1 = σ2 + ρσ

(
σ2
t − σ2

)
+ ϕσεσ,t+1, (4)

where the shock εσ,t+1 has a conditional normal distribution with its mean z̃t being stochastic
and normally distributed

εσ,t+1 ∼ N (z̃t, 1) , (5)

z̃t ∼ N
(
0, τ 2

t

)
. (6)

The degree of ambiguity is determined by τ 2
t and evolves as follows:

τ 2
t+1 = τ 2 + ρτ

(
τ 2
t − τ 2

)
+ ϕτσtετ,t+1, (7)

where the shock ετ,t+1 has a standard normal distribution. Absent ambiguity (i.e., τ = 0),
the generalized LRR model reduces to the Bansal-Yaron model.

Our notation of ambiguity builds upon “Knightian uncertainty” (Knight, 1921; Keynes,
1936) in the sense that the agent is uncertain about the conditional probability distributions
of σ2

t . It can also be interpreted as model uncertainty in robustness theory.2 From the
perspective of the agent, there are an infinite number of possible “models” for the process
of σ2

t because each random draw z̃t = z leads to a “model” or a conditional distribution of
N (σ2 + ρσ (σ2

t − σ2) + ϕσz, ϕ
2
σ) regarding the economic volatility next period.

Depending on whether ambiguity is time-invariant or not, there are two cases to consider.
We refer to the homoskedastic-ambiguity case with constant ambiguity (i.e., τt ≡ τ for
any time t) as Case I of the generalized LRR model, or simply as “gLRR1.” We will show
shortly that with a sufficiently large coefficient of ambiguity aversion, this case can generate
a large enough variance premium to match the magnitude in the data. However, the variance
premium in this case is constant. This motivates us to consider the heteroskedastic-ambiguity
case with fluctuating ambiguity. We refer to this case as Case II of the generalized LRR
model, or simply as “gLRR2.” Note that in both cases the equity premium is time-varying,
driven partly by fluctuating economic volatility. Moreover, economic volatility also feeds
back positively into ambiguity because the diffusion term in Eq. (7) is proportional to σt.

2For this reason, we use ambiguity and model uncertainty interchangeably in the paper.
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In times of greater volatility, the agent faces more ambiguity as the dispersion among all
possible models increases.

The timing in the model is as follows. At the beginning of period t when the agent makes
consumption-investment decisions, he observes the history of consumption and dividends up
to the current period st ≡ {C0, D0, C1, D1, ..., Ct, Dt}. However, he does not observe z̃t and
thus faces ambiguity as described above. Ambiguity is only resolved following the realization
of z̃t after decisions have been made. Then in the end of period t, all shocks (e.g., εx,t+1)
occur and then consumption and dividends are realized. The same sequence of events repeats
in all future periods.

Before we turn to the recursive smooth ambiguity aversion preferences, it is convenient
to express the dynamics of the system in vector form:

Yt+1 = µ+ FYt +Gtεt+1, (8)

where

Yt ≡


∆ct

∆dt

xt

σ2
t

τ 2
t

 , µ ≡


µc

µd

0

(1− ρσ)σ2

(1− ρτ ) τ 2

 , εt+1 ≡


εc,t+1

εd,t+1

εx,t+1

εσ,t+1

ετ,t+1

 ,

and

F ≡


0 0 1 0 0

0 0 φ 0 0

0 0 ρx 0 0

0 0 0 ρσ 0

0 0 0 0 ρτ

 , Gt ≡


σt 0 0 0 0

ρdϕdσt
√

1− ρ2
dϕdσt 0 0 0

0 0 ϕxσt 0 0

0 0 0 ϕσ 0

0 0 0 0 ϕτσt

 .

Due to ambiguity, the agent has a different view on the conditional expectation of Yt+1 under
a different dynamics: given a particular realization of z̃t = zt,

Eπz,t [Yt+1] = (µ+ FYt) + µt,

where we use Eπz,t to denote the conditional expectation operator under the condition dis-
tribution fixing a particular realization of z̃t, and

µt ≡ (0, 0, 0, ϕσzt, 0)′ . (9)
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µt reflects the effect of ambiguity on the conditional mean of Yt+1 perceived by the agent.
Note that because ambiguity only affects the volatility process σt, all elements of µt are zero
except the second-to-last element. Recall that from Eq. (6), µt follows a normal distribution
µt ∼ N (0, GtΩtG

′
t), where

Ωt ≡ diag
([

0, 0, 0, τ 2
t , 0
])
.

Although we focus on the above specification for the sake of simplicity, ambiguity could also
be introduced with a more general structure. For example, we could allow for ambiguity in
the process of the long-run risks (e.g., τ 2

x,t) and other processes. We leave these extenions of
the model for future research.

Smooth Ambiguity Aversion. As another key departure from Bansal and Yaron
(2004), the representative agent has the recursive smooth ambiguity aversion preferences,
proposed by Hayashi and Miao (2011) and Ju and Miao (2012) who generalize the model of
Klibanoff et al. (2009).

Let Vt (C) denote the continuation utility at date t. Following Ju and Miao (2012), assume
that Vt (C) satisfies the following recursive equation:

Vt (C) =
[
(1− β)C1−ρ

t + β {Rt (Vt+1 (C))}1−ρ] 1
1−ρ , (10)

Rt (Vt+1 (C)) =

{
Eµt
(
Eπz,t

[
V 1−γ
t+1 (C)

]) 1−η
1−γ

} 1
1−η

, (11)

where Rt (Vt+1 (C)) is an uncertainty aggregator that maps an st+1-measurable random vari-
able Vt+1 (C) to an st-measurable random variable, and Eπz,t denotes the conditional expec-
tation operator that is applied to εt+1 under the distribution N (zt, I) given a particular
realization zt, and Eµt denotes the conditional expectation operator that is applied to µt un-
der the distribution N (0, GtΩtG

′
t). In addition, β ∈ (0, 1) represents the subjective discount

factor, 1/ρ > 0 represents the IES, γ > 0 represents the degree of risk aversion, and η ≥ γ

represents the degree of ambiguity aversion.
The major advantage offered by the recursive smooth ambiguity aversion preferences

is the three-way separation among ambiguity aversion, risk aversion, and the IES. The
coefficient of ambiguity aversion η is tied to the curvature of the uncertainty aggregator
Rt (Vt+1 (C)) in Eq. (11). When η = γ, the smooth ambiguity preferences reduce to the
Epstein-Zin preferences. In this case, the agent is ambiguity-neutral and computes the cer-
tainty equivalent value as

(
Eµt ◦ Eπz,t

[
V 1−γ
t+1 (C)

]) 1
1−γ .

When η > γ, the agent is ambiguity averse. The intuition is the following. At time t,
each possible realization of z̃t leads to a different conditional distribution (or “model”) of Yt+1,
resulting in the certainty equivalent of expected continuation value,

(
Eπz,t

[
V 1−γ
t+1 (C)

]) 1
1−γ .
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Uncertainty resulting from z̃t leads to ambiguity about the above certainty equivalent of
expected continuous value which changes with the realization of z̃t. Aversion to such ambi-
guity implies that the aggregate certainty equivalent value Rt (Vt+1 (C)) evaluated across all
possible “models” is lower than it would be in an ambiguity-neutral case; that is,

Rt (Vt+1 (C)) <
(
Eµt ◦ Eπz,t

[
V 1−γ
t+1 (C)

]) 1
1−γ ,

which holds if and only if η > γ. Note that when η > γ, the compound conditional distribu-
tions for εt+1 and µt cannot be reduced to a single distribution in (11). This irreducibility
of compound distributions captures ambiguity aversion.

For recursive smooth ambiguity aversion preferences, Ju and Miao (2012) show that the
pricing kernel, conditional on a particular model with conditional mean µt = σtGzt, is given
by

Mzt,t+1 = β

(
Ct+1

Ct

)−ρ(
Vt+1

Rt (Vt+1)

)ρ−γ(Eπz,t [V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)

−(η−γ)

. (12)

The last term on the right-hand side of (12) arises from ambiguity aversion. When the agent
is ambiguity neutral (i.e., η = γ), this term vanishes and the pricing kernel reduces to the
same one as studied in Bansal and Yaron (2004). In the general case with ambiguity aversion
(i.e., η > γ), this adjustment term exists, capturing the feature that an ambiguity averse
agent puts a higher weight on the states in which his continuation value is lower. To prepare
for the log-linearization analysis, we derive an equivalent expression for the pricing kernel
below:

Mzt,t+1 = βθ
(
Ct+1

Ct

)−ρθ
R
−(1−θ)
c,t+1︸ ︷︷ ︸

≡MEZ
t+1

(
βθEπz,t

[(
Ct+1

Ct

)−ρθ
Rθ
c,t+1

])− η−γ
1−γ

︸ ︷︷ ︸
≡MA

zt,t

, (13)

where Rc,t+1 denotes the return on the consumption claim and θ ≡ 1−γ
1−ρ .

3 Asset Pricing Implications

We now provide a log-linearization analysis of the generalized long-run risks model with
smooth ambiguity preferences. The log-linearized model is so tractable that we are able to
derive closed-form expressions for the risk-free rate, the equity premium, and the variance
premium. The closed-form expressions are very useful to bring out important asset pricing
implications of the model.
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Log-linearization. Following Campbell and Shiller (1988), we first log-linearize Rc,t+1

as follows
rc,t+1 = logRc,t+1 = κ0 + κ1vt+1 − vt + ∆ct+1, (14)

where vt ≡ log (Vt) denotes the logarithm of the wealth-to-consumption ratio Vt. The coef-
ficients κ1 = exp(v)

exp(v)+1
and κ0 = log (exp (v) + 1)− κ1v are determined based on the long-run

mean of the wealth-to-consumption rate v.
The rest of this section will discuss the log-linearization results and the model’s asset

pricing implications. The discussion will focus on the return on the consumption claim for
the sake of simplicity. The same argument also applies to the equity return on the dividend
claim. We derive the results for the equity return in the appendix and use them for numerical
analysis in the next section.

The model economy is characterized by the state variables xt, σ2
t , and τ 2

t . We conjecture
that the logarithm of the wealth-to-consumption ratio vt is affine in the state variables:

vt = A0 + Axxt + Aσσ
2
t + Aττ

2
t , (15)

where the log-linearization coefficients A0, Ax, Aσ, Aτ are determined via the Euler condition
(see Appendix A.1 for the derivation):

A0 =
log β + κ0 + (1− ρ)µc + κ1Aσ (1− ρσ)σ2 + κ1Aτ (1− ρτ ) τ 2 + 1

2
θ (κ1Aσϕσ)2

1− κ1

,(16a)

Ax =
1− ρ

1− κ1ρx
, (16b)

Aσ =
1− γ
1− ρ

(1− ρ)2 + (κ1Axϕx)
2 + (κ1Aτϕτ )

2

2 (1− κ1ρσ)
, (16c)

Aτ =
1− η
1− ρ

(κ1Aσϕσ)2

2 (1− κ1ρτ )
. (16d)

The expressions for Ax and Aσ are almost the same as in Bansal and Yaron (2004). When
the IES is greater than one (i.e., ρ < 1), Ax > 0 implies that the wealth-to-consumption
ratio increases in response to higher expected growth, because the intertemporal substitution
effect dominates the wealth effect such that the agent buys more assets. If, in addition, the
agent prefers early resolution of uncertainty (i.e., γ > 1/ρ > 1), then Aσ < 0, which implies
that economic volatility has an adverse effect on the wealth-to-consumption ratio.

The coefficient of ambiguity Aτ depends directly on the ambiguity aversion parameter η.
When the IES is greater than one (i.e., ρ < 1), the coefficient Aτ is negative if ambiguity
aversion is large enough (i.e., η > 1), and becomes more negative as the agent becomes
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more ambiguity averse. That is, ambiguity aversion causes the wealth-to-consumption ratio
to response more negatively to an increase in uncertainty, because a more ambiguity-averse
agent puts more weight on bad models. In the homoskedastic-ambiguity case, an ambiguity-
neutral agent (i.e., η = γ) simply treats ambiguity as an additional source of economic
volatility. From the viewpoint of the ambiguity-neutral agent, the magnitude of economic
volatility is effectively increased to ϕ2

σ (1 + τ 2).3

In the rest of the paper, we focus on the following empirically relevant parameter restric-
tion:

η > γ > 1 > ρ. (17)

Under the above restriction, the wealth-to-consumption ratio decreases in response to de-
creased expected growth and increased volatility or ambiguity.

Asset Return and Volatility. It is more convenient to work with the vector form:
vt = A0 + A′Yt, where A = (Ac, Ad, Ax, Aσ, Aτ )

′. As shown in our derivation, Ac = Ad = 0

since neither the consumption nor dividend growth rate affect on vt. Based on the log-
linearization result in Eq. (14), we can derive the innovation to the return on the consumption
claim

rc,t+1 − Et [rc,t+1] = (ec + κ1A)′ (Yt+1 − Et [Yt+1]) ≡ B′rGtεt+1, (18)

where ec = (1, 0, 0, 0, 0)′ denotes the selector vector that selects ∆ct+1 from Yt+1 and Br ≡
ec + κ1A ≡ (1, 0, Br,x, Br,σ, Br,τ )

′ denotes the return innovation’s sensitivities to various
shocks. It follows that the conditional variance of rc,t+1 is given by

Σt ≡ V art [rc,t+1] = Et
(
B′rGtεt+1ε

′
t+1G

′
tBr

)
= B′rGt (I + Ωt)G

′
tBr (19)

=
[
1 + (κ1Axϕx)

2 + (κ1Aτϕτ )
2]σ2

t + (κ1Aσϕσ)2 (1 + τ 2
t

)
≡ BΣ,0 +BΣ,σσ

2
t +BΣ,ττ

2
t ≡ BΣ,0 +B′ΣYt,

where BΣ ≡ (0, 0, 0, BΣ,σ, BΣ,τ )
′ denotes sensitivities with respect to various state variables.

Note that the conditional variance Σt is driven by σ2
t and τ 2

t , with the sensitivities given by
BΣ,σ and BΣ,τ . Therefore, the innovation to the conditional variance is given by

Σt+1 − Et [Σt+1] = B′Σ (Yt+1 − Et [Yt+1]) = B′ΣGtεt+1 (20)

= BΣ,σϕσεσ,t+1 +BΣ,τϕτσtετ,t+1.

3In this case with constant ambiguity and ambiguity neutrality, the coefficient A0 is replaced by A0+Aττ
2,

given by A0 =
ln β+κ0+(1−ρ)µc+κ1Aσ(1−ρσ)σ2+ 1

2 θ(κ1Aσϕσ)
2(1+τ2)

1−κ1
. That is, the parameter ϕ2

σ in the standard
LRR model is now replaced by ϕ2

σ

(
1 + τ2

)
. Equivalently, this result implies that from the viewpoint of the

ambiguity-neutral agent, The amount of model uncertainty τ2 thus adds to the volatility of the economic
uncertainty.
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Pricing Kernel. We now log-linearize the pricing kernel in Eq. (13), which has two
components: Mzt,t+1 = MEZ

t+1M
A
zt,t. The first component MEZ

t+1 is the pricing kernel under
the Epstein-Zin preferences. As shown in Bansal and Yaron (2004), the innovation to the
logarithm of this component (i.e., mEZ

t+1 = lnMEZ
t+1) is given by

mEZ
t+1 − Et

[
mEZ
t+1

]
= −Λ′ (Yt+1 − Et [Yt+1]) = −Λ′Gtεt+1,

where Λ = γec − (θ − 1)κ1A ≡ (γ, 0,Λx,Λσ,Λτ ) represents the prices of risk for the shocks
εt+1 for an ambiguity-neutral agent. It is worthwhile to point out that the price of the
expected growth (long-run) risk, Λx, is given by − (θ − 1)κ1Ax = − (θ − 1) κ1(1−ρ)

1−κ1ρx , which
increases with ρx if the agent prefers early resolution of uncertainty (i.e., γ > ρ). This is an
important reason that the aversion to persistent (yet small) long-run consumption risk in
the standard LRR model can generate a large equity risk premium.

The second component MA
zt,t is an additional adjustment term in the pricing kernel,

resulting from ambiguity aversion. It is straightforward to show that (see Appendix A.3)

mA
zt,t = logMA

zt,t = −η − γ
1− ρ

(
log β + κ0 + (κ1 − 1)A0 − A′Yt + Γ′ (µ+ FYt + µt) +

1

2
θΓ′GtG

′
tΓ

)
=

η − γ
1− ρ

[
1

2

1− η
1− ρ

(κ1Aσϕσ)2 τ 2
t − (κ1Aσϕσ) zt

]
.

When η = γ, the adjustment term MA
zt,t becomes one and the pricing kernel reduces to

the one under the Epstein-Zin preferences. Under the parameter restriction in Eq. (17), the
coefficient of τ 2

t in the above equation is negative, suggesting that higher ambiguity adversely
impacts asset valuation in an ambiguity-averse world.

Risk Premiums. We now turn to the determination of the risk premiums, which are
shown to have log-linearization approximations in closed form. Proposition 1 below reports
the results.

Proposition 1. Under the log-linearized generalized LRR model with smooth ambiguity pref-
erences, the risk-free rate is given by

rf,t = − log β + ρ (µc + xt)−
1

2
γ2σ2

t +
1

2
(1− θ)2 (1− ρ)2 σ2

t (21)

−1

2
(1− θ) Γ′Gt (I + Ωt)G

′
tΓ−

1

2

η − γ
1− ρ

Γ′GtΩtG
′
tΓ,

where Γ = (1− ρ) ec + κ1A. Furthermore, the equity and variance premiums for the return
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on the consumption claim are given by

EPt ≡ logEt [Rc,t+1]− rf,t (22)

= B′rGt (I + Ωt)G
′
tΛ +

η − γ
1− ρ

B′rGtΩtG
′
tΓ,

and

V Pt ≡ EQt [Σt+1]− Et [Σt+1] (23)

= −
[
B′ΣGt (I + Ωt)G

′
tΛ +

η − γ
1− ρ

B′ΣGtΩtG
′
tΓ

]
.

The results for the return on the dividend claim are very similar.

Proof. See Appendice A.3, A.5, and A.6.

First, let us consider Case I of the generalized LRR model (i.e., model “gLRR1”) where
ambiguity is time invariant (i.e., τ 2

t is equal to constant τ 2). If we hold ambiguity constant,
fluctuation in economic volatility σ2

t alone are insufficient to generate the time-varying vari-
ance premium, although the equity premium will vary in time. In fact, we can see from Eq.
(23) that the variance premium in this case is time invariant:

V Pt|τ2t ≡τ2 = −γ − ρ
1− ρ

BΣ,σκ1Aσϕ
2
σ −

η − ρ
1− ρ

BΣ,σκ1Aσϕ
2
στ

2.

Note that consistent with the data, the model-implied variance premium is positive under
the parameter restriction in Eq. (17). Furthermore, the magnitude of the variance premium
increases with the ambiguity aversion coefficient η, the degree of ambiguity τ 2, the volatility
of economic volatility ϕ2

σ, as well as the sensitivity of the wealth-consumption ratio with
respect to economic volatility Aσ. This result of a time-invariant variance premium in the
case with constant ambiguity implies that the fluctuation in the variance premium observed
in the data should be closely related to fluctuation in ambiguity.

Next, we turn to Case II of the generalized LRR model (i.e., model “gLRR2”) where we
introduce fluctuating ambiguity τ 2

t in order to generate a time-varying variance premium.
We start with the special ambiguity-neutral case with ambiguity neutrality (i.e., η = γ). In
this case, based on Proposition 1, the risk-free rate, the equity premium, and the variance
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premium have the following expressions:

rf,t|η=γ = − log β + ρ (µc + xt)−
1

2
γ2σ2

t +
1

2
(1− θ)2 (1− ρ)2 σ2

t

−1

2
(1− θ) Γ′Gt (I + Ωt)G

′
tΓ,

and

EPt|η=γ = B′rGt (I + Ωt)G
′
tΛ

=
[
γ +Br,xΛxϕ

2
x +Br,τΛτϕ

2
τ

]
σ2
t +Br,σΛσϕ

2
σ

(
1 + τ 2

t

)
,

and

V Pt|η=γ = −B′ΣGt (I + Ωt)G
′
tΛ

= −BΣ,τΛτϕ
2
τσ

2
t −BΣ,σΛσϕ

2
σ

(
1 + τ 2

t

)
.

The expressions of rf,t|η=γ and EPt|η=γ are almost identical to those in Bansal and Yaron
(2004), except for the fact that the ambiguity-neutral agent perceives ambiguity simply as
an additional source of economic volatility and thus considers both indistinguishable. From
the expression of V Pt|η=γ, the model under the Epstein-Zin preferences can still generate a
positive variance premium, because Ax > 0 and Aσ, Aτ < 0 under the parameter restriction
in Eq. (17). However, a sizable variance premium will not obtain if neither volatility-of-
volatility ϕσ nor ambiguity τ 2

t is large enough. In fact, based on the estimated parameters
in Bansal et al. (2016), the standard LRR model can only account for less than 10 percent
of the magnitude of the variance premium in the data.

Amplification via Ambiguity Aversion. Introducing the recursive smooth ambiguity
preferences allows for a three-way separation among ambiguity aversion, risk aversion, and
the IES. Being able to separate out ambiguity aversion provides us with an additional degree
of freedom with which to match the data, especially the variance premium.

Introducing ambiguity aversion can further lower the risk-free rate, and amplify the
equity and variance premiums to get them closer to the data. Specifically, when η > γ,
the representative agent is ambiguity averse and has a higher ambiguity-induced demand for
savings, which tends to lower the risk-free rate:

rf,t − rf,t|η=γ = −1

2

η − γ
1− ρ

Γ′GtΩtG
′
tΓ = −1

2

η − γ
1− ρ

(κ1Aσϕσ)2 τ 2
t ,

which is negative under the parameter restriction in Eq. (17). Furthermore, the agent
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demands additional compensation, which is the last term in Eq. (22) or Eq. (23), given by

EPt − EPt|η=γ =
η − γ
1− ρ

B′rGtΩtG
′
tΓ =

η − γ
1− ρ

(κ1Aσϕσ)2 τ 2
t ,

and

V Pt − V Pt|η=γ = −η − γ
1− ρ

B′ΣGtΩtG
′
tΓ = −η − γ

1− ρ
BΣ,σ (κ1Aσ)ϕστ

2
t

= −η − γ
1− ρ

κ1Aσ
(
1 + (κ1Axϕx)

2 + (κ1Aτϕτ )
2)ϕ2

στ
2
t .

We refer to the additional compensation demanded by an ambiguity-averse agent relative to
an ambiguity-neutral agent as an “ambiguity premium.” Under the parameter restriction in
Eq. (17), the ambiguity premium is positive, and, importantly, increases with the coefficient
of ambiguity aversion η. Later we will calibrate the model to quantitatively examine how
much of the equity or variance premium can be accounted for by the ambiguity premium.

Why is the Ambiguity Premium Positive in the Model? This is because the
ambiguity-averse agent’s beliefs are distorted more toward bad states. To understand this
intuition, let us take the variance premium as an example. From the proof of Proposition 1,
the variance premium can be rewritten as

V Pt = EQt [Σt+1]− Et [Σt+1]

= Eµt

 Eπz,t
[
MEZ

t+1

]
MA

zt,t

Eµt
(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

)︸ ︷︷ ︸
ambiguity-induced distortion d(µt)

×
Eπz,t

[
MEZ

t+1 (Σt+1 − Et [Σt+1])
]

Eπz,t
[
MEZ

t+1

]︸ ︷︷ ︸
VP under a specific model V PEZt (µt)


≡ Eµt

[
d (µt)V P

EZ
t (µt)

]
. (24)

This expression for the variance premium has a very intuitive interpretation: it is roughly
a weighted average of the variance premiums across all possible models. More precisely, it
is the average of the weighted (or distorted) variance premiums within each model, taken
across all possible models under the objective probability measure. The variance premium
within a specific model (i.e., a fixed µt), V PEZ

t (µt), can be shown as

V PEZ
t (µt) ≡

Eπz,t
[
MEZ

t+1 (Σt+1 − Et [Σt+1])
]

Eπz,t
[
MEZ

t+1

] = −B′ΣGtG
′
tΛ +B′Σµt.

Due to ambiguity around µt, the ambiguity-averse agent weights the model-specific variance
premium differently, using a weighting scheme different from the physical probability. The
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weighting scheme tilts more toward bad states. Specifically, the weight or “distortion” due
to ambiguity aversion can be derived as:

d (µt) ≡
Eπz,t

[
MEZ

t+1

]
MA

zt,t

Eµt
(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

) =

exp

(
−
(
η−γ
1−ρΓ + Λ

)′
µt

)
Eµt
[
exp

(
−
(
η−γ
1−ρΓ + Λ

)′
µt

)] .
The presence of the distortion factor is equivalent to a change of the probability mea-

sure, and the variance premium demanded by the ambiguity-averse agent is the conditional
expectation under the new probability measure. In fact,

V Pt = Eµt
(
d (µt)V P

EZ
t (µt)

)
= Êµt

(
V PEZ

t (µt)
)

(25)

where the expectation operator Êµt operates under the new probability measure under
which µt follows the distribution of N

(
−Ωt

(
η−γ
1−ρΓ + Λ

)
,Ωt

)
, instead of the distribution

of N (0,Ωt) under the original physical measure. In other words, because of ambiguity aver-
sion (η > γ), the agent tilts the mean of µt by −η−γ

1−ρΩtΓ = −η−γ
1−ρ (0, 0, 0, κ1Aστ

2
t )
′. Under

the parameter restriction in Eq. (17), Aσ < 0 and the agent facing ambiguity believes
that economic volatility is likely to increase (i.e., −η−γ

1−ρκ1Aστ
2
t > 0). As a result, the agent

demands a higher variance premium (along with a higher equity premium) relative to an
ambiguity-neutral agent.

4 Main Findings

In this section, we demonstrate the generalized LRR model’s flexibility in terms of its ability
to simultaneously match key moments of asset prices, particularly those of the variance
premium. This demonstration uses a version of the model calibrated at an annual frequency
using annual data between 1931 and 2009.

4.1 Data

Annual consumption data are obtained from the Bureau of Economic Analysis’s NIPA Table
7.1. The real quarterly consumption growth rate is the real per-capita personal consumption
expenditure on nondurable goods and services over the quarter divided by the per-capita
personal consumption expenditure on nondurable goods and services over the previous year.

Inflation data are obtained from the Bureau of Labor Statistics, particularly the monthly
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seasonal-adjusted consumer price index (CPI) for all urban consumers. The annual inflation
rate is then constructed as the log growth rate of the CPI in the final month of the current
year over the final month in the previous year.

Annual stock market data are obtained from the CRSP, particularly the returns on the
value-weighted index including distributions (VWRETD) and the value-weighted index ex-
cluding distributions (VWRETX). The indices consist of all stocks on the NYSE, AMEX,
and NASDAQ, from which we construct the annual stock price index level and annual div-
idend. The annual dividend is the sum of the dividends paid over the course of the year.
We then calculate the log year-over-year growth rate in dividends. The annual stock market
return is the sum of the stock market index at the end of the year and the annual dividend,
divided by the stock market index at the beginning of the year. We then obtain the annual
real stock market return by deflating the nominal return by the growth rate of the CPI. The
annual price-dividend ratio is constructed as the stock market index at the end of the year
divided by the sum of the dividends paid over the previous twelve months.

We obtain the ex ante real risk-free rate following Beeler and Campbell (2012). Specifi-
cally, we obtain the three-month yield from the CRSP Fama Risk Free Rates data and then
calculate the ex post real risk-free rate by subtracting the log inflation rate from the nominal
log yield for the same three-month period. The ex ante real risk-free rate is then obtained
as the fitted value from the regression of the ex post real risk-free rate on the three-month
nominal yield and the realized growth rate of the CPI over the previous twelve months.

Historical variance premium data are available only after 1990 when we are able to
compute implied volatility from options data following the mothod of Drechsler (2013).
The variance premium is formally defined as the difference between the risk-neutral ex-
pectation EQ

t (·) and the objective expectation Et (·) of the return variance Σt+1; that is,
V Pt ≡ EQ

t (Σt+1)− Et (Σt+1), where Q represents the risk-neutral measure. The availability
of the Chicago Board Options Exchange (CBOE) VIX index makes it straightforward to mea-
sure the risk-neutral expectation of stock market return variances.4 We compute EQ

t (Σt+1)

by squaring the CBOE VIX index and then dividing it by 12 to get a monthly quantity. We
estimate Et (Σt+1) as the conditional forecast of the realized variance in the following month.
Following Drechsler (2013), we measure the realized variance of the returns on the S&P 500
index by summing up the squared five-minute log returns on the S&P 500 futures and on the
S&P 500 index over the whole month. We obtain the high-frequency data used to construct
these realized variance measures from TICKDATA. Next we use a simple time-series model

4The CBOE VIX index is based on the highly liquid S&P 500 index options along with the “model-free”
approach explicitly tailored to replicate the risk-neutral variance of a fixed 30-day maturity. See, e.g., Carr
and Wu (2009) for the definition of model-free implied variance.
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to obtain one-step-ahead forecasts of the realized variance in the following month. Specif-
ically, we regress the futures realized variance on the value of the squared VIX and on a
lagged cash realized variance. The estimates of the variance premium are truncated to zero
whenever negative values appear since theoretically the physical measure of variance should
be less than the risk-neutral measure.

4.2 Calibration

Bansal and Yaron (2004) assume a monthly decision interval of the agent and calibrate
the standard long-run risks model at the monthly frequency to match the time-aggregated
annual data. Bansal et al. (2016) estimate the standard model using a GMM framework that
explicitly accounts for time-aggregation and treats the decision interval of the agent as an
additional parameter to estimate. Their estimate of the decision frequency corresponds to
a decision interval of about 33 days, or roughly one month. Furthermore, they show that if
the decision interval is fixed to one month, the parameter estimates and pricing implications
are very similar to those of the unrestricted model. At monthly frequency, the model fits
the data reasonably well.

For the above reasons, in this paper we use as the benchmark parameter specification
the estimated parameter values under the assumption of a monthly decision interval from
Bansal et al. (2016) (see Column “Monthly” in Table VI in their paper). Panel A of Table 1
reports the parameter values in the benchmark specification.

To illustrate the ability of the generalized LRR model to account for moments of the
variance premium along with the other key asset pricing moments, we recalibrate the pa-
rameters of risk aversion, the IES, and ambiguity aversion (i.e., γ, ρ, and η) to match the
levels of the equity premium, the risk-free rate, and the variance premium. Note that we do
not require the agent be ambiguity averse in calibration. 5 Furthermore, in Case II of the
generalized LRR model (i.e., model “gLRR2”), we can further calibrate the parameter ϕτ to
match the volatility of the variance premium. As we will show in the following subsection,
the calibrated generalized LRR model does a reasonably good job of fitting all these moments
with risk aversion below 5.

4.3 Main Findings

We first recapitulate the success of the standard LRR model in matching the moments of
the equity premium and the risk-free rate before highlighting a few challenges. Later in this

5See Makarov (2019) on ambiguity-seeking behavior in models with smooth ambiguity preferences.
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section, we will show how these challenges can be addressed in the generalized LRR model.
Asset Pricing Moments under the Standard LRR Model. We consider a broad

set of asset pricing moments, including the mean and volatility of the variance premium, the
market return, the risk-free rate, and the price-dividend ratio.

In Panel B of Table 1 we display the asset pricing moments in the data and those implied
by the standard LRR model based on the benchmark parameter specification. The moments
are very similar to those in Bansal et al. (2016) (see Columns “Sample” and “Model” under
“LRR Model” in Table III of their paper), suggesting that the data constructed in this
paper closely matches theirs and the benchmark parameter specification is close enough to
the specification based on the estimated decision interval in their paper (estimated to be
about 33 days, close to a month). Overall, the standard LRR model under the benchmark
parameter specification does a reasonably good job at matching most of the asset pricing
moments. As argued in Bansal and Yaron (2004), this quantitative success largely comes
from the ability of the Epstein-Zin preferences to separate the IES from risk aversion. As a
result of this two-way separation, the IES is not tied to the reciprocal of risk aversion and
thus can be possibly larger than 1. Therefore, when both risk aversion and the IES take
relatively large values, the LRR model can generate a relatively large equity premium and
a low risk-free rate. The existence of persistent long-run risks can further improve the fit of
the model.

Despite its overall good performance, the standard LRR model under the benchmark
parameter specification matches about 75% of the equity premium and nearly triples the
risk-free rate seen in the data. To facilitate model comparisons, we recalibrate the parameters
of risk aversion and the IES only to exactly match both the equity premium and the risk-free
rate, keeping all the other parameter values unchanged. The recalibration results are reported
in Column “LRR” in Table 2. Intuitively, one can see that both parameters need to be
increased to match the two key moments. Specifically, the recalibrated value of risk aversion
increases from 7.13 to 8.548, and the IES increases from 2.08 to 2.97 (i.e., its reciprocal, the
parameter ρ, decreases from 0.481 to 0.336). Under the recalibrated parameter values, the
model-implied moments remain similar and match the moments in the data reasonably well
except that the price-dividend ratio has a somewhat lower mean.

It is important to point out that under either the benchmark parameter specification
or the recalibrated one, the standard LRR model implies a very small variance premium
compared to the data. It accounts for only about 10%-15% of the average variance premium
in the data. Furthermore, although the standard LRR model is able to generate the time-
varying equity premium, the variance premium remains constant. As a result, its volatility
implied by the model is zero, and thus has no power of predicting the stock market return.
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Next we turn to the generalized LRR model and discuss its asset pricing implications.
We will highlight how the model’s flexibility helps to improve the model’s fit to the data and
in tackling the above challenges.

Asset Pricing Moments under the Generalized LRR Model. Much like the
two-way separation between risk aversion and the IES behind the success of the standard
LRR model, the three-way separation in the generalized LRR model that further separates
ambiguity aversion from risk aversion and the IES further improves the model’s quantitative
performance. In particular, ambiguity aversion as the additional degree of freedom is very
helpful for the model to match the average level of the variance premium. The last two
columns of Table 2 (i.e., Columns “gLRR1” and “gLRR2”) display various asset pricing
moments implied by Case I and Case II of the generalized LRR model (with constant and
time-varying ambiguity), respectively.

Consider Case I of the generalized LRR model first. The parameter τ governs the degree
of ambiguity in the model. It increases the volatility of the underlying economic risks because
V ar (σ2

t ) = ϕ2
σ (1 + τ 2) / (1− ρ2

σ). We calibrate the parameter τ to be
√

2.52 − 1 = 2.29; that
is, compared to the ambiguity-free environment in the standard LRR model, the volatility
of economic volatility σ2

t increases by 150%. The parameters of γ, ρ, and η are recalibrated
to match the equity premium, the risk-free rate, and the variance premium simultaneously.
The recalibration results are reported in Column “gLRR1”. The parameter of risk aversion
is recalibrated to be 4.70, which is substantially lower than the value of 8.55 in the standard
LRR model. The IES is recalibrated to a lower value of 2.08 as well. The parameter of
ambiguity aversion is calibrated to be around 32.5, which is broadly consistent with estimates
of ambiguity aversion in the literature. For example, the value of ambiguity aversion is
calibrated to be 8.86 in Ju and Miao (2012) and 10.38 in Miao et al. (2019). Gallant et al.
(2018) estimate the same asset pricing model in these two papers using Bayesian methods
and estimate ambiguity aversion at around 30 for their annual data sample.

Most importantly, the calibrated generalized LRR model with constant ambiguity is able
to match the variance premium. In fact, introducing smooth ambiguity preferences to the
standard LRR model increases the variance premium from 1.107 to 8.285 as in the data (see
Columns “LRR” and “gLRR1” of Table 2), an almost eightfold increase. As discussed in
Section 3, the model can generate a sizable variance premium because the ambiguity averse
agent has a distorted belief that tilts more toward bad states and thus demands a higher
variance premium.

However, the variance premium is constant in Case I of the generalized LRR model and
thus it cannot account for the volatile variance premium in the data. The generalized LRR
model with time-varying ambiguity (i.e., Case II) is able to tackle these challenges. The
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last Column “gLRR2” in Table 2 reports the calibration results. Relative to Case I, there
are two additional parameters to calibrate: ρτ and ϕτ . These parameters determine the
persistence and volatility of the time-varying ambiguity. We set ρτ to be 0.985, implying a
very persistent ambiguity process. The parameter ϕτ is then calibrated to make the model
match the volatility of the variance premium in the data as closely as possible. For this
purpose, we calibrate ϕτ to be 25 and the model-implied volatility of the variance premium
is 1.498, or almost 25% of the observed volatility of the variance premium in the data.
Similarly as before, the parameters γ, ρ, and η are calibrated to match the equity premium,
the risk-free rate, and the variance premium. The calibrated values are similar to those in
Case I of the generalized LRR model (see Column “gLRR1”).

Ambiguity Aversion vs. Risk Aversion. As we have shown so far, the aversion
to both long-run risks and ambiguity have distinct contributions to the equity premium
and the variance premium. Their contributions are referred to as the risk-premium and
ambiguity-premium components of a given asset pricing moment. To quantify the relative
contributions of the risk and ambiguity channels, we calculate the equity premium and the
variance premium implied by Case II of the generalized LRR model (i.e., model “gLRR2”)
when the agent is either ambiguity averse or ambiguity neutral. These results are reported
in Table 3.

As shown in Table 3, Column “Ambiguity-Averse” reports the model-implied equity and
variance premiums using the calibrated parameter values in Column “gLRR2” in Table 2 for
an ambiguity-averse agent with η = 30.807 and γ = 4.576. By construction, the calibrated
model is able to generate exactly the same levels of the equity and variance premiums in
the data, or 7.7% and 8.285, respectively. To isolate the contribution of the ambiguity
channel, we set ambiguity aversion and risk aversion to be equal and compute the model-
implied equity and variance premiums for an ambiguity-neutral agent (i.e., η = γ = 4.576).
As shown in Column “Ambiguity-Neutral” in Table 3, the equity and variance premiums
drop to 4.6% and 1.921, respectively, in this ambiguity-neutral case. The difference in the
equity and variance premiums between these two cases represents the ambiguity-premium
component. The results suggest that the ambiguity-premium component accounts for about
77% of the variance premium, but 40.3% of the equity premium. Our findings indicate that
a large portion of the variance premium is attributable to the ambiguity aversion channel,
and that ambiguity aversion has a much larger effect on the variance premium than on the
equity premium.

Ambiguity vs. Risk. We are able to make inferences about long-run risks and am-
biguity via particle filtering. As discussed above, we assume a monthly decision interval
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and use annual data in calibration following Bansal et al. (2016). We then compute model-
implied unconditional moments that account for time aggregation (see Appendix B.1) for
the log annual consumption and dividend growth rates, the log annual stock market re-
turn and risk-free rate, the annual price-dividend ratio, and the annual variance premium.
In Appendix B.2, we derive a state-space system for the observables and the unobserved
state assuming measurement errors. The measurement equations in the state-space system
follow the measurement error model in Schorfheide et al. (2018) with measurement errors
fixed at 1% of the sample variance of various asset pricing moments. Because of the pres-
ence of stochastic volatility and ambiguity, the state-space system is nonlinear and we thus
use a particle filter to back out the latent variables following Schorfheide et al. (2018) (see
Appendix B.3).

Figure 1 plots time series of the filtered latent variables with solid lines for the generalized
LRR model (“gLRR2”) and dashed lines for the standard LRR model. Panel A of Figure 1
depicts the estimate of the expected growth component xt. As argued in Schorfheide et al.
(2018), this expected growth component is extracted largely based on cash-flow data on
consumption and dividend. In fact, our estimate of this long-run risk component is similar
to theirs, except for the 1930s. For example, xt tends to fall in recessions after mid 1950s. At
the same time, our estimate of xt is also influenced to some extent by asset prices, particularly
the risk-free rate. Schorfheide et al. (2018) introduce exogenous preference shocks in order
for the model-implied risk-free rate to track closely the risk-free rate in the data. They show
that with no added preference shocks, the model’s fit to the risk-free rate data deteriorates
substantially. In this paper, we try to stay as closely as possible with the Bansal-Yaron
model for the purpose of illustrating the novel ambiguity aversion channel, and we avoid
incorporating preference shocks for this reason. The relatively small measurement errors
imply that asset prices influence our estimates of the latent variables to a larger extent than
Schorfheide et al. (2018). This difference explains the divergence between our estimate of xt
and theirs during the period in 1930s.

The filtered volatility and ambiguity processes are plotted in Panels B and C of Figure 1.
Both processes exhibit substantial fluctuations over the sample period and tend to increase
during recessions. The volatility process most closely resembles the volatility process of
the expected consumption growth xt in Schorfheide et al. (2018) who allow for different
volatility processes for the innovations to consumption growth, dividend growth, and the
expected consumption growth component. Due to ambiguity, the filtered economic volatility
under the generalized LRR model (“gLRR2”) is somewhat more volatile than that under the
standard LRR model.

Under our generalized LRR model, we are able to infer about the ambiguity process τt

22



from cash-flow and asset price data. From Panel C of Figure 1, we can see that in the
post-1990 period, the estimate of ambiguity τt is extracted largely based on the variance
premium data when it is available. It is still interesting to see that we can make inferences
about ambiguity even before 1990 using other asset prices. As shown in Panel C of Figure 1,
both economic volatility (σt) and ambiguity (τt) spiked during the Great Depression and the
Second World War.

Figure 2 plots filtered time series of the variance premium between 1931 and 2009 with
solid lines for the generalized LRR model and dashed lines for the standard LRR model. It
shows that the generalized LRR model exactly matches the average value of the variance
premium in the data (i.e., 8.285) and generates its dynamics reasonably well. For example,
the variance premium in the data jumps to around 20 in 1998 (the Russian default crisis) and
2009 (the financial crisis). The model-implied variance premium also spikes in these years.
In contrast, the variance premium implied in the standard LRR model is constant and very
small, around 1.1. By the variance decomposition described shortly below, we show that the
dynamics of the model-implied variance premium are driven almost entirely by variation in
ambiguity. This result is consistent with Drechsler (2013) who demonstrates with a robust
control framework that variation in ambiguity generates variance premium fluctuations.

Not only can the generalized LRR model reproduce the dynamics of the variance premium
in the data, it also does a reasonably good job of tracking closely other key asset prices. In
Figure 3 we plot filtered time series of the stock market return, the risk-free rate, and the
price-dividend ratio between 1931 and 2009 with solid lines for the generalized LRR model
and dashed lines for the standard LRR model. As shown in Figure 3, both models do a
reasonably good job of tracking the data series closely. The model-implied risk-free rate
is smoother than the data, which is consistent with Schorfheide et al. (2018) and can be
addressed by following their approach of introducing preference shocks.

Figure 4 plots the filtered expected consumption growth xt together with the consumption
growth rate (Panel A) and the dividend growth rate (Panel B). We can see that the expected
consumption growth xt is estimated to be small and persistent, and, more importantly, it is an
important driver of both consumption and dividend growth rates. Based on our particle-filter
estimation results, we find that the expected consumption growth has significant predictive
power for both consumption and dividend growth rates after the mid-1930s.

The state-space approach allows us to conduct variance decomposition of several key
asset prices. Table 4 reports the contribution of the fluctuations in growth prospects, xt,
economic volatility, σ2

t , and ambiguity, τ 2
t , to the volatilities of the stock market return,

the risk-free rate, the price-dividend ratio, and the variance premium for both the standard
LRR model (see Column “LRR”) and the generalized LRR model (see Column “gLRR2”).
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As shown in Table 4, almost all time variation in the variance premium is driven by time
variation in ambiguity in the generalized LRR model. At the same time, fluctuations in
ambiguity contribute little to the variance of the price-dividend ratio. The variabilities of
the stock market return and the risk-free rate are, in almost equal parts, attributable to
variation in economic volatility and ambiguity.

In summary, our results demonstrate that ambiguity aversion is important in determining
the level of the variance premium, while fluctuating ambiguity is important in driving the
dynamics of the variance premium. This finding is reminiscent of the well-known result in
standard asset pricing models that risk aversion is the key determinant of the level of the
equity premium, and risk (or fluctuating volatility) is the key driver of variability in the
equity premium.

5 Conclusion

In this paper we generalize the long-run risks model in Bansal and Yaron (2004) by incorpo-
rating the recursive smooth ambiguity aversion preferences of Klibanoff et al. (2005, 2009)
and time-varying ambiguity in an innovative way. The generalized LRR model remains as
tractable as the Bansal-Yaron model, and gains an additional degree of freedom due to the
separation of ambiguity aversion from risk aversion and the IES. A new ambiguity aversion
channel arises as the ambiguity averse agent holds a pessimistic view tilted toward worse
states and demands larger compensations. The generalized LRR model is thus more flexible
in matching many asset pricing moments in the data, such as, the average level and volatility
of the equity premium, the risk-free rate, and the variance premium, as well as the return
predictability of dividend yield and the variance premium.

The calibrated model implies that the ambiguity aversion channel plays an important
role in generating sizable equity and variance premiums. This channel accounts for about
77 percent of the variance premium and only about 40 percent of the equity premium.
Our variance decomposition results further suggest that almost all variation in the variance
premium is driven by variation in ambiguity.

Our generalized LRR framework is very flexible such that ambiguity can be introduced
in a very general way. For example, ambiguity can be introduced to the long-run risks
component or the consumption growth volatility component, or both. To highlight the
quantitative performance of the generalized model in matching the variance premium, we
choose to focus on ambiguity in the volatility component for the sake of simplicity in this
paper. The analysis can be easily extended to more than one ambiguous state variables
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without sacrificing tractability; we leave this work for future research.
Although the main focus of this paper is to use calibrated model to illustrate its asset

pricing implications, as an interesting research direction the particle-filter-based Bayesian
method can be used to estimate the complete generalized LRR model so that we can esti-
mate key structural parameters as well as the latent variables (see Schorfheide et al., 2018).
Another possible future research direction is to introduce jumps similarly as in Drechsler and
Yaron (2011) and allow for ambiguity about the jump process. These possible extensions
may improve the quantitative performance of the model and provide further insight about
asset pricing.
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A Log-linearization
In this appendix, we provide details in our log-linearization analysis.

A.1 Return on the Consumption Claim rc,t+1

It is more convenient to work with the vector form and express the log wealth-consumption
ratio as

vt = A0 + A′Yt,

where A ≡ (Ac, Ad, Ax, Aσ, Aτ )
′. As we will see shortly, Ac = Ad = 0 since the consumption

or dividend growth rate has no effect on vt.
Recall that from Eq. (13), the pricing kernel can also be re-expressed as

Mzt,t+1 = β
1−γ
1−ρ

(
Ct+1

Ct

)− ρ(1−γ)
1−ρ

R
ρ−γ
1−ρ
c,t+1︸ ︷︷ ︸

MEZ
t+1

(
β

1−γ
1−ρEπz,t

[(
Ct+1

Ct

)− ρ(1−γ)
1−ρ

R
1−γ
1−ρ
c,t+1

])− η−γ
1−γ

︸ ︷︷ ︸
MA
zt,t

= MEZ
t+1 ·MA

zt,t

Furthermore,

Eπz,t

[(
Ct+1

Ct

)− ρ(1−γ)
1−ρ

R
1−γ
1−ρ
c,t+1

]
= Eπz,t [exp (−ρθ∆ct+1 + θrc,t+1)]

= Eπz,t [exp ((1− ρ) θ∆ct+1 + θ (κ0 + κ1vt+1 − vt))]
= exp (θ (κ0 + (κ1 − 1)A0 − A′Yt))Eπz,t [exp (θΓ′Yt+1)]

= exp

(
θ (κ0 + (κ1 − 1)A0 − A′Yt) + θΓ′ (µ+ FYt + µt) +

1

2
θ2Γ′GtG

′
tΓ

)
where

Γ = (1− ρ) ec + κ1A,

Therefore, from the Euler equation,

1 = Et [Mzt,t+1Rc,t+1]

= Eµt
[
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.
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Matching the constant term and the coefficient in front of Yt yields

(1− κ1)A0 = ln β + κ0 + Γ′µ+
1

2
θ (κ1Aσϕσ)2

A = F ′Γ +
1

2
θΓ′GG′Γeσ +

1

2

1− η
1− ρ

(κ1Aσϕσ)2 eτ ,

where

G ≡


1 0 0 0 0

ρdϕd
√

1− ρ2
dϕd 0 0 0

0 0 ϕx 0 0
0 0 0 0 0
0 0 0 0 ϕτ

 .

Solving the above system of equations leads to the solution in Eqs. (16a)-(16d).6
Innovation to the return on the consumption claim is

rc,t+1 − Et [rc,t+1] = (ec + κ1A)′ (Yt+1 − Et [Yt+1]) = B′rGtεt+1

where Br = ec + κ1A = (1, 0, κ1Ax, κ1Aσ, κ1Aτ )
′. It follows that the conditional variance of

rc,t+1 is given by

Σt = V art [rc,t+1] = Et
(
B′rGtεt+1ε

′
t+1G

′
tBr

)
= B′rGt (I + Ωt)G

′
tBr

=
[
1 + (κ1Axϕx)

2 + (κ1Aτϕτ )
2]σ2

t + (κ1Aσϕσ)2 (1 + τ 2
t

)
≡ BΣ,0 +BΣ,σσ

2
t +BΣ,ττ

2
t

≡ BΣ,0 +B′ΣYt,

whereBΣ,0 = BΣ,τ = (κ1Aσϕσ)2, BΣ,σ = 1+(κ1Axϕx)
2+(κ1Aτϕτ )

2 andBΣ ≡ (0, 0, 0, BΣ,σ, BΣ,τ ).
The above derivation of the expression of Σt uses the following result:
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(
εt+1ε
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εt+1ε
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I + ϕ−2

σ µtµ
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= I + Ωt.

Note that the conditional variance is driven by σ2
t and τ 2

t , with the sensitivity given by
BΣ,σ and BΣ,τ , respectively (i.e., the last two components of the vector BΣ). The innovation
to the conditional variance is

Σt+1 − Et [Σt+1]

= B′Σ (Yt+1 − Et [Yt+1]) = B′ΣGtεt+1

= BΣ,σϕσεσ,t+1 +BΣ,τϕτσtετ,t+1.

6In the benchmark model with constant model uncertainty (i.e., ρτ = ϕτ = 0), the constant term A0 in
the benchmark model corresponds to A0 +Aττ

2 in the general model, given by

A0 =
lnβ + κ0 + (1− ρ)µc + κ1Aσ (1− ρσ)σ2 + 1
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+ 1
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.
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A.2 Intertemporal Marginal Rate of Substitution (IMRS) and the
Risk-Free Rate

The logarithms of both components of the pricing kernel Mzt,t+1 = MEZ
t+1M

A
zt,t can be re-

written as

mEZ
t+1 = lnMEZ
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Substituting the expressions of A0 and A into the expression of mA
zt,t, we have

mA
zt,t = −η − γ

1− ρ

(
−A′Yt + Γ′ (FYt + µt) +

1

2
θΓ′GG′Γσ2

t

)
=

η − γ
1− ρ

[
1

2

1− η
1− ρ

(κ1Aσϕσ)2 τ 2
t − (κ1Aσϕσ) zt

]
.

Next, we determine the risk-free rate. We first derive the conditional mean of the pricing
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kernel
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where in deriving the second equality, we used the fact that

Eπz,t
[
MEZ

t+1

]
= Eπz,t [exp (θ ln β + (θ − 1) (κ0 + (κ1 − 1)A0)− (θ − 1)A′Yt − Λ′Yt+1)]

= exp

(
θ ln β + (θ − 1) (κ0 + (κ1 − 1)A0)− (θ − 1)A′Yt

−Λ′ (µ+ FYt + µt) + 1
2
Λ′GtG

′
tΛ

)
Therefore, the risk-free rate is

rf,t = − lnEt [Mzt,t+1]

= −


θ ln β + (θ − 1) (κ0 + (κ1 − 1)A0 − A′Yt)

−Λ′ (µ+ FYt) + 1
2
Λ′GtG

′
tΛ

−η−γ
1−ρ

(
ln β + κ0 + (κ1 − 1)A0 − A′Yt + Γ′ (µ+ FYt) + 1

2
θΓ′GtG

′
tΓ
)

+1
2

(
η−γ
1−ρΓ + Λ

)′
GtΩtG

′
t

(
η−γ
1−ρΓ + Λ

)


= −
(

ln β +

(
θ − 1− η − γ

1− ρ

)
(ln β + κ0 + (κ1 − 1)A0 − A′Yt)

)
+

(
η − γ
1− ρ

Γ + Λ

)′
(µ+ FYt)−

1

2
Λ′GtG

′
tΛ +

1

2

η − γ
1− ρ

θΓ′GtG
′
tΓ

−1

2

(
η − γ
1− ρ

Γ + Λ

)′
GtΩtG

′
t

(
η − γ
1− ρ

Γ + Λ

)
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Substituting the expression of A0 into the above equation yields

rf,t = − ln β + ρµc +

(
θ − 1− η − γ

1− ρ

)
1

2
θ (κ1Aσϕσ)2 +

(
θ − 1− η − γ

1− ρ

)
A′Yt

+

(
η − γ
1− ρ

Γ + Λ

)′
FYt −

1

2
Λ′GtG

′
tΛ +

1

2

η − γ
1− ρ

θΓ′GtG
′
tΓ−

1

2

(
η − ρ
1− ρ

)2

(κ1Aσϕσ)2 τ 2
t

= − ln β + ρ (µc + xt) +
1

2
θ (θ − 1) Γ′GtG

′
tΓ−

1

2
Λ′GtG

′
tΛ−

1

2

η − ρ
1− ρ

(κ1Aσϕσ)2 τ 2
t

= − ln β + ρ (µc + xt)−
1

2
γ2σ2

t +
1

2
(1− θ)2 (1− ρ)2 σ2

t −
1

2
(1− θ) Γ′GtG

′
tΓ−

1

2

η − ρ
1− ρ

(κ1Aσϕσ)2 τ 2
t .

Therefore, we can show that the above expression of rf,t can be simplied as the one in Eq.
(21) in Proposition 1. After further simplification, we can express rf,t as a linear function of
the latent variables:

rf,t =

[
− ln β − 1

2
(1− θ) (κ1Aσϕσ)2 + ρµc

]
+ ρxt

−1

2

(
γ2 − (γ − ρ)2 + (1− θ)

[
(1− ρ)2 + (κ1Axϕx)

2 + (κ1Aτϕτ )
2])σ2

t

−1

2

η − ρ
1− ρ

(κ1Aσϕσ)2 τ 2
t

≡ µf,0 + µf,1xt + µf,2σ
2
t + µf,3τ

2
t . (26)

A.3 The Return on the Dividend Claim

The logarithm of the price-dividend ratio can be expressed in the vector form: vm,t = A0,m +
A′mYt. Then the return on the dividend claim is

rm,t+1 = κ0,m + κ1,mvm,t+1 − vm,t + ∆dt+1

= κ0,m + (κ1,m − 1)A0,m − A′mYt +B′r,mYt+1

where Br,m = ed + κ1,mAm = (0, 1, κ1,mAx,m, κ1,mAσ,m, κ1,mAτ,m)′. We can further simplify
it as follows:

rm,t+1 = κ0,m + (κ1,m − 1)A0,m + µd + (κ1,mAx,m)xt+1 + (φ− Ax,m)xt

+ϕdρdσtεc,t+1 +
√

1− ρ2
dϕdσtεd,t+1

+ (κ1,mAσ,m)σ2
t+1 − Aσ,mσ2

t + (κ1,mAτ,m) τ 2
t+1 − Aτ,mτ 2

t

≡ µr,0 + µr,1xt+1 + µr,2xt + µr,3σtεc,t+1 + µr,4ϕdσtεd,t+1

+µr,5σ
2
t+1 + µr,6σ

2
t + µr,7τ

2
t+1 + µr,8τ

2
t . (27)
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From the Euler equation, we have

1 = Et [Mzt,t+1Rm,t+1] = Eµt
[
MA

zt,tEπz,t
[
MEZ

t+1Rm,t+1

]]
= Eµt

exp


−η−γ

1−ρ

(
ln β + κ0 + (κ1 − 1)A0 − A′Yt + Γ′ (µ+ FYt + µt) + 1

2
θΓ′GtG

′
tΓ
)

+θ ln β + (θ − 1) (κ0 + (κ1 − 1)A0) + κ0,m + (κ1,m − 1)A0,m

− (Am + (θ − 1)A)′ Yt + (Br,m − Λ)′ (µ+ FYt + µt)
+1

2
(Br,m − Λ)′GtG

′
t (Br,m − Λ)




= exp



1−η
1−ρ ln β − η−ρ

1−ρ (κ0 + (κ1 − 1)A0) + κ0,m + (κ1,m − 1)A0,m

+
(
Br,m − Λ− η−γ

1−ρΓ
)′

(µ+ FYt)− 1
2
η−γ
1−ρθΓ

′GtG
′
tΓ

−
(
Am − η−ρ

1−ρA
)′
Yt + 1

2
(Br,m − Λ)′GtG

′
t (Br,m − Λ)

+1
2

(
Br,m − Λ− η−γ

1−ρΓ
)′
GtΩtG

′
t

(
Br,m − Λ− η−γ

1−ρΓ
)


where in deriving the third equality we used the fact

Eπz,t
[
MEZ

t+1Rm,t+1

]
= Eπz,t

[
exp

(
θ ln β + (θ − 1) (κ0 + (κ1 − 1)A0)− (θ − 1)A′Yt − Λ′Yt+1

+κ0,m + (κ1,m − 1)A0,m − A′mYt +B′r,mYt+1

)]

= exp

 θ ln β + (θ − 1) (κ0 + (κ1 − 1)A0) + κ0,m + (κ1,m − 1)A0,m

− (Am + (θ − 1)A)′ Yt + (Br,m − Λ)′ (µ+ FYt + µt)
+1

2
(Br,m − Λ)′GtG

′
t (Br,m − Λ)


Matching the constant term and the coefficients in front of Yt yields

0 =
1− η
1− ρ

ln β − η − ρ
1− ρ

(κ0 + (κ1 − 1)A0) + κ0,m + (κ1,m − 1)A0,m

+

(
Br,m − Λ− η − γ

1− ρ
Γ

)′
µ− 1

2

η − γ
1− ρ

θ (κ1Aσϕσ)2

+
1

2
(κ1,mAσ,m − (1− θ)κ1Aσ)2 ϕ2

σ

and

0 =

(
Br,m − Λ− η − γ

1− ρ
Γ

)′
F − 1

2

η − γ
1− ρ

θΓ′GG′Γeσ

−
(
Am −

η − ρ
1− ρ

A

)′
+

1

2
(Br,m − Λ)′GG′ (Br,m − Λ) eσ

+
1

2

(
κ1,mAσ,m −

(
1− θ +

η − γ
1− ρ

)
κ1Aσ

)2

ϕ2
σeτ .
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The solution is given by7

A0,m =

 ln β + κ0,m − ρµc + µd + κ1,mAσ,m (1− ρσ)σ2

+κ1,mAτ,m (1− ρτ ) τ 2 − 1
2
ρ−γ
1−ρθ (κ1Aσϕσ)2

+1
2

(κ1,mAσ,m − (1− θ)κ1Aσ)2 ϕ2
σ


1− κ1,m

,

Ac,m = Ad,m = 0,

Ax,m =
φ− ρ

1− κ1,mρx
,

Aσ,m =
γ2 − 2γρdϕd + ϕ2

d +Hx +Hτ + γ−ρ
1−ρθ

(
(1− ρ)2 + (κ1Axϕx)

2 + (κ1Aτϕτ )
2)

2 (1− κ1,mρσ)
,

Aτ,m =

η−ρ
1−ρ

1−η
1−ρ (κ1Aσϕσ)2 +

(
κ1,mAσ,m − η−ρ

1−ρκ1Aσ

)2

ϕ2
σ

2 (1− κ1,mρτ )
,

where

Hx = (κ1,mAx,m + (θ − 1)κ1Ax)
2 ϕ2

x

Hτ = (κ1,mAτ,m + (θ − 1)κ1Aτ )
2 ϕ2

τ

A.4 The Equity Premium

We first derive the risk premium (referred to as the equity premium as well) for the return
on the consumption claim. The derivation for the equity premium for the return on the
dividend claim is very similar. On the one hand, from the Euler equation, we have

1 = Et [Mzt,t+1Rc,t+1]

= Eµt
[
MA

zt,tEπz,t
[
MEZ

t+1Rc,t+1

]]
= Eµt

[
MA

zt,t exp

(
Eπz,t

(
mEZ
t+1

)
+ Eπz,t (rc,t+1) + 1

2
V arπz,t

(
mEZ
t+1

)
+1

2
V arπz,t (rc,t+1) + Covπz,t

(
mEZ
t+1, rc,t+1

) )]
= exp

(
1

2
V arπz,t

(
mEZ
t+1

)
+

1

2
V arπz,t (rc,t+1) + Covπz,t

(
mEZ
t+1, rc,t+1

))
Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

)
+ Eπz,t (rc,t+1)

)]
7In the benchmark model with constant model uncertainty (i.e., ρτ = ϕτ = 0), the constant term A0,m

in the benchmark model corresponds to A0,m +Aτ,mτ
2 in the general model, given by

A0,m =

 lnβ + κ0,m − ρµc + µd + κ1,mAσ,m (1− ρσ)σ2

+ 1
2
η−ρ
1−ρ

1−η
1−ρ (κ1Aσϕσ)

2
τ2 + 1

2

(
κ1,mAσ,m − η−ρ

1−ρκ1Aσ

)2
ϕ2
στ

2

− 1
2
ρ−γ
1−ρ θ (κ1Aσϕσ)

2
+ 1

2 (κ1,mAσ,m − (1− θ)κ1Aσ)
2
ϕ2
σ


1− κ1,m

.
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where in deriving the last equality, we used the fact that the conditional variances and
covariance for a fixed µt are independent of µt and thus can be taken out of the conditional
expectation operator Eµt . On the other hand, by a similar argument, we have

Et [Rc,t+1] = Eµt
[
exp

(
Eπz,t (rc,t+1) +

1

2
V arπz,t (rc,t+1)

)]
= exp

(
1

2
V arπz,t (rc,t+1)

)
Eµt
[
exp

(
Eπz,t (rc,t+1)

)]
Et [Mzt,t+1] = Eµt

[
MA

zt,tEπz,t
[
MEZ

t+1

]]
= Eµt

[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

)
+

1

2
V arπz,t

(
mEZ
t+1

))]
= exp

(
1

2
V arπz,t

(
mEZ
t+1

))
Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

))]
Based on the above results, we have

1 = exp

(
1

2
V arπz,t

(
mEZ
t+1

)
+

1

2
V arπz,t (rc,t+1) + Covπz,t

(
mEZ
t+1, rc,t+1

))
Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

)
+ Eπz,t (rc,t+1)

)]
= Et [Rc,t+1]Et [Mzt,t+1] exp

(
Covπz,t

(
mEZ
t+1, rc,t+1

))
Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

)
+ Eπz,t (rc,t+1)

)]
Eµt
[
exp

(
Eπz,t (rc,t+1)

)]
Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

))]
Taking logs of both sides, we have

lnEt [Rc,t+1]− rf,t

= −Covπz,t
(
mEZ
t+1, rc,t+1

)
− ln

Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

)
+ Eπz,t (rc,t+1)

)]
Eµt
[
exp

(
Eπz,t (rc,t+1)

)]
Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

))]
Note that

Covπz,t
(
mEZ
t+1, rc,t+1

)
= Covπz,t (−Λ′Yt+1, B

′
rYt+1) = −B′rGtG

′
tΛ

and

Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

)
+ Eπz,t (rc,t+1)

)]
Eµt
[
exp

(
Eπz,t (rc,t+1)

)]
Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

))]
=

Eµt
[
exp

(
−η−γ

1−ρΓ′µt − Λ′µt +B′rµt

)]
Eµt [exp (B′rµt)]Eµt

[
exp

(
−η−γ

1−ρΓ′µt − Λ′µt

)]
= exp

 1
2

(
η−γ
1−ρΓ + Λ−Br

)′
GtΩtG

′
t

(
η−γ
1−ρΓ + Λ−Br

)
−1

2
B′rGtΩtG

′
tBr − 1

2

(
η−γ
1−ρΓ + Λ

)′
GtΩtG

′
t

(
η−γ
1−ρΓ + Λ

)


= exp

(
−B′rGtΩtG

′
t

(
η − γ
1− ρ

Γ + Λ

))
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Therefore,

lnEt [Rc,t+1]− rf,t

= −Covπz,t
(
mEZ
t+1, rc,t+1

)
− ln

Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

)
+ Eπz,t (rc,t+1)

)]
Eµt
[
exp

(
Eπz,t (rc,t+1)

)]
Eµt
[
exp

(
mA
zt,t + Eπz,t

(
mEZ
t+1

))]
= B′rGtG

′
tΛ +B′rGtΩtG

′
t

(
η − γ
1− ρ

Γ + Λ

)
= B′rGt (I + Ωt)G

′
tΛ +

η − γ
1− ρ

B′rGtΩtG
′
tΓ

= γσ2
t + (1− θ)

(
Br,σκ1Aσϕ

2
σ

(
1 + τ 2

t

)
+
[
Br,xκ1Axϕ

2
x +Br,τκ1Aτϕ

2
τ

]
σ2
t

)
+
η − γ
1− ρ

Br,σκ1Aσϕ
2
στ

2
t

= γσ2
t + (1− θ) (κ1Aσϕσ)2 (1 + τ 2

t

)
+ (1− θ)

[
(κ1Axϕx)

2 + (κ1Aτϕτ )
2]σ2

t

+
η − γ
1− ρ

(κ1Aσϕσ)2 τ 2
t

A.5 The Variance Premium

We first derive the variance premium for the return on the consumption claim. The derivation
for the variance premium for the return on the dividend claim is very similar.

First, the following result is needed in the derivation of the variance premiums. Suppose
ε ∼ N (µ,Σ) follows a multi-variate normal distribution and a and b are known constant
vectors, then it is well known that

E [(b′ε) exp (a′ε)] = b′ (µ+ Σa)E [exp (a′ε)] . (28)

The variance premium for the return on the consumption claim is defined as

V Pt = EQt [Σt+1]− Et [Σt+1]

=
Et [Mzt,t+1 (Σt+1 − Et [Σt+1])]

Et [Mzt,t+1]

=
Eµt
(
MA

zt,tEπz,t
[
MEZ

t+1 (Σt+1 − Et [Σt+1])
])

Eµt
(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

)
= Eµt

(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

Eµt
(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

)Eπz,t [MEZ
t+1 (Σt+1 − Et [Σt+1])

]
Eπz,t

[
MEZ

t+1

] )

The expression of the variance premium has a very intuitive interpretation: it is roughly
a weighted average of the variance premiums across all possible models. Importantly, the

weight (i.e., the term
Eπz,t [MEZ

t+1]MA
zt,t

Eµt(Eπz,t [MEZ
t+1]MA

zt,t)
) is tilted in a way to reflect ambiguity aversion.

Based on the well-known finding in Eq. (28), we can show that for a given model with fixed
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µt, the variance premium under this particular model is

Eπz,t
[
MEZ

t+1 (Σt+1 − Et [Σt+1])
]

Eπz,t
[
MEZ

t+1

]
=

Eπz,t [exp (−Λ′Gtεt+1) (Σt+1 − Et [Σt+1])]

Eπz,t [exp (−Λ′Gtεt+1)]

= B′ΣGt (−G′tΛ + zt) = −B′ΣGtG
′
tΛ +B′Σµt

and also the corresponding weight function is given by

Eπz,t
[
MEZ

t+1

]
MA

zt,t

Eµt
(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

) =

exp

(
−
(
η−γ
1−ρΓ + Λ

)′
µt

)
Eµt
[
exp

(
−
(
η−γ
1−ρΓ + Λ

)′
µt

)]
Therefore, the variance premium that takes into account model uncertainty is given by

V Pt = Eµt

(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

Eµt
(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

) (−B′ΣGtG
′
tΛ +B′Σµt)

)

= Eµt

(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

Eµt
(
Eπz,t

[
MEZ

t+1

]
MA

zt,t

)B′Σµt
)
−B′ΣGtG

′
tΛ

= −B′ΣGtΩtG
′
t

(
η − γ
1− ρ

Γ + Λ

)
−B′ΣGtG

′
tΛ

= − (1− θ)
[
BΣ,σκ1Aσϕ

2
σ

(
1 + τ 2

t

)
+BΣ,τκ1Aτϕ

2
τσ

2
t

]
− η − γ

1− ρ
BΣ,σκ1Aσϕ

2
στ

2
t

= − (1− θ)
(
1 + (κ1Axϕx)

2 + (κ1Aτϕτ )
2)κ1Aσϕ

2
σ −

γ − ρ
1− ρ

(κ1Aσϕσ)2 κ1Aτϕ
2
τσ

2
t

−η − ρ
1− ρ

(
1 + (κ1Axϕx)

2 + (κ1Aτϕτ )
2)κ1Aσϕ

2
στ

2
t .

A.6 Predictability

In this subsection, we derive the expressions for the slope coefficients in the predictive re-
gressions of next period’s stock market return on the price-dividend ration or the variance
premium. The expressions are similar for the predictive regressions of stock market excess
returns and are thus omitted here.

Recall that the (log) price-dividend ration is given by vm,t = A0,m + Ax,mxt + Aσ,mσ
2
t +

Aτ,mτ
2
t . Furthermore,

Et (rm,t+1) ≡ Bm,0 +Bm,xxt +Bm,σσ
2
t +Bm,ττ

2
t ,
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where

Bm,0 ≡ κ0,m + (κ1,m − 1)
(
A0,m + Aσ,mσ

2 + Aτ,mτ
2
)

+ µd

+ (1− ρσκ1,m)Aσ,mσ
2 + (1− ρτκ1,m)Aτ,mτ

2

Bm,x ≡ ρ,

Bm,σ ≡ −Aσ,m (1− κ1,mρσ) ,

Bm,τ ≡ −Aτ,m (1− κ1,mρτ ) .

Similar to the expression in the end of Section B.5, the conditional variance premium of the
equity return is given by:

V Pm
t = − (1− θ)

[
Bm

Σ,σκ1Aσϕ
2
σ +Bm

Σ,τκ1Aτϕ
2
τσ

2
t

]
− η − ρ

1− ρ
Bm

Σ,σκ1Aσϕ
2
στ

2
t

≡ BV P,0 +BV P,σσ
2
t +BV P,ττ

2
t , (29)

where

BV P,0 = − (1− θ)Bm
Σ,σκ1Aσϕ

2
σ,

BV P,σ = − (1− θ)Bm
Σ,τκ1Aτϕ

2
τ ,

BV P,τ = −η − ρ
1− ρ

Bm
Σ,σκ1Aσϕ

2
σ,

and

Bm
Σ,0 = (κ1,mAσ,mϕσ)2 ,

Bm
Σ,σ = ϕ2

d + (κ1,mAx,mϕx)
2 + (κ1,mAτ,mϕτ )

2 ,

Bm
Σ,τ = (κ1,mAσ,mϕσ)2 .

B Time Aggregation and Particle-Filter Estimation

B.1 Time Aggregation

We assume a monthly decision interval and use annual data in calibration following Bansal
et al. (2016). Let j denote the time index for data sampling frequency and therefore j
increments annually. Let calendar time t denote the time index for the agent’s monthly
decision interval and therefore t increments monthly. We assume that the annual data in
year j is observed at the last month of the year, that is, the month of 12j.

First, derive log annual consumption growth rate that accounts for time aggregation.
Following Bansal et al. (2016) and Schorfheide et al. (2018), we define annual consumption
in year j as the sum of monthly consumption, denoted by C12(j−1)+m, m = 1, · · · , 12 for
each month m within the year j. Therefore, the log annual consumption growth in year j,
denoted by ∆c(j), can be well approximated as

∆c(j) = log

∑12
m=1C12(j−1)+m∑12
m=1C12(j−2)+m

≈
∑24

k=2

12− |12− (k − 1)|
12

∆ct−24+k.
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Similarly,

∆d(j) ≈
∑24

k=2

12− |12− (k − 1)|
12

∆dt−24+k.

Next, we derive the annual time-aggregated market return, the risk-free rate, and the
variance premium. Next, recall that rm,t+1, rf,t, V Pm

t in the time interval between month t
and month t + 1 are given in Eqs. (27), (26), and (29). Aggregating over the span of the
year j, we have

rf,(j) =
∑M

k=1

[
µf,0 + µf,1xt−k−1 + µf,2σ

2
c,t−k + µf,3τ

2
t−k
]
,

rm,(j) =
∑M−1

k=0

[
µr,0 + µr,1xt−k + µr,2xt−k−1 + µr,3σt−k−1εc,t−k + µr,4σd,t−k−1εd,t−k

+µr,5σ
2
t−k + µr,6σ

2
t−k−1 + µr,7τ

2
t−k + µr,8τ

2
t−k−1

]
,

V Pm
(j) = Et

[∑M−1

k=0
V Pm

t+k

]
= Et

[∑M−1

k=0

(
BV P,0 +BV P,σσ

2
t+k +BV P,ττ

2
t+k

)]
= hBV P,0 +BV P,σ

[
hσ2 +

(
σ2
t − σ2

) 1− ρMσ
1− ρσ

]
+BV P,τ

[
Mτ 2 +

(
τ 2
t − τ 2

) 1− ρMτ
1− ρτ

]
≡ B

(a)
V P,0 +B

(a)
V P,σσ

2
t +B

(a)
V P,ττ

2
t .

Lastly, we derive the annual time-aggregated price-dividend ratio.

pd(j) = log
Pt

Dt +Dt−1 +Dt−2 + · · ·+Dt−11

≈ log
Pt
Dt

− logM + logDt −
1

12
(logDt + · · ·+ logDt−11)

= vm,t − logM +
∑M

k=1

M − k
M

∆dt+1−k

=

[
A0,m − logM +

1

2
(M − 1)µd

]
+ Ax,mxt +

∑M

k=1

M − k
M

φxt−k + Aσ,mσ
2
t

+Aτ,mτ
2
t +

∑M

k=1

M − k
M

[
ρdϕdσt−kεc,t+1−k + ϕd

√
1− ρ2

dσt−kεd,t+1−k

]
.

B.2 State Space Representation

We use the general LRR model to provide details about particle-filter-based Bayesian esti-
mation in this appendix. The standard LRR model is a special case and thus entails a very
similar implementation.

Stacking the observed annual data into the vector yot ≡
(

∆co(j),∆d
o
(j), r

o
m,(j), r

o
f,(j), v

o
m,(j), V P

m,o
(j)

)′
,

where the superscript “o” denotes the corresponding observed variable.8 Similarly, we stack
the model-implied counterparts into the vector yt ≡

(
∆c(j),∆d(j), rm,(j), rf,(j), vm,(j), V P

m
(j)

)′
,

where we drop the superscript “o” from a variable to refer to its model-implied counterpart.
In this appendix, we derive a state-space system for the observables yot and the underlying
latent state.

8When estimating the standard LRR model, we do not use the variance premium data since the calibrated
model implies a negligible constant variance premium.
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First, we make the following assumptions about measurement errors:

∆co(j) = ∆c(j) + σaε
(
εa(j) − εa(j−1)

)
,

∆do(j) = ∆d(j) + σad,ε
(
εad,(j) − εad,(j−1)

)
,

rof,(j) = rf,(j) + σaf,εε
a
f,(j),

pdo(j) = pd(j) + σapd,εε
a
pd,(j),

V P o
(j) = V P(j) + σavp,εε

a
vp,(j),

where εa(j), ε
a
d,(j), ε

a
f,(j), ε

a
pd,(j), ε

a
vp,(j) are i.i.d. standard normal random variables. Note that

the first assumption is the same as in Schorfheide et al. (2018) where multiplicative i.i.d.
measurement errors are assumed for the level of annual consumption. Similar assumption is
made for the dividend process in this paper.

We now derive the measurement equations for each observable before we derive the state
equations to complete the construction of the state-space system.

First, note that

∆co(j) = ∆c(j) + σaε
(
εa(j) − εa(j−1)

)
=

[
1
M

∆ct + 2
M

∆ct−1 + · · ·+ M−1
M

∆ct−(M−2) + M
M

∆ct−(M−1)

+M−1
M

∆ct−M + · · ·+ 2
M

∆ct−(2M−3) + 1
M

∆ct−(2M−2) + σaε

(
εa(j) − εa(j−1)

) ]
.

Denote Ξ =
[

1
M

2
M
· · · M−1

M
1 M−1

M
· · · 2

M
1
M

]
, then

∆co(j)

= Ξ


∆ct

∆ct−1
...

∆ct−(2M−2)

+ σaε
(
εa(j) − εa(j−1)

)

= Ξ
[
µc1(2M−1)×1 +

[
0(2M−1)×1, I2M−1

]
s

(1)
t + I2M−1s

(2)
t

]
+
[
1, 01×(M−1),−1

]
s

(1)
ε,t

≡ D(1) + Z(1,1)s
(1)
t + Z(1,2)s

(2)
t + Z(1,1)

ε s
(1)
ε,t ,

where 1m×n or 0m×n denotes a n×1 vector of ones or zeros, respectively, In denotes the n×n
identity matrix, and

s
(1)
t

(2M)

=


xt
xt−1
...

xt−(2M−1)

 , s
(2)
t

(2M−1)

=


σt−1εc,t
σt−2εc,t−1

...
σt−(2M−1)εc,t−(2M−2)

 ,

Z(1,1)
ε

(2M−1)×(M+1)

=

 0(M−1)×(M+1)[
1, 01×(M−1),−1

]
0(M−1)×(M+1)

 , s(1)
ε,t

(M+1)

=

 σaε ε
a
t

...
σaε ε

a
t−M

 .
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Similarly, for the dividend process we have

∆do(j) = ∆d(j) + σad,ε
(
εad,(j) − εad,(j−1)

)
≡ D(2) + Z(2,1)s

(1)
t + Z(2,2)s

(2)
t + Z(2,3)s

(3)
t + Z(2,2)

ε s
(2)
ε,t ,

whereD(2) = Mµd, Z(2,1) = [0,Ξ], Z(2,2) = ρdϕdΞ, Z(2,3) =
√

1− ρ2
dΞ, Z

(2,2)
ε =

[
1, 01×(M−1),−1

]
,

and

s
(3)
t

(2M−1)

=


ϕdσt−1εd,t
ϕdσt−2εd,t−1

...
ϕdσt−(2M−1)εd,t−(2M−2)

 , s(2)
ε,t

(M+1)

=

 σad,εε
a
d,t

...
σad,εε

a
d,t−M

 .
Next, note that
rom,(j)
rof,(j)
pdo(j)
V Pm,o

(j)

 =


rm,(j)
rf,(j)
pd(j)

V Pm
(j)

+


0

σaf,εε
a
f,(j)

σapd,εε
a
pd,(j)

σavp,εε
a
vp,(j)



=


Mµr,0
Mµf,0
µpd,0
B

(a)
V P,0

+


[
[µr,1, µr,1 + µr,2, · · · , µr,1 + µr,2, µr,2], 01×(M−1)

][
0, µf,111×M , 01×(M−1)

][[
Ax,m, φ

M−1
M

, · · · , φ 1
M
, 0
]
, , 01×(M−1)

][
01×(2M)

]
 s(1)

t

+


[
µr,311×M , 01×(M−1)

]
01×(2M−1)[

ρdϕd
[
M−1
M

, · · · , 1
M
, 0
]
, 01×(M−1)

]
01×(2M−1)

 s(2)
t

+


[
µr,411×M , 01×(M−1)

]
01×(2M−1)[√

1− ρ2
d

[
M−1
M

, · · · , 1
M
, 0
]
, 01×(M−1)

]
01×(2M−1)

 s(3)
t

+


∑M−1

i=0

[
µr,5σ

2
t−i + µr,6σ

2
t−i−1 + µr,7τ

2
t−i + µr,8τ

2
t−i−1

]∑M
i=1

[
µf,2σ

2
t−i + µf,3τ

2
t−i
]

Aσ,mσ
2
t + Aτ,mτ

2
t

B
(a)
V P,σσ

2
t +B

(a)
V P,ττ

2
t

+


0

σaf,εε
a
f,(j)

σapd,εε
a
pd,(j)

σavp,εε
a
vp,(j)


≡ D(3) + Z(3,1)s

(1)
t + Z(3,2)s

(2)
t + Z(3,3)s

(3)
t + Zv,(3)svt + Zτ,(3)sτt + u(3),

where µpd,0 ≡ A0,m − logM + 1
2

(M − 1)µd, and

svt
(M+1)

=


σ2
t

σ2
t−1
...

σ2
t−M

 , sτt
(M+1)

=


τ 2
t

τ 2
t−1
...

τ 2
t−M

 , u(3) =


0

σaf,εε
a
f,(j)

σapd,εε
a
pd,(j)

σavp,εε
a
vp,(j)

 .
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Stacking the observed annual data into the vector yot , we thus derive the following mea-
surement equation:

yot = D + Zst + Zvsvt + Zτsτt + ut, where ut ∼ N (0, R) .

where ut =
(

0, 0, u
(3)′
t

)′
and st =

(
s

(1)′
t , s

(2)′
t , s

(1)′
ε,t , s

(3)′
t , s

(2)′
ε,t

)′
is a (8M × 1) vector.

Next, we derive the state equation. It is straightforward to derive the transition equation
for the vector of the state variables st as follows:

st+1 = Φst + vt+1, where vt+1 ∼ N (0,Σs
t) .

We now derive the transition equation for the volatility terms. Define σt = σ exp (hσ,t) and
τt = τ exp (hτ,t). Recall that

σ2
t+1 = σ2 + ρσ

(
σ2
t − σ2

)
+ ϕσεσ,t+1

= σ2 + ρσ
(
σ2
t − σ2

)
+ ϕσ (z̃t + ε̃σ,t+1)

≡ σ2 + ρσ
(
σ2
t − σ2

)
+ ϕ̃σwσ,t+1,

where ϕ̃σ = ϕσ
√

1 + τ 2
t and the disturbance term (z̃t + ε̃σ,t+1) is expressed equivalently

as
√

1 + τ 2
t wσ,t+1 with wσ,t+1 being a standard normal white noise. As a result, by log-

linearization, we have
hσ,t+1 ≈ ρσhσ,t +

ϕσ
2σ2

√
1 + τ 2

t wσ,t+1.

A similar expression for ambiguity can be derived as follows:

hτ,t+1 = ρτhτ,t +
ϕτ
2τ 2

σtwτ,t+1.

Stacking hσ,t and hτ,t into a vector ht, we thus have

ht+1 =

[
hσ,t+1

hτ,t+1

]
=

[
ρσ

ρτ

] [
hσ,t
hτ,t

]
+

[
ϕσ
2σ2

√
1 + τ 2

t
ϕτ
2τ2
σt

] [
wσ,t+1

wτ,t+1

]
≡ Ψht + Σh

twt+1

In summary, the state-space representation with stochastic volatilities is given by:

yot+1 = D + Zst+1 + Zvsvt+1 + Zτsτt+1 + ut+1, (30a)
st+1 = Φst + vt+1, (30b)
ht+1 = Ψht + Σh

twt+1, (30c)

where ut+1 ∼ N (0, R), vt+1 ∼ N (0,Σs
t), and wt+1 ∼ N (0, I2). Note that both Σs

t and Σh
t

depends on ht.
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B.3 Particle Filter

Note that the state-space representation is linear conditional on ht. Furthermore, the distri-
bution p (st |ht, yo1:t ) is normal:

st |ht, yo1:t ∼ N
(
st|t (ht) , Pt|t (ht)

)
We thus abbreviate the density of st |ht, yo1:t by pN

(
st
∣∣st|t (ht) , Pt|t (ht)

)
.

Note that the joint distribution of (ht, st) can be factorized as p (ht, st |yo1:t ) = p (ht |yo1:t ) p (st |ht, yo1:t ).

We can approximate (ht, st |yo1:t ) by the quadruplets
{
hjt , s

j
t|t , P

j
t|t ,W

j
t

}J
j=1

.

The implementation of the particle filter is based on Algorithm 13 in Herbst and Schorfheide
(2015).

1. Initialization: draw the initial particles {hj(−M):0,W
j
0}, j = 1, · · · , J with W j

0 = 1, and
specify sj0|0 and P j

0|0 .

2. Recursion. For t = 1, · · · , T

(a) Forecasting ht. Propagate the period t− 1 particles {hjt−1,W
j
t−1} by iterating the

state-transition equation forward:

hjt = Ψhjt−1 + Σh(hjt−1)wt.

Calculate

sv,jt =


σ2,j
t

σ2,j
t−1
...

σ2,j
t−M

 =


σ2 exp(2hjσ,t)

σ2 exp(2hjσ,t−1)
...

σ2 exp(2hjσ,t−M)

 , sτ,jt =


τ 2,j
t

τ 2,j
t−1
...

τ 2,j
t−M

 =


τ 2 exp(2hjτ,t)

τ 2 exp(2hjτ,t−1)
...

τ 2 exp(2hjτ,t−M)

 .
Forecasting st and yt:

sjt|t−1 = Φsjt−1|t−1 ,

P j
t|t−1 = ΦP j

t−1|t−1 Φ′ + Σs(hjt−1)Σs(hjt−1)′,

yjt|t−1 = D + Zsjt|t−1 + Zvsv,jt + Zτsτ,jt ,

F j
t|t−1 = ZP j

t|t−1Z
′ +RR′.

Calculate predictive distribution:

pN

(
yot

∣∣∣yjt|t−1 , F
j
t|t−1

)
= (2π)−n/2

∣∣∣F j
t|t−1

∣∣∣−1/2

exp

{
−1

2

(
yot − y

j
t|t−1

)′ (
F j
t|t−1

)−1 (
yot − y

j
t|t−1

)}
and the incremental weights

wjt = pN

(
yot

∣∣∣yjt|t−1 , F
j
t|t−1

)
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(b) Updating. Compute

sjt|t = sjt|t−1 + P j
t|t−1Z

′
(
F j
t|t−1

)−1 (
yot − y

j
t|t−1

)
P j
t|t = P j

t|t−1 − P
j
t|t−1Z

′
(
F j
t|t−1

)−1

ZP j
t|t−1

and define the normalized weights:

W j
t =

wjt∑J
j=1w

j
t

(c) Selection. Resample the particles via multinomial resampling using normalized
weights W j

t , and let {hjt}Jj=1 denote the resampled draws and set W j
t = 1 for

j = 1, · · · , J . Therefore, an approximation of E [f (ht, st) |Y1:t ] can be obtained

by
{
hjt , s

j
t|t , P

j
t|t ,W

j
t

}J
j=1

.

3. Likelihood Approximation. The approximation of the log likelihood function is
given by

ln p̂ (Y1:T |Θ) =
∑T

t=1
ln

(
1

J

∑J

j=1
wjt

)
In our implementation, we set J = 1000 and use 1000 rounds of simulations. In addition,

following Schorfheide et al. (2018), we assume that variances of the measurement errors are
one percent of variances of the corresponding moments in the data. Accordingly, we set
σaε = 0.0015, σad,ε = 0.0080, σaf,ε = 0.0028, σapd,ε = 0.0450, σavp,ε = 0.61.
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Figures & Tables

Table 1: Benchmark Calibration

Panel A: Benchmark Parameter Specification
Preferences γ 7.13 ρ 0.481 β 0.999
Consumption & Dividends µc 0.0016 ρd 0.43

µd 0.0016 φ 3.83 ϕd 4.49
Expected Cons. Growth ρx 0.9822 ϕx 0.0293
Economic Volatility σ 0.0073 ρσ 0.9987 ϕσ 2.05E−6

Panel B: Moments
Data BKY

Consumption & Dividends
σ (∆c) 0.021 0.024
AC1 (∆c) 0.473 0.430
AC2 (∆c) 0.115 0.205
σ (∆d) 0.114 0.105
AC1 (∆d) 0.198 0.391
corr (∆c,∆d) 0.589 0.573

Asset Prices
E (pd) 3.377 3.377
σ (pd) 0.450 0.390
AC1 (pd) 0.948 0.913
E (Rm −Rf ) 0.077 0.058
σ (rm) 0.196 0.177
E (rf ) 0.005 0.013

Predictability
corr (rm, pd−1) −0.236 −0.056
corr (∆c, pd−1) 0.202 0.317

Variance Premium
E (vp) 8.285 0.781
σ (vp) 6.128 0

Note: This table reports the benchmark parameter specification in Panel A, which is based
on the estimation results in Bansal et al. (2016) (see Column “Monthly” in Table VI). In
Panel B, Columns “Data” and “BKY” report moments of the cash flow processes and asset
prices in the data and implied by the standard LRR model using the benchmark parameter
specification in Bansal et al. (2016), respectively. Furthermore, E (·), σ (·), AC1 (·), and
corr (·, ·) denote the mean, standard deviation, first-order autocorrelation, and correlation,
respectively. ∆c and ∆d denote the annual log consumption and dividend growth rates,
respectively. pd is the log of the annual price-dividend ratio, rm ≡ logRm is the continously
compounded annual market return, and rf ≡ logRf is the logarithm of the annual risk-
free rate. vp denotes the variance premium of the market return, annualized and in basis points.
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Table 2: Moments in the Data and Models

Panel A: Calibrated Parameter Values
LRR gLRR1 gLRR2

Risk Aversion γ 8.548 4.700 4.576
IES 1/ρ 2.976 2.079 2.033
Ambiguity Aversion η – 32.508 30.807
Persistence of Ambiguity ρτ – – 0.985
Volatility of Ambiguity ϕτ – – 25

Panel B: Moments
Data LRR gLRR1 gLRR2

Consumption & Dividends
σ (∆c) 0.021 0.024 0.024 0.024
AC1 (∆c) 0.473 0.430 0.430 0.430
AC2 (∆c) 0.115 0.205 0.205 0.205
σ (∆d) 0.114 0.105 0.105 0.105
AC1 (∆d) 0.198 0.391 0.391 0.391
corr (∆c,∆d) 0.589 0.573 0.573 0.573

Asset Prices
E (pd) 3.377 3.124 3.083 3.086
σ (pd) 0.450 0.424 0.320 0.322
AC1 (pd) 0.948 0.924 0.884 0.885
E (Rm −Rf ) 0.077 0.077 0.077 0.077
σ (rm) 0.196 0.179 0.169 0.170
E (rf ) 0.005 0.005 0.005 0.005

Predictability
corr (rm, pd−1) -0.236 −0.092 −0.042 −0.046
corr (∆c, pd−1) 0.202 0.293 0.373 0.370

Variance Premium
E (vp) 8.285 1.107 8.285 8.285
σ (vp) 6.128 0 0 1.498

Note: This table reports calibrated values for key parameters in Panel A, and sample- and
model-based moments of the cash flow processes and asset prices in Panel B. To generate
model-based moments, we use the calibrated values for the parameters in Panel A in this
table and the values in the benchmark specification from Panel A in Table 1 for the rest of
the parameters. Furthermore, E (·), σ (·), AC1 (·), and corr (·, ·) denote the mean, standard
deviation, first-order autocorrelation, and correlation, respectively. ∆c and ∆d denote the
annual log consumption and dividend growth rates, respectively. pd is the log of the annual
price-dividend ratio, rm ≡ logRm is the continously compounded annual market return, and
rf ≡ logRf is the logarithm of the annual risk-free rate. vp denotes the variance premium of the
market return, annualized and in basis points. Columns under “LRR”, “gLRR1”, and “gLRR2”
contain results for the standard and generalized LRR models with constant and stochastic
ambiguity, respectively.
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Table 3: Risk Premium vs. Ambiguity Premium under the
Generalized LRR Model

Moment Ambiguity-Neutral Ambiguity-Averse
E (Rm −Rf ) 0.046 0.077
E (vp) 1.921 8.285

Note: This table reports both the equity premium and the variance premium im-
plied by Case II of the generalized LRR model (i.e., gLRR2). Column “Ambiguity-
Averse” reports the model-implied equity and variance premiums using the cali-
brated parameter values in Column “gLRR2” in Table 2 for an ambiguity-averse
agent with η = 30.807 and γ = 4.576. To report the moments for an ambiguity-
neutral agent, we set the coefficient of ambiguity aversion to be the same as the
coefficient of risk aversion (i.e., η = γ = 4.576), and then report the model-implied
equity and variance premiums in Column “Ambiguity-Neutral” in this table. The
difference in the equity or variance premiums between these two cases represents
the ambiguity-premium component.

Table 4: Variance Decomposition

LRR gLRR2
xt σ2

t τ 2
t xt σ2

t τ 2
t

rm 1.3 24.5 – 1.6 2.2 2.5
rf 37.2 62.8 – 76.1 13.9 10.0
pd 20.7 79.3 – 74.8 22.9 2.3
vp – – – 0.0 0.0 100.0

Note: This table reports the contribution of the fluctuations in growth prospects, xt, economic volatility
σ2
t , and ambiguity τ2t to the volatility of the stock market return, rm, the risk-free rate, rf , the price-

dividend ratio, pd, and the variance premium, vp, for both the standard LRR model (see Column “LRR”)
and the generalized LRR model (see Column “gLRR2”).
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Figure 1: Estimated Latent States
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Note: This figure plots time series of the filtered latent variables with solid lines for the generalized LRR
model and dashed lines for the standard LRR model, such as the long-run risks, xt, in Panel A, economic
volatility, log(σt/σ), in Panel B, and ambiguity, log(τt/τ), in Panel C. The latent variables are inferred
from a non-linear state-space system via particle filtering (see Appendix B.2 for details).
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Figure 2: The Variance Premium in the Data and Models
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Note: This figure plots filtered time series of the variance premium between 1931 and 2009 with solid lines
for the generalized LRR model, dashed lines for the standard LRR model, and dotted lines for the data.
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Figure 3: Estimated Latent States
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Note: This figure plots filtered time series of the stock market return (Panel A), the risk-free rate (Panel
B), and the price-dividend ratio (Panel C) between 1931 and 2009 with solid lines for the generalized LRR
model, dashed lines for the standard LRR model, and dotted lines for the data. The stock market return
and the risk-free rate are expressed in percentages.
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Figure 4: Estimated Latent States
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Note: Panel A of this figure plots the realized consumption growth in the dotted line and the expected
consumption growth (i.e., xt) in the solid line (solid line) under the generalized LRR model. Panel B of
this figure plots the realized dividend growth in the dotted line together with the long-run risks xt (solid
line).
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