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1 Introduction

In a recent paper, Ljungqvist and Sargent (2017) (henceforth “LS”) show that existing

search-based models which amplify productivity shocks to generate realistic model-implied

volatility of labor market variables can be understood in terms of the behavior of a quantity

that they call the “fundamental surplus”. LS (p. 2631) define the fundamental surplus

y − xj as “a quantity that deducts from productivity y a value xj that the invisible hand

cannot allocate to vacancy creation, a quantity whose economic interpretation differs across

models”. In particular, they show that the elasticities of key labor market variables with

respect to aggregate productivity are inversely proportional to the fundamental surplus, so

that existing explanations for unemployment fluctuations are viewed as separate mechanisms

for generating a small value of the fundamental surplus.

The LS framework applies to models in which firms ignore time-variation in discount

rates in making hiring decisions. However, Hall (2017) shows that accounting for such

time-variation in discount rates, where these discounts are imputed from asset prices in

financial markets, are of first-order importance in understanding unemployment fluctuations.

In this paper, we show how the LS approach can be adapted to account for time-varying

discount rates and how risk premia changes the fundamental surplus. Our approach is flexible

and accommodates rich specifications of discount rate processes that are featured in leading

equilibrium asset pricing models such as habit, long-run risk, and time-varying disaster risk,

which have been proposed to explain asset prices (see Campbell (2018) for discussions of

these models).

We illustrate our approach using the canonical Diamond-Mortensen-Pissarides (DMP)

search model with Nash bargaining which we augment to assume that all agents discount

future payoffs using a time-varying discount rate process. We establish an equivalence

between the equilibrium in this economy and that of an artificial economy without time-
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varying discount rates (so that the LS framework can be directly applied). Importantly, the

artificial economy has an altered process for productivity y and some of the values of the

structural parameters, in particular xj (which is the value of leisure in the canonical DMP

model). Our equivalence result provides an explicit dictionary which relates parameters and

equilibrium quantities between the two economies. This dictionary provides a transparent way

to understand the effect of various properties of time-varying risk premia on the fundamental

surplus, and hence its implications for labor market fluctuations.

In constructing the artificial economy, we build on a tool from the finance literature,

namely, risk-neutral valuation (see, e.g., Duffie 2001, chapter 6). To see how the logic of

this tool applies to our setting, consider an economy in which a firm discounts future risky

payoffs from hiring a potential worker at a rate that is greater than the risk-free interest

rate. In other words, the risk premium is positive. The present value of these payoffs is

therefore less than the expected value of the payoffs discounted at the risk-free rate. The idea

of risk-neutral valuation is that the same present value of the potential worker is obtained in

an artificial economy without risk premia in which the firm shifts the probability distribution

by attaching higher (lower) probabilities to lower (higher) payoff outcomes than their true

probabilities, computes the expected value of these payoffs under these artificial probabilities,

and finally discounts the expected value at the risk-free rate.

Using the logic above, we show that the artificial economy has an altered process for the

potential hire’s productivity y in which the average productivity is depressed by an amount

that is positively related to risk premia. In addition, time-varying discounts introduce a

low frequency component to the productivity process of the artificial economy. We show

that an increase in the discount rate in the original economy depresses the low frequency

component of productivity in the artificial economy. Moreover, more volatile discount rates in

the original economy translate into larger swings in the long run productivity of the artificial

economy. We show how to use these properties of the artificial economy to deduce the impact

2



of discount rates on unemployment dynamics in the original economy.

We illustrate our approach by applying our general framework to three, progressively

more flexible, discount rate processes. We begin with the simplest case of a constant, positive

risk premium. We show that in this case, the average productivity in the artificial economy is

depressed by a constant amount that is proportional to the risk premium. Consequently, xj

measured in productivity units is magnified by a constant factor. This lowers the fundamental

surplus, and, following the arguments of LS, increases the elasticity of aggregate labor market

variables to productivity shocks.

The same logic applies to more general discount rate processes. We show that in the case

of time-varying risk premia, the value of xj measured in productivity units is magnified by

a time-varying factor that is higher (lower) in states with higher (lower) risk premia. That

is, high discounts in the original economy are equivalent to low fundamental surpluses in

the artificial economy. The LS arguments then imply that the elasticity of aggregate labor

market variables to productivity shocks is higher (lower) in states with higher (lower) risk

premia. In our third example, we consider a discount rate process in which discount rate

shocks themselves carry risk premia. We show that such a discount rate process can slow

the recovery of unemployment rates following large increases in discount rates. It would be

interesting to investigate if this mechanism contributes to the slow recovery of unemployment

rates following recessions documented in Hall and Kudlyak (2020).

Related literature. Our paper provides a tool to link two stands of the literature. The

first strand of the literature is a response to the observation in Shimer (2005) that the

canonical labor search model of Diamond-Mortensen-Pissarides (DMP) predicts a volatility

of the U.S. unemployment rate that is too small compared to that in the data. Theories in

this literature build on the labor search framework and provide potential explanations for the

amplification of primitive productivity shocks. Instead of listing all these theories, we point
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our reader to Table 1 of Ljungqvist and Sargent (2017) who show that all of these theories

use different mechanisms to lower the fundamental surplus. All of these models ignore the

role of risk premia and assume that agents in these models discount future payoffs at the

risk-free rate.

The second strand of the literature has argued that fluctuations in the discount rate

imputed from asset prices in financial markets can help explain labor market fluctuations.

The fundamental premise in these models relies on the existence of time variation in financial

market discount rates. There is a large existing literature in finance which establishes evidence

for this premise (see, e.g., Cochrane (2011) and Campbell 2018, chapter 6). Examples of

papers which explore the implications of time-varying discount rates for labor markets include

Mukoyama (2009), Hall (2017), Kilic and Wachter (2018), Mitra and Xu (2020), and Kehoe

et al. (forthcoming).

Borovicka and Borovickova (2018) is related to our paper. As in our paper, agents in their

framework discount future cashflows with an assumed time-varying discount rate process.

By requiring the model to match the observed hiring process, they derive conditions that

must be satisfied by a firm’s cashflow process from hiring a worker. Our goal is different.

Our equivalence result provides explicit expressions which show how various discount rate

processes translate into different productivity processes in the artificial economy (for a given

cashflow process in the original economy). This helps us understand how different properties

of discount rate processes affect the fundamental surplus.

2 The Environment

We first describe a continuous time version of the canonical matching model with Nash

bargaining (Pissarides, 1985, 2000) in Section 2.1. In this discussion, we stick to the

assumption in the canonical model that agents discount future cashflows at the risk-free rate.
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We call this the economy without risk premia. Next, in Section 2.2, we assume that agents

discount future cashflows using a stochastic discount factor. We call this the economy with

risk premia. Later, in Section 3, we show how the economy with risk premia can be mapped

to an artificial economy without risk premia. Specifically, the artificial economy obeys the

same system of equations as the economy without risk premia in Section 2.1, but has an

altered productivity process and structural parameter values.

We make use of two probability measures. The first is the physical probability measure P

that describes the objective likelihood of outcomes. The second is the risk-neutral probability

measure Q, described in detail below, that embeds the effect of risk premia on discount rates.

To avoid confusion between probability measures, we denote by EM the expectation taken

with respect to measure M ∈ {P ,Q}. Similarly, stdM, V arM and CovM denote standard

deviations, variances, and covariances computed under measure M, respectively.

2.1 Economy without risk premia

Workers and firms. There is a representative household consisting of a unit measure of

workers and a large mass of firms. Firms hire workers to produce output. Log output per

worker yt follows

dyt = κy(µt − yt)dt+ σydB
y,P
t , (1a)

dµt = −κµµtdt+ σµdB
µ,P
t , (1b)

where By,P
t and Bµ,P

t are standard Brownian motions under the physical probability measure

P. The productivity process (1) has the following interpretation. First, productivity yt is

subject to Brownian shocks dBy,P
t with volatility σy and mean reverts towards the value µt

at a speed of κy > 0. The value µt can be interpreted as long run productivity towards which

current productivity yt trends towards. Long run productivity µt is normalized to have a

zero mean, EP [µt] = 0. It mean reverts towards zero at a speed of κµ ≥ 0 and is subject to
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Brownian shocks dBµ,P
t with volatility σµ ≥ 0. For simplicity, we assume that short run and

long run productivity shocks, dBµ,P
t and dBµ,P

t , are uncorrelated.1

The literature typically analyzes the special case of the productivity process (1) in which

long run productivity µt = 0 is constant (see, e.g., Shimer 2005). We consider the more

general process (1) because, as we will show in Section 3, unemployment fluctuations in an

economy with risk premia and a constant long-run productivity correspond to that in an

artificial economy without risk premia but with a time-varying long run productivity process.

There is free entry of firms. Firms attempt to hire unemployed workers by posting

vacancies, and each vacancy must be maintained at a flow cost of c. An unemployed worker

becomes employed when matched to a firm and produces output according to the process (1).

Employed workers are paid wages at rate wt with the residual profit flowing to the matched

firm at rate eyt − wt. This split is determined according to a generalized Nash bargaining

rule in which workers’ have bargaining power β ∈ (0, 1). Matched firm-worker pairs separate

at rate s; employed workers become unemployed following separations. Unemployed workers

obtain a value of leisure z (interpreted as the value from the combination of unemployment

benefits and nonmarket activity).

Matching. Denote by vt and ut the total number of vacancies posted and the unemploy-

ment rate, respectively, at time t. Their ratio θt ≡ vt/ut is labor market tightness. The

instantaneous rate at which new firm-worker matches are formed is given by m(ut, vt), where

the matching function m(u, v) is assumed to be homogenous of degree one. The job finding

rate for unemployed workers is f(θt) = m(ut, vt)/ut, and the vacancy filling rate for firms is

q(θt) = m(ut, vt)/vt. In our numerical exercises, we follow Ljungqvist and Sargent (2017) and

specialize to the Cobb-Douglas matching function m(u, v) = Auαv1−α so that f(θ) = Aθ1−α

1The discrete time analog of the process (1) is the VAR(1) process yt+1 = (1− ρy)µt + ρyyt + σyε
y,P
t+1 and

µt+1 = ρµµt + σµε
µ,P
t+1 with εy,Pt+1 and εµ,Pt+1 being uncorrelated and following standard Normal distributions.
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and q(θ) = Aθ−α. The law of motion for the unemployment rate is

dut
dt

= s(1− ut)− f(θt)ut. (2)

Value functions. Let J and V denote the value of a filled and unfilled vacancy to the firm,

respectively, and W and U denote the value of employment and unemployment to a worker,

respectively. These values discount future cashflows at the risk-free rate rf and satisfy:

Jt = EPt
[∫ τsep

t

e−rfu (eyu − wu) du+ e−rf (τsep−t)Vτsep

]
, (3a)

Vt = EPt
[
−
∫ τmatch

t

e−rfuc du+ e−rf (τmatch−t)Jτmatch

]
, (3b)

Wt = EPt
[∫ τsep

t

e−rfuwu du+ e−rf (τsep−t)Uτsep

]
, (3c)

Ut = EPt
[∫ τmatch

t

e−rfuz du+ e−rf (τmatch−t)Wτmatch

]
, (3d)

where τsep denotes the (random) time when a match separates and τmatch denotes the time

when a vacancy gets matched to an unemployed worker.

The Markovian solution to the system (3), Jt = J(yt, µt), Vt = V (yt, µt), Wt = W (yt, µt),

and Ut = U(yt, µt), is given by the solution to the following system of partial differential

equations (PDEs):

rfJ(y, µ) = ey − w(y, µ) + L PJ(y, µ) + s [V (y, µ)− J(y, µ)] , (4a)

rfV (y, µ) = −c+ L PV (y, µ) + q(θ(y, µ)) [J(y, µ)− V (y, µ)] , (4b)

rfW (y, µ) = w(y, µ) + L PW (y, µ) + s [U(y, µ)−W (y, µ)] , (4c)

rfU(y, µ) = z + L PU(y, µ) + f(θ(y, µ)) [W (y, µ)− U(y, µ)] , (4d)

where we have made use of the fact that equilibrium wages w = w(y, µ) and tightness

θ = θ(y, µ) are functions of y and µ, and L P is defined by

L P [κy, σy, κµ, σµ]F (y, µ)
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≡ κy(µ− y)∂1F (y, µ) +
1

2
σ2
y∂11F (y, µ)− κµµ∂2F (y, µ) +

1

2
σ2
µ∂22F (y, µ) (5)

for a given function F (y, µ), with ∂1 and ∂11 denoting first and second partial derivatives

with respective to the first argument, respectively, and ∂2 and ∂22 denoting first and second

partial derivatives with respective to the second argument, respectively. The equivalence

between the value functions (3) and the PDEs (4) is a consequence of the Feynman-Kac

formula (see, e.g., Duffie 2001, Appendix E).

Equilibrium. In equilibrium, free entry for vacancy creation implies V (y, µ) = 0; from

equation (4b), it follows that

c = q(θ(y, µ))J(y, µ). (6)

Nash bargaining splits the match surplus

S(y, µ) ≡ J(y, µ)− V (y, µ) +W (y, µ)− U(y, µ) (7)

such that the firm obtains J(y, µ) − V (y, µ) = (1 − β)S(y, µ) and the worker obtains

W (y, µ)−U(y, µ) = βS(y, µ); it follows that wages equal w(y, µ) = βey +(1−β)z+βcθ(y, µ).

The equilibrium can be characterized through a single PDE for the match surplus:

(rf + s)S(y, µ) = ey − z − βc

1− β
θ(y, µ) + L PS(y, µ), (8a)

c = (1− β)q(θ(y, µ))S(y, µ), (8b)

where L P is defined in equation (5). Equation (8a) follows from substituting the PDE system

(4) into definition (7) for the match surplus, and equation (8b) follows from the free entry

condition (6).

All equilibrium quantities can be recovered from the match surplus S(y, µ) after it is

computed. For example, equation (8b) implies that equilibrium tightness θ(y, µ) is equal to

q−1 (c/ [(1− β)S(y, µ)]).
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2.2 Economy with risk premia

The economy with risk premia is identical to the economy without risk premia described

in Section 2.1 in all but two aspects. The first difference is that labor productivity in the

economy with risk premia follows

dyt = −κyytdt+ σydB
y,P
t . (9)

This corresponds to the special case of the process (1) whereby long run productivity is

constant and equal to zero (i.e., µt = 0).

The second and main difference is that the economy with risk premia assesses a risk

premium when discounting cashflows. We model the risk premium as follows. First, we

assume that there is perfect risk sharing between members of the representative household.

As a result, workers and firms are symmetric in their assessment of aggregate risks and share

a common discount factor. From the Fundamental Theorem of Asset Pricing, the absence of

arbitrage in asset markets imply the existence of a “stochastic discount factor” (SDF) Λt

(see, e.g., Duffie 2001, chapter 6). The SDF Λt discounts a stream of cashflows {Cs}s≥t for

dates s ≥ t to obtain its present value at date t according to the asset pricing equation

Pt = EPt
[∫ ∞

t

Λs

Λt

Cs ds

]
. (10)

That is, the present value of a cashflow Cs at date s is computed using the SDF between

date t and date s, Λs/Λt.

We model the SDF according to

dΛt

Λt

= −rfdt− ηtdBy,P
t , (11)

where rf is the risk-free rate, and the market price of risk ηt is the risk premium for any asset

whose return has a unit exposure to the aggregate productivity shock dBy,P
t . That is, suppose

the instantaneous return associated with the asset price (10), Rt,t+dt ≡ (Pt+dt +Ctdt)/Pt, has
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form Rt,t+dt = EPt [Rt,t+dt] + dBy,P
t . Then, the asset pricing equation (10) implies that the

instantaneous risk premium is Et [Rt,t+dt]− rfdt = −CovPt (dΛt/Λt, Rt,t+dt) = ηtdt.
2

We specify the market price of risk to vary according to the law of motion

dηt = κη (η − ηt) dt+ σηdB
η,P
t , (12)

where η = EP [ηt] is the average market price of risk, κη > 0 and ση > 0 parameterize the

speed of mean reversion and volatility of discount rate shocks, respectively, and Bη,P
t is

a standard Brownian motion under P measure. We assume that the discount rate shock

dBη,P
t is orthogonal to the productivity shock dBy,P

t ; this is in line with the low correlation

between productivity growth and asset values in the data (see, e.g., Hall 2017, Section III.A).

Specifications (11) and (12) closely correspond to those used in the asset pricing literature

for pricing financial assets. For example, Brennan et al. (2004) and Lettau and Wachter

(2007) use a closely related expression for valuing stocks; similar specifications are also used

to value Treasury bonds in affine term structure models (see, e.g., Singleton 2006). These

specifications reflect the consensus from the asset pricing literature that discount rates are

time-varying and the risk-free rate is stable (see, e.g., Cochrane 2011 for a summary of the

evidence).

For illustrative purposes, we analyze three, progressively more flexible, discount rate

processes: a constant ηt = η, a time-varying ηt (12), and one in which the discount rate shock

dBη,P
t also carries its own market price of risk (see Section 4.3).

Risk-neutral measure. The value functions in the economy with risk premia satisfy

Jt = EPt
[∫ τsep

t

Λt+u

Λt

(eyu − wu) du+
Λτsep

Λt

Vτsep

]
, (13a)

2The expression for the instantaneous risk premium can be derived by noting that the gains process
Gt ≡

∫ t
0

ΛsCs ds+ ΛtPt is a Martingale (this follows from no arbitrage). The expression for the instantaneous
risk premium follows from applying Ito’s lemma to Gt and equating the drift term to zero.
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Vt = EPt
[
−
∫ τmatch

t

Λt+u

Λt

c du+
Λτmatch

Λt

Jτmatch

]
, (13b)

Wt = EPt
[∫ τsep

t

Λt+u

Λt

wu du+
Λτsep

Λt

Uτsep

]
, (13c)

Ut = EPt
[∫ τmatch

t

Λt+u

Λt

z du+
Λτmatch

Λt

Wτmatch

]
. (13d)

These equations are analogous to their counterparts from the economy without risk premia

(3). The difference is that cashflows are not discounted at the risk-free rate, but are instead

discounted using the SDF according to the asset pricing equation (10). As in the case of the

economy without risk premia, we characterize the value functions (13) as the solution to a

system of PDEs. To do so, we make use of a tool from the asset pricing literature—risk-

neutral valuation (see, e.g., Duffie 2001, chapter 6). This tool computes the present value of

a cashflow stream by discounting at the risk free rate but assumes an altered productivity

process underlying the cashflow stream.

The risk-neutral measure Q corresponding to the SDF (11) is defined as

Q(A) =

∫
A

exp

(
−1

2

∫ t

0

η2
u du−

∫ t

0

ηu dB
y,P
u

)
dP (14)

for any event A in the time t information set, where the integrand is equal to erf tΛt/Λ0.

Equation (14) shows that Q places a higher weight on low output realizations (i.e., low

realizations for dBy,P
t ) when the market price of risk is positive ηt > 0. The risk-neutral

productivity process is

dyt = κy

(
−σy
κy
ηt − yt

)
dt+ σydB

y,Q
t (15)

where

By,Q
t ≡

∫ t

0

ηu du+By,P
t (16)

is a standard Brownian motion under Q. That is, under the risk-neutral measure, productivity

behaves as if it has a time-varying long run productivity equal to −σyηt/κy.

11



The asset pricing equation (10) can be conveniently rewritten as

Pt = EQt
[∫ ∞

t

e−rf (s−t)Cs ds

]
(17)

under the risk-neutral measure. That is, under “risk-neutral pricing” (17), cashflows are

discounted at the risk-free rate, but are assumed to be generated by the risk-neutral produc-

tivity process (15) (and not by the physical productivity process (9)). The value functions

(13) become

Jt = EQt
[∫ τsep

t

e−rfu (eyu − wu) du+ e−rf (τsep−t)Vτsep

]
, (18a)

Vt = EQt
[
−
∫ τmatch

t

e−rfuc du+ e−rf (τmatch−t)Jτmatch

]
, (18b)

Wt = EQt
[∫ τsep

t

e−rfuwu du+ e−rf (τsep−t)Uτsep

]
, (18c)

Ut = EQt
[∫ τmatch

t

e−rfuz du+ e−rf (τmatch−t)Wτmatch

]
, (18d)

when we use risk-neutral pricing. The difference between (18) and its counterpart from the

economy without risk premia (3) is the measure used for computing expectations—the latter

uses P measure while the former uses Q measure under which low productivity paths are

more likely.

Equilibrium. Similar to the economy without risk premia, a Markov equilibrium in the

economy with risk premia can be characterized through a single PDE for the match surplus:

(rf + s)S(y, η) = ey − z − βc

1− β
θ(y, η) + L QS(y, η), (19a)

c = (1− β)q(θ(y, η))S(y, η), (19b)

where L Q is defined by

L Q[κy, σy, κη, η, ση]F (y, η)

≡ −(σyη + κyy)∂1F (y, η) +
1

2
σ2
y∂11F (y, η) + κη(η − η)∂2F (y, η) +

1

2
σ2
η∂22F (y, η) (20)
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for a given function F (y, η). Equation (19) is the analog of equation (8) for the characterization

of the equilibrium in the economy without risk premia. The difference is that L Q in equation

(19a) incorporates the laws of motion (12) and (15) under the risk-neutral measure Q whereas

L P in equation (8a) incorporates the laws of motion (1) under the physical probability

measure P .

3 An equivalence result for unemployment fluctuations

The main result of this section and of this paper is an equivalence result (Proposition 1) which

translates between unemployment outcomes in economies with and without risk premia. We

subsequently make use of this dictionary in our applications. The equivalence result focuses

on the behavior of labor market tightness across the two types of economies—this is sufficient

because tightness determines job finding rates and, in turn, unemployment fluctuations

through the law of motion (2).

Consider an economy with risk premia, with surplus S(y, η) and tightness θ(y, η) character-

ized by equation (19). We refer to this economy as the “original economy”. We demonstrate

the link between S(y, η) and θ(y, η) and their counterparts from an equivalent artificial

economy without risk premia, described below, which we refer to as the “artificial economy”

for short. We denote by SQ(yQ, µQ) and θQ(yQ, ηQ) the equilibrium surplus and tightness,

respectively, in the artificial economy. To avoid confusion, we used variables with Q super-

scripts to denote those from the artificial economy, and variables without Q superscripts

to denote those from the original economy. This choice of notation reflects the fact that

the artificial economy makes use of the risk-neutral measure Q to determine equilibrium

outcomes (we demonstrate this below). Table 1 summarizes the notation for the original

economy and the artificial economy.
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Original economy Artificial economy

Description Symbol Value Symbol Value

Market price of risk ηt n/a
mean η 0.625 n/a
speed of mean reversion κη 0.139 n/a
volatility ση 0.257 n/a

Log output per worker yt yQt = yt + σyη/κy
speed of mean reversion κy 0.74 κQy = κy
volatility σy 0.0179 σQy = σy

Long run productivity n/a µQt = σy(η − ηt)/κy
speed of mean reversion n/a κQµ = κη
volatility n/a σQµ = σησy/κy

Value of leisure z zQ = exp(σyη/κy)z
Vacancy maintenance cost c cQ = exp(σyη/κy)c

Table 1: Notation and parameter values. This table summarizes the notation for parame-
ters which are different across the original economy and the equivalent artificial economy. Workers’
bargaining power β, the separation rate s, the matching function m(u, v), and the risk-free rate rf
are identical across the two economies. Appendix A explains our choice of parameter values for the
original economy. Parameter values for the artificial economy are based on the equivalence result
(Proposition 1).

To see the link between the two economies, define

yQt ≡ yt − EQ[yt] and µQt ≡ σy(η − ηt)/κy (21a, 21b)

to be the state variables in the artificial economy, where

EQ[yt] = −σyη/κy (22)

is the average productivity in the original economy under the risk-neutral measure Q (i.e., the

mean of the risk-neutral productivity process (15) computed under the risk-neutral measure

(14)). Note that the mean of productivity (22) is less than zero under the risk-neutral measure

while it is zero under the physical measure. Similarly, define

zQ ≡ exp(−EQ[yt])z and cQ ≡ exp(−EQ[yt])c (23a, 23b)

14



to be the value of leisure and the vacancy maintenance cost, respectively, in the artificial

economy. Then, the equilibrium quantities in the artificial economy are related to their

counterparts from the original economy according to

SQ(yQ, µQ) = exp(−EQ[yt])S(y, η) and θQ(yQ, µQ) = θ(y, η). (24a, 24b)

To derive the equivalence (24), substitute the change of variables in equations (21), (23),

and (24) into equation (19), to get

(rf + s)SQ(yQ, µQ) = exp(yQ)− zQ − βcQ

1− β
θQ(yQ, µQ) (25a)

+ L P [κy, σy, κη, σησy/κy]S
Q(yQ, µQ),

cQ = (1− β)q
(
θQ(yQ, µQ)

)
SQ(yQ, µQ), (25b)

where L P is defined in equation (5), and we make use of the facts Sy = exp(EQ[yt])S
Q
yQ

,

Syy = exp(EQ[yt])S
Q
yQyQ

, Sη = −σy
κy

exp(EQ[yt])S
Q
µQ

, and Sηη =
σ2
y

κ2y
exp(EQ[yt])S

Q
µQµQ

to derive

equation (25a). Comparing equations (8) and (25), we see that SQ(yQ, µQ) and θQ(yQ, µQ)

correspond to the equilibrium surplus and tightness, respectively, of an artificial economy

without risk premia.

The artificial economy has current productivity yQt , long run productivity µQt , value of

leisure zQ, and vacancy maintenance costs cQ; the relations between these variables and those

from the original economy are summarized in equations (21) and (23), respectively. The

productivity process in the artificial economy is derived by substituting equations (21a) and

(21b) into equations (12) and (15). This yields

dyQt = κQy (µQt − yQt )dt+ σQy dB
y,Q
t , (26a)

dµQt = −κQµ µQt dt− σQµ dB
η,P
t , (26b)

where the parameters are defined by

κQy ≡ κy, σQy ≡ σy, κQµ ≡ κη, σQµ ≡
σησy
κy

. (27)
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Equations (26) and (27) show effects of risk premia on the dynamics of productivity in

the artificial economy. First, positive shocks dBy,P
t in the productivity process of the original

economy (9) translate into positive shocks dBy,Q
t in the short run productivity process of

artificial economy (26a), where the link between the two shocks is given by equation (16).

Second, positive discount rate shocks dBη,P
t in the market price of risk process of the original

economy (12) translate into negative shocks for the long run productivity process of the

artificial economy (26b). Third, the volatility of long run productivity process (26b) σQµ is

scaled by the volatility of the market price of risk ση so that more volatile asset markets

translate into larger swings in the long run productivity of the artificial economy.

These results indicate that the original economy with risk premia can be viewed as an

artificial economy without risk premia, but with an altered productivity process and altered

structural parameters. Proposition 1 summarizes this result.

Proposition 1 (Equivalence result). Let θ(y, η) be the labor market tightness in the original

economy with risk premia. Then, θ(y, η) = θQ(yQ, µQ), where θQ(yQ, µQ) is the labor market

tightness in the artificial economy without risk premia whose labor productivity evolves

according to process (26) with the parameters in equation (27). The mappings (21), (23),

and (24) give the link between the state variables, parameters, and equilibrium objects in the

two economies, respectively. All remaining features are identical across the two economies.

Equilibrium moments. Suppose we are interested in the moment of a labor market

statistic Ht = H({θ(ys, ηs)}s≤t) in the original economy for a given function H. For example,

H would be determined by the law of motion (2) in the case of the unemployment rate

Ht = ut. The moment for this statistic is EP [Ht] which computes the moment by drawing

the state variables yt and ηt of the original economy under the physical probability measure

P according to the laws of motion (9) and (12). Proposition 1 establishes an equivalence in

labor market policies between the original economy and the artificial economy on a path
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by path basis. This implies Ht = HQt where HQt ≡ H({θQ(yQs , µ
Q
s )}s≤t) is the corresponding

statistic in the artificial economy. The moment in the original economy can then be computed

as EP [HQt ].

4 High discounts and low fundamental surplus

In this section, we show the link between two leading explanations of unemployment fluctua-

tions—high discounts (Hall, 2017) and low fundamental surplus (Ljungqvist and Sargent,

2017).

The discount rate channel from Hall (2017) works as follows. Risk premia rise following

adverse discount rate shocks (e.g., due to events such as financial crises). This leads to a rise

in discount rates and a fall in asset valuations; the latter is positively correlated with the

value from hiring a new worker. As a result, hiring decreases and unemployment increases.

Ljungqvist and Sargent (2017), henceforth LS, show that, in a wide class of models

without risk premia, realistic unemployment fluctuations require a low value for a quantity

known as the fundamental surplus, defined as “a quantity that deducts from productivity a

value that the invisible hand cannot allocate to vacancy creation” (p. 2631, emphasis from

original text).

In what follows, we use Proposition 1 to first link an economy with risk premia to

an equivalent artificial economy without risk premia. The absence of risk premia in the

artificial economy allows us to directly apply the LS framework to understand unemployment

fluctuations in the artificial economy. This, in turn, allows us to infer unemployment dynamics

in the original economy with risk premia. To simplify the exposition, we first consider the

special case of a constant risk premium in Section 4.1. We then consider the general case of

time-varying risk premia in Section 4.2. Section 4.3 considers the even more general case

where discount rate shocks carry its own market price of risk.
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4.1 Case I: constant risk premia

Consider a special case of the economy with risk premia described in Section 2.2 in which the

market price of risk is constant. That is, ηt = η for all t; this is obtained by setting ση = 0

and η0 = η in the law of motion (12). Next, consider the equivalent artificial economy without

risk premia defined in Proposition 1. A constant η = η implies that long run productivity µQ

in the artificial economy is a constant and equal to zero (see equation (21b)); that is, µQt = 0

for all t. This artificial economy corresponds to the canonical matching model with Nash

bargaining considered in LS.

Let θ(y) and θQ(yQ) be the equilibrium tightness in the original economy and the equivalent

artificial economy, respectively. Both θ and θQ depend only on productivity because η and

µQ are constants. The equality θ(y) = θQ(yQ) derived in Proposition 1 implies

d log θ(y)

dy
=
d log θQ(yQ)

dyQ
. (28)

That is, the elasticity of tightness with respect to productivity is the same across the two

economies after taking into account the mapping (21a) between y and yQ. This result allows

us to apply the LS results for unemployment fluctuations in economies without risk premia

to make inferences regarding unemployment fluctuations in the original economy with risk

premia.

LS show that the magnitude of unemployment fluctuations is determined through the

elasticity of labor market tightness with respect to productivity shocks. This holds in all

models without risk premia in which productivity shocks are the main driving force behind

unemployment fluctuations. LS show that for the canonical matching model with Nash

bargaining and zero risk premia, the elasticity on the right hand side of equation (28) is

proportional to

exp(yQ)

exp(yQ)− zQ
. (29)
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They refer to (29) as the inverse of the “fundamental surplus fraction”, with the “fundamental

surplus” being the denominator of (29). LS shows that the inverse fundamental surplus

fraction (29) evaluated at the mean productivity value EQ[yQt ] = 0, or 1/(1−zQ), is positively

related to the level of unemployment volatility in the artificial economy stdQ(ut). From this,

we see that higher values of zQ imply a higher elasticity of tightness and larger unemployment

fluctuations in the artificial economy.

Higher values of zQ in the artificial economy also leads to larger unemployment fluctuations

in the original economy. This follows from first noting the equality of the elasticity of tightness

across the two economies (28), and then applying the LS argument above which relates the

elasticity of tightness in the artificial economy to the inverse surplus fraction (29).3 As a

result, the effect of risk premia on unemployment fluctuations can be understood in terms of

its effect on the value of zQ in the artificial economy.

A high discount in the original economy is equivalent to a high zQ in the artificial economy.

This follows from equations (22) and (23a) which imply that a high market price of risk

η leads to a high value of zQ = z exp(σyη/κy). As a result, high discounts generate a low

fundamental surplus and a large elasticity of tightness in the artificial economy d log θQ/dyQ.

Through equation (28), a large d log θQ/dyQ, in turn, implies a large elasticity of tightness

and large unemployment fluctuations in the original economy. These results are illustrated

in Figure 1—we see that the value of leisure zQ in the artificial economy (Panel A), and

elasticity of tightness d log θ(y)/dy evaluated at the mean value of productivity y = 0 (solid

3Strictly speaking, the LS result that links the elasticity of tightness d log θQ(yQ)/dy to the inverse surplus
fraction (29) only holds at the mean value of productivity in the artificial economy, yQ = EQ[yQt ] = 0. This
is because their derivations rely on steady-state comparative statics. Equation (28) implies that the value
of elasticity in the original economy evaluated at its mean productivity value, or d log θ(y)/dy evaluated at
y = EP [yt] = 0, is instead equal to d log θQ(yQ)/dyQ evaluated at yQ = −EQ[yt]. However, our numerical
simulations indicate that d log θ(y)/dy evaluated at y = 0 is close to d log θQ(yQ)/dyQ evaluated at yQ = 0
for empirically plausible parameter values. This can be seen in panel B of Figure 1 which compares the
elasticity of tightness across the original and the artificial economies. For example, when η is equal to its
data value of 0.625, d log θ(y)/dy evaluated at y = 0 is 7.6, and d log θQ(yQ)/dyQ evaluated at yQ = 0 is 8.2.
Similarly, panel B of Figure 2 shows that the two elasticities are close to each other when risk premia varies
over time.

19



0 0.7 1.4

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0 0.7 1.4

7

7.5

8

8.5

9

9.5

10

0 0.7 1.4

0.23

0.24

0.25

0.26

0.27

0.28

Figure 1: Illustration of equivalence result: constant market price of risk. Panel
A plots the value of leisure in the equivalent artificial economy zQ as we vary the average market
price of risk η. The solid line in Panel B plots the elasticity of tightness in the original economy
evaluated at y = EP [yt] while the dash-dot line plots the elasticity of tightness in the artificial
economy evaluated at yQ = EQ[yQt ]. Panel C plots the unconditional volatility of unemployment
stdP(ut) in the original economy. We fix z = 0.9 and set workers’ bargaining power β = 0.06 so that
the model-implied wage to output elasticity (for the η = 0 economy) matches its data counterpart
of 0.43. For each value of η, we calibrate vacancy posting costs c so that the model-implied mean
unemployment rate is equal that of the data. The remaining parameter values are taken from
Table 1 and Appendix A.

line of Panel B) and volatility of unemployment stdP(ut) (Panel C) in the original economy

are all increasing in the market price of risk η.

How large do discount rates have to be? Equations (22) and (23a) shows that risk

aversion multiplies the value of leisure from the original economy z by the scaling factor

zQ/z = exp(σyη/κy) (30)

to arrive at the value of leisure in the equivalent artificial economy without risk premia zQ.

From Hagedorn and Manovskii (2008), we know that a high value of zQ = 0.955 is needed to

generate a low enough fundamental surplus and realistic levels of unemployment fluctuations

in economies without risk premia. We show below that a model with a constant market price

of risk generates a small value for the scaling factor (30). Such a model is therefore unable to

generate the necessary zQ = 0.955 unless z is high to begin with.
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The scaling factor (30) depends on the market price of risk η, and the speed of mean

reversion κy and volatility σy of productivity. In the data, estimates for these values are given

by η = 0.625, κy = 0.74, and σy = 0.0179 (see Table 1; Appendix A provides details for these

estimates). Plugging these values into equation (30) yields a scaling factor of 1.015. This

scaling factor implies that a value of z = 0.941 in the original economy is needed to reach

zQ = 0.955 in the artificial economy. This value of z = 0.941 lies at the high end of estimates

for the value of leisure (e.g., Chodorow-Reich and Karabarbounis 2016 estimate z to range

between 0.47 and 0.96, depending on preference specifications).

Put differently, our estimate for the scaling factor (30) implies that low to intermediate

values of z require counterfactually large values for the average market price of risk η to

generate realistic unemployment fluctuations. To see this, solve equation (23a) to obtain the

market price of risk that is required to generate a value of zQ = 0.955 for a given value of z,

ηrequired = κy(log 0.955− log z)/σy = −1.90− 41.34 log z, (31)

where the second equality makes use of the data estimates for κy and σy. We can then

compare the required market price of risk (31) to its data counterpart in order to assess the

potential of generating realistic unemployment fluctuations for a given z. The literature has

employed a wide range of values for z. At the low end, Shimer (2005) uses a value of z = 0.4

which implies a required value of ηrequired = 36. At the high end, Hagedorn and Manovskii

(2008) set z = 0.955 to match unemployment volatilities; risk premia are no longer necessary

in this case and ηrequired = 0. Christiano et al. (2016) use an intermediate value of z = 0.88

which implies a required ηrequired = 3.4. Our data estimate for η is 0.625. These calculations

imply that a counterfactually large value of η is needed to generate realistic unemployment

fluctuations for low and intermediate values of z.
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4.2 Case II: time-varying risk premia

We now consider the case of time-varying risk premia (TVRP) which is a well-documented

feature in the data (see, e.g., Cochrane 2011). We show that increases in risk premia can be

viewed as increases in the value of leisure in the equivalent artificial economy without risk

premia; our approach therefore provides intuition for how TVRP can lower the fundamental

surplus and amplify unemployment fluctuations.

Consider an economy with a time-varying market price of risk ηt that evolves according

to equation (12). Proposition 1 implies that labor policies in this economy are equivalent to

that of the equivalent artificial economy without risk premia in which long run productivity

µQt varies according to equation (26b). To see the effect of TVRP on the fundamental surplus

in the artificial economy, decompose productivity in the artificial economy yQ = µQ + εQ into

the long run component µQ and a transitory component εQ ≡ yQ − µQ. The inverse surplus

ratio (29) can then be written as exp(εQ)/(exp(εQ)− zQ exp(−µQ)).

Suppose that the market price of risk is initially at its long-run mean η = η. A discount

rate shock of size dηt = ∆η leads to an inverse fundamental surplus of approximately

exp(εQ)

exp(εQ)− zQ exp(−µQ)
≈ 1

1− zQ(∆η)
, (32)

where zQ(∆η) ≡ zQ exp(ση∆η/κy) is the effective value of leisure in the artificial economy

following the discount rate shock. The approximation (32) assumes that εQ mean reverts

instantaneously following a discount rate shock, while the effect of the discount rate shock on

µQ = σy(η − η)/κy (see equation (21b)) is permanent. We make this approximation because

the estimates from Table 1 imply that µQ mean reverts slowly following discount rate shocks

while εQ mean reverts quickly.4

4The speed of mean reversion for µQ is κQµ = κη = 0.139 which implies a half-life of 5 years. The

transitory component has law of motion dεQt =
(
−κQy εQt + κQµ µ

Q
t

)
dt+σQ

y dB
y,Q
t +σQ

µ dB
η,P
t which is obtained

by subtracting equation (26b) from equation (26a). To first order, we can ignore the κQµ µ
Q
t term in the law

of motion because κQµ = κη = 0.139 is small relative to κQy = κy = 0.74. The speed of mean reversion for εQ
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Figure 2: Illustration of equivalence result: time-varying market price of risk.
Panel A plots the value of leisure in the artificial economy zQ(∆η) following a discount rate shock
of size ∆η, where the plot displays ∆η in units of unconditional standard deviations. Panel B plots
the elasticity of tightness conditional on the discount rate shock. The solid line is for the original
economy (when productivity is y = EP [yt]), and the dash-dot line is for the artificial economy (when
productivity is yQ = EQ[yQt ]). Panel C plots the conditional volatility of unemployment one year
after the shock stdP(ut+1|∆η). The values in all three panels are computed under the assumption
that ut, yt, and ηt are at their mean values just prior to the arrival of the discount rate shock.
We fix z = 0.9 and set workers’ bargaining power β = 0.06 so that the model-implied wage to
output elasticity matches its data counterpart of 0.43; we calibrate vacancy posting costs c so that
model-implied mean unemployment rate matches the data. The remaining parameter values are
taken from Table 1 and Appendix A.

TVRP and unemployment fluctuations. The effect of TVRP on unemployment fluc-

tuations can be seen from equation (32) and is illustrated in Figure 2. A discount rate shock

of size ∆η increases the effective value of leisure in the artificial economy from zQ to zQ(∆η)

(see Panel A of Figure 2). This lowers the fundamental surplus and increases the inverse

surplus fraction (32). Subsequently, the elasticity of tightness becomes larger (Panel B) which

leads to a higher volatility in unemployment (Panel C) in the original economy.

To gauge the size of the effect of discount rate shocks on zQ(∆η), consider the scaling

factor

zQ(∆η)/z = exp(σy(η + ∆η)/κy) (33)

following a discount rate shock of size ∆η. Compared to the scaling factor (30) from an

is therefore approximately κQy = 0.74 and the corresponding half-life is 0.9 years.
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economy with a constant market price of risk, the scaling factor (33) increases with the size

of the discount rate shock ∆η. The value of the scaling factor (33) can be estimated using

the parameters from Table 1; it is 1.027 for a one unconditional standard deviation discount

rate shock (i.e., ∆η = 0.49),5 and 1.04 for a two unconditional standard deviation discount

rate shock.

4.3 Case III: priced discount rate shocks

For our third example, consider the economy with risk premia from Section 2.2 in which the

SDF (10) is generalized to

dΛt

Λt

= −rfdt− ηtdBy,P
t − λη(ηt)dBη,P

t . (34)

This SDF implies that discount rate shocks dBη,P
t carry a market price of risk of λη(ηt),

and, as before, productivity shocks dBy,P
t carry a market price of risk of ηt. We call this

specification “priced discount rate shocks”. We choose this specification because there is

recent empirical evidence for this discount rate process (see Kozak and Santosh 2020). More

importantly, it illustrates how our framework can be easily adapted to derive the implications

of discount rate processes that are even more flexible than the one we considered in Section 4.2.

Using our approach, we show that priced discount rate shocks can (1) further lower the

fundamental surplus in the equivalent artificial economy, and (2) prolong the propagation of

discount rate shocks to unemployment fluctuations.

Our results are for the affine specification

λη(ηt) = λη,0 + λη,1ηt, (35)

where λη,0 and λη,1 are constants. Appendix B shows that by applying the same procedure

used to derive Proposition 1, we can obtain the following generalized equivalence result:

5The market price of risk process (12) implies an unconditional standard deviation of stdP(ηt) = ση/
√

2κη
for the market price of risk. This value becomes 0.49 when we plug in values from Table 1.
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Proposition 2 (Equivalence result, priced discount rate shocks). Let θ(y, η) be the labor

market tightness in the original economy with risk premia and discount rate shocks priced

according to equation (35). Then, S(y, η) = exp(−σyEQ[ηt]/κy)S
Q(yQ, µQ) and θ(y, η) =

θQ(yQ, µQ), where SQ(yQ, µQ) and θQ(yQ, µQ) are the surplus and the labor market tightness,

respectively, in the artificial economy without risk premia. The mapping between the state

variables and parameters in the two economies is

yQt ≡ yt + σyEQ[ηt]/κy, µQt ≡ σy(EQ[ηt]− ηt)/κy, (36a, 36b)

zQ ≡ exp(σyEQ[ηt]/κy)z, cQ ≡ exp(σyEQ[ηt]/κy)c, (36c, 36d)

where

EQ[ηt] = (κηη − λη,0ση)/κQη , and κQη ≡ κη + λη,1ση. (37a, 37b)

Labor productivity in the artificial economy evolves according to

dyQt = κQy (µQt − yQt )dt+ σQy dB
y,Q
t , (38a)

dµQt = −κQµ µQt dt− σQµ dB
η,Q
t , (38b)

where dBy,Q
t and dBη,Q

t are Brownian shocks under the risk-neutral measure Q, and the

parameters are equal to κQy ≡ κy, σ
Q
y ≡ σy, σ

Q
µ ≡ σησy/κy, and

κQµ ≡ κQη . (39)

All remaining features are identical across the two economies.

Comparing Propositions 1 and 2, we see that priced discount rate shocks (35) implies

two additional features. First, equation (37a) implies that the mean of the market price

of risk under Q measure, EQ[ηt], is now different from its physical counterpart, η = EP [ηt].

This leads to a different scaling factor zQ/z = exp(σyEQ[ηt]/κy) compared to that from

an economy without priced discount rate shocks (30). Second, equations (37b) and (39)

imply that priced discount rate shocks alter the speed of mean reversion for the long run
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productivity process (38b). These additional features have implications when it comes to

amplifying and propagating the effect of discount rate shocks on unemployment fluctuations.

Amplification. The effect of priced discount rate shocks on the fundamental surplus in

the artificial economy is summarized by the scaling factor zQ/z = exp(σyEQ[ηt]/κy). To see

the relation between this scaling factor and the one from an economy without priced discount

rate shocks (30), consider the special case in which discount rate shocks carry a constant

price of risk (i.e., λη(ηt) = λη,0). It then follows from equation (37a) that

zQ/z = exp(σyη/κy) exp(−λη,0σyση/(κyκη)). (40)

The first term, exp(σyη/κy), is the scaling factor when discount rate shocks are not priced

(30). The second term, exp(−λη,0σyση/(κyκη)), summarizes the additional effect of priced

discount rate shocks. In the data, Kozak and Santosh (2020) find a negative market price of

risk for discount rate shocks, λη,0 < 0,6 which implies that the second term is greater than

one. That is, priced discount rate shocks results in a smaller fundamental surplus in the

artificial economy and therefore larger unemployment fluctuations.

Propagation. To see how priced discount rate shocks can result in a more persistent effect

of discount rate shocks on unemployment fluctuations, write the inverse fundamental surplus

(29) in terms of the long run component µQ and the transitory component εQ ≡ yQ − µQ,

exp(εQ)

exp(εQ)− zQ exp(−µQ)
≈ 1

1− zQ exp(−µQ)
. (41)

As in Section 4.2, the approximation in equation (41) assumes that εQ mean reverts instanta-

neously following a discount rate shock. Priced discount rate shocks affect the inverse surplus

(41) by changing the speed of mean reversion of µQ following a discount rate shock. This

6Intuitively, a negative market price of risk results when discount rate shocks covary positively with
investor marginal utility. That is, if discount rates are more likely to increase during bad times. In this case,
an asset whose return is positively correlated with discount rate shocks insures investors against bad states
and therefore carries a negative market price of risk.
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is because Proposition 2 (equations (37b) and 39) implies µQ has speed of mean reversion

κQµ = κQη = κη + λη,1ση which depends on the price of risk of discount rate shocks through

λη,1. A negative λη,1 decreases the speed of reversion κQµ so that positive discount rate shocks

depress long run productivity in the artificial economy for a longer duration. This depresses

the fundamental surplus (in the artificial economy) for a longer duration and therefore

prolongs unemployment fluctuations following positive discount rate shocks. It would be

interesting to investigate if this mechanism contributes to the slow recovery of unemployment

rates following recessions documented in Hall and Kudlyak (2020).

5 Conclusion

We derive an equivalence result which provides a framework to understand unemployment

fluctuations in an economy with time-varying discounts from the perspective of an artificial

economy without time-varying discounts. In constructing the artificial economy, we build on

a tool from the finance literature, namely risk-neutral valuation.

The artificial economy has an altered process for productivity and some of the values of

the structural parameters. We show how various properties of the process for time-varying

discounts impact the fundamental surplus in the artificial economy. This approach provides

a transparent way to understand the effect of these different discount rates processes on the

dynamics of the unemployment rate in the original economy. Although we illustrate our

approach through three progressively more flexible discount rate processes, our approach is

general and can be adapted to understand the effect of other discount rate processes.
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Appendix

A Parameter values

The parameter values used in our numerical illustrations are set as follows. We estimate the
productivity process (9) using the real output per person series for the nonfarm business sec-
tor (i.e., PRS85006163 from FRED) over the period 1951Q1-2019Q4. We log and HP-filter
this series using a smoothing parameter of 10000 (as in Shimer 2005). The resulting series
has an autocorrelation of 0.831 and a volatility of 0.0082. We convert these values to the
parameters for the productivity process (9) using 0.831 = EP [zt+∆|zt]/zt = exp(−κy∆) and

0.0082 =
√
V arP(zt+∆|zt) = σy

√
(1− exp(−2κy∆))/(2κy) where ∆ = 0.25 for a horizon of a

quarter. This results in κy = 0.74 and σy = 0.0179.

We estimate labor market parameters using the sample between 1951 and 2016. We construct
labor market tightness using the Barnichon (2010) extended help-wanted index, which is available
up to 2016. We obtain job-separation and job-finding rates following Elsby et al. (2009). This
results in a mean separation rate of s = 0.4 or 3.37% per month. We estimate the curvature of
the matching function by regressing the log job-finding rate on log labor market tightness after
HP-filtering both series; this yields α = 0.64. We set A = 8.27 so that the model-implied job-finding
rate f(θ), evaluated at the mean value of tightness in the sample, agrees with its sample mean.

We set the risk-free rate rf = 0.013 to be the difference between the average one year treasury
rate and average inflation. The average one year treasury rate is 5.10% over 1962-2019 (based on
the DGS1 series from FRED which is available starting from 1962) while average CPI inflation is
3.8% per anum over the same period.

Exercises involving a time-varying market price of risk (e.g., Figure 2) additionally require
parameter estimates for the market price of risk process (12). We directly use the estimates from
Lettau and Wachter (2007, Table IV) for this process. They fit a discrete time AR(1) process for ηt
and find ηt+∆ = (1− 0.87)× 0.625 + 0.87ηt + 0.24εη,t+∆, εη,t+∆ ∼ N(0, 1), is needed to justify stock
returns over a horizon of ∆ = 1 year. We convert this discrete time process to its continuous time
counterpart (12) using η = 0.625, 0.87 = exp(−κη∆), and 0.24 = ση

√
(1− exp(−2κη∆))/(2κη),

which implies κη = 0.139 and ση = 0.257.

B Derivation of Proposition 2

Proposition 2 can be derived using the procedure from Section 3 for deriving Proposition 1. The
risk-neutral measure implied by the stochastic discount factor (SDF) (34) is equal to

Q(A) =

∫
A

exp

(
−1

2

∫ t

0
η2
u du−

∫ t

0
ηu dB

y,P
u − 1

2

∫ t

0
λη(ηu)2 du−

∫ t

0
λη(ηu) dBη,P

u

)
dP (B.1)

for any event A in the time t information set. Compared to equation (14), the additional terms in
equation (B.1) account for priced discount rate shocks in the SDF (34). The risk-neutral process
for productivity yt is still given by equation (15) while the risk-neutral process for the market price
of risk ηt is

dηt = κQη
(
ηQ − ηt

)
dt+ σηdB

η,Q
t , (B.2)
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under the risk-neutral meaure (B.1), where κQη ≡ κη + λη,1ση, η
Q ≡ (κηη − λη,0ση)/κ

Q
η , and

Bη,Q
t ≡

∫ t
0 λη(ηu) du+Bη,P

t is a standard Brownian motion under the risk-neutral measure (B.1).

The equilibrium in the original economy can be characterized following the steps outlined in
Section 2.2. In particular, the equilibrium surplus and tightness satisfies equation (19) with risk-
neutral parameters for the market price of risk process—that is, with L Q = L Q[κy, σy, κ

Q
η , η

Q, ση]
in equation (19a). As in Section 3, substituting the change of variables (36), and S(y, η) =
exp(−σyEQ[ηt]/κy)S

Q(yQ, µQ) and θ(y, η) = θQ(yQ, µQ), into the equilibrium characterization for
the original economy (i.e., equation (19) with L Q = L Q[κy, σy, κ

Q
η , η

Q, ση]) yields the comparison
to the artificial economy without risk premia. The productivity process for the artificial economy
(38) follows from substituting the risk-neutral laws of motion (15) and (B.2) for y and η, respectively,
into the definitions of yQ and µQ, equations (36a) and (36b), respectively.
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