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1 Introduction

A long tradition in macro-finance investigates the presence of stock return predictability by

looking at the joint dynamics of aggregate dividend growth, the price-dividend ratio, and stock

returns. A key insight, due to Campbell and Shiller (1988a,b), is that the definition of returns

imposes cross-equation restrictions on the dynamics of these three variables that can be

exploited to sharpen inference using vector autoregressions (VARs). The accepted empirical

practice in imposing the restrictions is to drop one of the variables, usually dividend growth,

and recover the remaining VAR coefficients from the Campbell-Shiller (CS) identity. Using

this approach, Cochrane (2008) concludes that stock returns are predictable, mean-reverting

over long horizons.

We start by pointing out that, contrary to widespread belief, the practice of omitting one

of the variables from the identity is in general invalid. Dropping dividend growth amounts to

imposing the additional restriction that this variable is not persistent after controlling for

lags of the remaining variables. Intuitively, the CS identity is an intertemporal restriction;

so unless dividend growth happens to be independently and identically distributed, the

information contained in this variable cannot be recovered with a finite-order VAR in the

price-dividend ratio and returns alone. This is true even in the case where there is no

approximation error in the CS identity. We find that the extra restriction on the dynamics of

dividends is not supported by annual US postwar data.

Relaxing this additional restriction does not affect Cochrane’s (2008) finding that returns

display mean reversion, but uncovers an additional and previously overlooked channel of

return predictability, which we label “dividend momentum”: following a shock that increases

both returns and dividends on impact, dividend growth remains positive for many periods,

and by the CS identity, future returns increase as well. This channel cannot arise in a VAR

in which dividend growth is omitted from the system. The presence of dividend momentum
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modifies the interpretation of a popular decomposition of return innovations into cash flow

and discount rate news (see Campbell and Ammer, 1993): these two components can no

longer be interpreted as permanent and transitory innovations to wealth (see Campbell and

Vuolteenaho, 2004). Additionally, dividend momentum has non-trivial implications for the

optimal asset allocation of long-horizon investors, as it increases the long-run variance of

stock returns and reduces their intertemporal hedging demand motive. Finally, the presence

of dividend momentum poses challenges to both habit-formation and long-run risk theories of

asset pricing, as both of them imply that dividend growth is not persistent after controlling

for the lagged price-dividend ratio.

Having established that dropping dividend growth is not an option, and that doing so

has important empirical and economic consequences, we propose a Bayesian approach to

inference that imposes the CS restrictions without omitting any variable. A central motivation

for using Bayesian methods is to address the fact that the degree of return predictability

found in the data is a priori implausible and not useful out-of-sample, and that the very

high persistence of the dividend-price ratio leads to unreliable inference. Our Bayesian

approach provides a tractable way to use informative priors that embody skepticism about

the degree of return predictability, in the spirit of Wachter and Warusawitharana (2009,

2015), shrinking the amount of predictability and adjusting upward the persistence of the

price-dividend ratio while making the CS restrictions hold. We note that our methods extend

to the many applications in macroeconomics and finance where similar identities emerge, such

as the ones linking bond returns and interest rates (see Campbell, Lo, and MacKinlay, 1997);

consumption, wealth, and returns (see Campbell and Mankiw, 1989; Lettau and Ludvigson,

2001; Gourinchas and Rey, 2019); interest rate differentials and the real exchange rate (see

Engel, 2016); net foreign assets, net exports, and the return on the foreign asset portfolio (see

Gourinchas and Rey, 2007), or government debt, surpluses, and interest rates (see Cochrane,

2019), all of which feature stationary but highly persistent variables as predictors of asset

returns.
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Although our methods work with any prior distribution, we use the popular class of

conjugate normal-inverse Wishart priors as an illustration. While imposing linear restrictions

on the normally distributed autoregressive coefficients of the VAR is straightforward, the

same is not true for the restrictions imposed on the inverse Wishart distribution of the

VAR variance-covariance matrix. Our technical contribution is to show that the restricted

variance-covariance matrix can be linearly mapped into a block-diagonal symmetric positive

semidefinite matrix. Because the volume element associated with the restricted linear

transformation is constant, we can develop a very simple importance sampling algorithm to

generate independent draws from any desired restricted distribution. This makes our method

scalable to large systems, an advantage relative to existing alternatives, opening the door to

studying return predictability in VARs with potentially hundreds of variables.

In our empirical application, we put our methods to work and explore the consequences

of an informative prior that is tightly centered around no return predictability and a highly

persistent price-dividend ratio but satisfies the CS restrictions. Even from this conservative

starting point, using annual data for the US covering the period 1947-2018, we find that

the restricted posterior distribution is consistent with an economically meaningful degree of

return predictability coming from both the traditional mean-reversion and the novel dividend

momentum channels. Short-run predictability in particular is attenuated relative to using

an uninformative prior distribution, but this is compensated by an increase in longer-run

predictability.

Turning to out-of-sample predictability, we show how the use of restricted informative

priors reverts the conclusions of Goyal and Welch (2008) that any in-sample predictability is

not useful out-of-sample. We obtain out-of-sample R-squared statistics that over-perform a

naive benchmark by almost 30 percent at the five-year horizon, in contrast to alternatives

using flat priors or ignoring the CS restrictions, which uniformly under-perform the same

benchmark. To assess the economic value of these results, we consider the asset allocation

problem of a long-horizon investor who can choose how much to invest in stocks each year
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until retirement. If the investor estimates the VAR using flat priors, the optimal solution leads

to unrealistically large swings in positions and large amounts of leverage, which ultimately

under-perform a naive allocation rule. Under our restricted informative prior, the investor

chooses allocations that not only are more realistic but also deliver sizable improvements in

Sharpe ratios, 0.52 compared to 0.36 for the naive rule. We show that the informativeness of

the no-predictability prior needs to be sufficiently strong for this result to emerge. In that

sense, a conservative prior that starts from skepticism about return predictability ends up

helping uncover the amount of predictability required to successfully time the market. It is

important to note that the dividend momentum channel also meaningfully affects these results

in the same direction, as the reduction in hedging demand for stocks makes the allocation

more conservative for any given prior.

Relation to the literature Our paper is tightly connected to the vast literature that has

looked at return predictability using VARs, in particular, the classic papers by Campbell

and Shiller (1988a,b), Fama and French (1988), and Cochrane (2008), whose implications for

asset allocation purposes have been highlighted by Campbell and Viceira (1999), Campbell,

Chan, and Viceira (2003). The persistence of aggregate dividend growth in isolation has been

noted by Van Binsbergen and Koijen (2010), Koijen and Nieuwerburgh (2012), and Chen,

Da, and Priestley (2012). We investigate the consequences of dividend growth persistence

in the canonical VAR setting and show how it is the residual autocorrelation of dividend

growth, after controlling for the lagged price-dividend ratio, which gives rise to momentum in

returns via the CS identity. This is distinct from the persistence in expected dividend growth

emphasized by the long-run risk literature (see Bansal and Yaron, 2004; Schorfheide, Song,

and Yaron, 2018), which would be fully captured by time variation in the price-dividend

ratio.

Our methodological contribution shares its motivation with the literature on Bayesian

learning and informative priors in the context of return predictability, as exemplified by
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Wachter and Warusawitharana (2009, 2015) and Pástor and Stambaugh (2009, 2012). However,

in departing from the predictive-regression approach and adopting a general VAR setting,

we bring the Bayesian paradigm closer to the classic papers above, which, like ours, stress

the importance of studying returns, dividends, and price-dividend ratios as a system. Our

work is also broadly relevant to the Bayesian econometrics literature on appropriate priors

for VARs. Early contributions in this literature go back to the work of Doan, Litterman,

and Sims (1984) and Sims (1993) and have seen a renewed interest in recent years (see, e.g.,

Del Negro and Schorfheide, 2004; Giannone, Lenza, and Primiceri, 2015, 2019), including in

the context of return predictability (see Avramov, Cederburg, and Lučivjanská, 2018).

The rest of the paper is organized as follows. Section 2 describes the basic model that

we will use to illustrate our methods. Section 3 explains the econometric consequences of

omitting dividend growth. Section 4 introduces dividend momentum. Section 5 provides a

first exploration of the data. Section 6 describes our methods to incorporate informative priors

that implement the CS restrictions, and Section 7 describes the results. Finally, Section 9

concludes.

2 A Basic Macro-Finance VAR

The classic macro-finance VAR approach of Cochrane (2008) studies the joint dynamics of

log dividend growth, the log price-dividend ratio, and log returns. In this section we focus on

a minimalistic VAR that contains only the three key variables above and uses only one lag.

None of our conclusions, however, are affected if we add more variables to the VAR, or more
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lags. The VAR(1) in y′
t = [∆dt+1, pdt+1, rt+1] is written:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt+1

pdt+1

rt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

yt+1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cd

cpd

cr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²

Φ0

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φd,d φd,pd φd,r

φpd,d φpd,pd φpd,r

φr,d φr,pd φr,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Φ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt

pdt

rt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¸¹¹¹¹¶

yt

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

udt+1

updt+1

urt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¸¹¹¹¹¶

ut+1

(1)

where Et (ut+1) = 03×1, Et (ut+1u′
t+1) = Σ and Σ is a symmetric and positive semidefinite

(SPD) and where 0m×m̃ is a matrix of zeros of dimension m × m̃. This system can be written

as yt+1 = Φz′t + ut+1 where zt = [1,y′
t] and Φ = [Φ0,Φ1]. We define µ = (In −Φ1)−1Φ0 as the

unconditional mean of the variables. As first noted by Campbell and Shiller (1988a,b), if one

assumes that the price-dividend ratio is stationary, log-linearizing the definition of return,

Rt+1 = (Pt+1+Dt+1)/Pt, around the mean of the log price-dividend ratio yields an approximate

identity that links log returns, log dividend growth, and changes in the log price-dividend

ratio:

rt+1 ≈ κ + ρpdt+1 − pdt +∆dt+1 (2)

where κ and ρ are constants of approximation that depend on the steady-state log dividend-

price ratio. Being derived from a definition, the Campbell-Shiller (CS) identity holds very

tightly in the data.1 It holds with equality if one adds an approximation error, denoted

ηt+1. In the data, the log-linear approximation is accurate enough that ηt+1 is very small,

but this term can capture additional measurement error if, as is common in the literature, a

smoothed price-dividend ratio or a price-earnings ratio is used instead in the VAR. In that

case, it is easy to show that Equation (2) imposes the following restrictions among the VAR

innovations:

urt+1 = udt+1 + ρu
pd
t+1 + ηt+1, (3)

1We will refer to the log dividend growth, the log price-dividend ratio, and log returns as dividend growth,
the price-dividend ratio, and returns, except when strictly necessary.
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The CS identity implies restrictions among the 3-variable VAR(1) coefficients in Equation

(1). In particular it imposes (linear) restrictions on Φ and Σ. The restrictions for Φ are:

cr = cd + ρcpd + κ, (4)

φr,d = φd,d + ρφpd,d, (5)

φr,pd = φd,pd + ρφpd,pd − 1, (6)

φr,r = φd,r + ρφpd,r, (7)

whereas the restrictions for Σ are:

Cov (urt+1, u
d
t+1) = ρCov (updt+1, u

d
t+1) + Var (udt+1) and (8)

Cov (urt+1, u
pd
t+1) = ρVar (updt+1) + Cov (udt+1, u

pd
t+1) . (9)

If we do not consider approximation error we will have an additional restriction for Σ:

Var (urt+1) = Var (udt+1) + ρ2Var (updt+1) + 2ρCov (udt+1, u
pd
t+1).

Additionally, the derivation of the CS identity (2) requires the system to be stationary,

and in particular that the price-dividend ratio has a well-defined steady-state. This is a

restriction on the eigenvalues of the matrix Φ1, which we write:

Φ1 ∈ {Z ∈ R3×3 ∶ max{eig (Z)} < 1} . (10)

This generalizes Cochrane’s (2008) requirement of an upper bound to the persistence of

the price-dividend ratio. The CS restrictions (4)-(9) and the stationarity restriction (10)

are cross-equation restrictions on the VAR described in Equation (1). Because the former

restrictions are only valid if the latter is satisfied, from this point on, when we impose the CS

restrictions (4)-(9), we impose the stationarity restriction (10) as well.

Similar log-linear identities are pervasive in the macro-finance literature, linking, e.g.,
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bond returns and interest rates (see Campbell, Lo, and MacKinlay, 1997); consumption,

wealth, and returns (see Campbell and Mankiw, 1989; Lettau and Ludvigson, 2001); net

foreign assets, net exports, and the return on the foreign asset portfolio (see Gourinchas and

Rey, 2007); or government debt, surpluses, and interest rates (see Cochrane, 2019). All of

them imply equivalent sets of restrictions.

Because an identity links the three variables, a common belief in the literature is that

one of the three can be dropped from a VAR such as the one in Equation (1). For instance,

Cochrane (2017) says: “The definition of return means that only two of the three equations

are needed, and the other one follows.” With any two rows of coefficients, innovations, or data

series, common practice is then to retrieve the omitted variable and associated coefficients

from the CS identity and CS restrictions (4)-(9).2 Campbell (2017, p.144) even states that

one variable must be dropped, writing that “returns and dividend growth should not both be

included in the system along with the log-price-dividend ratio, because the resulting system

will have perfectly collinear variables.” Avramov, Cederburg, and Lučivjanská (2018) also

claim that the 3-variable VAR(1) “must be estimated with observation equations for only

two of the [...] variables to ensure that the variance-covariance matrix Σ is nonsingular.”

In fact, collinearity problems only appear when using more than one lag and in the absence

of approximation error. To see this, notice that the identity links returns, dividend growth,

and the price-dividend ratio with the lagged price-dividend ratio. With only one lag, it is

clear that no explanatory variable in the VAR can be retrieved as a linear combination of

the others, i.e., the matrix z′tzt is full rank. For more than one lag, z′tzt is still not singular

because of the small approximation error or other sources of measurement error. Similarly, Σ

2This practice is followed by most of the studies looking at the relationship between returns, dividend
growth, and the price-dividend ratio. See, for instance, Campbell and Viceira (1999); Campbell et al. (2001);
Cochrane (2008, 2011); Avramov et al. (2018). A noticeable exception is Campbell and Shiller (1988a), who
find some weak evidence of persistence in dividend growth (see also Chen, Da, and Priestley, 2012). Larrain
and Yogo (2008) use the GMM to estimate a system without omitting variables, but cite the latter as an
equivalent alternative. The practice of dropping dividend growth from VAR systems featuring returns and
the price-dividend ratio is prevalent also in studies featuring additional predictors of excess returns (see, e.g.,
Campbell, 1991; Campbell and Ammer, 1993; Campbell, Chan, and Viceira, 2003; Campbell and Vuolteenaho,
2004).
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is singular only in the absence of approximation error. Admittedly, since the approximate

identity holds very closely in the data, the error is very small and 3-variable systems with

more than one lag may be nearly collinear, with Σ close to rank deficient, and may experience

numerical instabilities if estimated using ordinary least squares (OLS).

In the next section we show that the above concerns do not imply that one can omit

one of the three variables from the VAR by invoking the CS identity. We will focus our

exposition on the 3-variable VAR(1) in Equation (1), where collinearity is not a problem

even with the CS identity holding exactly. However, collinearity will not be a concern either

when using our Bayesian estimation methods (see, e.g., Leamer, 1973), which will allow

for systems with any lag length, and with or without approximation error. Moreover, in

Section 6 we develop inference methods that can also handle the possibility of a singular

variance-covariance matrix.

3 Omitting Dividend Growth

We first show that, in general, one cannot drop one of the three variables in the VAR in

Equation (1). Since returns are the ultimate variable of interest, the standard choice is to

drop dividend growth and run a 2-variable VAR(1) on x′t+1 = [pdt+1, rt+1]. Without loss of

generality, in this section we abstract from the constant term. Let us partition the 3-variable

VAR(1) in Equation (1), so as to isolate the vector xt+1:

⎡⎢⎢⎢⎢⎢⎢⎣

∆dt+1

xt+1

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

φd,d φ21

φ12 Φ11

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

∆dt

xt

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

udt+1

ξt+1

⎤⎥⎥⎥⎥⎥⎥⎦

, (11)

where:

Φ11 =

⎡⎢⎢⎢⎢⎢⎢⎣

φpd,pd φpd,r

φr,pd φr,r

⎤⎥⎥⎥⎥⎥⎥⎦

, φ12 = [φpd,d, φr,d]′ , φ21 = [φd,pd, φd,r] , and ξt+1 = [updt+1, u
r
t+1]

′
.
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The last row of the 3-variable VAR(1) in Equation (11) implies that ∆dt = (1 −

φd,dL)−1 [φ21xt−1 + udt ] and the following representation for xt+1:

xt+1 = (Φ11 +Φdd)xt + (φ12φ21 −ΦddΦ11)xt−1 + ξt+1 −Φddξt +φ12u
d
t , (12)

where Φdd = φd,dI2, where Im is an identity matrix of dimension m. Then, Equation (9)

implies udt = [−ρ,1]ξt − ηt. Therefore Equation (12) collapses to:

xt+1 = G1xt +G2xt−1 + ξt+1 +B1ξt −φ12ηt, (13)

where Et (ξt+1ξ′t+1) = Ωξ, G1 = Φ11 + Φdd, G2 = φ12φ21 − ΦddΦ11, and B1 = φ12 [−ρ,1] −

Φdd. Using the results in Appendix A, Equation (13) implies the following VARMA(2,1)

representation of xt+1:

xt+1 = G1xt +G2xt−1 + et+1 +D1et, (14)

where Et (et+1e′t+1) = Ωe and we have defined ηt+1 = ηt+1, Ωη = σ2
η, M0 = −φ12, and Ωξη =

[0 σ2
η]
′
. In what follows we assume that the approximation error, ηt+1, is not correlated

with updt+1 or udt+1. In this case we can write Ωξη = [0 σ2
η]
′
. Specify a 2-variable VAR(1) for

xt+1:

xt+1 = A1xt + εt+1, (15)

where Et (εt+1ε′t+1) = Ωε. Because A1 satisfies the following moment condition

E [(xt+1 −A1xt)x′t] = 02×2, we have that G1Γ0 + G2Γ′
1 + D1Ωe − A1Γ0 = 02×2, where Γj

is the j-th autocovariance of xt. Rearranging the solution above highlights the link between

A1 and the parameters in the 3-variable VAR(1) in Equation (1), specifically:

A1 = G1 + (G2Γ
′
1 +D1Ωe)Γ−1

0 . (16)

Equation (16) highlights that, unless G2Γ′
1 +D1Ωe = 02×2, it is the case that A1 ≠ G1.
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But it should be clear that even then we have A1 ≠ Φ11; indeed φd,d always affects A1. This

is another example of the argument in Cochrane (2008); the dynamics of dividend growth

will affect our estimates of A1. Only in the case that φpd,d = φr,d = 0, and therefore φd,d = 0,

we have that A1 = Φ11. The next theorem formalizes this claim.

Theorem 1. The VARMA(2,1) in Equation (14) will have G1 = Φ11, G2 = 02×2, and

D1 = 02×2 if and only if φpd,d = φr,d = 0, with φd,d = 0 following from CS restriction (5).

Proof. See Appendix B.

Theorem 1 implies that if we run the 2-variable VAR(1) in Equation (15), A1 = Φ11 if

and only if φpd,d = φr,d = 0. This additional restriction does not follow from the CS identity.

Notice that were these extra restrictions true, the return identity would also imply that

φd,d = 0.3 The punchline is clear: the CS identity does not allow one to drop one of the

three variables and run the 2-variable VAR(1) in Equation (15). Doing so, while assuming

A1 = Φ11, amounts to imposing the additional restrictions φpd,d = φr,d = 0. These claims are

formalized in the following corollary.

Corollary 1. Assuming A1 = Φ11 implicitly imposes that φpd,d = φr,d = 0, with φd,d = 0

following from CS restriction (5).

An implication of Equation (16) is that the innovations of the 2-variable VAR(1) are

predictable with lagged information. In fact, it follows from Equations (15) and (16) that:

εt+1 = − (G2Γ
′
1 +D1Ωe)Γ−1

0 xt +G2xt−1 + et+1 +D1et. (17)

In Appendix C we show how to calculate the variance of εt+1:

Ωε = Ωe +D1ΩeD
′
1 +G2Γ0G

′
2 − (G2Γ

′
1 +D1Ωe)Γ−1

0 (G2Γ
′
1 +D1Ωe)′ . (18)

3By a similar argument, one can show that a 2-variable VAR(1) on [∆dt+1, pdt+1]
′

would impose the
extra restrictions φpd,r = φd,r = 0, with φr,r = 0 following from CS restriction (7).
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With these ingredients we can write the following corollary:

Corollary 2. The innovations of the 2-variable VAR(1), εt+1, equal ξt+1 if and only if

φpd,d = φr,d = 0, with φd,d = 0 following from CS restriction (5).

Clearly, Corollary 2 implies that the innovations of the 2-variable VAR(1) in Equation (15)

are not predictable if and only if φpd,d = φr,d = 0. Interestingly, even when εt+1 = ξt+1, one

cannot recover udt+1 because of the approximation error. It is also useful to note an interesting

special case of Theorem 1, by which it is possible to recover the return innovation, urt+1:

Corollary 3. The innovation to the return equation in the 2-variable VAR(1), i.e., the last

element in εt+1, is equal to the return innovation urt+1 if and only if φr,d = 0.

Corollary 3 implies that if there is no direct predictability from dividends to returns, both

the one-step-ahead forecast and its prediction error coincide with those of the 3-variable VAR.

Therefore, results that depend only on those quantities will be recovered correctly.

3.1 No Approximation Error

It is important to also notice that neither Theorem 1 nor Corollary 2 depend on the

existence of approximation error. If we now consider the case with no approximation

error, the VARMA(2,1) representation of xt+1 is xt+1 = G1xt + G2xt−1 + ξt+1 + B1ξt; thus,

D1 = B1 and et+1 = ξt+1 and Equations (16)-(18) become A1 = G1 + (G2Γ′
1 +B1Ωξ)Γ−1

0 ,

εt+1 = − (G2Γ′
1 +B1Ωξ)Γ−1

0 xt + G2xt−1 + ξt+1 + B1ξt, and Ωε = Ωξ + B1ΩξB′
1 + G2Γ0G′

2 −

(G2Γ′
1 +B1Ωξ)Γ−1

0 (G2Γ′
1 +B1Ωξ)′. Appendix B shows that Theorem 1 and Corollary 2

hold in the absence of approximation error.

4 Dividend Momentum

Section 3 emphasizes the econometric consequences of φd,d > 0 for the practice of omitting

dividend growth. In this section we highlight its economic implications. In particular, we
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highlight that whenever φd,d > 0 and φr,pd < 0, a previously overlooked channel of return

predictability arises, which we call dividend momentum. We first define dividend momentum

using news about cash flows and discount rates and then show how it manifests in the impulse

response functions (IRFs) and the correlation between cash flow and discount rate news. We

will finish this section by highlighting the consequences for portfolio choice.

Iterating forward the CS identity, applying expectations, and imposing the transversality

condition lim
T→∞

ρTEtpdt+T = 0, we obtain the result that the price-dividend ratio is equal to

the expected discounted sum of future dividend growth minus the expected discounted sum

of future returns. Combining this result with the CS identity, Campbell and Ammer (1993)

derive a decomposition of unexpected returns:

rt+1 −Etrt+1 = (Et+1 −Et)
∞
∑
j=0
ρj ∆dt+j+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NCFt+1

− (Et+1 −Et)
∞
∑
j=1
ρjrt+j+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NDRt+1

(19)

An unexpected positive return today must come from positive revisions to the discounted

sum of current and expected future dividend growth (news about cash flows, or NCFt+1) or

negative revisions to the discounted sum of expected future returns (news about discount

rates, or NDRt+1). NCFt+1 and NDRt+1 are useful to define mean reversion and momentum.

On the one hand, there is mean reversion if a shock exists such that it causes a positive

revision to current return and a negative revision to expected future returns. This implies that

rt+1−Etrt+1 moves in the opposite direction to NDRt+1. On the other hand, momentum arises

whenever a shock exists such that it causes a positive unexpected return today and a positive

revision in expected future returns. In other words, rt+1 −Etrt+1 and NDRt+1 move in the

same direction. Whenever momentum is associated with positive revisions to both current and

expected future dividend growth, we have dividend-induced momentum in returns, which we

call “dividend momentum.”4 Campbell and Vuolteenaho (2004) interpret surprises to NCFt+1

4We therefore consider dividend momentum as a specific case of return momentum. Dividend momentum
in returns is different than positive serial correlation in dividend growth. Indeed, dividend growth could be
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and NDRt+1 approximately as permanent and transitory shocks to wealth, respectively. With

dividend momentum this decomposition is not valid; news about discount rates is correlated

with surprises about future expected dividend growth and accumulates over time.

As we highlight below, if dividends are persistent, in a way not fully captured by the

lagged price-dividend ratio, (i.e., φd,d > 0), dividend momentum will generally arise. This

follows from the restrictions implied by the CS identity, even if the price-dividend ratio is the

only variable that directly predicts returns.

To see this, consider the following simplified system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt+1

pdt+1

rt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φd,d

φpd,d

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆dt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

φpd,pd

φr,pd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pdt +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

udt+1

updt+1

urt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The zero coefficients for φr,d (lagged dividends do not forecast returns) and φd,pd (the lagged

price-dividend ratio does not forecast dividends) are approximately true in the data, as we will

show in Section 7. The omission of the third column is for expositional purposes only and does

not affect any of the economic implications.5 In this simplified setting, the CS restrictions (5)

and (6) imply φpd,d = −φd,d/ρ and φr,pd = ρφpd,pd −1. To further simplify the discussion we also

assume that Cov (updt+1, u
d
t+1) = 0. This assumption is not required but simplifies the exposition

allowing an interpretation of updt+1 and udt+1 as distinct shocks that we call price-dividend

ratio and dividend growth shocks. The rest of the covariances between innovations are

backed out from the CS restrictions (8) and (9), yielding Cov (urt+1, u
d
t+1) = Var (udt+1) and

Cov (urt+1, u
pd
t+1) = ρVar (updt+1).

persistent, but if that persistence were captured by the lagged price-dividend ratio, there would be no impact
on NDRt+1 and therefore no dividend momentum in returns. The latter situation arises, for example, in the
long-run risk model of Bansal and Yaron (2004), where dividend growth has a persistent component but is
predicted by pdt.

5Our estimates will show that φd,r > 0, which strengthens the basic intuitions laid out in this section.
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In this case the decomposition in Equation (19) becomes:

rt+1 −Etrt+1 = (1 +Ψ)udt+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

NCFt+1

− (−ρupdt+1 +Ψudt+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

NDRt+1

,

with Ψ = ρφd,d
1−ρφd,d . Notice that the two terms include Ψudt+1 with opposite sign, so they cancel

out and the expression for rt+1 −Etrt+1 = udt+1 + ρu
pd
t+1 is equal to, as per the CS identity, urt+1,

which does not depend on φd,d. While the sum of the two components is unaltered irrespective

of φd,d, when φd,d > 0, the NCFt+1 term is now bigger by the factor Ψ, and NDRt+1 is affected

by both updt+1 and udt+1. Importantly, a positive dividend growth shock will lead to positive

unexpected return and dividend growth today, a positive revision to the discounted sum of

expected future dividend growth, and a positive revision to the discounted sum of expected

future returns (NDRt+1); this shock generates dividend momentum and it contributes to the

(positive) correlation of NCFt+1 and NDRt+1. If instead φd,d = 0, the dividend growth shock

does not affect NDRt+1 and, thus, it does not generate dividend momentum.

A useful way to detect dividend momentum is to compute the IRFs to each of the two

shocks. Figure 1 plots the discounted cumulative IRFs for returns and dividend growth for

our simple model. We plot the IRFs discounting by ρh, and then cumulating; so, for returns,

the IRF converges to the sum of the initial unexpected return and NDRt+1, whereas, for

dividends, the IRF converges to NCFt+1. If a variable were unpredictable, we would observe a

perfectly flat IRF beyond the initial jump. After an initial positive impact, downward-sloping

IRFs for returns are indicative of mean reversion, whereas upward-loping ones are a sign

of momentum. If momentum is caused by a shock with an initial positive impact and an

upward-sloping IRF for dividend growth, we will have dividend momentum.

Panel (a) of the figure plots the case φd,d > 0, whereas Panel (b) has φd,d = 0. For a

price-dividend ratio shock, the IRFs are the same in both panels: returns jump on impact

but have a negative slope thereafter. This is the classic mean reversion effect in returns,
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Figure 1: Dividend Momentum and IRFs

(a) Dividend Momentum (φd,d = 0.4)
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(b) No Dividend Momentum (φd,d = 0)
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Note: Panel (a): φd,d = 0.4. Panel (b): φd,d = 0. In addition, we use the following numerical values

φpd,pd = 0.92, Var (udt+1) = 0.003, and Var (updt+1) = 0.028, which are justified from the results in Section 5. For

the rest of the paper, we will use ρ = 0.971.

caused by mean reversion of the price-dividend ratio, as documented by Fama and French

(1988) and Campbell and Shiller (1988a). On the contrary, the IRF for dividend growth is

zero every period; so neither contemporaneous nor expected future dividend growth changes.

Consider now a dividend growth shock. By the CS identity, both returns and dividend growth

initially jump by the same amount regardless of the value of φd,d. However, the value of φd,d
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is relevant beyond impact. If φd,d = 0 is zero, future expected returns and dividend growth

are unaffected: the slope of both IRFs is flat and there is no dividend momentum. If instead

φd,d > 0, expectations of future returns and dividend growth increase: the slope of both IRFs

is positive, inducing dividend momentum.

Another method to detect dividend momentum is to look at the contribution of a dividend

growth shock to the variance of NCFt+1 and NDRt+1 and the correlation between them. In

our simplified model, the variance of the unexpected return is:

Var(urt+1) = (1 +Ψ)2
Var(udt+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Var(NCFt+1)

+ρ2Var(updt+1) + (Ψ)2
Var(udt+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Var(NDRt+1)

−2(1 +Ψ)ΨVar(udt+1).
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2Cov(NCFt+1,NDRt+1)

When φd,d > 0, dividend momentum implies that an increase in udt+1 leads to a positive re-

vision of current and expected future cash flows and discount rates. As a consequence,

Var(NCFt+1) > Var(udt+1), Var(NDRt+1) > ρ2Var(updt+1), and Corr(NCFt+1,NDRt+1) =

ρφd,d
√
Var(NCFt+1)/Var(NDRt+1) > 0. Therefore, if dividend momentum is present in

the data, one should see an increased contribution of dividend growth shocks to the volatility

of both NCFt+1 and NDRt+1, and the correlation between the two.

Finally, it is important to note that with correlated NCFt+1 and NDRt+1, one may also

need to separate the orthogonal shocks that may be simultaneously affecting both components.

In our simple model above, these naturally correspond to the uncorrelated updt+1 and udt+1

innovations. In a more empirically relevant case in which updt+1 and udt+1 are correlated, the

innovations need to be orthogonalized to obtain the price-dividend ratio and dividend growth

shocks. While there may be many valid orthogonalizations, a particularly simple and intuitive

option is to consider two uncorrelated shocks with the following properties: a shock that

explains all of the unexpected variance of the price-dividend ratio at horizon zero and another

shock, orthogonal to the first one, which does not move the price-dividend ratio on impact,

and together with the first, explains the entirety of the unexpected variance of dividend
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growth on impact. These can be retrieved by means of a Cholesky decomposition in which

variables are ordered [pdt+1,∆dt+1, rt+1], and it is easy to see that in the simple model above

we would retrieve the innovations updt+1 and udt+1.6,7

4.1 Implications for Portfolio Choice

Dividend momentum affects the portfolio choice of the investor who cares about long-run

returns, rt,t+k = ∑kj=1 rt+j . The risk for the long-run investor is a function of the unpredictable

component for long-run returns, rt,t+k −Etrt,t+k. For the simplified model we have that

rt,t+k −Etrt,t+k =
k

∑
j=1
urt+j +

k−1

∑
j=1

[ajupdt+k−j + bju
d
t+k−j] , (20)

where aj =
1−φj

pd,pd

1−φpd,pd (ρφpd,pd − 1), bj = −φd,dρ
(ρφpd,pd−1)
(φd,d−φpd,pd) [

(1−φj
d,d

)
1−φd,d −

(1−φj
pd,pd

)
1−φpd,pd ], and urt+1 = udt+1 +

ρupdt+1 as implied by the CS identity. Notice that bj = 0 if φd,d = 0.

The unpredictable component of long-run returns reflects the innovations to the one-

period-ahead returns, as well as the contribution of shocks to the price-dividend ratio and

dividend growth that will occur during the investment horizon and lead to revisions in

expected returns. In the presence of dividend momentum, i.e., when φd,d > 0, shocks to

dividend growth affect the risk for the long-run investor beyond the direct impact on the

innovation on the one-period-ahead returns, through its effect on expected returns.

The variance of the long-horizon returns for our simplified system can be decomposed

6A third shock, which affects only contemporaneous returns, would correspond to the approximation
error ηt+1, and would have zero variance in the case in which the CS identity holds exactly.

7This is not the only orthogonalization possible. In fact, Campbell et al. (2013) use an alternative
Cholesky decomposition with return ordered first and the price-earnings ratio second. In this case, the first
shock would explain all of the unexpected variance of returns at horizon zero, while the second would affect
the price-dividend ratio on impact and both would explain the entirety of the unexpected variance of returns
on impact.
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into three terms:8

Var (rt,t+k) = kVar (urt+1) +
k−1

∑
j=1

{a2
jVar (updt+1) + b2

jVar (udt+1)} (21)

+ 2
k−1

∑
j=1

{ajCov (urt+1, u
pd
t+1) + bjCov (urt+1, u

d
t+1)} ,

The first term in Equation (21) reflects the uncertainty coming from the innovations to

one-period-ahead returns, often labelled the “i.i.d.” component of uncertainty, since this will

be present even in the case where stock returns are unpredictable. The second term reflects

the uncertainty associated with the effects of price-dividend ratio and dividend growth shocks

on revisions to future expected returns. The last component reflects the covariance between

the one-period-ahead return innovations and the revisions to future expected returns over

the investment horizon. Investing in stocks is perceived as less risky for the long-run investor

whenever Vart (rt,t+k) < kVar (urt+1), which is only possible if the last component is negative.

In fact, if 0 < φpd,pd < 1 we have that aj < 0∀j, and since Cov (urt+1, u
pd
t+1) = ρVar (updt+1) the

mean reversion effects of price-dividend ratio shocks generate negative covariance, reducing

the risk associated with long-run investment and generating a positive hedging demand

motive for holding stocks for long-run risk-averse investors (see Campbell and Viceira, 1999).

The presence of dividend momentum generates additional sources of risk for the long-run

investor. Shocks to dividend growth increase the uncertainty of future expected returns.

Moreover, if 0 < φd,d < 1 we have that bj > 0∀j, and since Cov (urt+1, u
d
t+1) = Var (udt+1), the

last component increases the variance of long-run returns, reflecting the positive correlation

between shocks to future returns and shocks to future dividend growth. Therefore, the

presence of dividend momentum increases the variance of long-run returns and generates a

negative hedging demand for long-run investors. This fact will be connected to the results on

8The derivations for the general VAR case are presented in Appendix D. In this section, we are neglecting
the estimation uncertainty that will be present any time one estimates a model to predict future returns (see
Pástor and Stambaugh, 2012).

20



portfolio choice in Section 8.

5 A First Look at the Data

In this section we take a first look at the data using the 3-variable model in Section 2 and

using flat priors. We will then document the presence of dividend momentum in the data.

We will highlight the drawbacks of using flat priors and the need to use informative priors.

We close the section by highlighting that standard techniques to draw informative priors

cannot be used to impose the CS restrictions.

5.1 Bayesian Estimation and Data

In general, any VAR model can be written in matrix form as Y = ZΦ′ + U. Denoting

T as the length of the sample, n the number of variables, and p the number of lags in

the VAR, Y = (y′
1, . . . ,y

′
T )

′
is a T × n matrix, Z = (z′1, . . . ,z′T )

′
is a T ×K matrix, where

K = np + 1, and U = (u′
1, . . . ,u

′
T )

′
is a T × n matrix. The vector of innovations ut is assumed

to be independently and identically distributed N (0,Σ). The NIW family of distributions

is conjugate for this class of models.9 If the prior distribution over the parameters is

NIW (ν,S,α,V), then the posterior distribution over the parameters is NIW (ν,S,α,V),

where α = vec (A), V = (V−1 +Z′Z)−1
, A = V (V−1A +Z′ZÂ)

−1
, Â = (Z′Z)−1

Z′Y, and

S = Ŝ + S + Â′Z′ZÂ + A′V−1A − A
′
V

−1
A, Ŝ = (Y −ZÂ)

′
(Y −ZÂ), and ν = T + ν. The

conjugate prior is convenient for its analytical tractability and is amenable to efficient

9We denote a normal distribution with mean ζ and variance-covariance matrix Υ by N (ζ,Υ) and denote
its density evaluated at β by N(ζ,Υ) (β). We denote the inverse-Wishart distribution with parameters Γ and
π by IW (Γ, π) and denote its density evaluated at ι by IW(Γ,π) (ι). A normal-inverse-Wishart distribution
is characterized by four parameters: a scalar ν ≥ n, an n×n SPD matrix S, an Kn×1 vector Ψ, and an K ×K
SPD matrix Ω. We denote this distribution by NIW (ν,S,Ψ,Ω) and its density by NIW(ν,S,Ψ,Ω)(α,Σ).
Furthermore,

NIW(ν,S,Ψ,Ω)(α,Σ)∝ ∣det(Σ)∣
− ν+n+12 e−

1
2 tr(SΣ−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

inverse-Wishart

∣det(Σ)∣
−K2 e−

1
2 (α−Ψ)′(Σ⊗Ω)−1(α−Ψ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

conditionally normal

.
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sampling. We will use this prior to illustrate our methods, but they can be adapted to any

posterior distribution by means of an importance sampling algorithm. The NIW posterior

distributions defined above can be factored into the following conditional and marginal

posterior distributions N (α,Σ⊗V) and p(Σ∣y) ∼ IW (S, ν). This structure allows us to

independently draw from the posterior.

We use data for the log dividend growth, the log price-dividend ratio, and log returns. Our

data choices closely follow Van Binsbergen and Koijen (2010) and Koijen and Nieuwerburgh

(2012). We use postwar annual data between 1947 and 2018 for the S&P 500 index.10

Because dividend payments are known to be highly seasonal, we focus on annual data so as

to ensure that any dividend growth autocorrelation we find is not simply driven by seasonal

patterns. A more important issue is how to treat the reinvestment of dividends. The annual

series traditionally used in the literature implicitly measure dividends after reinvestment

at the stock market each month within the year. Van Binsbergen and Koijen (2010) and

Koijen and Nieuwerburgh (2012) convincingly argue that this assumption induces spurious

distortions that amount to mismeasurement of dividend growth and its time series properties.

Moreover, they show how a VAR(1) on reinvested dividends would be misspecified if the cash

dividends followed an autoregressive process. For this reason we measure dividends with no

reinvestment.11 All the results in this section are obtained from 5,000 draws of the posterior

distribution and we have that n = 3, p = 1, and T = 72.

5.2 The Flat Prior and Dividend Momentum

Table 1 reports the the posterior of µ, Φ1 and Σ in Equation (1) under a flat prior. In

this case the posterior means are centered around the OLS estimates and the Bayesian high

posterior density intervals coincide with the classical confidence intervals. The most important

message is that the posterior mean of the coefficient φd,d is 0.41. This is a large number

10Results using the CRSP market return are very similar and available upon request.
11Results using dividends reinvested at the risk-free rate are very similar and available upon request.
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Table 1: Posterior Distribution of µ, Φ1, and Σ under Flat Priors

µ Φ1

∆dt pdt rt
∆dt+1 0.057 0.414 0.005 0.139

[0.035,0.072] [0.310,0.461] [−0.010,0.012] [0.098,0.158]

pdt+1 3.524 −0.421 0.906 −0.171
[3.402,4.087] [−0.730,−0.279] [0.861,0.928] [−0.295,−0.112]

rt+1 0.090 0.018 −0.115 −0.026
[0.053,0.104] [−0.270,0.152] [−0.157,−0.096] [−0.142,0.030]

Σ (corr/std)

udt+1 updt+1 urt+1

udt+1 0.054
[0.050,0.059]

updt+1 −0.316 0.166
[−0.422,−0.209] [0.152,0.180]

urt+1 0.023 0.939 0.153
[−0.094,0.139] [0.926,0.953] [0.139,0.166]

Note: The table shows the parameter estimates under a flat prior for a first-order VAR model including
a constant, the log dividend growth (∆dt+1), the price-dividend ratio (pdt+1), and the log market return
(rt+1). For each coefficient, the first line reports the posterior median value and the second line reports the
68th posterior credible intervals, in square brackets. The table also reports the parameters of the correlation
matrix of the innovations with innovation standard deviations on the diagonal, labeled “corr/std,” instead of
the parameters of the variance-covariance matrix.

in economic terms. For comparison, annual US real GDP in the same period displays an

autocorrelation coefficient of 0.14. Almost all of the posterior distribution is in the positive

region, with the 5th percentile at 0.31. Dividend growth is clearly persistent, even after

controlling for the price-dividend ratio and returns; hence, the common approach of dropping

dividend growth from the VAR is not justified and will have important economic consequences

as we will see when analyzing the IRFs. The mean of the posterior of φr,d is centered around

zero (with a posterior mean value of 0.02), meaning that lagged dividends do not directly

forecast one-period-ahead returns. Consistent with CS restriction (5), lagged dividends

23



negatively predict the subsequent price-dividend ratio; i.e., φpd,d < 0. Therefore, even though

dividend growth is not a useful predictor of one-period-ahead returns, it affects expected

returns over longer horizons. In line with Cochrane’s (2008) conclusions, we also find that

the price-dividend ratio is highly persistent, and that φr,pd < 0, whereas φd,pd is approximately

zero. Interestingly, we find that φd,r > 0 and significant (with a posterior mean value of

0.14), meaning there is some predictability from returns to dividends. There is, however,

little evidence of serial correlation in returns, after we control for dividend growth and the

price-dividend ratio, as φr,r is centered around zero (with a posterior mean value of 0.03).

The combination of φd,r > 0 and φr,r = 0 strengthens the channel of dividend momentum, as

a dividend growth shock will lead to higher returns, which in turn feed back into dividend

growth.

Panel (a) of Figure 2 reproduces the IRFs in Panel (a) of Figure 1 for flat priors. Because

the mean posterior correlation between updt+1 and udt+1 is -0.32, we obtain the price-dividend

ratio and the dividend growth shocks by orthogonalizing the innovations by means of a

Cholesky decomposition in which variables are ordered [pdt+1,∆dt+1, rt+1]. Panel (a) shows

that the price-dividend ratio shock displays the traditional mean reversion channel. Following

a positive price-dividend ratio shock, returns jump, but the IRF falls over the subsequent 10

years, converging to zero. Since the IRF for cumulative discounted returns converges to the

sum of impact effects on returns and NDRt+1, the fact that the IRF converges to zero implies

that the impact effect on NDRt+1 is strong and negative. Dividend growth is essentially

unaffected by the price-dividend ratio shock, implying that the impact effect of NCFt+1 is

negligible. For a dividend growth shock, we observe the dividend momentum effect: after an

initial identical jump of returns and dividend growth, both IRFs show a positive slope, with

returns lagging and only catching up gradually.

What are the economic consequences if we had followed the common practice of dropping

dividend growth from the VAR and backed out the remaining coefficients from the CS

restrictions? Panel (b) of Figure 2 displays the results. The price-dividend ratio shock looks
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Figure 2: Impulse Response Functions Under Flat Priors

(a) 3-variable VAR
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(b) 2-variable VAR omitting dividend growth
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Note: The solid lines represent the median posterior response. The darker shadow area represents the 68th

posterior credible intervals, while the lighter shadow area represents the 95th posterior credible intervals.

very similar to the one in the 3-variable VAR. As for the dividend growth shock, the IRFs of

both returns and dividends are almost perfectly flat after the initial positive jump; estimating

the 2-variable VAR will not find dividend momentum and leads to similar results as in Panel

(b) of Figure 1. This result highlights the conclusion of Section 3: dropping dividend growth

effectively imposes φd,d = 0 and arbitrarily rules out dividend momentum.

Table 2 analyzes the contribution of the two shocks to the variances and correlation of

NCFt+1 and NDRt+1. Because dividend growth shocks lead to positive revisions to current

and future cash flows in the 3-variable VAR, the contribution of this shock to the variance of
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Table 2: Shock Contribution to NCFt+1 and NDRt+1 under Flat Priors

2-variable VAR omitting dividend growth 3-variable VAR

Total updt+1 udt+1 Total updt+1 udt+1

V ar(NDRt+1) 0.032
[0.022, 0.052]

99.7%
[99.4%, 99.9%]

0.3%
[0.1%, 0.6%]

0.030
[0.018, 0.059]

89.8%
[78.6%, 95.3%]

10.2%
[4.7%, 21.4%]

V ar(NCFt+1) 0.006
[0.004, 0.013]

26.1%
[4.3%, 60.7%]

73.9%
[39.3%, 95.7%]

0.013
[0.008, 0.029]

7.9%
[0.7%, 34.2%]

92.0%
[65.7%, 99.2%]

Corr(NDRt+1, NCFt+1) 55.4%
[20.3%, 81.0%]

50.3%
[14.9%, 77.5%]

4.4%
[2.4%, 6.7%]

51.7%
[17.4%, 79.9%]

16.9%
[−16.2%, 51.6%]

29.3%
[19.0%, 43.1%]

Note: We report the posterior median posterior value and the 68th posterior credible intervals. For each
model, the “Total” column reflects the posterior of moments, while the updt+1 and udt+1 columns reflect the
posterior contribution of the two shocks.

both NCFt+1 and NDRt+1, and their correlation is meaningfully larger.

5.3 Drawbacks of Flat Priors and Informative Priors

It is known that inference under flat priors in VARs is problematic. OLS estimates of VAR

parameters are plagued with finite-sample bias that may seriously distort inference when the

model contains variables that are highly persistent (see, e.g., Bekaert, Hodrick, and Marshall,

1997).

It is well documented that high degrees of a priori return predictability implies poor

out-of-sample performance, a problem that will worsen with additional predictors and lags.

From an economic point of view, parameter combinations that imply very high degrees

of return predictability should be a priori implausible (see Wachter and Warusawitharana,

2015). Thus, one needs informative priors that represent the beliefs of conservative observers

who are skeptical about return predictability, in line with the proposal of Wachter and

Warusawitharana (2009) and Pástor and Stambaugh (2009, 2012). As Figure 3 shows, a

flat prior over the VAR coefficients implies a prior distribution over the one-period-ahead

R2 of returns that is heavily concentrated around high values: both the 68th and the 90th

percentiles are above 99 percent.

The high persistence of the price-dividend ratio is also concerning. The presence of
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Figure 3: One-Period-Ahead Return Equation R-squared
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Note: Red represents the prior, grey the likelihood, and blue the posterior. The R2 for the flat prior is
computed by simulation.

downward bias in OLS estimates of autoregressive parameters when these are close to unit

root has been known since Hurwicz (1950). Stambaugh (1999) further notes that when a

persistent predictor features innovations that are highly correlated with the innovations to

the predicted variable, as is the case with the price-dividend ratio and returns, this translates

into OLS estimates of the regression coefficient that are biased away from zero. So not only

φpd,pd is biased downward, implying strong mean reversion, but φr,pd is also biased away from

zero, meaning too much return predictability. Flat priors put excessive weight on parameter

combinations that are below one for φpd,pd, and therefore on high amounts of predictability.

The bias and excess predictability problems will also worsen as additional persistent predictors

are added.12

Finally, the flat priors combined with the standard use of the conditional likelihood also

12While, in principle, the small sample bias issue could be tackled by applying bias correction to the VAR
coefficient, doing that while simultaneously imposing the CS restrictions is not possible unless one is willing
to follow the common approach of dropping one of the variables from the system, which is not an option as
we discuss in Section 3.

27



imply that the initial values of the data are far away from their unconditional mean. This can

be seen in Table 1, where the posterior mean of the unconditional mean of the price-dividend

ratio is estimated to be much higher than the initial value in the data; in particular the

posterior mean equals 3.5 (with 95 percent of the posterior above 3.4) while the initial

data is 2.8. This implies an implausibly good forecasting power of initial conditions and

determinist components (see, e.g., Sims and Uhlig, 1991; Sims, 2000; Jarocinski and Marcet,

2015; Giannone, Lenza, and Primiceri, 2019). In practice, VAR deterministic components

over-fit the low-frequency variation in the data, a problem that again gets worse as lags or

additional variables are included in the system.

To solve these issues one can consider informative priors. We will use a class of priors for

VARs originally proposed by Doan, Litterman, and Sims (1984), commonly known in the

macroeconometrics literature as “Minnesota” priors, to handle downward bias and excess

predictability. In particular:

p(vec(Φ1)∣Σ) ∼ N (vec [0 0 0 0 1 0 0 0 0]
′
,Σ⊗Ω)

where in the simplest case Ω = λ2(diag ([σ2
d, σ

2
pd, σ

2
r]))−1, with λ a positive scalar controlling

the tightness of the prior, and σ2
i an a priori estimate of the standard deviation of each

variable’s innovation.13 As desired, the Minnesota prior pushes φpd,pd toward one, and both

φr,pd and φd,d toward zero. For Φ0, the Minnesota prior is usually specified as flat.

We combine the Minnesota prior with the Single Unit Root prior proposed by Sims (1993)

and Sims and Zha (1998) to address the problem of the excessive explanatory power of

initial conditions and deterministic components. A scalar hyperparameter θ controls the

tightness of the prior. For the prior mean nominal return, µ
r

we chose a value of 10.5 percent,

consistent with a 4 percent risk-free rate and a 6.5 percent equity risk premium, and for

13We follow the common practice of setting σ2
i to the residual variance of an AR(1) model. In particular,

σ2
d = 0.0034, σ2

pd = 0.0284, and σ2
r = 0.0254
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the prior mean nominal dividend growth, µ
d

we chose a value of 5.5 percent, consistent

with long-run nominal GDP growth in the United States. Given these values we can back

out the prior mean implied µ
pd

from CS restriction (4) to be about 2.8, which is close to

the value of the log price-dividend ratio at the beginning of the postwar sample. The prior

hyperparameters λ = 0.17 and θ = 0.05 are chosen to maximize the value of the marginal

likelihood, as proposed by Giannone, Lenza, and Primiceri (2019). Finally, the prior for Σ is

set to p(Σ) ∼ IW(diag ([σ2
1, . . . , σ

2
n]) , n + 2).

In line with the suggestion of Wachter and Warusawitharana (2009), this informative

prior lowers the return equation R2 at the one-period horizon. The prior median for the

one-period-ahead R2 is 12 percent for the stock return equation, with a 68th percentile of 15

percent and a 90th percentile of 20%.

5.4 Informative Priors and the CS Restrictions

A problem with general prior distributions such as the one above is that they do not satisfy

the CS restrictions. One could write a prior that is centered around the CS restrictions, but

even if the prior mean satisfies the CS restrictions, the prior puts positive probability on

parameter combinations that violate them. Although the likelihood may closely satisfy the

CS restrictions, the more informative the prior is, the more likely it is that the posterior

distribution violates the restrictions.

Figure 4 illustrates this point for the informative prior described above. Each column of

Figure 4 corresponds to one of the CS restrictions (4)-(9). The first row plots draws of the

likelihood, the second row plots draws from the prior, and the third row plots draws from

the posterior. For instance, in the first panel of Figure 4, draws of cr are plotted against the

value of ρcpd + cd of the same likelihood draw. If the CS restrictions were to be satisfied, all

points should be aligned along the 45-degree line.

As we can see from the first row, the likelihood respects the CS restrictions very closely.
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Figure 4: CS Restrictions for Φ and Σ under informative priors
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Note: Red represents the prior, grey the likelihood, and blue the posterior.

However, since the prior draws are not restricted to satisfing the CS restrictions, it is not

surprising that the resulting posterior draws do not satisfy them either. In the next section

we derive a method to draw from any posterior conditional on the CS restrictions on Φ and

Σ.

6 Bayesian Estimation and the CS Restrictions

In this section we present a general methodology for drawing independently from any posterior

distribution of a macro-finance VAR conditional on the CS restrictions on Φ and Σ. We will

write our algorithm as independently drawing from the conjugate family of NIW posterior

distributions conditional on the CS restrictions. Conjugacy and independent drawing are

particularly useful in the Bayesian paradigm, as they open the possibility of estimating

models with a large number of variables and lags. However, our techniques are not limited

to the NIW family and can be applied to any prior. So far, we have considered a setting in

which the VAR contains only one asset (stock returns) and one associated CS identity. One
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could consider a model with k assets, such as the one of Campbell, Chan, and Viceira (2003),

in which case there would be k associated CS identities. For the sake of generality we write

our algorithms below to allow for this possibility.

For the case of the NIW posterior, we want to draw from the restricted normal posterior

distribution of α conditional on Σ and from the restricted inverse-Wishart (IW) posterior

distribution of Σ. By the restricted normal posterior distribution of α conditional on Σ

we mean the distribution N (α,Σ⊗V) conditional on the CS restrictions on Φ and by the

restricted IW posterior distribution of Σ we mean the distribution IW (S, ν) conditional on

the CS restrictions on Σ. In the same spirit, we will call the distribution NIW (ν,S,α,V)

conditional on the CS restrictions on Φ and Σ the restricted NIW posterior of α and Σ.

As we will see, there exists an analytical expression for the restricted normal posterior

distribution of α conditional on Σ. This is not true for the restricted IW posterior distribution

of Σ. We will present a numerical algorithm to independently draw from it.

6.1 The Restricted Normal Posterior of α

The CS restrictions on Φ are linear restrictions on α. As with any linear restriction on

α, they can be written as RΦα = rΦ. Thus, to draw from the restricted normal posterior

distribution of α conditional on Σ we should draw fromN (α̃, Ṽ) where α̃ = α−F (RΦα − rΦ),

Ṽ = (InK −FRΦ) (Σ⊗V) (InK −FRΦ)′, and F = (Σ⊗V)R′
Φ (RΦ (Σ⊗V)R′

Φ)
−1

. If UΦ

denotes the set of all α that satisfy the CS restrictions on Φ, any draw from N (α̃, Ṽ) will

belong to UΦ. As mentioned in Section 2, the stationarity restriction (10) requires that the

system is ultimately stationary, even if the price-dividend ratio is highly persistent as argued

by Cochrane (2008). We implement this restriction by discarding draws of the posterior that

do not satisfy the stationary restriction. This truncates and re-normalizes the restricted

normal posterior.
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6.2 The Restricted IW Posterior of Σ

We rely on simulation to independently draw from the restricted IW posterior distribution of

Σ. In this section we describe the methods that we will use to accomplish that. We will show

that the CS restrictions map to a set of orthogonality restrictions between the approximation

error associated with the restrictions and a set of the original residuals. This allows us to

design a simple algorithm that draws from the set of Σ’s that satisfy the CS restrictions.

However, the resulting draws are not from the desired restricted IW posterior distribution of

Σ. Therefore, will use an importance sampler to accomplish our objective.

The CS restrictions on the n × 1 vector of innovations, ut ∼ N (0,Σ), can be represented

as k linear restrictions and n − k orthogonality restrictions. The k linear restrictions are:

Lut = ηt ∼ N (0,Ω) (22)

where L is a given k × n matrix. Equation (22) identifies the k × 1 vector of approximation

errors associated with the CS restrictions, ηt. For instance, for the case considered in Section

2, k = 1 and the CS restriction on the innovations represented by Equation (3) can be mapped

into Equation (22) by specifying L = [−1,−ρ,1].

Moreover, there are n − k innovations that are orthogonal to the approximation errors:

E (Ξutη
′
t) = 0(n−k)×k (23)

where Ξ is a given (n − k) × n selection matrix. For the case considered in Section 2 we have

that Ξ = [I2,02×1]. Putting Equations (22) and (23) together, we obtain the result that the

CS restrictions on Σ can be represented as:

ΞE (utu′
t)L′ = ΞΣL′ = 0(n−k)×k. (24)
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Vectorizing Equation (24) implies the following linear restrictions:

RΣ vec(Σ) = 0(n−k)k×1 (25)

where RΣ = L ⊗ Ξ. Equation (25) appropriately imposes the CS restrictions on Σ. For

instance, for the case considered in Section 2, these are represented by Equations (8) and (9).

Define now H = [Ξ′,L′]′, the linear transformation of the original innovations Hut ∼

N (0,W ), and the following mapping between a n × n SPD matrix W and Σ:

W = HΣH′, (26)

where:

W =

⎡⎢⎢⎢⎢⎢⎢⎣

W11 W12

W′
12 W22

⎤⎥⎥⎥⎥⎥⎥⎦

.

Using the above mapping, one can show that the CS restrictions on Σ hold if and only

if W is block diagonal. To see this, notice that on the one hand, the mapping implies that

W12 = ΞΣL′. Hence, if Equation (25) holds, it is the case that W12 = 0(n−k)×k. On the other

hand, the inverse mapping implies that RΣ vec(Σ) = RΣ (H−1 ⊗H−1)vec(W). Then one can

show that:

RΣ (H−1 ⊗H−1) = [0k×(n−k) ⊗ΞH−1, Ik ⊗ΞH−1] = [0(n−k)k×(n−k)n, I(n−k)k,0(n−k)k×k2] ,

and RΣ (H−1 ⊗H−1)vec(W) = vec(W12). Thus, if W12 = 0(n−k)×k, it is the case that

Equation (25) holds.

It is the result above that is key to being able to make independent draws from the set of

all Σ satisfying the CS restrictions using the following algorithm.

Algorithm 1. The following makes independent draws from a distribution over Σ conditional
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on the CS restrictions.

1. Draw W11 independently from the IW (SW11 , νW11) distribution.

2. Draw Ω independently from the IW (SΩ, νΩ) distribution.

3. Set

W =

⎡⎢⎢⎢⎢⎢⎢⎣

W11 0(n−k)×k

0k×(n−k) Ω

⎤⎥⎥⎥⎥⎥⎥⎦

and define Σ = H−1W(H−1)′.

4. Return to Step 1 until the required number of draws has been obtained.

Algorithm 1 draws from a distribution over W conditional on the CS restrictions on

Σ and transforms the draws into Σ. The independent draws of Σ will not be from the

desired restricted IW posterior distribution of Σ. Because both the mapping and the CS

restrictions on Σ are linear on vec(Σ), applying the change of variable theorem outlined

in Arias et al. (2018) implies that the density implied by Algorithm 1 involves a volume

element that is independent of Σ. Hence, the volume element will be irrelevant for the

importance sampler that we derive to draw from the desired distribution over Σ. We will

call π(SW11
,νW11

,SΩ,νΩ) (Σ) = IW(SW11
,νW11

) (W11)IW(SΩ,νΩ) (Ω), where W11 = ΞΣΞ′ and

Ω = LΣL′, the density implied by Algorithm 1 and π (SW11 , νW11 ,SΩ, νΩ) its distribution.

A natural choice for SW11 and SΩ is SW11 = ΞSΞ′ and SΩ = LSL′, while one could choose

νW11 = νΩ = ν.

6.2.1 No Approximation Error

It is relatively easy to adapt Algorithm 1 for the case where there is no approximation

error. This is the case when Ω = 0k×k in Equation (22). This restriction implies that

LE (utu′
t)L′ = LΣL′ = Ω = 0k×k, which, considering the fact that the variance-covariance

34



matrix is symmetric, leads to (k+1)k
2 additional restrictions:

R̃Σ vec(Σ) = 0 (k+1)k
2

(27)

where R̃Σ = D+
k (L⊗L) and D+

k is a (k+1)k
2 ×k2 selection matrix, defined as the Moore-Penrose

inverse of the duplication matrix, Dk, so that for any k-dimensional symmetric matrix A,

D+
k vec(A) = vech(A) (see Abadir and Magnus, 2005, Ch. 11). Using the mapping described

in Equation (26), one can show that the CS restrictions on Σ hold if and only if W has the

following form:

W =

⎡⎢⎢⎢⎢⎢⎢⎣

ΞΣΞ′ 0(n−k)×k

0k×(n−k) 0k×k

⎤⎥⎥⎥⎥⎥⎥⎦

.

when the CS restrictions on Σ hold. To see this, notice that on the one hand, the mapping

implies that W12 = ΞΣL′ and W22 = LΣL′. Hence, if Equations (25) and (27) hold, it is the

case that W12 = 0(n−k)×k and W22 = 0k×k. On the other hand, the inverse mapping implies

that [R′
Σ, R̃

′
Σ]

′
vec(Σ) = [R′

Σ, R̃
′
Σ]

′ (H−1 ⊗H−1)vec(W). It is easy to show that:

R̃Σ (H−1 ⊗H−1) = D+
k (L⊗L) (H−1 ⊗H−1) = D+

k (LH−1 ⊗LH−1) = [0 (k+1)k
2

×(n2−k2),D
+
k],

therefore [R′
Σ, R̃

′
Σ]

′ (H−1 ⊗H−1)vec(W) = [vec(W12)′,vech(W22)′]′. Thus, if W12 =

0(n−k)×k and W22 = 0k×k, it is the case that Equations (25) and (27) hold.

This result highlights that one can easily modify Algorithm 1 for the case of no approxi-

mation error. In this case one simply skips Step 2 and fixes Ω = 0k×k. In this case, we will

call π(SW11
,νW11

) (Σ) = IW(SW11
,νW11

) (W11), where W11 = ΞΣΞ′ is the density implied by

the algorithm and π (SW11 , νW11) its distribution. As before, a natural choice for SW11 is

SW11 = ΞSΞ′, while one could choose νW11 = ν.
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6.2.2 An Importance Sampler

Since our objective is to independently draw from the IW (S, ν) conditional on the CS restric-

tions on Σ, the aforementioned results justify the following importance sampler algorithm.

Algorithm 2. Let a scalar ν ≥ n and S be an n × n SPD matrix. The following algorithm

independently draws from the IW(S, ν) conditional on the CS restrictions on Σ.

1. Use Algorithm 1 to independently draw Σ from π (SW11 , νW11 ,SΩ, νΩ).

2. Set its importance weight to

IW(S,ν) (Σ)
π(SW11

,νW11
,SΩ,νΩ) (Σ)

.

3. Return to Step 1 until the required number of draws has been obtained.

4. Re-sample with replacement using the importance weights.

Algorithm 2 shows how to independently draw from a IW(S, ν) conditional on the CS

restrictions on Σ for general (S, ν). If we want to draw from the restricted IW posterior

distribution of Σ, we just need to set S = S and ν = ν. It is easy to modify the algorithm

for the case of no approximation error; we just need to make independent draws of Σ from

π (SW11 , νW11) in Step 1 and change the importance weights accordingly.

6.3 Drawing Any Posterior

Results in Sections 6.1 and 6.2 can be used to independently draw from the restricted NIW

posterior of α and Σ. In particular we have the following algorithm:

Algorithm 3. The following algorithm independently draws from the posterior distribution

NIW (ν,S,α,V) conditional on the CS restrictions on Φ and Σ.

1. Use Algorithm 2 to draw Σ from IW (ν,S) conditional on the CS restrictions on Σ.
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2. Use N (α̃, Ṽ) to draw α from N (α,V) conditional on the draw of Σ and the CS

restrictions on Φ.

3. Discard the draws that do not satisfy the stationarity restriction.

4. Return to Step 1 until the required number of draws has been obtained.

As mentioned several times already, Algorithm 3 can be modified to independently draw

from any desired posterior distribution conditional on the CS restrictions on Φ and Σ. When

that is the case, one will need to add an importance sampling step where the restricted NIW

posterior of α and Σ is the proposal and the desired posterior distribution conditional on

the CS restrictions on Φ and Σ is the target.

7 In-sample Results

In this section we present the results using the restricted NIW prior of α and Σ in the

3-variable model described in Section 2. We parameterize the restricted NIW prior as in

Section 5.3.14 We call such a prior the restricted informative prior. Along the same lines, we

call the implied restricted NIW posterior of α and Σ the restricted informative posterior.

After analyzing the restricted posterior, we will focus on return predictability, dividend

momentum, and its implications for cash flow and discount rate news and the variance of long-

run returns. All the results in this section will be in-sample. We will analyze out-of-sample

results and implications for asset allocation in the next section.

7.1 The Restricted Posterior

Figure 5 reports the restricted informative prior, the likelihood, and the restricted informative

posterior for Φ1. The first thing to notice about the posterior distributions is that they

14We use the same values for λ and θ as in Section 5.3. Ideally one would want to calculate the marginal
likelihood for the restricted model but an analytical solution is not available. We leave this for future research.
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Figure 5: Bayesian restricted prior and posterior of Φ1

Note: Red represents the prior, grey the likelihood, and blue the posterior.

are generally more concentrated than both the prior and the likelihood, meaning that the

posterior incorporates information from both. Looking at the first column, we observe that

the coefficient φd,d is attenuated, from 0.42 in the likelihood to 0.3 in the restricted posterior,

but the entirety of the posterior distribution is still in the positive region. The remaining

two coefficients, φpd,d and φr,d, move somewhat toward zero and gain precision relative to

the likelihood. In the second column we observe important differences between likelihood

and posterior. The first is an increase in φpd,pd, which becomes very concentrated around

a mode of 0.98. The stationarity restriction implies that this coefficient is highly skewed a

feature that is visible already from the prior density, while it is absent from the likelihood,
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Figure 6: Bayesian prior and posterior of µ
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Note: Red represents the prior, grey the likelihood, and blue the posterior.

which does not discard non-stationary roots. The stationarity restriction, coupled with the

CS restriction (9), implies that price-dividend ratios predict a priori either dividend growth

or returns, or both. In the posterior, the coefficient φd,pd, which captures dividend growth

predictability coming from the price-dividend ratio, is strongly concentrated around zero.

Hence, in line with Cochrane’s (2008) famous conclusion, the price-dividend ratio shows

no ability to predict dividend growth. The persistence of the price-dividend ratio, taken

together with the near zero posterior mean for φd,pd and the CS restriction (9), implies that

the posterior of φr,pd must be concentrated around negative values. As seen in the figure by

comparing priors and posteriors, a more persistent price-dividend ratio means slower mean

reversion after price-dividend ratio shocks and less predictable returns. Finally, the third

column displays posteriors that are again more precise and tilted toward zero with respect to

the likelihood. In any case, the coefficient φd,r, which captures the predictability of dividends

using lagged returns and, as discussed above, amplifies the dividend momentum channel,

remains significantly positive despite the shrinkage encoded in the prior.

Figure 6 looks at the same distributions for the unconditional mean of the variables, µ.

The likelihood alone is very uncertain about the value of these parameters, so, not surprisingly,
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Figure 7: Bayesian restricted prior and posterior of Σ

Note: Red represents the prior, grey the likelihood, and blue the posterior.

we see the restricted posterior distribution moving closely toward the restricted informative

prior distribution. The parameter µd mostly gains precision. For the case of µpd, the posterior

moves closer to its initial condition, consistent with a price-dividend ratio that is close to

non-stationarity. For µr, the posterior is consistent with a markedly higher and less uncertain

unconditional equity return in nominal terms.

Figure 7 reports the distribution of the variance-covariance elements. The CS restrictions

push the prior variance-covariance of urt with udt and updt away from zero. The posterior

of Σpd,d is centered around negative values, so that the CS restrictions imply a downward

revision of Σr,d. Instead the posterior estimate is associated with an upward revision of Σr,pd.
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This reflects the upward revision of the posterior estimate of Σpd,pd and the tight link between

Σr,pd and Σpd,pd imposed by the CS restriction.

Figure 8: Return Equation R-squared
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(b) R2 as a function of horizon

Note: Red represents the prior, grey the likelihood, and blue the posterior. In Panel (b) the solid line is the
median value, while the shadow area represents the 68th posterior credible intervals.

7.2 Return Predictability

Figure 8 looks at the R2 of the return equation both at one-period-ahead and as a function

of the horizon. Appendix E derives how to compute R2 for multiple-period returns. Panel (a)

draws the density associated with prior, likelihood, and posterior for the one-period-ahead R2

of the return equation. Clearly, compared with the likelihood, both the restricted informative

prior and the associated posterior offer a much more skeptical view of the one-period-ahead

predictability of returns.

Panel (b) draws the median and the 68th interval associated with the restricted informative

prior, likelihood, and restricted informative posterior for the R2 of the return equation as
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Figure 9: One-Period-Ahead Expected Return
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a function of the horizon.15 The figure clearly shows the points raised in Cochrane (2009,

p.228). For the case of the likelihood, the R2 initially increases before decaying. Instead, our

restricted informative posterior features a shift of return predictability toward the longer

horizons. This is seen from an R2 that increases more slowly but reaches higher values for

longer horizons. This is due to the combination of a lower degree of short-term predictability

and a higher persistence of the price-dividend ratio. Note that, contrary to the concerns in

Boudoukh, Richardson, and Whitelaw (2008), this result is not hard-wired by choosing a

prior for a highly persistent price-dividend ratio: our restricted informative prior is centered

around low values for the short-term predictive coefficients; hence, the a priori R2 is low at

all horizons.

Figure 9 plots the time series of the one-period-ahead expected return implied by the

likelihood and restricted informative posterior. The figure clearly shows how the restricted

informative prior reduces the one-period-ahead return predictability, reinforcing the message

from Panel (a) of Figure 8. The restricted informative posterior also shows less uncertainty.

Notably, the median of the restricted informative posterior estimate never becomes negative,

15We thank John H. Cochrane for suggesting Panel (b).

42



a desirable property as emphasized by Campbell and Thompson (2008). Nevertheless, there

is still a meaningful amount of time variation in expected returns in the restricted informative

posterior.

7.3 Dividend Momentum

Figure 10 plots the IRFs for cumulative discounted returns and dividend growth for the price-

dividend ratio and dividend growth shocks implied by the restricted informative posterior. We

identify the shocks using the Cholesky approach described above. Clearly, there is dividend

momentum after a dividend growth shock. Compared with Panel (a) of Figure 2 where

we use flat priors, the IRFs are flatter and display much narrower bands; the restricted

informative prior sharpens the inference toward less predictability. Mean reversion after

price-dividend ratio shocks is still present, but occurs at a much slower rate once the restricted

informative prior pushes up the persistence of the price-dividend ratio. Similarly, the dividend

momentum effect, reflected in the upward sloping IRFs of both dividend growth and returns

after a dividend growth shock is, still present, although again attenuated by the restricted

informative prior.

Finally, we analyze the Campbell and Ammer (1993) decomposition of return innovations

into news about cash flows and discount rates. Table 3 analyzes how both price-dividend

ratio and dividend growth shocks contribute to NDRt+1 and NCFt+1 using the restricted

informative posterior. As expected, when dividend momentum is present, the table shows that

NDRt+1 and NCFt+1 are correlated, and most of the correlation comes from the dividend

momentum associated with dividend growth shocks. In line with the results in Section 4,

the contribution of dividend growth shocks to the variances and correlation increases with

respect to the results in the 2-variable VAR shown in Table 2.
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Figure 10: Impulse Response Functions
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Note: The solid lines represent the median posterior response. The darker shadow area represents the 68th

posterior credible intervals, while the lighter shadow area represents the 95th posterior credible intervals.

Table 3: Shock Contribution’s to NCFt+1 and NDRt+1

Total updt+1 udt+1

V ar(NDRt+1) 0.023
[0.014, 0.036]

96.6%
[93.1%, 98.5%]

3.3%
[1.5%, 6.9%]

V ar(NCFt+1) 0.007
[0.006, 0.011]

8.2%
[0.8%, 30.6%]

91.6%
[69.2%, 99.0%]

Corr(NDRt+1, NCFt+1) 20.7%
[−18.8%, 57.6%]

1.8%
[−37.6%, 40.9%]

17.1%
[11.2%, 24.5%]

Note: We report the posterior median posterior value and the 68th posterior credible intervals. The “Total”
column reflects the posterior of moments, while the updt+1 and udt+1 columns reflect the posterior contribution
of the two shocks.

7.4 Variance of Long-Horizon Return

As discussed in Section 4.1, the ratio between VarT (rT,T+k) and kVarT (rT,T+1) is crucial to

determining how risky stocks are for the the long-horizon investor. Figure 11 reports the

ratio as a function of the horizon k and evaluates the contribution of dividend momentum

to its shape. The blue solid line reflects the ratio when both mean reversion and dividend

momentum are present. The orange dashed line reflects the ratio when dividend momentum

is excluded. We eliminate dividend momentum by canceling any effect of dividend growth
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Figure 11: Variance Ratio
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Note: The blue solid line reflects the ratio when both mean reversion and dividend momentum are present.
The orange dashed line reflects the ratio when dividend momentum is excluded.

shocks after impact. See Appendix D for details. As the reader can see, dividend momentum

increases this ratio for all of the reported horizons.

The presence of dividend momentum implies that dividend growth shocks increase both

current returns and future expected returns. Therefore, these shocks increase the variance

of long-run returns, VarT (rT,T+k), by both increasing the uncertainty about future expected

returns and inducing positive co-movement between one-period returns and future expected

returns surprises; thus dividend momentum contributes quite substantially to the risk faced

by the long-run investor. In the absence of dividend momentum, the variance ratio would be

roughly one-third smaller. Thus, this analysis confirms the results of the simplified model

considered in Section 4.1; the presence of dividend momentum generates a negative hedging

demand component that partially offsets the traditional positive hedging demand arising
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from the mean reversion in returns (see Koijen, Rodŕıguez, and Sbuelz, 2009). As we will see

in the next section, this negative hedging demand is empirically important and affects the

portfolio choice of long-horizon investors trying to time the market.

8 Asset Allocation

Given the degree of return predictability found in-sample, even for the case of the restricted

informative prior, individual investors would find it optimal to time the market. This is

even more important for the long-run investor (see, e.g., Campbell and Viceira, 1999, 2002).

However, Goyal and Welch (2008), among many others, have pointed out that in-sample

return predictability often leads to disappointing results out-of-sample, and that portfolio

allocation strategies attempting to take advantage of in-sample return predictability rarely

outperform simple benchmarks. In this section we investigate the out-of-sample performance

of investment strategies where the investor chooses between investing in cash and equities

using the VAR with our restricted informative prior. To do that we need to consider a more

general model that includes the risk-free rate. In Appendix F we describe this more general

model and the CS restrictions associated with it and how the results in Section 3 still hold.

We compare the performance of an investor who uses our restricted informative prior with

that if four other investors who use different priors. Two of the investors use the 4-variable

VAR described above. Of those, one will use flat priors and another informative priors without

imposing the CS restrictions. Appendix G describes in detail the flat and the informative

prior parameterizations used in this section. A third investor follows the common approach in

the literature and drops dividend growth from the VAR; she runs a 3-variable VAR with the

risk-free rate, the price-dividend ratio, and the excess stock return using flat priors. Finally,

a naive investor uses the historical average returns, computed every year as new data become

available. Each year, the five investors estimate the parameters of their models and produce

forecasts using only information available at each point in time in an expanding window.

46



Table 4: Out-of-Sample Return Equation R-squared

Flat priors Informative Priors

Omitting Divs. Including Divs. Unrestricted Restricted

h = 1 -11% -13% -1% 5%
h = 2 -8% -10% 0% 14%
h = 3 -27% -30% -4% 22%
h = 4 -41% -40% -9% 27%
h = 5 -48% -45% -20% 29%
h = 6 -89% -82% -46% 27%
h = 7 -141% -129% -76% 22%
h = 8 -186% -170% -106% 19%
h = 9 -246% -223% -137% 17%
h = 10 -355% -319% -189% 11%

Note: Percentage improvement in out-of-sample fit of each investor with respect to the naive investor.

As a first step, Table 4 evaluates the out-of-sample forecasts, looking at the cumulative

excess return ∑hi=1(rt+h − r
f
t+h) at horizons h = 1, . . . ,10 made by the different investors. The

table reports the “Out-of-Sample R2” as in Campbell and Thompson (2008), defined as

the percentage improvement in the out-of-sample fit of each investor with respect to the

naive investor. A negative value implies that it under-performs the naive investor. Not

surprisingly, both investors with flat priors obtain much worse out-of-sample results than the

naive investor. Interestingly, the addition of dividend growth to the VAR with flat priors

leads to a moderate improvement at horizons greater than or equal to 4 years. Both investors

using informative priors improve their results with respect to those of both investors using

flat priors. Thus, shrinkage can improve out-of-sample forecasting performance. Nevertheless,

only the investor using the restricted informative prior beats the naive investor out-of-sample.

The gains peak at around 5 years, but remain economically significant up to 10 years ahead.

We now discuss optimal long-horizon allocations. The investors maximize the expected

utility of the terminal value of wealth under Constant Relative Risk Aversion (CRRA)

preferences.16 Using different forecasts, each investor choose the allocation between the

16This problem resembles the one of target-date funds, whose dramatic increase in importance in the last
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risk-free asset and the stock return for one year. To compute the allocations, we use the

solution derived by Jurek and Viceira (2011) where the investors re-balance every year, taking

into account how many years are left until retirement. The investors start with a planning

horizon of 45 years starting at the end of 1973 and can invest in equity and a risk-free cash

instrument and we will use the posterior mean at each period. We consider a risk aversion

coefficient of γ = 5.

Figure 12 displays the results. Panel (a) displays the profile of wealth accumulation for

each of the five investors. To facilitate comparisons, each curve is adjusted by its ex-post

volatility. Panel (b) in turn presents the history of the weights for the risky asset. Two points

are worth noticing. First, the investor using the restricted informative prior is the only one

who systematically improves upon the naive approach. This is in line with the out-of-sample

performance reported above. Second, both of the investors using flat priors use massive

amounts of leverage (up to 800 percent) which leads to large draw-downs, particularly in the

first half of the sample. Both of the investors using informative priors have more moderate

weight profiles, but the restricted informative prior leads to weights that are leveraged only

occasionally and by marginal amounts, and never take short positions. These two desirable

properties lead to the superior performance shown in Panel (a). Although the profile of

weights of the naive investor is the most stable, it performs worse (in terms of risk-adjusted

wealth) than the profiles of both of the investors using informative priors, since it does not

take advantage of the moderate degree of return predictability estimated in the data.

Figure 13 shows which part of the risk-adjusted wealth gains of the investor using restricted

informative priors with respect to the investor who uses informative priors but does not

impose the restrictions is due to the imposition of the CS restrictions on (1) Φ and (2) Σ,

respectively. Of the almost 9 percentage point gain with respect to using informative priors

but not imposing the restrictions, 6 percentage points come from the CS restrictions on Φ

while 3 come from imposing the CS restrictions on Σ.

decade has been documented by Parker, Schoar, and Sun (2020).
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Figure 12: Asset Allocation Results: Long-Term Strategy
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(b) Portfolio Weight to Equities (%)
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Why does the model with restricted informative priors lead to less leverage and less

aggressive timing? Figure 14 plots the mean allocations as a function of investment horizon,

together with bands representing the expected standard deviation of the allocations using

the posterior mean using data until 2018. Thus, the central lines with markers represent

the average allocation to stocks that an investor would expect to hold if the variables of the

VAR were at their unconditional mean, and the width of the bands represents the amount of

market timing that the investor expects to engage in, in response to changes in investment
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Figure 13: Risk-Adjusted Log Wealth Breakdown
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The first model considered is the one with flat priors excluding dividend growth. This

model assumes, a large degree of predictability, which has two effects. First, it implies ample

amounts of return mean reversion, which, combined with the fact that this model rules out

dividend momentum, implies a strong hedging demand for stocks (large declining slope and

highly leveraged average position). Second it shows a great deal of timing around the average

position (wide bands). The addition of dividends, while maintaining flat priors in the second

model, allows the investor to incorporate dividend momentum. This leads to a reduction

in average allocations and slope, consistent with the fact that dividend momentum makes

long-term returns riskier, as explained in Section 4. This model still has wide bands associated

with the large degree of return predictability implied by flat priors. The restricted informative

prior, in turn, leads to an additional decline in both the slope and the average long-term
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Figure 14: Steady-State Allocation to Stocks under Different Models
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allocation by tilting the model parameters toward values consistent with a lower degree of

return predictability. This leads to positions that are close to 100 percent stocks at the

beginning of the planning horizon, and close to 50 percent when the investor nears retirement,

and positions that feature a modest amount of market timing. It is worth noting that these

average allocation prescriptions resemble those of real-world target-date funds, whereas the

ones based on flat priors are unrealistic from this point of view. Viceira (2008) notes that

existing investment advice is not consistent with the quantitative results of portfolio choice

problems, but we show that the use of priors that encode shrinkage of return predictability,

together with accounting for the increase in risk for the long-run investor associated with the

presence of dividend momentum, may be able to reconcile the two.

8.1 Choosing the Prior Tightness

Our restricted informative priors embody a degree of skepticism about the existence of return

predictability. This is governed by two hyperparameters that we choose to maximize the

value of the marginal likelihood, as proposed by Giannone, Lenza, and Primiceri (2019), using

only data up to 1973. The previous results highlight that imposing informative priors delivers

51



Figure 15: Sharpe Ratio as a function of Hyperparameters
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Note: The hyperparameter values used throughout this section are marked with a cross in the figure.

clear gains with respect to any alternative prior when measured in terms of risk-adjusted

wealth at the end of the 45 years. Figure 15 explores the sensitivity of the results above to

the tightness of the restricted informative prior.

The figure plots the contours of the Sharpe ratio at the end of the 45-year exercise under

different choices of hyperparameters. The Sharpe ratios are calculated with out-of-sample

moments. The “X” in the graph represents our baseline choice of hyperparameters, resulting

from maximizing the value of the marginal likelihood in the pre-sample up to 1973. The

figure shows that the ex-ante procedure by Giannone, Lenza, and Primiceri (2019) succeeds in

selecting hyperparameters that are close to the ones that ex-post maximize the Sharpe ratio.

In particular, the hyperparameter λ, which governs the overall tightness of the Minnesota

prior, needs to be sufficiently tight, between a value of 0.2 and 0.05, to obtain the gains
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reported above.17 Of course, if the parameter is set tighter and tighter, the gains start to

decline as the degree of predictability is dogmatically driven to zero and the model converges

to the naive strategy. The Sharpe ratio is less sensitive to the choice of the hyperparameter

θ, which governs the overall tightness of the Single Unit Root prior.

8.2 The Myopic Investor

Let us now consider the problem of myopic investors. These investors act as if they were a

one-period investor every year, not taking into account that they will continue investing for

many years to come.

Figure 16 replicates Figure 12 for the case of myopic investors. Again, two points are

worth noticing. First, the investor using the restricted informative prior is the only one who

systematically improves upon the investor using the naive approach. This is in line with

the out-of-sample performance reported above. Second, the profile of weights of the naive

investor is the most stable. Both of the investors using flat priors take large short positions

that lead to large draw-downs, particularly in the last half of the 1990s. Both of the investors

using informative priors have more moderate weight profiles, but the restricted informative

prior leads to weights that are short only occasionally and by marginal amounts, and never

require leverage. These two desirable properties lead to superior performance. Figure 17

replicates Figure 15 for the case of myopic investors. As before, the figure shows that in order

to maximize the Sharpe ratios, one needs to center the prior around non-predictability and

with a sufficiently high degree of tightness for this type of investor also. Interestingly, in this

case the hyperparameter θ needs to be sufficiently tight as well. Moreover, the combination

selected a priori by maximizing the marginal likelihood is once again very close to the ex-post

optimal choice.

17In the macroeconomics literature, the value of 0.2 is usually considered a benchmark.
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Figure 16: Asset Allocation Results: Myopic Strategy

(a) Risk-Adjusted Log Wealth
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(b) Portfolio Weight to Equities (%)
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Figure 17: Sharpe Ratio as a function of Hyperparameters
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Note: The hyperparameter values used throughout this section are marked with a cross in the figure.
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9 Conclusion and Implications for Future Research

In this paper we have proposed a Bayesian approach to VAR inference that starts from

informative priors that embody skepticism about the degree of predictability in stock returns,

address the high persistence of the price-dividend ratio, and impose the cross-equation

restrictions implied by the CS identity. We highlight the importance of including dividend

growth in a VAR together with the price-dividend ratio and returns: the common practice of

omitting dividend growth is in general invalid, since it amounts to imposing the additional

restriction that this variable is not persistent after controlling for lags of the remaining

variables. Using postwar annual data and relaxing this additional restriction uncovers

an additional and previously overlooked channel of return predictability, which we label

“dividend momentum.” We show how dividend momentum has non-trivial implications for

the interpretation of cash flow and discount rate news and the optimal asset allocation of

long-horizon investors. We conclude with some remarks on the implications of our methods

for future research that we have not explored in the paper.

On the empirical front, there is a burgeoning literature that uses large data sets to search

for evidence of predictability in aggregate stock returns (see, e.g., Kelly and Pruitt, 2013;

Rapach and Zhou, 2020). Shrinkage or regularization of a potentially very large parameter

and predictor space becomes essential in this context. However, when focusing on shrinkage

it is easy to forget the lessons of the classic papers by Campbell and Shiller (1988a,b)

and Cochrane (2008): the price-dividend ratio and aggregate dividend growth are not any

predictors: they are fundamentally linked to returns by the CS identity. Our approach opens

the door to using large Bayesian VARs, which have been shown to be highly successful in

forecasting macroeconomic and financial variables with hundreds of predictors (see Koop,

2013; Carriero, Kapetanios, and Marcellino, 2012; Carriero, Clark, and Marcellino, 2019), for

the task of uncovering return predictability while respecting the cross-equation restrictions
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implied by the CS type of identities.

A corollary of our results in the context of larger data sets is that any predictor of dividend

growth will indirectly forecast returns through the dividend momentum channel. In fact,

while in the small system presented in Section 4, the condition φd,d > 0 is necessary for

dividend momentum to exist, this concept generalizes to larger systems where φd,d > 0 may

not be required. To see this, imagine that a variable is added to the system that forecasts

dividend growth, driving φd,d toward zero. The logic of the CS identity means that any

predictor of dividends, other than the price-dividend ratio itself, will either predict returns or

predict the price-dividend ratio (with the opposite sign), therefore predicting returns with a

lag. Thus, shocks to this predictor will also induce dividend momentum.

More broadly, as mentioned at the outset of the paper, our methods extend to the many

applications in macroeconomics and finance where identities equivalent to the CS one emerge.

In all those applications a highly persistent ratio or spread is the key long-run predictor of

an asset return. Exploring the implications of priors that push higher the persistence of such

predictors and shrink toward zero the coefficients related to predictability would be a fruitful

avenue of research.

We end the paper by noting that the presence of dividend momentum has implications

for asset pricing theories that try to explain fluctuations in expected returns. In the habit

model of Campbell and Cochrane (1999) and the prospect theory of Barberis, Huang, and

Santos (1999) dividend growth is modeled as independently and identically distributed, and

all of the predictability of returns comes from variation in discount rates. In the long-run

risk model of Bansal and Yaron (2004), dividend growth features a persistent, low-frequency

component, but is independently and identically distributed after controlling for the price-

dividend ratio. These theories are concerned with explaining the variation in expected returns

that is counter-cyclical with respect to dividend and/or consumption growth. The presence

of dividend momentum does not negate the fact that such mechanisms are the largest driver

of fluctuations in expected returns. Rather, it points to the presence of at least one shock
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that generates pro-cyclical variation in expected returns, through channels that the literature

has so far not explored.
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Appendix A VARMA(2,1) mapping

The results in the appendix are general, so they can be used to obtain the VARMA(2,1)

representations in both Section 3 and Appendix F. Let us consider the following model with

approximation error of xt:

xt+1 = G1xt +G2xt−1 + ξt+1 +B1ξt +M0ηt. (A.1)

Let Et (ξt+1ξ′t+1) = Ωξ, Et (ηt+1η′t+1) = Ωη, and Et (ξt+1η′t+1) = Ωξη, where the last assumption

reflects the fact that the approximation error ηt+1 may be correlated with ξt+1.18

Let the VARMA(2,1) representation of xt be:

xt+1 = G1xt +G2xt−1 + et+1 +D1et, (A.2)

where Et (et+1e′t+1) = Ωe. We can now find D1 and Ωe as a function of G1, G2, B1, M0,

Ωξ, Ωη, and Ωξη so that the autocovariance function of Equation (A.2) matches the one of

Equation (A.1).

Specifically, let the first and second autocovariance of the moving average component of

Equation (A.1) be:

Ψ0 = Ωξ +B1ΩξB
′
1 +M0ΩηM

′
0 +B1ΩξηM

′
0 +M0Ω

′
ξηB

′
1 and

Ψ1 = B1Ωξ +M0Ω
′
ξηB

′
1, (A.3)

18Equation (A.1) boils down to Equation (14) by defining ηt+1 = ηt+1, Ωη = σ2
η, M0 = −φ12, and

Ωξη = [0 σ2
η]
′
. Notice that Ωξη = [0 σ2

η]
′

because we assume that ηt+1 is only correlated with urt+1.
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then if Equation (A.2) is the VARMA(2,1) representation of xt, we have that:

Ψ0 = Ωe +D1ΩeD
′
1 and (A.4)

Ψ1 = D1Ωe. (A.5)

To find D1 and Ωe note that from Equation (A.5) we have that:

Ωe = D−1
1 Ψ1.

Substituting the above expression into Equation (A.4) we get that:

Ψ0 = D−1
1 Ω1 +D1D

−1
1 Ψ1D

′
1 = D−1

1 Ψ1 +Ψ1D
′
1,

which implies that D1 needs to solve the following quadratic matrix equation:

D1Ψ1D
′
1 −D1Ψ0 +Ψ1 = 0 (A.6)

The solution to Equation (A.6) can be easily found numerically. Starting with a guess for D1

(e.g. D0
1 = B1), one can find the solution iterating over Dk+1

1 = Ψ1[Ψ0 −Ψ1(Dk
1)′]−1.

Appendix B Proof of Theorem 1

First, let us assume that φr,d = φpd,d = 0 (i.e. φ12 = 02×1) holds. Then, from Equation (5)

φd,d = 0 which implies that G1 = Φ11. Moreover, since φ12 = 02×1, G2 = 02×2 and B1 = 02×2. If

B1 = 02×2 by Equation (A.3) we have that Ψ1 = 02×2; hence, by Equation (A.5) we have that

D1 = 02×2.

Second, let us assume that G1 = Φ11, G2 = 02×2, and D1 = 02×2. Since G1 = Φ11,

we have that φd,d = 0. Because φd,d = 0 and φr,d = ρφpd,d + φd,d, we have φr,d = ρφpd,d
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and φ12 = [φpd,d, φr,d]′ = [φpd,d, ρφpd,d]′ = φpd,d [1, ρ]′ and hence B1 = φpd,d [1, ρ]′ [−ρ,1] and

M0 = −φ12 = −φpd,d [1, ρ]′. In this case G2 = 02×2 implies that φ21 = 01×2. Since D1 = 02×2, we

have that Ψ1 = 02×2. Hence B1Ωξ +M0Ω′
ξηB

′
1 = 02×2. But, since φd,d = 0, we have that:

B1Ωξ +M0Ω
′
ξηB

′
1 = φpd,d

⎛
⎜⎜
⎝

−ρΣpd,pd +Σpd,r − φpd,dσ2
η Σr,r − ρ (Σpd,r + φpd,dσ2

η)

ρ (−ρΣpd,pd +Σpd,r − φpd,dσ2
η) ρ (Σr,r − ρ (Σpd,r + φpd,dσ2

η)))

⎞
⎟⎟
⎠
,

where Σpd,pd = Var (updt+1), Σr,r = Var (urt+1), and Σpd,r = Cov (updt+1, u
r
t+1). Taking into account

the CS restrictions among the covariance terms (Equations (8) and (9)), the above matrix

can be equal to 02×2 without φpd,d = 0 if and only if φpd,d = (Σd,d + ρΣpd,d + σ2
η) /ρσ2

η = Σpd,d/σ2
η,

where Σd,d = Var (udt+1) and Σpd,d = Cov (udt+1, u
pd
t+1). But this is not possible because it would

imply that Σd,d = −σ2
η.

In the absence of approximation error, we have that:

B1Ωξ = φpd,d
⎛
⎜⎜
⎝

−ρΣpd,pd +Σpd,r Σr,r − ρΣpd,r

ρ (−ρΣpd,pd +Σpd,r) ρ (Σr,r − ρΣpd,r)

⎞
⎟⎟
⎠
= φpd,d

⎛
⎜⎜
⎝

Σpd,d Σd,d + ρΣpd,d

ρΣpd,d ρ (Σd,d + ρΣpd,d)

⎞
⎟⎟
⎠
,

where Σr,r = Var (urt+1) and the last equality takes into account the restrictions arising from

the CS restriction. Clearly unless Σd,d = Σpd,d = 0, the above matrix can never be equal to

02×2 without φpd,d = 0. It should be clear that if φ12 ≠ 02×1 (i.e. Σd,d = Σpd,d = 0), G2 = 03×3

implies that φ21 = 0′2; hence, the dividend growth process is fixed to constant over time.

Appendix C Variance of the Innovations in the

VAR(1) Implied by VARMA(2,1)

The results in the appendix are general, so they can be used to obtain the variance of the

innovations in the VAR(1) implied by VARMA(2,1) representations in both Section 3 and

Appendix F.
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We can use the definition of the innovations from the VAR(1) in Equation (17) to calculate

Ωε. In particular, we have that:

Ωε = (G2Γ
′
1 +D1Ωe)Γ−1

0 (G2Γ
′
1 +D1Ωe)′

− (G2Γ
′
1 +D1Ωe)Γ−1

0 Γ1G
′
2 − (G2Γ

′
1 +D1Ωe)Γ−1

0 ΩeD
′
1 +

−G2Γ
′
1Γ

−1
0 (G2Γ

′
1 +D1Ωe)′ +G2Γ0G

′
2 +Ωe

−D1ΩeΓ
−1
0 (G2Γ

′
1 +D1Ωe)′ +D1ΩeD

′
1

= G2Γ
′
1Γ

−1
0 Γ1G

′
2 +D1ΩeΓ

−1
0 ΩeD

′
1 +G2Γ

′
1Γ

−1
0 ΩeD

′
1 +D1ΩeΓ

−1
0 Γ1G

′
2

−G2Γ
′
1Γ

−1
0 Γ1G

′
2 −D1ΩeΓ

−1
0 Γ1G

′
2 −G2Γ

′
1Γ

−1
0 ΩeD

′
1 −D1ΩeΓ

−1
0 ΩeD

′
1

−G2Γ
′
1Γ

−1
0 Γ1G

′
2 −G2Γ

′
1Γ

−1
0 ΩeD

′
1+G2Γ0G

′
2 +Ωe

−D1ΩeΓ
−1
0 Γ1G

′
2 −D1ΩeΓ

−1
0 ΩeD

′
1 +D1ΩeD

′
1.

We can simplify the above equation to:

Ωε = −G2Γ
′
1Γ

−1
0 Γ1G

′
2 −G2Γ

′
1Γ

−1
0 ΩeD

′
1+G2Γ0G

′
2 +Ωe

−D1ΩeΓ
−1
0 Γ1G

′
2 −D1ΩeΓ

−1
0 ΩeD

′
1 +D1ΩeD

′
1

= Ωe +D1ΩeD
′
1+G2Γ0G

′
2

−G2Γ
′
1Γ

−1
0 (Γ1G

′
2 +ΩeD

′
1) −D1ΩeΓ

−1
0 (Γ1G

′
2 +ΩeD

′
1)

= Ωe +D1ΩeD
′
1+G2Γ0G

′
2 − (G2Γ

′
1 +D1Ωe)Γ−1

0 (G2Γ
′
1 +D1Ωe)′

Appendix D Variance of Long-Horizon Returns

In this section, we derive the variance of long-horizon returns for a system such as the one

described in Equation (1), although the calculation is also valid for more general models.

Defining the multiple-period returns as rT,T+k = ∑kj=1 rT+1, the variance of long-horizon returns
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can be decomposed as:

VarT (rT,T+k) = ET [VarT (rT,T+k∣Θ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

expected variance of long-horizon returns

+VarT [ET (rT,T+k∣Θ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

estimation risk

(D.1)

where Θ = {Φ,Σ} denotes the parameters in the VAR. The first term in Equation (D.1)

corresponds to the expected variance of long-horizon returns, and since we have assumed

a constant volatility in the VAR, VarT (rT,T+k∣Θ) = Var (rT,T+k∣Θ). The estimation risk

component instead reflects the parameter uncertainty.

Let us compute the estimation risk component. Let sr be a 1×n vector with 1 corresponding

to the position of the returns within the vector of state variables yt+1 (and 0 otherwise), then

rt+k can be written as:

rt+k = (In −Φ1)−1 (In −Φk
1)Φ0 + srΦ

k
1yt + srut+k + sr

k−1

∑
j=1

Φj
1ut+k−j

Therefore, the expected long-run return can be re-written as:

ET (rT,T+k∣Θ) = sr (In −Φ1)−1 {[In − (In −Φ1)−1 (In −Φk
1)]Φ0 + (In −Φk

1)yT} .

This implies that the estimation risk component can be computed as:

VarT [ET (rT,T+k∣Θ)] = VarT [sr (In −Φ1)−1 {[In − (In −Φ1)−1 (In −Φk
1)]Φ0 + (In −Φk

1)yT}] .

Let us now calculate the expected variance of long-horizon returns. The unpredictable

component of the t + k returns is:

rt+k −Et (rt+k∣Θ) = srut+k + sr
k−1

∑
j=1

Φj
1ut+k−j.
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and for multiple-period returns:

rt,t+k −Et (rt,t+k∣Θ) = sr
k

∑
j=1

ut+j + sr
k−1

∑
j=1

Φ1 (In −Φ1)−1 (In −Φj
1)ut+k−j

Therefore the variance of long-horizon returns consists of three sources of uncertainty: the

i.i.d. uncertainty reflecting the accumulated uncertainty of the one-period returns, the

future expected return uncertainty, and a component reflecting the covariance between the

one-period return uncertainty and the revisions to the future expected returns:

Var (rT,T+k∣Θ) = ksrΣs′r
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

iid uncertainty

+2srΦ1∑
k−1

j=1 (In −Φ1)−1 (In −Φj
1)Σs′r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
covariance component

+ (D.2)

+∑k−1

j=1 [srΦ1 (In −Φ1)−1 (In −Φj
1)]Σ [srΦ1 (In −Φ1)−1 (In −Φj

1)]
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
future expected return uncertainty

The expected variance of long-horizon returns is the expectation of Equation (D.2). The

covariance component is generally labelled as “mean reversion.” This is because, in the

absence of dividend momentum, this covariance term tends to be dominated by the negative

co-movement arising between next-period futures and multiple-period returns following a

shock to the price-dividend ratio.

D.1 Shock Decomposition of the Variance of Long-Horizon Re-

turns

More generally, one can decompose the expected variance of long-horizon returns into the

contribution of each of the structural shocks. Specifically, let Σ = BB′ where B corresponds

to the matrix capturing the IRFs coefficients associated with the structural shocks on impact.

We have that Σ = ∑ni=1 B(∶,i)B′
(∶,i) where B(∶,i) denotes the i-th column of the matrix B.

This means that we can retrieve the contribution of the i-th structural shocks to the three

sources of uncertainty in Equation (D.2) substituting Σ by B(∶,i)B′
(∶,i) for each i. Dividend
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momentum will affect the expected variance of long-horizon returns as long as dividend

growth shocks affect the covariance component and future expected return uncertainty. In

order to compute the variance of long-horizon returns without dividend momentum, we

substitute Σ by B(∶,1)B′
(∶,1) +B(∶,3)B′

(∶,3) in the covariance component and future expected

return uncertainty terms of Equation (D.2), since the dividend growth shock is the second

shock in our simplified model.

Appendix E Derivations of the R2 for Multiple-Period

Returns

Consider the VAR in Equation (1) and let Γ̃j = Et (yt+1y′
t+1+j). The R2 associated with

next-period returns can be computed as:

R2 (1) = Var [Et (rt+1)]
Var (rt+1)

= srΦ1Γ̃0Φ′
1s
′
r

srΓ̃0s′r
.

For multiple-period returns, we have that:

R2 (k) =
Var [Et (rt,t+k)]
Var (rt,t+k)

=
sr (∑kj=1 Φj

1) Γ̃0 (∑kj=1 Φj
1)

′
s′r

sr [kΓ̃0 +∑k−1
j=1 (k − j) (Γ̃j + Γ̃′

j)] s′r
.

Appendix F Results for a More General Model

The basic macro-finance VAR of Sections 2 and 3 is useful to analyze the basic insights of

dropping dividend growth in VAR(1) but one may consider more general models. To do so we

expand the model in Equation (1) with the risk-free rate rft+1 and a vector of dimension nw ×1

of additional external predictors wt+1. Thus, consider the vector of endogenous variables

y′
t = [∆dt+1,w′

t+1, r
f
t+1, pdt+1, rt+1 − rft+1] of dimension (nw + 4) × 1 and assume it follows a
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VAR(1) structure:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt+1

wt+1

rft+1

pdt+1

rt+1 − rft+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

yt+1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cd

cw

cr
f

cpd

cr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²

Φ0

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φd,d φd,w φd,rf φd,pd φd,r

φw,d φw,w φw,rf φw,pd φw,r

φrf ,d φrf ,w φrf ,rf φrf ,pd φrf ,r

φpd,d φpd,w φpd,rf φpd,pd φpd,r

φr,d φr,w φr,rf φr,pd φr,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Φ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆dt

wt

rft

pdt

rt − rft

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

yt

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

udt+1

uwt+1

ur
f

t+1

updt+1

urt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¸¹¹¹¹¹¹¶

ut+1

(F.1)

where ut+1 is normal with mean zero and Et (ut+1u′
t+1) = Σ. As before, this system can be

written compactly as yt+1 = Φz′t + ut+1 where zt = [1,y′
t] and Φ = [Φ0,Φ1].

In this case, the CS identity implies a relationship between excess returns, dividend

growth, changes in the log price-dividend ratio, and the risk-free rate:

rt+1 − rft+1 ≈ κ + ρpdt+1 − pdt +∆dt+1 − rft+1. (F.2)

Equation (F.2) imposes the following restrictions among the innovations:

urt+1 = udt+1 − ur
f

t+1 + ρu
pd
t+1 + ηt+1,

the following restrictions on Φ:

cr = cd − crf + ρcpd + κ,

φr,d = φd,d − φrf ,d + ρφpd,d,

φ′r,w = φ′d,w −φ′rf ,w + ρφ
′
pd,w,

φr,rf = φd,rf − φrf ,rf + ρφpd,rf ,

φr,pd = φd,pd − φrf ,pd + ρφpd,pd − 1, and

φr,r = φd,r − φrf ,r + ρφpd,r
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and the following restrictions on Σ:

Cov (udt+1, u
r
t+1) = ρCov (udt+1, u

pd
t+1) + Var (udt+1) − Cov (udt+1, u

rf

t+1) ,

Cov (uwt+1, u
r
t+1) = ρCov (uwt+1, u

pd
t+1) + Cov (uwt+1, u

d
t+1) − Cov (uwt+1, u

rf

t+1) ,

Cov (urft+1, u
r
t+1) = ρCov (urft+1, u

pd
t+1) + Cov (urft , udt+1) − Var (urft+1) , and

Cov (updt+1, u
r
t+1) = ρVar (updt+1) + Cov (updt+1, u

d
t+1) − Cov (updt+1, u

rf

t+1)

respectively. The only difference in the absence of approximation error is that an additional

restriction in the variance-covariance matrix Σ linking the variance of urt+1 with variances

and covariances of udt+1, u
rf

t+1, and updt+1 is needed. In particular, we would have the extra

restriction:

Var (urt+1) = Var (udt+1) + Var (urft+1) + ρ2Var (updt+1) +

2ρCov (updt+1, u
d
t+1) − 2ρCov (updt+1, u

rf

t+1) − 2Cov (udt+1, u
rf

t+1) .

The stationarity restriction is now:

Φ1 ∈ {Z ∈ R(nw+4)×(nw+4) ∶ max{eig (Z)} < 1} .

In Appendix F, we show that Theorem 1 and Corollary 2 hold for the more general model

for the case both with and without approximation error.

Using the results in Appendix A, it can be shown that if we drop dividend growth and

run a VAR(1) on x′t+1 = [w′
t+1, r

f
t+1, pdt+1, rt+1 − rft+1] we can obtain the same VARMA(2,1)

representation of xt+1:

xt+1 = G1xt +G2xt−1 + et+1 +D1et, (F.3)

where G1 = Φ11 +Φdd, Φdd = φd,dIn+3, G2 = φ12φ21 −ΦddΦ11, B1 = φ12 [0′nw
,1,−ρ,1] −Φdd,
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and Et (et+1e′t+1) = Ωe and where

Φ11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φw,w φw,rf φw,pd φw,r

φrf ,w φrf ,rf φrf ,pd φrf ,r

φdp,w φdp,rf φdp,pd φdp,r

φr,w φr,rf φr,pd φr,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, φ12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φw,d

φrf ,d

φpd,d

φr,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, φ′21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ′d,w

φd,rf

φd,pd

φd,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and ξt+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uzt+1

ur
f

t+1

updt+1

urt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We have defined ηt+1 = ηt+1, Ωη = σ2
η, M0 = −φ12, and Ωξη = [0′nw

0 0 σ2
η]
′
.19 Consider

now specifying a VAR(1) for xt+1:

xt+1 = A1xt + εt+1, (F.4)

where Et (εt+1ε′t+1) = Ωε. The matrix A1 follows the expression in Equation (16); thus the

link between A1 and the parameters in the VAR(1) in Equation (F.1) highlighted in Section 3

also exists here. The next theorem replicates Theorem 1 in this more general set up.

Theorem F.1. The VARMA(2,1) in Equation (F.3) will have G1 = Φ11, G2 = 0(n+3)×(n+3),

and D1 = 0(n+3)×(n+3) if and only if φw,d = 0n and φrf ,d = φpd,d = φr,d = 0, with φd,d = 0 following

from Equation (F.3).

Proof. See Appendix H.

Of course, Theorem F.1 implies that Corollary 1 also holds for the more general model

described in this section. The innovations in the VAR(1) specified in Equation (F.4) also

follow the expression in Equation (17). Results in Appendix C can be used to show that

its variance can also be obtained using Equation (18). As expected, it is also the case that

Corollary 2 holds here. As expected, the results in Section 3.1 when the approximation error

is not present also hold in this more general case.

19As before, without loss of generality, we abstract from the constant term.
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Appendix G Priors for Section 8

In this section we describe the prior parameterizations used in Section 8.

G.1 The Flat Prior

We follow Uhlig (2005) and set ν = 0 and V−1 = 05×5 and let S and α be arbitrary. This

means that the posterior means are centered around the OLS estimates and the Bayesian

high posterior density intervals coincide with the classical confidence intervals.

G.2 The Informative Prior

The Minnesota priors in this section can be written:

p(vec(Φ1)∣Σ) ∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

vec

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Σ⊗Ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where in the simplest case Ω = λ2(diag ([σ2
d, σ

2
rf
, σ2

pd, σ
2
r]))−1, with λ = 0.185. We follow the

common practice of setting σ2
i to the residual variance of an AR(1) model. For Φ0, the

Minnesota prior is usually specified as flat.

We choose a value of θ = 0.05, which controls the tightness of Single Unit Root prior.

As before, we follow Giannone, Lenza, and Primiceri (2019) when choosing λ and θ. In

particular, we use the starting sample finishing in 1973 to choose them. For mean of the

excess return, µ
r

we chose a value of 6.5%; the mean of the risk-free rate µ
rf

is chosen to

be 4%; and for the mean nominal dividend growth, µ
d

we chose a value of 5.5%, consistent

with long-run nominal GDP growth in the United States. Given these values we can back

out the implied µ
pd

from CS restriction (4) to be about 2.8, which is close to the value of
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the log price-dividend ratio at the beginning of the postwar sample. The hyperparameters λ

and θ are chosen to maximize the value of the marginal likelihood, as proposed by Giannone,

Lenza, and Primiceri (2019).

Appendix H Proof of Theorem F.1

First, let us assume that φw,d = 0n and φr,d = φpd,d = 0 holds. Then, φd,d = 0 because of

Equation (F.3). This implies that G1 = Φ11 and φ12 = 0n+3. Clearly this implies that

G2 = 0(n+3)×(n+3) and B1 = 0(n+3)×(n+3). If B1 = 0(n+3)×(n+3) by Equation (A.3) we have that

Ψ1 = 0(n+3)×(n+3); hence, by Equation (A.5) we have that D1 = 0(n+3)×(n+3).

Second, let us assume that G1 = Φ11, G2 = 0(n+3)×(n+3), and D1 = 0(n+3)×(n+3).

Since G1 = Φ11, we have that φd,d = 0, because φd,d = 0, φr,d = ρφpd,d − φrf ,d and

φ12 = [φ′w,d, φrf ,d, φpd,d, ρφpd,d − φrf ,d]
′
.

Since D1 = 0(n+3)×(n+3), we have that Ψ1 = 0(n+3)×(n+3). Hence B1Ωξ + M0Ω′
ξηB

′
1 =

0(n+3)×(n+3). Now remembering that M0 = −φ12 and, with φd,d = 0, B1 = φ12 [0′n,1,−ρ,1], we

have that:

Ψ1 = φ12 ([0′n,1,−ρ,1]Ωξ −Ω′
ξη [0′n,1,−ρ,1]

′
φ′12) . (H.1)

It is therefore useful to partition the matrix Ψ1 as:

Ψ1 =

⎡⎢⎢⎢⎢⎢⎢⎣

Ψ11
1 Ψ12

1

Ψ21
1 Ψ22

1

⎤⎥⎥⎥⎥⎥⎥⎦

where Ψ22
1 is a 3 × 3 matrix of the variance of the residuals that are restricted by the CS

restriction. Given the structure of Ψ1 in Equation (H.1), and defining c = [φrf ,d, φpd,d, ρφpd,d−

φrf ,d]′, Ω22
ξ as the lower right 3 × 3 submatrix of the matrix Ωξ and Ω12

ξη = [0, 0, σ2
η]′, we have
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that:

Ψ22
1 = c{[1,−ρ,1]Ω22

ξ − [0,0, σ2
η] [1,−ρ,1]

′
c′}

= c

⎛
⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σrf ,rf − ρΣrf ,pd +Σr,rf

Σrf ,pd − ρΣpd,pd +Σr,pd

Σr,rf − ρΣr,pd +Σr,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

− σ2
ηc

′

⎞
⎟⎟⎟⎟⎟⎟
⎠

= c

⎛
⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σrf ,d

Σpd,d

Σr,d + σ2
η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

− σ2
ηc

′

⎞
⎟⎟⎟⎟⎟⎟
⎠

= c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σrf ,d − σ2
ηφrf ,d

Σpd,d − σ2
ηφpd,d

Σr,d + σ2
η − σ2

η (ρφpd,d − φrf ,d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

for Ψ22
1 = 03×3 with c ≠ 03×1 (i.e., φrf ,d ≠ 0 and φpd,d ≠ 0), one requires that Σrf ,d − σ2

ηφrf ,d = 0,

which implies that φrf ,d = Σrf ,d/σ2
η, Σpd,d−σ2

ηφpd,d = 0, which implies that φpd,d = Σpd,d/σ2
η, and

Σr,d+σ2
η −σ2

η (ρφpd,d − φrf ,d) = 0 which implies that Σr,d+σ2
η −ρΣpd,d+Σrf ,d = 0. Since the CS

restriction implies that Σr,d = Σd,d −Σrf ,d + ρΣp,pd, the last equality implies that Σd,d = −σ2
η,

which cannot be.

Now notice that:

Ψ12
1 = φw,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σrf ,d − σ2
ηφrf ,d

Σpd,d − σ2
ηφpd,d

Σr,d + σ2
η − σ2

η (ρφpd,d − φrf ,d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

for Ψ12
1 = 03×1, since Σr,d + σ2

η − ρΣpd,d +Σrf ,d ≠ 0, we have that φw,d = 0n.
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In the absence of approximation error, we have that:

Ψ22
1 = c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σrf ,d

Σpd,d

Σr,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

Clearly unless Σrf ,d = Σpd,d = Σr,d = 0 (which implies that Σd,d = 0 because of the CS

restriction), the above matrix can be equal to 03×3 with c ≠ 03×1. The same argument can be

used with Ψ12
1 to show that φw,d = 0n. As before, it should be clear that if φ12 ≠ 02×1 (i.e.

Σrf ,d = Σpd,d = Σr,d = Σd,d = 0), G2 = 0(n+3)×(n+3) implies that φ21 = 0′n+3; hence, the dividend

growth process is fixed to constant over time.
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