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1 Introduction

Firm-level productivity differences are large, with only a handful of high-growth firms ac-
counting for the majority of innovation and productivity growth in the U.S. (Bartelsman
and Doms, 2000; Haltiwanger, Hurst, Miranda and Schoar, 2017). Although recent em-
pirical evidence suggests that these firm-level differences are largely ascribed to ex-ante
heterogeneity in growth profiles at birth (Pugsley, Sedlacek and Sterk, 2018), the models of
growth and firm dynamics are mute on sources of this ex-ante heterogeneity. Where do
these ex-ante differences come from? In this paper, I focus on a specific type of ex-ante het-
erogeneity often overlooked in the growth and firm dynamics literature – the heterogeneity
coming from the prior employment background of firms’ founders. I show both empirically
and by means of a quantitative growth model that spinout entrants – the firms established
by former employees of incumbent firms – play an important role in innovation, growth,
and firm dynamics. By better understanding aggregate implications of spinout dynamics,
we can better design policies aimed at fostering high-growth entrepreneurship, innovation,
and growth.

Spinout entrants often turn into exceptionally productive high-growth firms, often re-
shaping the whole industries (Klepper, 2002; Klepper and Sleeper, 2005; Franco and Filson,
2006). Examples of transformational spinout firms are ample. Figure 1 shows a small part
of a large spinout family tree spawned by Bell Telephone Laboratories established in 1952.
After the stages of prolific spawning of new and exceptionally productive spinouts, the
semiconductor industry grew, achieving sales of more than $400 billion today. A more re-
cent example is Zoom Video Communications – entrepreneurial venture by a former head
of Cisco Webex engineering team, that swept the crowded communications market and saw
unprecedented growth during the 2020 pandemic.

Although spinout entrants may be more productive, the process of spinout creation
entails a tension between incumbents and the employees leaving their firms to pursue
their own entrepreneurial ventures.1 Indeed, employers are increasingly concerned about
the harm to their businesses caused by employee mobility, as manifested by existing em-
ployer protection regulations such as non-compete policies and the continual demands to
strengthen them.2 If this tension results in incumbents’ lower appropriability of innovation
investments, their innovation incentives will decline.

To understand this interaction between spinout entry and incumbents’ innovation incen-

1See Pakes and Nitzan (1983) and Anton and Yao (1995) for the first theoretical treatments of this tension
between inventors and employers.

2There is an ongoing debate around non-compete regulations limiting the employee mobility, as reflected
by a recent House Bill requesting to strengthen existing regulations (Bill S.998, “An Act relative to the judicial
enforcement of noncompetition agreements”, 2017-2018 legislative session) and a later bill which prohibits the
use of non-compete agreements (S.2614 - Workforce Mobility Act of 2019, introduced in the 116th Congress,
2019-2020.).
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Figure 1: Spinouts in Semiconductor Industry

Source: "Semiconductor Family Tree", Electronic News, July 8, 1968.

tives and the quantitative implications for aggregate innovation and growth, I build a rich
structural model of innovation and firm dynamics, where firm heterogeneity arises from
endogenous decisions of innovation workers to become entrepreneurs and create spinouts.
With this model at hand, I quantitatively analyze the role of non-compete laws (NCL) hin-
dering the employee mobility, in promoting aggregate innovation and growth.

I begin the study by empirically analyzing spinout firms and by providing motivating
stylized facts that guide the modeling. To identify the innovating spinout firms, I use
a detailed datasets on patents and the universe of patenting firms from NBER-USPTO
and combine it with the disambiguated inventors dataset from Harvard Patent Network
Dataverse project (Lai, D’Amour, Yu, Sun and Fleming, 2011) to track individual inventor
across firms. A firm is defined as a spinout if at least one inventor on a patent application
filed in the firm’s entry year has worked in a different firm before that year. A sizable share
of innovating firms enter as spinouts: 30% of the patenting entrants, the total of 17,295
firms.

The advantage of using patents and inventors dataset to analyze spinout firms is twofold.
First, the model in this paper focuses on the innovating firms that drive technological
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progress in the economy; and patents have been widely used in the literature as the main
systematic metric to identify the innovating firms (Griliches, 1981; Hall, Thoma and Tor-
risi, 2007; Kogan, Papanikolaou, Seru and Stoffman, 2017; Argente, Baslandze, Hanley and
Moreira, 2020). Second, the data on rich patent characteristics offers the possibility to
proxy for individual’s innovation quality as well as quality and technological capabilities
of a firm –objects that are hard to get with other datasets and that are crucial to discipline
the model. On the downside, this approach provides just a proxy for spinout firms and can
potentially mismeasure the true number of spinouts. In addition, inventors moving to the
new firms may not formally be the entrepreneurs or owners of the spinout firms. In this
sense, our empirical definition of spinouts is broader than the definition of spinouts just
based on owners and in addition includes the founding team of the early inventors in the
firm. This approach is similar to Choi, Goldschlag, Haltiwanger and Kim (2019) who show
that not just the founders but the early employees play a key role in the firms’ subsequent
performance.

I provide a set of validation exercises for the identification of spinouts in the data. First,
I compare the external sample of 40 spinout firms reported in Franco and Filson (2006)
against my data and show that for the overlapping sample of the patenting firms, the
spinout status is correctly identified. Second, I show that the main data moments and
stylized facts that emerge from this data on innovating firms are very consistent with the
existing empirical studies in other settings (described in detail in the literature review).
Hence, main motivating empirical facts that emerge from my data are general and support
well the broad modeling assumptions.

The two main stylized facts emerge from the data. First, spinout entrants significantly
outperform regular entrant firms throughout their entire life. Spinouts file more and
higher-quality patents, live longer, grow faster, are more R&D-intensive, and generate more
patents per R&D dollars spent. Second, firms with a bigger technological lead spawn more
successful spinouts. Specifically, spinout firms are more innovative on many dimensions if
their parent firms are in the top percentiles of patent quality distribution in their technol-
ogy classes. Hence, the data supports a sort of learning or inheritance, whereby working
in the leading firm is linked with the probability of creating a high-quality spinout firm.

In the second part of the paper, I build a general equilibrium endogenous growth model
consistent with main empirical facts from the data. Building on the Schumpeterian growth
models (Aghion and Howitt, 1992; Acemoglu and Akcigit, 2012; Peters, 2020) with entry
and incumbents’ innovation, I introduce new features of individuals occupation choice,
spinout entry, and non-compete restrictions.

In the model, skilled people are allocated into three groups: entrepreneurs running the
firms, R&D managers conducting innovation in the firms, and outsiders contemplating en-
try into one of the above occupations. Motivated by the first empirical fact that spinouts
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significantly outperform regular entrant firms throughout their entire life, I introduce het-
erogeneous firm-specific quality types determined at entry. Some firms enter as high-type,
while others enter as low-type firms. Entrepreneurs decide on innovation efforts that push
the technology frontier forward. The heterogeneous quality types of entrepreneurs’ firms
determine their efficiency in the innovation process. By innovating, the firms move up the
technological ladder and increase their market power. R&D managers bargain with en-
trepreneurs over their wages and, while being on the job, can search for ideas and outside
opportunities to create their own spinout firms. Importantly, building on the second fact
that better firms spawn better spinouts, R&D managers learn on the job – more technolog-
ically advanced is their employer, higher are the chances that their start-up quality is of a
better type.3 Hence, an important new characteristic of this model is that the entry distri-
bution of the firm quality types is endogenous through the feedback from the incumbents’
type distribution, their innovation decisions, and the employees’ entrepreneurial choices.
Finally, the model builds in the non-compete restrictions that influence the expected costs
of spinout formation by employees.

The four main channels through which spinout formation affects aggregate innovation
and growth operate in the model. First is the direct entry effect on growth, where more entry
positively contributes to innovation and hence growth. Second is the disincentive effect of
spinout formation on incumbent firms’ innovation incentives: similar to the standard ap-
propriability problem, ex-ante incentives of incumbents are lower if they expect their R&D
managers to leave and compete with their firms. The third channel is knowledge diffusion,
whereby spinout entry increases the share of high-type firms in the market. Finally, spinout
entry also influences the firm composition: more spinout entry promotes more competition
and, as a result, increases aggregate innovation efforts.

In the last part of the paper, I quantitatively evaluate these various channels to under-
stand the role of spinout formation for aggregate innovation and growth and to conduct
counterfactual policy analysis. By calibrating the model to match growth, innovation, entry,
and workforce composition targets in the data, I first demonstrate that the model is success-
ful at replicating several important non-targeted data moments. The model quantitatively
matches the observed declining spinout entry rate in the states with weaker non-compete
restrictions, as well as facts on competition, spinout separation, and the dynamics of wages
with firm size.

Using growth decompositions, I first show that accounting for spinout dynamics is
quantitatively important for our understanding of growth process. The static growth de-
composition shows that 7% of productivity growth is accounted for by direct entry by
spinouts. However, the dynamic growth decomposition that takes into account both entry

3This setup also does not rule out the possibility of positive sorting between the firms and the R&D
managers. More discussion is in Section 3.
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and an increase in the share of high-quality entrepreneurs through knowledge diffusion
increases the contribution of spinouts to aggregate productivity growth. If the spinout
dynamics are important for growth, could we design the policies to foster spinout en-
trepreneurship without distorting the incumbents’ innovation incentives?

To understand which policies can boost high-quality entrepreneurship and productivity
growth, I provide a set of counterfactual policy experiments. The first policy explores the
current non-compete laws in the U.S. Recent evidence indicates that the use of non-compete
agreements– the clauses in employee contracts that prohibit the employees from working
for a competitor or forming a new firm, has been on the rise, with an estimated 28%-
47% of private-sector workers being subject to non-compete restrictions.4 The high-skill
employees are even more likely to be subject to non-competes, indicating that for inventors,
these restrictions on establishing own ventures might be even more severe.5 Currently,
the U.S. states vary widely in the degree of enforcement of (Garmaise, 2011; Starr, 2019).
For example, in California, the courts would not enforce any non-compete agreements,
while in Florida they would enforce them in many cases. The policy analysis shows that
abolishing non-compete restrictions is welfare-maximizing, mainly due to resulting higher
aggregate innovate and growth. State-by-state, the gains from the optimal policy adoption
have a wide range, reaching the maximum gain of 11 basis points in growth rate in Florida,
Montana, and Tennessee.

Related Literature This paper is related to the large literature on firm dynamics, en-
trepreneurship, innovation, and growth. Motivated by a large productivity dispersion
across firms (Dunne et al., 1988), the basic models of firm dynamics have long incorpo-
rated exogenous productivity differences across firms (Hopenhayn, 1992; Hopenhayn and
Rogerson, 1993). Although underlying productivity differences between firms have been
empirically shown to be largely driven by initial differences at entry (Abbring and Camp-
bell, 2005; Guzman and Stern, 2015; Belenzon et al., 2017; Pugsley et al., 2018; Azoulay
et al., 2020; Guzman and Stern, n.d.), the firm dynamics models are mostly silent about
the sources of this ex-ante heterogeneity. In this paper I endogenize ex-ante productiv-
ity differences based on the employees’ choices of entrepreneurship and the dynamics of
knowledge diffusion. As a result, the paper considers a new mechanism of endogenous
knowledge diffusion that speaks to the recent works on knowledge diffusion and growth
(Perla and Tonetti, 2014; Lucas and Moll, 2014; Benhabib et al., 2021).

I build on the general equilibrium models of innovation, firm dynamics, and growth
(Aghion and Howitt, 1992; Grossman and Helpman, 1991; Klette and Kortum, 2004; Lentz

4The Economic Policy Institute Report on Noncompete Agreements, December 10, 2019.
5Interviews of patent holders from Marx (2011) show that non-compete agreements play important role in

career paths of the technical professionals.
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and Mortensen, 2008; Akcigit and Kerr, 2018; Acemoglu and Akcigit, 2012; Acemoglu and
Cao, 2015; Acemoglu, Akcigit, Alp, Bloom and Kerr, 2018; Peters, 2020). While these models
are only concerned about firm’s innovation decisions, I incorporate the problem of the
firm’s R&D manager/inventors and analyze the firm’s and inventor’s interaction and its
effects on aggregate firm dynamics and growth. This framework can also be used to jointly
analyze various labor market and innovation policies.

This paper also relates to theoretical studies of employee entrepreneurship. The first
works in this direction are classic papers by Pakes and Nitzan (1983) and Anton and Yao
(1995) who study the optimal contracting problem in an environment where a researcher
can learn an idea and decide between continuing working for the firm or creating own
firms. These studies do not consider industry dynamics and aggregate outcomes. The clos-
est to my study is Franco and Filson (2006). They study the evolution of an industry where
employees can imitate the know-how of the employers and establish new firms. In Franco
and Filson (2006), competitive equilibrium is efficient, while here due to monopoly distor-
tions and intertemporal knowledge spillovers from the improved firm type composition in
the economy, the equilibrium is not generally efficient. In another related study, Franco
and Mitchell (2008) analyze spinouts and industry dynamics with non-compete laws to
explain the initial dominance of Route 128 over Silicon Valley and its subsequent rever-
sal. These models provide important intuitions, but they are stylized and do not allow for
quantitative analysis of the spinout formation and its implications for productivity growth
and policy. To the best of my knowledge, the only related quantitative macro study is the
concurrent work by Sohail (2021).6 Different from that work, I develop a framework to
study the interaction of incumbents’ innovation incentives with spinouts’ entry, its effect
on the evolution of the distribution of firms’ qualities and competition, and resulting effect
on aggregate growth. This structural framework then allows me to quantify importance of
various channels and evaluate optimal innovation and non-compete policies.

Theoretical analysis in this paper is guided by the set of stylized facts that I document
using inventors and patent data. These facts are consistent with the growing empirical
literature on employee spinouts identified in different datasets7 hence lending a wide sup-
port to the empirical underpinnings of the structural model considered in this paper. For
example, a number of papers empirically study characteristics of spinout firms in the au-
tomobile industry, laser, disk drive, medical device, legal services, and biotech industries
– Klepper (2002), Agarwal et al. (2004b), Klepper and Sleeper (2005), Franco and Filson
(2006), Chatterji (2009), Klepper and Thompson (2010), Campbell et al. (2012). The follow-

6Using data from Mexico, Sohail (2021) shows that spinout spawning is lower for larger firms. My study
is mute on firm size, and it shows that conditional on size, firms with higher technological leadership are
more likely to spawn spinouts, lending support to the knowledge inheritance hypothesis, similar to Agarwal
et al. (2004a).

7Literature often uses word “spinoff” instead of “spinout” that I use here.
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ing set of broad facts emerges from the empirical studies. Spinouts account for a sizable
share of entry – across industries, the share of spinout entrants ranges from 17% to 26%,
and it increases over time as industry matures. Spinout firms usually performing well,
often become industry leaders (oftentimes beating their parents), and usually have low
failure rates. Spinouts also tend to separate from the firms that are industry leaders, and
better firms spawn even better spinouts. In this paper, I find that similar empirical patterns
emerge when I consider innovating spinouts across all industries using micro-level data on
inventors and firms from the patent data. The contribution of this paper is to incorporate
these common stylized facts in the micro-founded macro model to understand aggregate
implications of spinout formation for innovation, firm dynamics, and growth.

Finally, a large and mainly empirical literature studies various effects of non-compete
laws. Empirically, the studies have documented that stricter enforcement of non-competes
limits labor mobility (Fallick, Fleischman and Rebitzer, 2006; Marx, Strumsky and Fleming,
2009; Garmaise, 2011) and firm entry (Samila and Sorenson, 2011; Starr, Balasubramanian
and Sakakibara, 2018; Jeffers, 2019); stricter non-competes are also related to higher or
riskier investment by firms, especially in knowledge-intensive industries, supporting the
idea that employee mobility reduces firms’ incentives to invest (Conti, 2014; Jeffers, 2019;
Barnett and Sichelman, 2020). Consistent with the observed empirical tradeoff between
increased firm entry and job-to-job mobility on the one hand and lower firm investment
incentives on the other hand, scholars and policymakers have had diverse opinions on
aggregate implications and overall desirability of non-competes (Saxenian, 1994; Gilson,
1999; Barnett and Sichelman, 2020). To the best of my knowledge, this is the first paper that
attempts to quantify these opposing effects of non-competes on the aggregate innovation
and growth and evaluates optimal non-compete policies. A concurrent paper by Shi (2021)
also studies non-compete policies in a structural macro model, but her focus is on the job-
to-job mobility and wage contracts of executives, while the effect through spinout entry,
innovation, and knowledge diffusion is the focus of the current work. Nevertheless, both
of our analyses show that optimal policy is not to enforce the non-competes.

2 Data and Motivating Empirical Facts

To identify and characterize innovating spinout firms, I use micro-level datasets on patents,
firms, and inventors. The data serves two major purposes: first, it helps the theory to
build on empirically motivated assumptions; and second, it helps to calibrate the model,
quantify relevant channels, and conduct counterfactual policy experiments. Hence, after
describing the data, Section 3.2 documents two main empirical facts underpinning the
model assumptions; while Section 5 then matches the model to the data and presents
counterfactual exercises.
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2.1 Patent and Inventors Data and Identification of Spinouts

Data Sources This section details data sources, identification of spinout firms, and other
variables construction.

NBER-USPTO Patent Data (PD). The core of the empirical analysis relies on the USPTO
patent dataset drawn from the NBER Patent Data Project (Hall et al., 2001). The NBER
patent data contains all granted patents by the U.S. Patent and Trademark Office during
the 1976-2006 period. I use a detailed information on 1,841,499 patents assigned to 1,457,121
U.S. entities (assignees). For each patent, I use the following patent characteristics: patent’s
technology classification, patent claims, the number of forward patent citations received –
a widely-used measure of the economic and technological significance of a patent (Trajten-
berg, 1990; Harhoff et al., 1999; Kogan et al., 2017), as well as information on the assignees
that file a patent. For the analysis, I focus on patents of the U.S. corporate assignees.8 For
each patenting firm, I use its location (state) and define its technology classification based
on the most common technology classification of the patents this firm files.

Disambiguated Inventors Data (DID). The second source of data on the U.S. patent inven-
tors comes from the Harvard Patent Network Dataverse (HPND) project (Lai et al., 2011).
Each patent application, in addition to listing patent assignees, also lists names of all indi-
vidual inventors of the patent. The HPND project disambiguates inventor names to provide
unique identifiers for each inventor in the USPTO data. As a result, by matching PD and
DID datasets, we obtain the matched firm-inventor dataset from 1976 to 2006 for nearly a
million of innovating firms in the U.S. and more that 650 thousands unique inventors work-
ing in those firms. The advantage of this data match is that it allows us to measure firm’s
innovative output quality as well as track individual inventors over time across different
firms.

Firms are classified into incumbent and entrant firms by identifying firm’s entry year as
the year the firm makes its first patent application. Since the data does not contain infor-
mation on patents granted before 1976, to decrease the left truncation problem, I identify
entrants starting from 1981. Likewise, since the data ends in 2006, due to the time lag
between patent application and its grant, we naturally observe fewer patents closer to the
end of the sample. Hence, to reduce the right truncation problem, the last year in which
entrants are identified is 1999. As a result, the benchmark sample focuses on entrants who
are born in the years 1981-1999. This allows for considerable time to observe entrants’
future activities and measure their performance and potential exit. A firm applying for a
patent prior to 1981 is classified as an incumbent. A firm’s exit year is defined as the grant
year of its last patent in the data.

The firm entry and exit dates defined based on the patent application/grant dates do

8Using extensive firm name cleaning and tracking firm reorganizations, PD provides unique company
identifiers for each corporate assignee.
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not necessarily coincide with the exact entry and exit dates of the firm in the economy.
Nevertheless, these are good proxies to measure firm’s entry and exit into innovation –
the focus of this paper. The first patenting year well describes the entry of the firm into
the innovation stage – similar to the firm entry in the model; while the firm’s last patent
describes its exit from the innovation stage – again, in line with firm exit in the model.

Compustat North American Fundamentals. In order to measure other outcome variables at
the firm level, such as firm sales, total employment, assets, and R&D expenditures, I link
the matched dataset to the financial data for publicly listed firms from the Compustat North
American Fundamentals (Annual).9 As a result, the empirical section will consistently refer
to two data samples: "Patent Data" is the sample on all the patenting firms in our data, and
"Compustat + Patent Data" refers to the subsample of the firms matched to Compustat.

The identification of spinout firms To identify spinouts, I track inventors’ mobility across
firms by following inventors’ patenting records. A firm is defined as a spinout entrant if at
least one inventor on a patent application made in the firm’s entry year has worked in a
different firm before that year.10 11 To reduce the measurement error, I exclude spinouts
if the time gap between the inventor’s last date in the previous firm and in a new spinout
firm is greater than 5 years. However, I illustrate robustness of the empirical results keeping
these firms in the sample. Alternatively, the entrant is classified as a regular entrant. The
following example illustrates the spinout identification. Computer Memories Inc. was a
California-based manufacturer of hard disks during the 1980’s. The firm has seven granted
patents in the data. Ara W. Nazarian was an inventor on two of those patents filed in
1983 (US4578625 and US4685007). In 1986, this inventor filed US4786995 under Peripheral
Technology Inc.; and US4786995 is also the first patent by this firm. Hence, Peripheral
Technology Inc. is classified as a spinout entrant.12

Discussion and the validation exercises The identification of spinout firms using patents
and inventors data offers several advantages as well as has certain limitations. In terms of
advantages, first, theory in this paper focuses on innovating firms that drive technological
progress in the economy; and patents have been widely used in the literature as the main

9NPDP project provides the linking procedure between patent data and the Compustat database.
10An alternative definition that leads to similar empirical results looks at the background of all inventors

in the firm’s first two years after entry.
11I discard the inventor mobility cases if they occur because of mergers or acquisitions and between sub-

sidiaries of the same firm. Dynass file from NPDP database helps to identify these types of reorganizations.
12Indeed, using alternative data sources, Franco and Filson (2006) analyze the history of hard disc drive

industry in the U.S., and list Peripheral Technology Inc. as a firm established by a former employees of other
firms. Peripheral Technology enters the economy in 1985 and exits in two years through acquisition. In our
data, this firm enters in 1986 and exits in 1988 – the year of its last patent application. It is also worth noting
that Computer Memories Inc. announced its departure from the hard disc drive industry in 1986, coinciding
exactly with the last year it files a patent in the data.
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systematic data on innovation across firms and over time (Griliches, 1981; Hall et al., 2007;
Kogan et al., 2017; Argente et al., 2020). Hence, the analysis of the large dataset on the
universe of patenting firms and identification of spinout firms within these innovating
firms maps the data well to the model. Second, the data on rich patent characteristics
offers the possibility to proxy for individual’s innovation quality as well as quality and
technological capabilities of a firm – objects that are hard to get with other datasets and
that are crucial to discipline the model.

On the other hand, there are several reasons for why identification of spinouts using
inventors’ mobility could mismeasure true number of spinouts, even within innovating
firms. First, an inventor who moves to the new firm may not formally be an owner of
the spinout firm. However, to the extent that the first inventors in a new firm define
the technological abilities and innovation direction of a firm, this approximates well our
model where mobility happens via R&D workers. In this sense, our empirical definition of
spinouts is broader than the definition of spinouts just based on owners of the firms and in
addition entails the founding team of early inventors in the firm. This approach is similar
to Choi et al. (2019) which shows that not just founders but initial employees at the firm
play a crucial role in determining firm’s future success. Second, this definition would miss
the spinouts established through the mobility of non-inventor employees, which might be
an important channel of knowledge transfer as well. However, through the lens of the
model, mobility and knowledge diffusion occur through the moves of R&D workers, and
the data on inventors should capture well these moves.

Nevertheless, it is useful to provide certain benchmark and assess our identification
of spinouts relative to that benchmark. For that, I provide two layers of validation. The
first validation exercise is to compare my definition of spinouts with the external sources
defining spinout firms. Franco and Filson (2006) analyze rigid disk drive industry and
using detailed industry reports, obtain the history of all entrants in 1977-1993. The authors
identify and list the names of 40 spinout entrants, their founding year, life span, and the
names of their parents. Among these, for 76% (19 firms) of innovating spinouts that match
to the USPTO data (the total of 25 firms), my data confirms the firms’ spinout type. In
addition, the non-matches mainly come from the spinouts established in the early years
of the sample, which because of the left truncation in my sample, do not allow me to
accurately define firm type.13

Second, the main data moments and stylized facts that emerge from this data on in-
novating firms are very consistent with the existing studies in the literature (described in
details in the literature review). For example, the share of spinout entrants among all en-

13As expected, firms’ entry years in my sample are lagging compared to true founding years on average by
1.3 years.
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Table 1: Summary Statistics
Patent data Spinout Entrants Regular Entrants Incumbents

Number of firms 17295 46888 11452

Years in sample 4.28 3.69 23.07

Number of spinouts spawned 0.29 0.14 0.82

Number of parents 1.22 . .

Lifetime number of patents 11.09 4.55 67.77

Lifetime number of cit-weighted 199.85 77.11 950.64

Patent + Compustat data

Number of firms 777 2229 2249

Years in sample 9.70 9.19 29.82

Number of spinouts spawned 0.91 0.41 2.25

Number of parents 1.36 . .

Lifetime number of patents 79.39 28.58 244.32

Lifetime number of cit-weighted patents 1618.07 585.40 3605.18

Sales(yearly) 919.65 938.10 3283.89

Sales growth (yearly) 23.62% 17.95% 10.13%

Employees (yearly) 3.77 3.61 12.34

Assets(yearly) 1219.56 1569.49 4361.11

R&D Expenditure (yearly) 61.12 47.76 108.46

Note: The table presents summary statistics for spinout entrants, regular entrants, and incumbent firms in 1981-2006 along various
dimensions. The entrants are identified in the period 1981-1999, while incumbents are defined as firms filing at least one patent before
1981. The first panel presents statistics for all the innovating firms in the data, while the second panel presents statistics for firms
matched to Compustat.

trants in my sample is 24.8%14, which is in the range of other studies in the literature.
Likewise, the facts on the superior performance of spinouts, knowledge inheritance, and
spinout separation probabilities are also supported by the existing patterns from other data
sources. These studies are discussed in Section 1, while Sections 2.2 and 5 describe these
empirical facts in details. Taking all together, these validations assure that the data on
patenting firms and inventors’ mobility presents a good laboratory to analyze the innovat-
ing spinout dynamics and to discipline the theoretical model.

Summary statistics Table 1 provides summary statistics of the data. During years 1981-
1999, we observe 64,183 entrant firms with the average longevity of 3.8 years and on average
6.3 patents and 110 citations-weighted patents.15 Among these entrants, 17,295 firms are
spinouts. Spinout and regular entrants account for nearly equal share of patents in 1981-
2006 – for 16% and 17% of the total patent filings by all firms, respectively. The comparison
of the share of spinouts and regular entrants with their respective patenting shares already

14Using the spinout definition not restricting to the 5-year gap between inventor’s last year in the parent
firm and the entry year of the spinout results in 32.0% of entrants

15Due to the nature of forward citations that take time to accumulate, I use the truncation-adjusted number
of citations from Hall et al. (2001)
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hints to the superior patenting activity of the spinout firms compared to regular entrants.
Patents-Compustat data match reduces the sample size, but the share of spinout firms
remains similar. Spinout firms are also larger and spend more on R&D, on average.

2.2 Motivating Empirical Facts

Two main building blocks of the model are empirically motivated here. First, I document
that firm quality is significantly higher if it enters as a spinout; and second, spinout’s
quality is even higher if it is spawned from a firm with a bigger technological lead.

Spinouts vs Regular Entrants

I start the analysis by documenting substantial differences in outcomes of entrant firms de-
pending on prior experience of their founders. Table 2 compares lifetime outcome variables
for spinouts and regular firms. Panel A is based solely on the patent data sample, while
Panel B considers the sample of firms that also appear in Compustat. As seen, conditional
on being in the same cohort, operating in the same technology class and the state, spinout
firms file 46% (= exp(0.376)) more patents during their lifetime. These firms issue not
just larger number of patents, but also more impactful patents: spinouts have both more
citations-weighted patent counts and more of high-quality patents in the top percentiles
of the quality distribution of patents. Likewise, the number of years they are present in
the patent data is also higher. A better performance of spinout firms is also reflected in
the Compustat data. Spinout firms that become publicly traded are more R&D-intensive
and have on average 3.4 percentage points higher sales growth than regular firms that are
publicly traded. In addition, their R&D spending is more efficient as measured by the
citations-weighted patents and the number of top patents per R&D dollar spent.

Overall, these findings indicate that firms established as spinouts from other innovating
firms are more productive and innovative relative to firms established with no such prior
background. This finding indicates that differences in entry type highlighted in this paper
explain at least part of the large persistent ex-ante productivity differences across firms
(Dunne et al., 1988; Pugsley et al., 2018; Guzman and Stern, n.d.).

Spinouts Quality and Parent’s Technology Lead

Next, I document that within spinout firms, the characteristics of parent firms matter for
the quality of spinouts. Figure 2 compares spinouts spawned from parents with differ-
ent technological leads. First, I construct firms’ patent quality distribution based on the
citations-weighted patent counts in the last 5 years in their technology class, and then de-
fine parents’ technological lead based on 20 quantiles of this distribution. Panel (a) of
Figure 2 then shows the estimated coefficients of lifetime citations-weighted patent counts
of a spinout as a function of parent’s technological lead at the time of spinout separation.

12



Table 2: Spinouts vs Regular Entrants
-Panel A. Patent Data-

Log Patents Log Cit-Patents Log Top Patents Log Lifespan

Spinout entrant 0.384∗∗∗ 0.511∗∗∗ 0.187∗∗∗ 0.131∗∗∗

(0.009) (0.013) (0.009) (0.005)

Cohort FE YES YES YES YES
Tech class FE YES YES YES YES
State FE YES YES YES YES
Observations 64176 61303 64176 64176
Mean 0.752 3.111 0.198 0.812

-Panel B. Compustat + Patent Data-

log R&D/Empl Mean growth Cit-Patent/R&D Top patent/R&D

Spinout entrant 0.155∗∗∗ 0.0461∗∗∗ 176.9∗∗∗ 1.141∗∗∗

(0.051) (0.014) (39.08) (0.272)

Cohort FE YES YES YES YES
Tech class FE YES YES YES YES
State FE YES YES YES YES
Observations 2269 2609 2316 2316
Mean 3.135 0.247 162.64 1.035

Note: The table compares spinout and regular entrants along various outcome variables in different columns.
Each observation corresponds to a firm that enters in the data in 1981-2000 period. Spinout entrant is a
dummy equal to one if a firm is a spinout. Panel A considers all firms in the patent data, while Panel
B limits the sample to those firms that match to Compustat. Patents, cit-patents, and top-patents are the
total number of all patents, citations-adjusted patents, and top patents granted to the firm during the whole
period, respectively. Top patents are defined as the patents whose truncation-adjusted citations are above the
90th percentile of the citations distribution of patents filed in the same year and technology class. Lifespan
is the difference between the last and the first year the firm appears in the data. The variables in Panel B are
averages over all years the firm is present in the Compustat data. Mean growth refers to the average sales
growth of the firm. Regressions control for entrants’ cohort, their technology class (nclass), and state fixed
effects.
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The regressions also control for the number of parents, parent’s number of patents in the
last 5 years, technology class, state, and spinouts’ cohort fixed effects. Panel (b) illustrates
similar results where outcome variable is the lifetime number of top patent counts of the
spinout.

We see that spinouts are significantly more innovative when they are spawned from
parents who hold bigger technological lead. Since the regressions control for the stock
of patents, the estimated coefficients show additional effect associated with the quality of
parents’ patent stock and its relative technological lead. In fact, as Appendix Table A.2 il-
lustrates, parents’ quality of patents, measured in different ways, is an important correlate
with spinouts’ performance, but not the quantity. These results should not be necessarily
interpreted as spinouts learning from a specific patent filed by the parent, but rather as a
broader parents-to-spinouts knowledge inheritance, similar to the relationship built in the
model. It is easier to identify high-quality ideas, to learn about entrepreneurial opportuni-
ties, or how to successfully implement these ideas in the market by working in the firms
at the technology frontier (Chatterji, 2009).16 Further robustness checks to spinouts’ other
outcome variables and the definition of parents’ technological lead are given in Appendix
Tables A.4 and A.3.

Figure 2: Parent’s Technological Lead and Performance of Spinouts

(a) Lifetime cit-patent count
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(b) Lifetime top patent count
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Notes: The figures plot the estimated coefficients from the regressions of spinout outcome variables on their
parents’ technological lead. Technological lead is defined as 20 quantiles of the patent quality distribution
based on the citations-weighted patent counts in the last 5 years in the technology class of the firm. The
outcome variable in Panel (a) is spinout’s lifetime log citations-weighted patent counts; the outcome variable
in Panel (b) is spinout’s lifetime log number of top patents. The plots show the point estimates with the
corresponding 95% confidence intervals. The regressions also control for the number of parents, parent’s
number of patents in the last 5 years, technology class, state, and spinouts cohort fixed effects.

16These results are also consistent with additional stories, such as the positive sorting, better access to
financing, or different motivation and effort of employees of leading firms (Dahl and Sorenson, 2013).
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3 Model

Overview— To understand the role of spinouts for innovation and firm dynamics, I build
a general equilibrium endogenous growth model consistent with main empirical facts from
the data. Building on Schumpeterian growth models (Aghion and Howitt, 1992; Acemoglu
and Akcigit, 2012; Acemoglu and Cao, 2015; Akcigit and Kerr, 2018; Peters, 2020) with en-
try and incumbents’ innovation, I introduce new features of individuals occupation choice,
spinout entry, and non-compete restrictions. An important new characteristic of the model
is that entry distribution of firm types is endogenous through feedback from the incum-
bents’ type distribution, their innovation decisions, and workers’ entrepreneurial choices.

Two main stylized facts documented in Section 2.2 guide the main building blocks of
this model. First, spinout entrants significantly outperform regular entrant firms through-
out their entire life. This heterogeneity motivates me to introduce heterogeneous firm-
specific quality types determined at entry. Second, firms with bigger technological lead
spawn more innovative spinouts. This motivates modeling a type of learning or inheri-
tance, whereby working in the leading firm increases the probability of creating a high-type
entrant.

In the model, skilled people are allocated into three groups: entrepreneurs running
the firms, R&D managers conducting innovation in the firms, and outsiders contemplat-
ing entry into one of the above occupations. Entrepreneurs, heterogeneous in their quality
types, decide on innovation efforts that push the technology frontier forward. By innovat-
ing, they acquire technological leadership and market power. R&D managers collect wages
and while being on the job, can search for ideas and outside opportunities to create their
own spinout firms. Importantly, R&D managers learn on the job – more technologically
advanced is their employer, higher are the chances that their start-up quality is of a better
type. The model also introduces a parameter for NCL that affects the cost of establishing a
spinout firm. After presenting the model and validating it against other empirical regulari-
ties in the data, the model will be used to understand both qualitatively and quantitatively
the effects of spinout entry and non-compete laws on aggregate innovation and growth in
the U.S.

3.1 Preferences and Final Good Technology

Time is continuous. The representative household consists of a measure L of unskilled and
2 + S measure of skilled people and has logarithmic preference over consumption good Ct.
Household maximizes expected lifetime discounted utility of

U =

∞∫
0

e−ρtlnCtdt,
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where ρ is household’s discount rate. Household holds a balanced portfolio of all the firms
in the economy, At. Hence, its budget constraint can be written as Ct + Ȧt = rtAt +Wt,
where rt is interest rate andWt is the total wage bill.

Final good is produced by combining intermediate goods using the following logarith-
mic aggregator:

lnYt =
∫ 1

0
lny(j, t)dj, (1)

where y(j, t) is the intermediate good from product line j at time t.
Market for final good production is perfectly competitive, and the final good price is the

numeraire. Denote the price of the intermediate good produced in product line j at time t
by p(j, t). Profit-maximizing final good producers choose intermediate input to solve:

max
y(j,t)

[
exp

∫ 1

0
lny(j, t)dj− p(j, t)y(j, t),

]
∀t

This maximization leads to the following unit-elastic demand function:

y(j, t) =
Yt

p(j, t)
. (2)

3.2 Intermediate Goods Market

An intermediate good in product line j ∈ [0, 1] can be produced by two firms competing á
la Bertrand. Firm i has the following production technology utilizing labor input scaled by
time-variant firm-specific productivity:

yi(j, t) = qi(j, t)li(j, t), (3)

where li(j, t) is unskilled labor input and qi(j, t) is firm-specific productivity in product line
j that evolves endogenously as described below.

Index by i a firm with a leading technology, and a follower by −i, such that qi(j, t) >

q−i(j, t). Products of these competing firms are perfect substitutes, hence Bertrand compe-
tition between the two firms ensures that the only active producer is firm i. Furthermore,
this leading firm sets a price equal to the marginal cost of a follower, such that17

p(j, t) =
wu

t
q−i(j, t)

, (4)

where wu
t denotes an equilibrium wage rate of unskilled labor. As a result of the demand

curve given by (2) and the price in (4), profit of an intermediate goods producer in product

17We can also interpret this structure as the pricing decision of a firm facing a competitive fringe that is
able to produce at some base level of technology q−i(j, t) freely accessible to everyone.
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line j is

Πi(j, t) =
(

1− q−i(j, t)
qi(j, t)

)
Yt (5)

Notice that profits of a firm are scaled by total output in the economy (a standard market
size effect) and only depend on the ratio of current leading technology over the follower’s
technology in the product line. Hence, the incentive of the leading firm is to widen this
technology gap in order to increase profits. This, in turn, can be achieved through costly
research and development (R&D). Next section describes this process of R&D.

3.3 Firm Heterogeneity and the Productivity Dynamics

To advance their current level of productivity, intermediate good firms18 need to invest in
R&D. Firms are heterogeneous in their R&D efficiency. Each firm has a permanent quality
type τ ∈ {H, L}, where H denotes more R&D efficient high-type firms and L corresponds
to less R&D efficient low-type firms.

R&D process requires hiring an R&D manager and spending resources proportional
to the intensity of innovation chosen. In particular, to generate z Poisson arrival rate of
innovation, firm needs to pay the following

R&D cost = ws(j, t) +
zγ(j, t)

γBτ
Yt (6)

where first part, ws(j, t), is a fixed cost – wage bill for the R&D manager. The second part of
the cost is a variable cost that increases and is convex in the chosen intensity of innovation
arrival rate z (γ > 1). BH > BL and shows that high-type firms are more productive at
research than low-type firms. In other words, high-type firms are more likely to upgrade
their productivity, for the same amount of resources spent.

If the firm’s innovation is successful, within a small time interval ∆t, it improves the
previous productivity by a step size λ, where λ > 1:

qi(j, t + ∆t) = λqi(j, t)

In the model, inactive followers act as competitive fringe, and it is convenient to index
productivity improvements relative to their productivity. Say, the productivity of a com-
petitive fringe in product line j is q−i(j, t) = λn−ij q0, and the productivity of an incumbent
is qi(j, t) = λnij q0, where q0 is some initial level of productivity. Then denote the number of
step improvements made by the incumbent relative to the competitive fringe in its product
line by nj(t) ≡ nij(t) − n−ij(t), which we refer to as product line j’s technology gap. This

18In what follows, intermediate good firms are just referred to as firms.
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technology gap will be endogenously evolving as a result of entry, and exit, and innovation
by incumbents in each product line. For example, if the incumbent successfully innovates,
the gap in the product line increases by one: nj(t + ∆t) = nj(t) + 1. Going back to equation
(5), we can rewrite incumbent’s static profit as

Πi(j, t) =
(
1− λ−nj(t)

)
Yt (7)

Hence, the model produces a convenient structure for profits as a function of the tech-
nology gap n. This technology gap and its evolution will be the main objects of interest in
what follows.19

3.4 The Allocation of Skilled Labor

This section describes the allocation of skilled labor in the economy and an optimization
problem of each type of labor separately. At any point in time, a constant measure of skilled
people in the economy is allocated into three groups:

Skilled people = Entrepreneurs︸ ︷︷ ︸
1

+ R&D managers︸ ︷︷ ︸
1

+Outsiders︸ ︷︷ ︸
S

The measures of entrepreneurs and of R&D managers are equal to one each: there is mea-
sure one of product lines in the economy, and each producing (leader) firm is associated
with one entrepreneur and hires one R&D manager. In addition, measure S of outsiders
can enter as R&D managers or try to become entrepreneurs.

Denote by V f irm
t (n, τ) a discounted present value of entrepreneur (incumbent firm) who

possesses a technology gap n and has a permanent quality type τ. Entrepreneurs (firms)
decide on investment in R&D and hiring unskilled labor. Denote by Vmanager

t (n, τ) the value
of an R&D manager who works for a firm with (n, τ) characteristics. R&D managers collect
wages and decide on separation rate – spinout entry. As will be clear below, Vmanager

t (n, τ)

depends on the characteristics of the employee firm for two reasons: because of the dif-
ferences in wages and because of the differences in the probabilities of high-type spinout
formation. Finally, denote the value of being an outsider by Vout

t . Outsiders can start a job
as R&D managers or they can enter the market as entrepreneurs – regular entry.

From this point onward, we only focus on the economy in a stationary equilibrium
where all values grow at the same rate as the aggregate output. Hence, we will normalize
all values by Yt and denote the normalized values by their respective lower-case letters

(e.g., v f irm(n, τ) =
V f irm

t (n,τ)
Yt

). Hence, the time subscript t is dropped where it does not
cause a confusion. Next sections separately describe in details the problems of each group

19In what follows, for brevity, subscript i is dropped.
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of skilled people.

3.4.1 Outsiders

An outsider faces two options – either to attempt to start an entrepreneurial venture or to
become an R&D manager. Denote the value of entrepreneurial entry by ventry and the value
of entry to the labor market as vwork. Then,

vout = max{ventry, vwork} (8)

To become an entrepreneur, the outsider has to successfully implement an idea. Success is
uncertain. Paying cost eν2

2 ensures Poisson arrival rate of idea ν. If the idea is implemented
successfully, the entrepreneur enters into a random product line and improves existing
technology level in that product line by λ. As a result, the entering firm creatively destroys
the existing incumbent and starts production with the minimal technology gap of n = 1.20

Upon entry, the entrepreneur draws a permanent type of its firm τ: probability of drawing
a high type H equals to µ̃. If the idea is not successfully implemented, outsider remains
in the group of outside skilled people. Using the standard Euler equation derived from
household optimization, g = r − ρ, we can write the Bellman equation for the value of
entry in the following way:21

ρventry = max
ν≥0

(
− eν2

2
+ ν(µ̃v f irm(1, H) + (1− µ̃)v f irm(1, L)− ventry)

)
(9)

The flow value of entry consists of the following terms on the right-hand side. First,
an entrant incurs instantaneous cost of developing an idea (first term on the right-hand
side). Next, upon a successful entry with probability ν, the entrant gets an expected value
of holding a product line, where expectation is taken over the firm’s type τ. If firm is not
successful at entry, it retains its value of ventry. Hence, the incremental value is the term
in the brackets. ν is chosen to maximize the total value. Denote aggregate entry from
outsiders by Io:

Io = Sν (10)

Next, consider the value of becoming an R&D manager. First, as will become clear be-
low, the only new demand for R&D managers in this economy comes from firms with a
technology gap n = 1: these are either the newly-created firms – regular entrants estab-
lished by outsiders or spinout entrants, or existing firms losing their R&D managers who
spawned spinouts. Second, I assume that outsiders find jobs instantaneously and are ran-

20Since the previous incumbent turns into a competitive fringe, the new gap relative to the previous tech-
nology is 1.

21A detailed derivation of this continuous-time value function representation is in Appendix A.
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domly matched to the firms demanding R&D managers. As a result, if we denote by α the
(endogenously determined) share of firms demanding R&D managers who are of type H,
we can express vwork as following:22

vwork = αvmanager(1, H) + (1− α)vmanager(1, L) (11)

In equilibrium, outsiders have to be indifferent between the two options open to them.
As a result, from equation (8) we get:

vout = ventry = vwork (12)

3.4.2 R&D Managers and Spinout Entry

An R&D manager who works in a firm with (n, τ) characteristics earns wage w(n, τ). While
on the job, the manager can search for outside opportunities to create her own start-up –
a spinout firm.23 For that, she chooses a separation rate a(n, τ), where a(n, τ) can also be
zero, indicating that the worker chooses not to separate. The separation effort is costly and
it costs ka(n,τ)2

2 in terms of final output. One can think of this cost as the time or monetary
cost necessary to develop an idea and implement it into a new start-up.

If separation effort is successful, a new spinout firm is created. It enters into a random
product line, improves upon the existing level of the productivity by λ, and hence replaces
the incumbent in that product line. Because there is a continuum of product lines, the
probability of spinout landing on the product line of her former employee is zero. In this
sense, the new spinout firm will not directly threat the former employer by replacing it.
However, once the R&D manager leaves, the employer loses part of its current value, and its
technological lead diminishes from n to 1. One way to think about this structure is to think
of new technologies as being largely embedded in the human capital of a firm; once the
main part of the firm’s human capital – the R&D manager, leaves a firm, firm has to rebuild
its technological advantage from scratch. Alternatively, one could model competitive threat
from spinouts by assuming spinouts replace parents in their product lines. However, this
creative destruction of a parent would be an extreme assumption not well-supported by the
data. First, evidence shows that many spinout firms do not directly compete in the same
narrow technologies as their parents (Chatterji, 2009). Second, although existing work
shows that spinouts often outperform their parents and harm their performance (Wezel et
al., 2006; Campbell et al., 2012), this process does not usually result in instantaneous exit
of the parent firms. Hence, a more appropriate intermediate approach is to model this

22Note that once matched with a firm, the manager does not have an incentive to destroy the match by
joining the pool of outsiders and searching again. Section 3.5 shows that this is not optimal since the value
of being an outsider is not higher than the lowest value that an R&D manager can get.

23The model abstracts away from job-to-job transitions.
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negative effect on parents as a gradual process where parent firm loses its technology gaps
upon spinout entry.

When a new spinout is created, it incurs costs associated with non-compete restrictions.
In particular, a spinout pays the fixed cost F ≥ 0 (in terms of final output) which depends
on the strength of the existing non-compete laws.24 In reality, there is a wide range of
legal outcomes that founders of spinout firms may face (Garmaise, 2011): in some cases,
spinouts would have to pay the fees, in others they may need to shut down the operations
completely, and in others they may not incur any legal costs. In the model, one can think
of the parameter F representing an average of all these possibilities.

New spinouts may have successful ideas and enter the market with a high quality type
τ = H. Alternatively, they draw quality type τ = L. As in the data, the probability of
drawing high type depends on the firm an R&D manager works for: better spinout ideas
are generated in technologically leading firms. Formally, a spinout draws a type τ = H
with probability µ(n), where µ(n′) > µ(n) if n′ > n. Hence, the model features a type
of spinout-parent knowledge inheritance: over time, as employers acquire higher techno-
logical leadership, workers’ entrepreneurial ventures are more successful. This inheritance
can come through the direct learning of technical knowledge or through a non-technical
experience that helps to identify high-quality ideas and knowing how to successfully bring
them to the market. This channel resembles the knowledge diffusion channels emphasized
in recent literature (Lucas and Moll, 2014; Perla and Tonetti, 2014), but in the current model,
spinout firms do not replicate the ideas of their parents but rather diffuse knowledge by
creating new high-quality start-ups.

As a result of workers’ separation decisions, each firm in the economy faces the prob-
ability of creative destruction from spinouts separating from other product lines. Denote
this aggregate spinout entry rate by Is. We are now ready to write down the value of an
R&D manager who works at (n, τ) firm as follows:

ρvmanager(n, τ) = max
a(n,τ)≥0



ω(n, τ)− ka2(n, τ)

2
+ a(n, τ)[µ(n)v f irm(1, H) + (1− µ(n))v f irm(1, L)− F− vmanager(n, τ)]

+ (Is + Io)[vout − vmanager(n, τ)]

+ z(n, τ)[vmanager(n + 1, τ)− vmanager(n, τ)]


(13)

This continuous-time value function can be interpreted as following. The left-hand
side is the flow value of an R&D manager at (n, τ) firm. The right-hand side includes
the components that make up this value. The first line is instantaneous wage bill (where
ω(n, τ) = w(n, τ)/Y) less the separation cost. The second line shows the change in the

24In Section ??, F will also vary with the employer firm’s technology gap.
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worker’s value when the separation is successful at the rate a(n, τ). In particular, this
change is equal to the expected value of a new start-up less the legal costs associated with
non-compete restrictions minus the current value. The third line shows a change in the
worker’s value if the employer firm is replaced by an entrant (spinout or outside entrant).
This happens at rate Is + Io. In such a case, employer firm exits the market, and the R&D
manager joins the pool of outsiders in the economy. Finally, the last term indicates the
possibility of the employer’s innovation. If this innovation is successful at the rate z(n, τ),
employer advances one step ahead and the worker’s value changes to vmanager(n + 1, τ).
The first-order condition of the problem implies:

a(n, τ) = max
{

0,
µ(n)v f irm(1, H) + (1− µ(n))v f irm(1, L)− F− vmanager(n, τ)

k

}
(14)

This condition indicates that on the one hand, R&D manager has an incentive to separate if
the probability of drawing the high type µ(n) is high. On the other hand, the R&D manager
faces the opportunity cost of separation: if she waits, she has an opportunity to learn
more on the job and increase the future probability of a better spinout (vmanager(n + 1, τ)−
vmanager(n, τ) term in equation (13)).25 Hence, the choice to separate crucially depends on
the shape of the learning schedule {µ(n)}n. Finally, all else equal, more stringent non-
compete restrictions (higher F) reduce workers’ incentives to separate.

3.4.3 Entrepreneurs

An entrepreneur who runs an incumbent firm with (n, τ) characteristics gets the following
value. She collects instantaneous profits from production, pays the R&D manager, and
incurs variable R&D cost. Successful innovation at rate z(n, τ) increases firm’s value one
step ahead on a technological ladder to v f irm(n + 1, τ). At the rate Is + Io, entrants hit
the incumbent’s product line replacing it and forcing the entrepreneur to join the pool
of outsiders. Finally, the R&D manager may successfully leave the firm by creating a
spinout. As described above, this destroys the firm-R&D manager match and brings down
the incumbent’s technological lead to n = 1. All these cases are reflected in the following
specification for entrepreneur’s value:

ρv f irm(n, τ) = max
z(n,τ)≥0

π(n)−ω(n, τ)− z(n, τ)γ

γBτ
+ z(n, τ)(v f irm(n + 1, τ)− v f irm(n, τ))

+ (Is + Io)(vout − v f irm(n, τ)) + a(n, τ)(v f irm(1, τ)− v f irm(n, τ))


(15)

25In addition, by staying with he firm, her wages will also increase if firm innovates: as we will see,
ω(n + 1, τ)−ω(n, τ) > 0.
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where π(n) = 1−λ−n is the normalized flow profit (equation (7)). The first-order condition
of the entrepreneur’s maximization problem gives:

z(n, τ) = max
{

0, Bτ 1
γ−1 (v f irm(n + 1, τ)− v f irm(n, τ))

1
γ−1
}

(16)

This condition states that innovation incentives depend on the incremental value that an
entrepreneur can get from advancing one step ahead. H-type entrepreneurs invest in inno-
vation and grow more, as reflected by positive dependence on Bτ. In addition, the future
spinout possibility reduces the firm’s value and decreases innovation incentives, similar to
the standard R&D investment appropriability problem.

3.5 Wage Determination and the Summary of the Dynamics

In this section, I describe how the wages ω(n, τ) are set and summarize the dynamics
between the firm and the R&D manager. The wage rate is determined by Nash bargaining.
At the beginning of each period, an R&D manager and an entrepreneur bargain over the
wages. If both agree on the wage, firm and R&D manager collaborate and get the values
v f irm(n, τ) and vmanager(n, τ), respectively. If they disagree, the manager can walk away
and get an outside value of vout, while the firm loses its match-specific productivity and its
technology gap diminishes to 1 (similar to the case of spinout separation), so entrepreneur
gets the value of v f irm(1, τ). Linear sharing rule prescribed by Nash bargaining implies:

β(v f irm(n, τ)− v f irm(1, τ)) = (1− β)(vmanager(n, τ)− vout) (17)

where β denotes R&D manager’s bargaining weight. Or, in other words, an R&D manager
gets a β share of the joint net surplus.

Notice that equation (17) for n = 1 implies that

vmanager(1, H) = vmanager(1, L) = vout (18)

This ensures that the R&D manager who ends up working in a L-type firm will not have an
incentive to search again to land a job in a H-type firm. Notice also that in expectation H-
type firms offer higher learning opportunities to their managers – since high-type firms are
more likely to increase their technological lead, R&D managers working in the high-type
firms are more likely to get high-quality draws for their potential entrepreneurial ventures.
This implies that in order for (18) to hold, low-type firms have to pay higher wages. Hence,
in this model R&D managers pay for the possibility to move up the technological ladder
with an employer.26 We will come back to this point in Section 5.

26This implication is similar to the results from the models where workers pay for on-the-job training in
the firms Acemoglu (1997).

23



The summary of the dynamics between a firm and its R&D manager is illustrated in
the diagram in Figure 4. In the beginning of a period, manager and the firm bargain.
The manager and the firm negotiate over the wage but not over the worker’s separation
intensity that is unobservable to the firm. After the agreement, worker may still find it
profitable to choose a positive separation intensity a(n, τ). Hence, the next step within the
time interval t is for the firm to choose the innovation rate z(n, τ) and for the R&D manager
to choose the separation rate a(n, τ).

Figure 3: Summary of the Dynamics between a Firm and its R&D manager
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Within a small time interval ∆t, the following scenarios may get realized. First, with
probability z(n, τ)∆t, the firm advances one step ahead and gets the value of v f irm(n +

1, τ), while the manager gets vmanager(n + 1, τ). Second, with probability a(n, τ)∆t, in pe-
riod t + ∆t worker separates, pays the cost of separation and gets expected value of the
spinout entry – µ(n)v f irm(1, H) + (1− µ(n))v f irm(1, L) that is denoted on the diagram as
Eµn

τ v f irm(1, τ). In this case, the firm gets v f irm(1, τ). Third, the incumbent firm may get re-
placed by an entrant that improves upon its technology. In this case, both the entrepreneur
and its R&D manager get the exit values of vout. Because time is continuous, probability
of two or more of these events being realized at the same time is zero. As a result, the
remaining possibility is for none of the scenarios to get realized. In such a case, both the
manager and the firm continue getting same values in state (n, τ).
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3.6 The Stationary Distribution

As a result of entry, exit, and the innovation process, firms move up and down the technol-
ogy ladder. Denote by ξ(n, τ) the measure of firms that currently possess a technology gap
of n and are of τ-type. In the stationary equilibrium, although individual firms enter, exit
and constantly change their position in the technology space, the overall measure of firms
in different states stays the same. This implies that the inflow and outflow into and from
each state should balance each other.

In particular, for all n ≥ 2, the following should hold:

ξ(n− 1, τ)z(n− 1, τ) = ξ(n, τ)(a(n, τ) + Is + Io + z(n, τ)) (19)

The left-hand side of the equation (19) represents inflow into (n, τ) state. This only comes
from the successful innovation efforts of firms that are one step behind at n− 1 and are of
type τ. The right-hand side of the equation is the outflow from (n, τ) state. It can happen
for three reasons: if spinouts separate from (n, τ)-firms, if (n, τ)-firms are replaced through
creative destruction by entrants – at rate Is + Io, or if firms in (n, τ) state successfully
innovate and advance ahead.

The entry into state with n = 1 is different. The left-hand side of Equation 20 shows the
inflow into (1, H) state. The first term comes from the spinout separation from all firms
taking into account that only µ fraction of spinouts draw high-quality ideas and create
H-type firms. The second term stands for the entry of firms that were high-type, had a
technology gap n but because of spinout separation lost their technological advantage to
n = 1. Finally, the third term comes from the outside entry with Io intensity; fraction µ̃ of
them draw type H. The right-hand side of the (20) is similar to the description of outflow
in equation (19): outflow happens because of spinout separation, creative destruction, or
successful innovation by incumbents.

∑
n,τ

ξ(n, τ)a(n, τ)µ(n) +∑
n

ξ(n, H)a(n, H) + Ioµ̃ = ξ(1, H)(a(1, H) + Is + Io + z(1, H)) (20)

Similar logic applies to the case with τ = L:

∑
n,τ

ξ(n, τ)a(n, τ)(1−µ(n))+∑
n

ξ(n, L)a(n, L)+ Io(1− µ̃) = ξ(1, L)(a(1, L)+ Is + Io + z(1, L))

(21)

3.7 The Steady State Equilibrium

Before summarizing the steady state equilibrium, let us lay out final components of the
equilibrium. Aggregate spinout entry rate comes from the separation efforts by R&D man-
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agers in all firms in the economy and is equal to

Is = ∑
n,τ

ξ(n, τ)a(n, τ). (22)

Labor Market. The labor allocation for skilled people has been already described; it is
clear that by construction it is always balanced.27 However, the market for unskilled labor
has to be cleared by the equilibrium wage. Demand for unskilled labor comes from the
production decisions of firms, while the supply is inelastic and is equal to L. Combining
equations (2), (3), and (4), and denoting by ωu the normalized equilibrium wage rate of
unskilled labor, we get

qjlj =
1

ωu q−j,

hence the labor demand of the incumbent in product line j is

lj =
1

ωu λ−nj (23)

This implies the following market clearing condition:

L = ∑
τ,n

ξ(τ, n)
λnωu . (24)

The definition below summarizes the steady state equilibrium:
Definition (Steady-State Equilibrium) Given the non-compete policy F, a steady-state equilib-
rium is a tuple

{v f irm(n, τ), vmanager(n, τ), vout, vwork, ventry, z(n, τ), a(n, τ), ν, Io, Is, ω(n, τ), ωu, ξ(n, τ), g, r}

such that
(i) v f irm(n, τ), vmanager(n, τ) satisfy equations (13) and (15);
(ii) vout, vwork, and ventry are given by equations (8), (9), and (12);
(iii) a(n, τ) and z(n, τ) satisfy first-order conditions (14) and (16);
(iv) Entry rate by outsiders, Io, satisfies equation (10), where ν maximizes (9);
(v) Spinout entry rate Is is given by equation (22);
(vi) Wages of R&D managers satisfy equations (11), (12), (17), and (18);

27At each point in time, if a firm is replaced by a regular entrant, two skilled people (an entrepreneur and
an R&D manager of an exiting firm) join outsiders’ pool, and two skilled people exit the pool of outsiders (an
entrepreneur and an R&D manager of an entering firm). Similar accounting holds for spinout entry. Hence,
in the total pool of skilled people which is measure 2 + S, measure one is always running a firm, another
measure one is always employed as R&D manager, and measure S is in the outsider’s pool.
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(vii) Wage of unskilled labor clears labor market in (24);
(viii) Stationary distribution ξ(n, τ) satisfies (19), (20), and (21);
(ix) Aggregate growth rate is given by equation (25);
(x) Interest rate satisfies Euler equation, ρ = g− r.

Proposition 1 Steady-state growth rate can be expressed as

g = ln λ(Is + Io + ∑
n,τ

ξ(n, τ)z(n, τ)). (25)

The proof is in Appendix C. This Proposition makes it clear that the steady state growth
rate of the economy is determined by four factors: i) innovation decisions of incumbent
firms at different levels of the technology gap; ii) the distribution of firms across the tech-
nology gaps; iii) entry by spinouts; and iv) entry by outsiders. All these innovations in-
crease aggregate productivity by λ.

At this point, we can summarize the main channels through which non-compete policies
affecting spinout separation influence growth. Because the possibility of spinout negatively
affects incentives of parent firms to innovate, evaluating the benefits of spinout formation
depends on the quantitative importance of various channels in the model. Four main chan-
nels operate in the model. First is the direct entry effect on growth, where more spinout entry
positively contributes to innovation and growth. Second is the negative disincentive effect
of spinout formation on incumbent firms’ innovation incentives that is similar to standard
appropriability problem. The third channel is knowledge diffusion, whereby spinout entry
increases the share of high-type firms in the market. Finally, spinout entry also influences
the firm composition: higher spinout entry shifts the composition of firms towards lower
technology gaps hence promoting more competition and as a result aggregate innovation
efforts.

3.8 Welfare

Consider the steady-state welfare of a representative household at time t = 0:

Welfare(0) =
∞∫

0

e−ρtlnCtdt, (26)

The final output is divided into consumption and investment. Denote the total in-
vestment (normalized by output) by I. There are four types of investment activities in
this economy: 1) Outsiders invest into developing new ideas to enter as entrepreneurs;
2) R&D managers invest into developing new ideas to spin-out; 3) Founded spinouts pay
non-compete costs; and 4) entrepreneurs invest in innovation. These lead to the following
equation for the total investment undertaken in this economy:
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I =
eν2

2
S + ∑

n,τ

ka2(n, τ)

2
ξ(n, τ) + ∑

n,τ
ξ(n, τ)a(n, τ)F + ∑

n,τ

z(n, τ)γ

γBτ
ξ(n, τ) (27)

As a result, we can write the aggregate consumption as C = (1 − I)Y and rewrite
equation (26) in the following way:

Welfare(0) =
lnY(0)

ρ
+

g
ρ2 +

1− I
ρ

Next, we can derive steady-state value of lnY(0) from equations (1) and (4) and use in the
previous equation to get (see the detailed derivations in Appendix B):

Welfare(0) =
lnQ(0)− ln λ ∑n,τ nξ(n, τ)− ln ωu

ρ
+

g
ρ2 +

ln(1− I)
ρ

(28)

In the steady state, all the equilibrium variables entering this expression are constant.
For the steady state comparisons of different economies with different non-compete poli-
cies, it is sufficient to compare two economies with the same levels of initial productivity
level Q(0) and different policies F. Our non-compete policies will affect aggregate growth
by providing different innovation incentives to incumbents and spinouts. This growth rate
has the first-order effect on welfare, as seen from the above. In addition, non-compete
policies will alter the steady-state distribution of firms across technology gaps as well as
equilibrium labor share. If the economy has a low entry and creative destruction, more
firms will enjoy higher technology gaps and, hence, higher markups leading to lower wel-
fare (as seen by negative terms in the expression (28)). It is worth noting that Q(0) is an
arbitrary number and hence the proportional changes in welfare resulting from the changes
in the policy are not informative. However, ordinal rankings are well defined and hence
welfare-maximizing policies can be found by comparing the welfare numbers from (28).

4 Quantitative Analysis

This section takes the model to the data. First, I lay out the model solution algorithm
and describe the calibration. Next, I characterize the model fit and explore quantitative
properties of the model. Finally, I quantitatively analyze the role of various policies in
promoting aggregate innovation and growth.

4.1 Calibration

This section describes the calibration of structural parameters of the model. The model has
the following parameters: ρ, λ, γ, β, µ̃, {µn}N

n=1, BH, BL, L, S, e, F, κ. The calibration proceeds
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in two steps. First, a set of parameters is fixed externally based on estimates from the
literature or estimated directly from the data. Second, the remaining set of parameters
is calibrated internally by minimizing the distance between important empirical moments
and the corresponding moments generated by the model.

The first panel of Table 3 lists externally calibrated parameters. The annual discount rate
is set to 4%, so ρ = 0.04. Curvature of the R&D cost function γ determines the elasticity of
innovation with respect to R&D. Several papers have empirically evaluated this elasticity.
Following Acemoglu et al. (2018) who discuss this evidence in detail, I set γ = 2. In the
benchmark calibration, I set β to 0.05 following Hagedorn and Manovskii (2008).

Table 3: Calibrated Parameters

Parameter Meaning Value
Externally Calibrated Parameters (24)

ρ Discount rate 0.04
γ R&D cost curvature 2
β R&D manager’s bargaining weight 0.05
{µn}N

n=1 Prob. of H-type spinout entry from firm n Figure 4
µ̃ Prob. of H-type outside entry 0.20

Internally Calibrated Parameters (8)

BH, BL R&D cost efficiency 2.74, 0.049
L, S Skill composition 19, 0.60
e Entry cost parameter 6.07
F NCL parameter 0.60
κ Separation cost parameter 12.52
λ Step size of innovation 1.08

Notes: The table reports the calibrated parameter values consistent with moments reported in Table 4.

I estimate the probability of spinouts entering as high-type firms, {µn}N
n=1, directly from

the data. Figure 2 already provides the first evidence on the positive relationship between
the parent’s technological lead and spinouts’ performance. Here, I map the data closer to
the primitives of the model. First, I define H-type and L-type firms in the data. In the
model, firm’s type is constant over time, and high-type firms are more innovative than
their low-type competitors. As a result, I define a firm as H-type if it ranks in the top
quartile based on its lifetime innovation output, proxied by the lifetime citations-adjusted
patent count of the firm, residualized for firms’ cohort and technology class fixed effects.
Second, I proxy for n – technological gap of the firm. In the model, technology ladder has
N equidistant innovation steps. The value of N, the maximum achievable technology gap,
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is set to 20.28 In the data, I consider the patent quality distribution based on the citations-
weighted patent counts in the last 5 years in the technology class of the firm, and split it
into 20 equal intervals.

Finally, I estimate µn – the probability of spawning a H-type spinout from a firm with
technology gap n, using the following regression specification:

Yi = β0 + γ1n + γ2n2 +XiβXiβXiβ + εi, (29)

where Yi is a dummy equal to one if a spinout i is H-type, and n is a technology gap of
spinout’s parent.29 Other controls in XiXiXi include log number of parents, parent’s log number
of patents in the last 5 years, as well as the cohort and technology class fixed effects. µn

is then calculated as γ1n + γ2n2 plus a constant equal to the average probability of H-type
entry from a parent with n = 1. The resulting profile for µn is plotted in Figure 4. Similarly,
I compute the share of regular entrants from the data that are H-type, resulting in µ̃ = 0.20.

Figure 4: Calibration: µn estimates
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Notes: The figure reports the estimates for the µn parameters used in the model calibration. The estimates
are based on equation (29). µn is then calculated as γn plus a constant equal to the average probability of
H-type entry of a spinout from a parent with n = 1.

The second panel of Table 3 lists internally calibrated parameters. The parameter L can
be directly pinned down from the data on labor force composition in the U.S. economy.
The share of scientists and engineers in the total employment is about 5%.30 This implies

28Setting N higher does not alter the results since, as will be seen from the equilibrium solution, the share
of firms achieving the gap close to N = 20 is very low.

29If the spinout has multiple parents, I take the maximum technology gap among them.
30“Individuals in Science and Engineering Occupations as a Percentage of All Occupations.” National

Science Foundation.
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that 1
1+L = 0.05, resulting in L = 19. The remaining seven parameters are calibrated jointly

by matching a set of moments. Below, I provide heuristic discussion of the identification
and of the role each moment plays in pinning down the model parameters.

Together with L, a parameter S is related to the skill composition in the economy. Hence,
in addition to the labor force composition, I match the moment on relative compensation of
production and R&D workers in the U.S. economy. Based on the data on average earnings
in S&E occupations relative to all the U.S. workers, I match the ratio of the average high-

skill wage to the average wage w(n,τ)
wu L

1+L+w(n,τ) 1
1+L

to 2.27.31

R&D cost parameters BH and BL affect both the overall level of R&D intensity by firms
as well as innovation differences between high- and low-type firms. The firm-level R&D
intensity, measured as R&D-to-sales ratio, in the model is ω(n, τ) + z(n,τ)γ

γBτ . This value,
averaged across all the firms in the economy is then matched to the average R&D spending
per sales computed in the sample, which is 0.127.32Relative innovation by high- and low-

type firms zH(n,τ)
zL(z,τ)

is mapped to the ratio of average innovation outputs by H-type and
L-type firms in the data, proxied, as before, by the lifetime citations-adjusted patent count
of the firm, residualized for firms’ cohort and technology class fixed effects. This ratio in the
data is 9.5. The step size of innovation λ affects how innovation translates into aggregate
growth (equation (25)). I match the aggregate growth rate of 3.1%, which is the average
growth of the U.S. GDP during the sample period.33

The remaining three parameters in the model will directly affect entry rates. Entry cost
parameter e affects the outside entry rate. Similarly, k affects cost of separation and as a
result the spinout entry, while F is a policy parameter that will impact the spinout entry
rate across locations with different NCL policies. To pin down these parameters, I will
target the outside and spinout entry rates in the data. Average entry rate in the economy
during the sample period is 11%.34 In my data, spinout entrants account for 28.9% of entry,
leading to the average outside entry of Io = 7.8% and spinout entry of Is = 3.2%. Finally, I
target the spinout entry rate in the states with no NCL restrictions (F = 0) of 4.31%. Data
on NCL restrictions across states come from Garmaise (2011) and are described in detail in
the Appendix Section F.

The calibration procedure then is to search for the unknown parameters Θ ≡ [λ, BH, BL, L, S, e, F, κ]

to minimize the distance between model-implied moment values mmodel
i and data moments

mdata described above. Specifically,

31OES Survey, Bureau of Labor Statistics. Science and Engineering Indicators, 2018.
32R&D data reported in Compustat often contains zeros. It is not necessarily clear that these missing values

always represent zeros. I compute statistics under two alternative scenarios imputing all missing values with
zeros and, alternatively, imputing zeros only if firm issues zero patents in recent 5 years and average the
resulting values.

33Because of large outliers, both lifetime citations-adjusted patent count and R&D-to-sales ratio are win-
sorized at 1%-95% levels.

34Business Dynamics Statistics Dataset, U.S. Census Bureau.
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Table 4: Moments: Model vs Data

Description Data Model
Growth rate 3.1% 3.08%
Average R&D intensity 0.127 0.096
Ratio of H- to L-type firm innovations 9.5 6.72

Wage ratio w(n,τ)
wu 2.27 1.42

Percent of S&E in workforce 5% 5%
Average outside entry rate 7.8% 8.77%
Average spinout entry rate 3.2% 3.76%
Spinout entry rate with no NCL 4.31% 5.36%

Notes: The table reports data moments and corresponding model counterparts from the calibration exercise.

Θ∗ = argmin
[ 8

∑
i=1

ωi
(mmodel

i (θ)−mdata
i

mdata
i

)2]0.5,

where ωi denotes moment-specific weight. I weight all the moments equally except for the
moment on spinout entry that I overweight twice. Resulting estimates of the parameters
are given in the second panel of Table 3, and the implied match to the data is illustrated in
Table 4. Model does quite well in matching all the moments from the data.

5 Solution Properties and Model Validation

In this section, I discuss basic properties of the equilibrium solution and validate the model
against non-targeted moments in the data.

Solution properties Figure 5 shows the value functions of the firm, R&D manager, and
the wage rate of the R&D manager over the firm’s technology gap.

The value of a firm increases with technology gap, reflecting higher profits with higher
n. At the same time, the value of an high-type firm is higher than the value of the low-
type firm, since the high-type firms have higher probability to innovate and grow in the
future. The value function of the R&D manager increases with technology gap, too. There
are two reasons for this. First, when total surplus increases, because of bargaining, the
share of surplus going to the R&D manager increases, too. However, importantly, there
is another reason for higher wage growth. Recall that µ(n) – the probability of establish-
ing a high-type firm if the R&D manager spawns a spinout, grows with the employer’s
technology gap. This increases the employee’s surplus further. Unfortunately, my data do
not contain information on R&D workers’ wages, hence I cannot quantitatively validate
the results. However, this increasing wage premium property is consistent with a large
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Figure 5: Value Functions and R&D manager’s Wages
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(b) Value function of R&D manager
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(c) Wages of R&D manager
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Notes: Equilibrium solution of the model given the calibrated parameter values.
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literature studying a large-firm wage premium (Brown and Medoff, 1989; Card et al., 2013;
Song et al., 2019). In addition, Aghion et al. (2018) show that inventors earn more after the
firm applies for a patent, especially a highly cited patent, getting closer to the relationship
between higher technological leadership and R&D manager’s wage documented here.

An interesting feature of the equilibrium wage function is that conditional on the tech-
nology gap wage in the low-type firm is higher than the wage in the high-type firm. Why
is this the case? Conditional on n, R&D managers in the high-type firm are more likely
to move up the technology ladder when firm innovates next period, hence increasing the
probability of establishing a high-type spinout in the future. As a result, similar to the
intuition from Acemoglu (1997), R&D managers pay for the possibility to move up the
technological ladder with an employer. This result is also consistent with wage backload-
ing documented by Moen (2005): the technical staff in RD-intensive firms take lower wages
early in the career to pay for the knowledge they accumulate on the job. Lastly, it is worth
noting that as seen from Appendix Figure 11, high-type firms reach the high levels of n
more frequently than the low-type firms. As a result, since wages are growing with n,
employees of high-type firms, on average (unconditional on n), would be more likely to
obtain higher wages than the employees of low-type firms.

Next, I quantitatively compare the model-implied average innovation rate, R&D man-
ager’s separation rate, and firm size distribution with data. Appendix Figure 11 contains a
more detailed description of these functions over technology gaps split by firm type.

Innovation. Model and data. Figure 6 shows innovation rates of firms from the model
and data. For the model, I plot z(n, τ) averaged over τ. In the data, I calculate the inno-
vation rate of the firm as new citations-adjusted patents over the stock of firm’s citations-
adjusted patents and plot it over n as calculated in Section 4.1. We see that both in the
model and the data, innovation rate declines with firm’s technological leadership.35 In the
model, the decline in innovation rate is more gradual than in the data, but overall, the two
profiles match well, especially given that the calibration procedure does not not match any
moment related to the technology gaps.

Spinout separation. Model and data. Next, I examine the spinout separation rate in the
model and the data. Since this function is an important and a new feature of this model, I
start by presenting a detailed empirical analysis of spinout separation rate in the data.

Table 5 shows the relationship between spinout spawning and firm’s technological lead-
ership proxied by the quality of its patent filings. As earlier, Panel A presents results based
on the patent data only, and Panel B includes results for the sample of patenting firms in
Compustat. The first two columns present logit regressions for the yearly probability of

35This is also consistent with empirical evidence from Akcigit and Kerr (2018) and Argente et al. (2020).

34



Figure 6: Innovation Rate. Model and Data
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spinout separation, while the last two columns show negative binomial regressions for the
number of spinouts separating from the firm in a year. Across these different samples and
specifications, the coefficient on log citations-adjusted patents in the last 5 years is posi-
tive and significant. Since the regressions also include the count of patents, this indicates
that spinouts are more likely to separate after the firms file higher-quality patents. The re-
gressions in addition control for the number of inventors to avoid mechanical dependence
between firm size and spinout separation, firm age, year, industry, state, and firm fixed
effects (columns 2 and 4). Additional controls are included in the regressions based on
Compustat sample.36

This finding on higher spinout separation in more technologically advanced firms is also
consistent with earlier findings by Klepper and Sleeper (2005) and Franco and Filson (2006)
from the rigid disk drive and laser industries. Using administrative data from Sweden, a
recent study by Engbom (2020) finds generally a negative relationship between employer’s
productivity and a probability of starting a firm. This relationship flips the sign, however,
when the employer is in the top decile of the productivity distribution in the economy. Since
my data focus on innovating firms who are in the very top of the productivity distribution
in the economy, my evidence is also consistent with Engbom (2020).37

Consistent with the data, the model also generates a largely increasing relationship

36Appendix Tables A.5 and A.6 confirm robustness of these results to different definitions of the employer’s
technological leadership.

37A related evidence on spinout separation comes from Sohail (2021). Using individual-level data from
Mexico and the U.S., the study shows a negative relationship between firm size and spinout entry. Notice
that unlike Sohail (2021), here I focus on the technological leadership (patenting) of the firm, conditional on
firm size. In addition, the data in this study contain firms that innovate which is a special sample of the firms
where learning and technological knowledge diffusion is presumably more important.
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Table 5: Technological Leadership and Spinout Separation

-Panel A: Patent data

(1) (2) (3) (4)
Logit FE Logit Neg. Binom FE Neg. Binom

Log cit-patents (parent) 0.141∗∗∗ 0.155∗∗∗ 0.139∗∗∗ 0.145∗∗∗

(0.0123) (0.0337) (0.0115) (0.0299)

Patents, Inventors, Age YES YES YES YES
Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 179313 50292 179547 50606

-Panel B: Patent + Compustat data

(1) (2) (3) (4)
Logit FE Logit Neg. Binom FE Neg. Binom

Log cit-patents (parent) 0.092∗ 0.193∗∗ 0.158∗∗∗ 0.204∗∗∗

(0.0492) (0.0927) (0.0392) (0.0717)

Patents, Inventors, Age, R&D,
Sales, Assets, Num. employees YES YES YES YES
Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 15796 9797 16422 9984

Note: The table presents firm-level regressions of the probability of spinout separation (logit models in
columns 1 and 2) and the count of spinouts (negative binomial models in columns 3 and 4) as a function
of the technological leadership of the firm (parent) and other firm characteristics. Technological leadership
is proxied by the firm’s citations-adjusted patent count filed within the last 5 years. Panel A estimates the
results on the sample of all patenting firms. Additional controls are the log number of patents, number of
inventors and firm age together with fixed effects. Panel B shows the same kind of estimates for the merged
sample with Compustat. Additional control variables are log sales, assets, number of employees, and the
log R&D expenditures, log number of employees, sales growth and log assets value. The sample covers the
period 1981-2000.
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between the technology gap of the employer and the spinout separation rate of R&D man-
agers, a. Interestingly, this separation rate declines at high levels of n. Overall, there are
two main forces that drive R&D manager’s decisions to form a spinout. The first force – a
growing probability µ(n) of creating a high-type entrepreneurial venture, leads to a posi-
tive dependence between n and a.38 The second force – growing wages, leads to a negative
dependence between n and a. For high n, wages still grow (see Figure 5) but learning op-
portunities subside (µ(n) is stalling in Figure 4), leading on net to the declining incentives
for separation.

Figure 6 compares model-implied separation rate over n and the probability of spawn-
ing a spinout by n from the data. In the data, we do not observe the declining tail for
spinout probability. However, notice that this part of the technology gap distribution con-
tains very few firms and, as a result, quantitatively plays a little role in aggregate dynamics.

Figure 7: Spinout Separation Rate. Model and Data
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Distribution of firms We can also compare the model-implied equilibrium distribution
of firms across technology gaps to the distribution in the data. Figure 8 presents the distri-
butions and shows that the entry, innovation, an exit dynamics in the model generate the
stationary distribution that matches data well.

38Another consideration is also an option value of waiting and increasing the chances of forming a high-
type spinout in the next period. This consideration effectively increases the opportunity cost of waiting.
Hence, when learning curve is steep, incentives to separate are low.
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Figure 8: Distribution of Firms over Technology Gaps. Model and Data
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Non-compete laws. Model and Data Lastly, we explore spinout entry as a function of
the strength of the non-compete laws both in the data and the model. The laws governing
the enforcement of non-compete clauses in employee contracts that prohibit the employees
from working for a competitor or forming a new firms vary across U.S. states. I rely
on empirical measures of the strength of state-level non-compete laws, NCL index, from
Garmaise (2011) and Starr (2019).39

Table 6 shows that stricter enforcement (a higher NCL index) is associated with lower
spinout formation. These regressions look at the probability of spinout separation from
the firm (logit models in columns 1 and 2) and the count of established spinouts (negative
binomial models in columns 3 and 4) as a function of parent firm characteristics – the log
number of patents and citation-adjusted patents filed in the last 5 years, the log number of
inventors, firm age, and fixed effects (columns 2 and 4), as well as state-level characteristics
– competition over time (the number of innovating firms in the same technology class and
state), GDP per capita, and population.

Table 6: Non-Compete Laws and Spinout Separation

(1) (2) (3) (4)
Logit FE Logit Neg. Binomial FE Neg. Binomial

NCL index -0.623∗∗∗ -0.077∗ -0.425∗∗ -0.101∗∗∗

(0.1996) (0.0416) (0.1772) (0.0341)

Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 179253 50153 179485 50465

Note: The table presents firm-level regressions of the probability of spinout separation
(logit models in columns 1 and 2) and the count of spinouts (negative binomial models in
columns 3 and 4) as a function of the NCL index and other firm characteristics. NCL index
is the non-competition index defined in (31). Other controls are the log number of patents
and citation-adjusted patents filed in the last 5 years, the log number of inventors, firm
age as well as the measures of state-level competition over time (number of innovating
firms in the same technology class and state), GDP per capita, and population. The
sample includes all patenting firms in the period 1981-2000.

Figure 9 shows a similar evidence at the macro level: in the states with stricter enforce-
ment, the share of spinout entrants among all entrants is lower (red dots in the figure).
In the model (blue line), the entry of spinouts decline, too. An important caveat in this
comparison between the model and the data is that the model treats different states with
different strength of laws as separate economies, but in the data the mobility across states

39See Appendix F for more details about data.
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may affect the relationship between state-level laws and entry. Despite these considera-
tions, the quantitative magnitudes of the decline in the share of spinout entrants over F are
very similar. In addition, Appendix Figure 12 illustrates that the model also generates an
interesting empirical observation highlighted by previous studies (e.g. Starr et al., 2018):
although fewer spinouts enter in states with stricter a non-compete enforcement, the aver-
age quality of these entrants is higher. The model has a simple selection mechanism that
accounts for this result: when cost of entry is higher, R&D managers wait longer on the
job40 to find a better-quality idea and separate only when in expectation this idea covers
higher entry costs.

Figure 9: The Share of Spinout Entrants over Non-compete Laws. Model and Data
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6 Growth Decomposition and Policy Counterfactuals

6.1 Growth Decompositions

I now use the structure of the model to analyze sources of aggregate productivity growth.
From equation (1), we can decompose growth into productivity improvements coming from
entrants and incumbents. Decomposing growth into these two margins in Table 7 shows
that entry accounts for 23% of aggregate growth. This share is large given the overall low
fraction of entrants. This number, however, is comparable to the estimates from recent
studies showing large contribution of entrants to growth (Foster et al., 2008; Lentz and
Mortensen, 2008; Acemoglu et al., 2018). Spinouts account for about the third of this direct
contribution by entrants, resulting in 7% aggregate growth contribution. Table 7 also shows

40See Balasubramanian et al. (2017) for the evidence on longer job attachments of high-tech workers with
stricter NCL.
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that 46% of aggregate growth is accounted for by high-type firms, while the low-type firms
contribute 31% of growth.

These direct growth contributions by spinouts and high-type firms are not taking into
account dynamic effects. The high-type firms tend to achieve higher technological gaps
and spawn more spinouts; these spinouts are in turn more likely to be high-type them-
selves. This sort of the proliferation effect is an important dynamic characteristic of this
problem and increases the indirect contribution of spinout formation to growth. In the fol-
lowing section, we will see a more nuanced analysis of growth contribution of spinouts via
channels of knowledge diffusion, firm composition, and incumbents’ innovation. Finally,
smaller firms (here, defined as n ≤ 5) contribute more to growth compared to larger firms.

Table 7: Growth Decomposition

Aggregate growth: g = 3.08%

Entrants
23%

Incumbents
77%

Spinout entrants
7%

Regular entrants
16%

High-type firms
46%

Small firms (n ≤ 5)
59%

Low-type firms
31%

Large firms (n > 5)
18%

6.2 Policy Analysis

The first column of Table 8 reports some illustrative equilibrium statistics from the bench-
mark economy matched to the average statistics from the U.S. To find the growth-maximizing
value of F, I recalculate the steady state equilibrium of the economies characterized by dif-
ferent parameter values of F and search for F that maximizes aggregate growth given in
equation (25). It turns out that relationship between g and F is close to monotonic, and
F = 0 is the value that maximizes growth. In particular, moving from the benchmark es-
timate of non-compete laws to the case with no non-compete restrictions increases growth
by 7 basis points. Notice that this gain is for the average value of non-compete restrictions,
and there are larger gains for the states with stricter existing protection. Figure 10 lists the
gains across different states from moving from their existing levels of regulations to the op-
timal level with zero protection. Across states, the gains range from zero to 11 percentage
points. The welfare calculation using equation (28) shows that F = 0 also maximizes the
consumer welfare.

Next, I explore the main channels that drive these results. The channels through which
non-compete laws affect growth can be divided into direct entry effect, composition effect,
knowledge diffusion, and disincentive effect. Direct entry effect refers to the direct effect of non-
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compete restrictions on separation incentives of R&D managers. From Table 8, we see
that spinout entry rate Is is larger in the case of no-restrictions. Because entry directly
contributes to growth, this largely determines higher overall growth rate in the economy
with no non-compete protection. Composition effect refers to the effect of non-compete laws
on distribution of firms across technology gaps, n. In Table 8 it can be seen by comparing
the total share of firms with n = 1 (ξ(1, ·)) to the total share of firms with n = 10 (ξ(10, ·)).
Because of higher entry, in the economy with no non-compete restrictions, distribution of
firms is shifted to the left. This, in turn, has a positive effect on growth as more competitive
firms with lower markups innovate more. The third knowledge diffusion effect refers to the
fact that because bigger share of entry comes from spinouts, there are more high-type firms
in the economy with weaker non-competes. The table illustrates that although this effect is
present (see ξ(·, H)), it is not quantitatively large.

Finally, non-compete laws impact the incumbents’ innovation incentives. The disincen-
tive effect refers to the fact that for each n, incentives of firms to innovate are lower because
of lower appropriability of returns from R&D investments. This effect can be clearly seen
by comparing innovation rates z(1, ·) and z(10, ·) in the columns with benchmark and no
non-compete protection. This negative disincentive effect is quite large and significantly
dampens positive impact from the other effects. In particular, notice that the average in-
novation rate in the economy (see Mean z row) is somewhat lower in the economy with
no restrictions. On net, however, the positive effect dominates, and it is both growth- and
welfare-enhancing to abolish non-compete enforcement.

Given that the disincentive effect is quantitatively large, I next ask if it is possible to
design the state-dependent policies that could diminish the disincentive effect, while not
largely affecting the spinout entry rate. I focus on particular type of state-dependent poli-
cies that offer non-compete protection based on incumbent’s current technological lead-
ership. In other words, instead of considering the uniform F, I consider F as a function
on n. The last column of Table 8 considers the effect of the policy that gives the highest
protection to the firms with n ≤ 5 and no protection afterwards. We see that this policy
clearly reduces both growth and welfare. It turns out that setting the protection the op-
posite way is more beneficial. In particular, as the third column illustrates, giving the full
protection to the firms with the highest five technology gaps is actually growth-enhancing.
Why does this happen? This can be explained by a trickle-down effect: when policies pro-
vide higher protection to more advanced firms, this gives incentives to the firms below the
threshold to catch up and reach the state with higher protection. This can be clearly seen
by looking at the innovation rates of firms z(1, ·) and z(10, ·) from the Table. At the same
time, spinout entry is not affected negatively too much. This results in the higher aggre-
gate growth. However, notice that while maximizing growth, this policy reduces welfare
relative to no-protection case. This largely happens because giving protection to technolog-
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Table 8: Non-compete Policy Experiments
Benchmark

NCL No NCL Protection of
Higher n

Protection of
Lower n

z(1, ·) 1.0790 1.0115 1.0395 1.1224
z(10, ·) 0.8174 0.7797 0.9034 0.7503
ξ(1, ·) 0.3180 0.3964 0.3798 0.2464
ξ(10, ·) 0.0128 0.0088 0.0101 0.0168
ξ(·, H) 0.2816 0.2822 0.2765 0.2824
Mean z 0.3534 0.3417 0.3487 0.3513
a(1, ·) 0.0515 0.1059 0.1081 0

a(10, ·) 0.0926 0.1329 0.0761 0.0974
Is 0.0317 0.0560 0.0504 0.0127
Io 0.0706 0.0674 0.0687 0.0742
wu 0.0197 0.0205 0.0201 0.0192
ws 0.0848 0.0692 0.0745 0.0961
g∗ 3.08% 3.15% 3.17% 2.96%

Wel f are 120.0126 126.7576 123.4354 115.6200

ical leaders shifts firm’s distribution to the right, and higher markups are associated with
welfare losses for consumers.

7 Conclusion

This paper theoretically and empirically studies the role of employee entrepreneurship
in innovation and productivity growth. Using the newly constructed data on innovating
spinouts from the USPTO patent filings, I find evidence of the superior quality of spinout
firms and the strong correlation between spinout quality and the technological leader-
ship of a parent firm. Motivated by these observations, I study the interaction between
incumbents’ innovation incentives and spinout entry in a dynamic general equilibrium
endogenous growth framework. The developed model provides rich grounds to analyze
multiple channels through which the process of employee entrepreneurship affects indus-
try dynamics and aggregate growth. I find that it is welfare improving to abolish existing
non-compete restrictions; however, the policy protecting firms with high technological lead-
ership is growth-maximizing.

The dynamics of employee entrepreneurship is an important and understudied question
in growth theory. The theoretical framework developed in this work can be applied to
jointly study various innovation and labor market policies.
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Figure 10: Gains from the Optimal Uniform Policy Adoption across States
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Theoretical Appendix

A Derivation of Bellman Equation (13)

As an example, I derive Bellman equation for R&D managers. Other equations are de-
rived in a similar way. We start by writing down the value of being an R&D manager
Vmanager

t (n, τ) as

Vmanager
t (n, τ) = max

at(n,τ)≥0



[
wt(n, τ)− ka2

t (n,τ)
2 Yt

]
∆t + o(∆t)

+e−rt+∆t∆t


at(n, τ)∆t

(
µ(n)V f irm

t+∆t(1, H) + (1− µ(n))V f irm
t+∆t(1, L)− FYt+∆t

)
+(Is + Io)∆tVout

t+∆t + zt(n, τ)∆tVmanager
t+∆t (n + 1, τ)

+(1− at(n, τ)∆t− (Is + Io)∆t− zt(n, τ)∆t)Vmanager
t+∆t (n, τ)




The value at time t consists of wages minus incurred cost of separation during a time

interval ∆t. Next is the discounted continuation value after ∆t. This continuation value is
made up of the following parts: the first line in square brackets is a net continuation value
from forming a spinout which happens with probability at(n, τ)∆t during a time interval
∆t. The second line comes from the possibility of creative destruction of an employer
firm with probability (Is + Io)∆t, in which case the manager gets Vout

t+∆t, and from the
possibility of employer’s innovation with probability zt(n, τ)∆t, in which case a manager
gets Vmanager

t+∆t (n + 1, τ). Finally, on the third line, with the remaining probability, manager
continues working in the same firm and gets Vmanager

t+∆t (n, τ).
Now, subtract Vmanager

t (n, τ) from both sides and divide everything by ∆t:

o(∆t)
∆t

= max
at(n,τ)≥0



wt(n, τ)− ka2
t (n,τ)

2 Yt

+e−rt+δt∆t


at(n, τ)

(
µ(n)V f irm

t+∆t(1, H) + (1− µ(n))V f irm
t+∆t(1, L)− FYt+∆t

)
+(Is + Io)Vout

t+∆t + zt(n, τ)Vmanager
t+∆t (n + 1, τ)

−(at(n, τ) + (Is + Io) + zt(n, τ))Vmanager
t+∆t (n, τ)


+

e−rt+∆t∆tVmanager
t+∆t (n,τ)−Vmanager

t (n,τ)
∆t


Take limits when ∆t→ 0:
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0 = max
at(n,τ)≥0



wt(n, τ)− ka2
t (n,τ)

2 Yt

+at(n, τ)
(

µ(n)V f irm
t (1, H) + (1− µ(n))V f irm

t (1, L)− FYt

)
+(Is + Io)Vout

t + zt(n, τ)Vmanager
t (n + 1, τ)

−(at(n, τ) + (Is + Io) + zt(n, τ))Vmanager
t (n, τ)

+ lim∆t→0
e−rt+∆t∆tVmanager

t+∆t (n,τ)−Vmanager
t (n,τ)

∆t


Notice that lim∆t→0

e−rt+∆t∆tVmanager
t+∆t (n,τ)−Vmanager

t (n,τ)
∆t is indetermined, so using the l’Hopital’s

rule, we get −rtV
manager
t (n, τ) + V̇manager

t (n, τ). Hence,

rtV
manager
t (n, τ)− V̇manager

t (n, τ) = max
at(n,τ)≥0



wt(n, τ)− ka2
t (n,τ)

2 Yt

+at(n, τ)
(

µ(n)V f irm
t (1, H) + (1− µ(n))V f irm

t (1, L)− FYt −Vmanager
t (n, τ)

)
+(Is + Io)(Vout

t −Vmanager
t (n, τ))

+zt(n, τ)(Vmanager
t (n + 1, τ)−Vmanager

t (n, τ))

−(at(n, τ) + (Is + Io) + zt(n, τ))Vmanager
t (n, τ)


Since we are focusing on the steady state equilibrium in which decision rules are con-

stant over time and value functions grow at the same rate as the whole economy, g, we can
divide the above equation by Yt and rewrite in the following way:

ρvmanager(n, τ) = max
a(n,τ)≥0



ω(n, τ)− ka2
t (n,τ)

2

+a(n, τ)
(
µ(n)v f irm(1, H) + (1− µ(n))v f irm(1, L)− F− vmanager(n, τ)

)
+(Is + Io)(vout − vmanager(n, τ))

+z(n, τ)(vmanager(n + 1, τ)− vmanager(n, τ))

−(a(n, τ) + (Is + Io) + z(n, τ))vmanager(n, τ)


where we used the fact that V̇manager

t (n,τ)
Y(t) = gvmanager and by Euler equation, ρ = r− g. This

gives us equation (13).
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B Proof of Equation (28)

Expanding the expression for the welfare (26) and taking into account that in the steady
state equilibrium Yt grows at rate g, we get

Wel f are(0) =

∞∫
0

e−ρtlnCtdt

=

∞∫
0

e−ρtln(1− I)Ytdt

=

∞∫
0

e−ρtln(1− I)dt +
∞∫

0

e−ρt ln egtY0dt

= − ln(1− I)e−ρt

ρ

∣∣∣∣∞
0
+ ln Y0

∞∫
0

e−ρtdt +
∞∫

0

gte−ρtdt

=
ln(1− I)

ρ
+

ln Y0

ρ
+ g

− te−ρt

ρ

∣∣∣∣∞
0
+

∞∫
0

e−ρtdt

ρ


=

ln(1− I)
ρ

+
ln Y0

ρ
− g

e−ρt|∞0
ρ2

=
ln(1− I)

ρ
+

ln Y0

ρ
+

g
ρ2

Now, let us expand ln Y0:

ln Y0 =
∫ 1

0
ln y(j, 0)dj

=
∫ 1

0
ln q(j, 0)dj +

∫ 1

0
ln l(j, 0)dj

= ln Q(0) +
∫ 1

0
ln

1
ωuλnj

dj (30)

= ln Q(0)− ln λ
∫ 1

0
njdj− ln ωu

= ln Q(0)− ln λ ∑
n,τ

nξ(n, τ)− ln ωu

The second line used (3) and the third line used labor demand (23). Hence, we arrived
at equation (28).
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C Proof of Proposition 1

Similar derivation as above gives us that ln Yt = ln Q(t) + constant terms in steady state.
Hence, growth in output is the same as growth in productivity Q(t):

g = lim
∆t→0

ln Q(t + ∆t)− ln Q(t)
∆t

.
Growth in Q comes from successful innovation by incumbents, spinout entry, or entry

by outsiders. In a time interval ∆t, probability of a successful innovation by incumbents
is equal to ∆t ∑n,τ ξ(n, τ)z(n, τ), while probability of a successful spinout entry is equal
to Is∆t and probability of a successful entry by outsiders is Io∆t. All these innovations
improve productivity by λ.

Hence,

g =
∆t(Is + Io + ∑n,τ ξ(n, τ)z(n, τ)) ln λQ(t) + (1− ∆t(Is + Io + ∑n,τ ξ(n, τ)z(n, τ)) ln Q(t)− ln Q(t)

∆t
= (Is + Io + ∑

n,τ
ξ(n, τ)z(n, τ)) ln λQ(t)− (Is + Io + ∑

n,τ
ξ(n, τ)z(n, τ)) ln Q(t)

= (Is + Io + ∑
n,τ

ξ(n, τ)z(n, τ)) ln λ

D Computational Algorithm

To quantitatively solve for the steady state equilibrium of the model, I use the following
computational algorithm.

Step 1. Guess the firm’s and manager’s value functions v f irm(n, τ) and vmanager(n, τ).

Step 2. Given v f irm(n, τ) and vmanager(n, τ), compute optimal policies z(n, τ) and a(n, τ) using
the first-order conditions in (14) and (16).

Step 3. Find ventry and optimal entry rate ν using the value function definition in (9). This
reduces to solving a quadratic equation in ventry unknown. The resulting solution is:

ventry = M + eρ−
√

2Meρ + e2ρ2,

where M = µ̃v f irm(1, H) + (1− µ̃)v f irm(1, L).

Given ventry, compute the resulting aggregate entry by outsiders, Io, from equation
(10).
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Step 4. Given the policy functions and entry rate by outsiders, find the stationary distribution
ξ(n, τ) by solving the quadratic system of equations given in equations (19), (20), (21),
and (22). Compute spinout entry rate Is from equation (22).

Step 5. Solve for v f irm(n, τ), vmanager(n, τ), and wages ω(n, τ) using equations (12), (13), (15),
(17), and (18). Use the fact that vwork is equal to ventry, which has already been calcu-
lated.

Step 6. Compare v f irm(n, τ) and vmanager(n, τ) to the previous guesses. Iterate this algorithm
until both value functions converge.
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E Additional Results from the Model

Figure 11: Innovation, Separation, and Firm Size Distribution in the Model

(a) Innovation rate of the firm
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(b) Spinout separation rate
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(c) Firm size distribution
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Notes: Equilibrium solution of the model given the calibrated parameter values.
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Figure 12: The Share of High-type Spinouts among Spinout Entrants
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Notes: The figure plots the equilibrium share of H-type entrants among all spinout entrants over different
values of F correnponding to the NLC index range across the U.S. states.
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F Additional Data Details. Non-compete Laws

Non-compete covenants are the clauses in employee contracts that prohibit the employees
from working for a competitor or forming a new competing firm. The laws governing the
enforcement of non-compete agreements, the non-compete laws (NCL), vary greatly across
the U.S. states. Malsberger (2004) conducted a state-by-state survey analyzing twelve ques-
tions on different aspects of enforcement of non-compete agreements. There are two states
which completely void the non-compete agreements: California and North Dakota. Other
states largely vary by the types of contracts enforceable in terms of the scope, geographic
area, length, time restriction, and others. Based on the questions analyzed in the survey,
Garmaise (2011) derived state-specific non-competition index. Over the U.S. states, the in-
dex varies from 0 to 9, with a higher index indicating a stricter enforcement. More recently,
Starr (2019) builds on Bishara (2011) and provides a different index for non-compete laws
across states for the years 1991 and 2009. Table A.1 lists these three indexes for each state.
These indexes are highly correlated, but since the NCL index from Starr (2019) has more
time variation, I use this index as the benchmark in the regression analysis. More specif-
ically, I combine the 1991 and 2009 versions of the index and define the final index over
time as

NCL(t) = NCL1991 +
NCL2009 − NCL1991

18
(t− 1991) (31)

Notice that, as required by the Full Faith and Credit Clause in the United States Con-
stitution, states within the United States have to respect “public acts, records, and judicial
proceedings of every other state”. This should mean that even if the spinout founded a
new start-up in a state different from the state of the previous employer, the laws of the
previous state should be still important. In 1998 though, California set the precedent (Ap-
plication Group, Inc. vs Hunter Group, Inc.) where the court stated that California law
is applicable to non-California employees seeking employment in California. In general,
despite the Full Faith and Credit statement, there is still some ambiguity as to which laws
should be applicable in each case. This uncertainty though ex-ante may work in favor of
employers so that the employees take less risk in trying to compete with the employer.

G Additional Empirical Results
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Appendix Table A.1: Non-competition Indexes across the U.S. States

State NCL NCL1991 NCL2009 State NCL NCL1991 NCL2009
Garmaise’11 Starr’19 Starr’19 Garmaise’11 Starr’19 Starr’19

Alabama 5 0.36 0.36 Montana 2 -0.63 -0.65
Alaska 3 -1.33 -0.98 Nebraska 4 -0.13 -0.13
Arizona 3 -0.16 0.15 Nevada 5 -0.62 0.03
Arkansas 5 -0.62 -0.58 New Hampshire 2 0.26 0.26
California 0 -3.76 -3.79 New Jersey 4 0.47 0.9
Colorado 2 0.38 0.38 New Mexico 2 0.74 0.74
Connecticut 3 0.62 1.26 New York 3 -0.73 -1.15
Delaware 6 0.18 0.52 North Carolina 4 0.18 0.18
DC 7 0.12 0.12 North Dakota 0 -4.23 -4.23
Florida 7 1.15 1.6 Ohio 5 -0.18 0.08
Georgia 5 0.45 0.02 Oklahoma 1 -0.8 -0.94
Hawaii 3 -0.83 -0.17 Oregon 6 0.14 0.14
Idaho 6 -0.01 0.77 Pennsylvania 6 -0.14 0.14
Illinois 5 0.55 0.95 Rhode Island 3 -0.67 -0.33
Indiana 5 0.7 0.7 South Carolina 5 -0.2 -0.27
Iowa 6 0.19 1.01 South Dakota 5 0.37 1.02
Kansas 6 0.69 1.21 Tennessee 7 0.22 0.45
Kentucky 6 0.61 0.85 Texas 5 -0.04 -0.28
Louisiana 4 -0.7 0.5 Utah 6 1 1
Maine 4 0.06 0.41 Vermont 5 0.3 0.6
Maryland 5 0.15 0.6 Virginia 3 0.09 -0.29
Massachusetts 6 0.87 0.48 Washington 5 0.64 0.34
Michigan 5 0.07 0.46 West Virginia 2 -0.8 -0.8
Minnesota 5 -0.07 -0.07 Wisconsin 3 0.16 -0.09
Mississippi 4 -0.2 0.04 Wyoming 4 -0.65 0.23

Note: The Table presents the non-competition indexes from Garmaise (2011) and Starr (2019).
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Appendix Table A.2: Parent’s Characteristics and Performance of Spinouts
-Panel A-

Log number of cit-weighted patents of spinout

Log num of parents 0.558∗∗∗ 0.556∗∗∗ 0.551∗∗∗ 0.559∗∗∗

(0.041) (0.041) (0.042) (0.041)

Log parents’ patents 0.063∗∗∗ -0.337∗∗∗ -0.063∗∗∗ -0.029∗∗

(0.005) (0.016) (0.008) (0.012)

Log parents’ cit-patents 0.392∗∗∗

(0.015)

Parents’ tech lead pctile 0.067∗∗∗

(0.003)

Log parents’ top patents 0.138∗∗∗

(0.017)

Cohort FE YES YES YES YES
Tech class FE YES YES YES YES
State FE YES YES YES YES
Observations 16672 16582 16672 16672

-Panel B-

Log number of top patents of spinout

Log num of parents 0.190∗∗∗ 0.189∗∗∗ 0.188∗∗∗ 0.191∗∗∗

(0.021) (0.021) (0.021) (0.021)

Log parents’ patents 0.022∗∗∗ -0.110∗∗∗ -0.013∗∗∗ -0.032∗∗∗

(0.002) (0.007) (0.004) (0.005)

Log parents’ cit-patents 0.129∗∗∗

(0.007)

Parents’ tech lead pctile 0.019∗∗∗

(0.001)

Log parents’ top patents 0.081∗∗∗

(0.007)

Cohort FE YES YES YES YES
Tech class FE YES YES YES YES
State FE YES YES YES YES
Observations 17268 17166 17268 17268

Note: The table shows the regressions of spinouts’ outcome variables as a function of various parental charac-
teristics at the time of spinout separation. Each observation is a spinout firm entering in the period 1981-2000.
The outcome variable in Panel A is spinout’s lifetime log citations-weighted patent counts; the outcome vari-
able in Panel B is spinout’s lifetime log number of top patents. Top patents are the patents whose truncated-
adjusted citations are above the 90th percentile of the citations distribution of patents filed in the same year
and technology class. Control variables include the log number of parents, parents’ log number of patents,
log number of citations-weighted patents, technological lead percentiles, and log number of top patents.
Technological lead percentile is a categorical variables with 20 quantiles of the patent quality distribution
based on the citations-weighted patent counts in the last 5 years in the technology class (cat-ocl) of the firm.
The regressions also control for spinout’s cohort, technology class, and state fixed effects.
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Appendix Table A.3: Parent Characteristics and Performance of Spinouts. Other Outcome
Variables

-Panel A-

Log longevity of spinout

Log num of parents 0.197∗∗∗ 0.197∗∗∗ 0.196∗∗∗ 0.197∗∗∗

(0.024) (0.024) (0.024) (0.024)

Log parents’ patents 0.029∗∗∗ -0.064∗∗∗ -0.013∗∗∗ 0.030∗∗∗

(0.003) (0.011) (0.005) (0.008)

Log parents’ cit-patents 0.091∗∗∗

(0.010)

Parents’ tech lead pctile 0.023∗∗∗

(0.002)

Log parents’ top patents -0.001
(0.010)

Cohort FE YES YES YES YES
Tech class FE YES YES YES YES
State FE YES YES YES YES
Observations 17268 17166 17268 17268

-Panel B-

Log number of patents of spinout

Log num of parents 0.475∗∗∗ 0.474∗∗∗ 0.471∗∗∗ 0.475∗∗∗

(0.034) (0.034) (0.034) (0.034)

Log parents’ patents 0.057∗∗∗ -0.078∗∗∗ -0.005 0.058∗∗∗

(0.004) (0.013) (0.006) (0.010)

Log parents’ cit-patents 0.132∗∗∗

(0.011)

Parents’ tech lead pctile 0.032∗∗∗

(0.002)

Log parents’ top patents -0.002
(0.013)

Cohort FE YES YES YES YES
Tech class FE YES YES YES YES
State FE YES YES YES YES
Observations 17268 17166 17268 17268

Note: Table repeats the analysis of Table A.2, but for other outcome variables. The outcome variable in Panel
A is the log longevity of the spinout; the outcome variable in Panel B is spinout’s lifetime log number of
patents.
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Appendix Table A.4: Parent Characteristics and Performance of Spinouts. Robustness
-Panel A

Log number of citations-weighted patents of spinout

(1) (2) (3)

Log num of parents 0.539∗∗∗ 0.556∗∗∗ 0.622∗∗∗

(0.042) (0.042) (0.046)

Log parents’ patents -0.046∗∗∗ -0.065∗∗∗ -0.056∗∗∗

(0.008) (0.008) (0.010)

Parents’ tech lead pctile 0.060∗∗∗ 0.070∗∗∗ 0.073∗∗∗

(0.003) (0.003) (0.006)

Cohort FE YES YES YES
Tech class FE YES YES YES
State FE YES YES YES
Observations 16672 16672 9701

-Panel B

Log number of top patents of spinout

Log num of parents 0.185∗∗∗ 0.190∗∗∗ 0.215∗∗∗

(0.021) (0.021) (0.025)

Log parents’ patents -0.009∗∗∗ -0.013∗∗∗ -0.016∗∗∗

(0.003) (0.004) (0.005)

Parents’ tech lead pctile 0.017∗∗∗ 0.019∗∗∗ 0.025∗∗∗

(0.001) (0.001) (0.002)

Cohort FE YES YES YES
Tech class FE YES YES YES
State FE YES YES YES
Observations 17268 17268 10005

Note: Table presents the specifications similar to column (3) of Table A.2, but with various robustness checks.
The first column redefines parent’s technological lead percentile based on the citations distribution with more
narrow technology classification (nclass); the second column redefines technological lead percentile based
on the citations distribution of all firms, irrespective of their technology classification. The third column
considers robustness to the definition of the spinout separation time by defining the parental variables in the
entry year of the spinout firm.
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Appendix Table A.5: Probability of spinout separation. Different proxy for parent’s tech-
nological leadership.

-Panel A: Patent data

(1) (2) (3) (4)
Logit FE Logit Neg. Binom FE Neg. Binom

Log top patents 0.259∗∗∗ 0.127∗∗∗ 0.219∗∗∗ 0.076∗∗∗

(0.0151) (0.0343) (0.0125) (0.0275)

Patents, Inventors, Age YES YES YES YES
Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 184009 50660 184213 50978

-Panel B: Patent + Compustat data

(1) (2) (3) (4)
Logit FE Logit Neg. Binom FE Neg. Binom

Log top patents 0.230∗∗∗ 0.174∗∗ 0.182∗∗∗ 0.092∗

(0.0357) (0.0685) (0.0262) (0.0478)

Patents, Inventors, Age, R&D,
Sales, Assets, Num. employees YES YES YES YES
Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 15796 9797 16422 9984

Note: The Table repeats the analysis in Table 5, but using the log top patents as measure of parent’s tech-
nological leadership. Panel A of the table shows annual panel estimates of the probability of an entrant firm
being a spinout as a function of various firm characteristics in different rows for all firms in the patent data,
for the time period 1981-2000. Patents and top patents are the total number of all patents and top patents
granted to the firm during the last 5 years for each year, respectively. Inventors is the total number of inven-
tors of the firm during the last 5 years for each year. Panel B shows the same kind of estimates of Panel A
for the merged databases between Patents and Compustat. Control variables in Panel B are firm’s annual log
R&D expenditures, log number of employees, sales growth and log assets value.
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Appendix Table A.6: Probability of spinout separation. Contemporaneous measure of par-
ent’s technological leadership.

-Panel A: Patent data

(1) (2) (3) (4)
Logit FE Logit Neg. Binom FE Neg. Binom

Log cit-patents yr 0.111∗∗∗ 0.055∗∗∗ 0.104∗∗∗ 0.037∗∗

(0.0107) (0.0178) (0.0099) (0.0156)

Patents, Inventors, Age YES YES YES YES
Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 175352 48983 175632 49285

-Panel B: Patent + Compustat data

(1) (2) (3) (4)
Logit FE Logit Neg. Binom FE Neg. Binom

Log cit-patents yr 0.022 0.058 0.077∗∗∗ 0.046
(0.0353) (0.0479) (0.0280) (0.0378)

Patents, Inventors, Age, R&D,
Sales, Assets, Num. employees YES YES YES YES
Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 15796 9797 16422 9984

Note: The Table repeats the analysis in Table 5, but using the contemporaneous (instead of last 5-year)
quality-adjusted patent count of parent firms. Panel A of the table shows annual panel estimates of the
probability of an entrant firm being a spinout as a function of various firm characteristics in different rows
for all firms in the patent data, for the time period 1981-2000. "Patents yr" and "cit-patents yr" are the total
number of all patents and adjusted citation patents granted to the firm for each year, respectively. Inventors
is the total number of inventors of the firm for each year. Panel B shows the same kind of estimates of Panel
A for the merged databases between Patents and Compustat. Control variables in Panel B are firm’s annual
log R&D expenditures, log number of employees, sales growth and log assets value.
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Appendix Table A.7: Non-compete Laws and Spinout Formation. Al-
ternative NCL index.

(1) (2) (3) (4)
Logit Logit Neg. Binomial Neg. Binomial

NCL index -0.037∗ -0.056∗∗∗ -0.027 -0.046∗∗∗

(0.0196) (0.0203) (0.0175) (0.0156)

Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 179253 50153 179485 50465

Note: The table repeats the regressions in Table 6 but using a different measure
of non-compete laws from Garmaise (2011). Other controls are the log number
of patents and citation-adjusted patents filed in the last 5 years, the log number
of inventors, firm age as well as the measures of state-level competition over time
(number of innovating firms in the same technology class and state), GDP per capita,
and population. The sample includes all patenting firms in the period 1981-2000.
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Appendix Table A.8: Non-Compete Laws and Spinout Separation.
Within-state and within-industry spinouts.

-Panel A-

Within-state spinouts

(1) (2) (3) (4)
Logit Logit Neg. Binomial Neg. Binomial

NCL index -0.403 -0.223∗∗∗ -0.396 -0.169∗∗

(0.3260) (0.0728) (0.3062) (0.0665)

Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 168908 23264 170599 23402

-Panel B-

Within-industry spinouts

(1) (2) (3) (4)
Logit Logit Neg. Binomial Neg. Binomial

NCL index -0.236 -0.173∗∗∗ -0.129 -0.168∗∗∗

(0.2772) (0.0611) (0.2586) (0.0536)

Year FE YES YES YES YES
Industry FE YES NO YES NO
State FE YES NO YES NO
Firm FE NO YES NO YES
Observations 170673 26993 170673 27120

Note: The table repeats the regressions in Table 6 but only considering the within-
industry spinouts (Panel A) and within-industry spinouts (Panel B). NCL index is the
non-competition index defined in (31). Other controls are the log number of patents
and citation-adjusted patents filed in the last 5 years, the log number of inventors,
firm age as well as the measures of state-level competition over time (number of
innovating firms in the same technology class and state), GDP per capita, and pop-
ulation. The sample includes all patenting firms in the period 1981-2000.
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