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The Anatomy of Out-of-Sample Forecasting Accuracy

Abstract

We introduce the performance-based Shapley value (PBSV) to measure the contributions
made by each of the individual predictors in fitted time-series forecasting models to the out-
of-sample loss. The PBSVs for the individual predictors sum to the out-of-sample loss, so our
new metric produces an exact decomposition of out-of-sample performance. In essence, the
PBSV anatomizes out-of-sample forecasting accuracy, thereby providing valuable information
to decision makers for interpreting fitted time-series forecasting models. The PBSV is model
agnostic—so it can be applied to any fitted prediction model, including “black box” models in
machine learning—and it can be used for any loss function. We also develop the TS-Shapley-
VI, a version of the conventional Shapley value that gauges the importance of predictors for
explaining the in-sample predictions in the entire sequence of fitted prediction models that gen-
erates the time series of out-of-sample forecasts. We then propose the model accordance score
to compare predictor ranks based on the TS-Shapley-VI and PBSV, thereby linking predictors’
in-sample importance to their contributions to out-of-sample forecasting accuracy. We illustrate
our new metrics in an application forecasting US inflation using a variety of machine-learning
models and a large number of predictors.

Keywords: Model interpretation, Machine learning, Time-series data, Shapley value, Loss func-
tion, Inflation

JEL classifications: C22, C45, C52, C53, E31, E37

1. Introduction

Time-series forecasting models play a fundamental role in decision making for many economic

agents, such as managers, financial market participants, and policy makers. Forecasting models

in macroeconomics and finance are among the most important, as they provide decision makers

with insight into future general economic and financial market conditions. With the advent of “big

data,” the use of machine learning for out-of-sample time-series forecasting in macroeconomics and

finance is burgeoning. Macroeconomic applications forecast a host of variables, such as inflation,

output and employment growth, the unemployment rate, unemployment insurance initial claims,

and housing starts1; applications in finance often involve forecasting stock returns.2 The growing

literature provides evidence that machine-learning models improve forecasting accuracy in these

domains. Of course, forecasting accuracy is central to a model’s usefulness. However, the ability

to interpret fitted time-series forecasting models is also crucial for informing decision making. This

is especially relevant for machine-learning models, as many are “black boxes.” In particular, it is

vital to understand how the predictors in fitted machine-learning models contribute to forecasting

1See, for example, Medeiros and Mendes (2016), Medeiros et al. (2021), Borup and Schütte (2022), Goulet
Coulombe et al. (2022), Borup et al. (2023), and Hauzenberger et al. (2023).

2See, for example, Chinco et al. (2019), Freyberger et al. (2020), Gu et al. (2020), Dong et al. (2022), and Avramov
et al. (2023).
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accuracy, thereby making the black boxes more transparent by revealing the roles of the model

inputs in determining time-series forecasting success. In this paper, we develop the first metric—

the performance-based Shapley value (PBSVp)—that provides such an understanding for fitted

time-series forecasting models.

Specifically, the PBSVp estimates the contribution of a predictor p in a sequence of fitted

time-series forecasting models to a loss measure over the out-of-sample forecast evaluation period.3

As its name suggests, we employ the logic of Shapley (1953) values to fairly allocate the marginal

contributions of a model’s predictors to the out-of-sample loss. By a property of Shapley values, the

sum of the PBSVp values across all of the predictors equals the out-of-sample loss measure. Thus,

by computing the PBSVp for each of the predictors, we can exactly decompose the out-of-sample

loss into the components attributable to the individual predictors.

In essence, the PBSVp allows us to anatomize forecasting accuracy in a time-series context,

identifying the predictors that enhance out-of-sample performance, as well as those that detract

from it. By understanding the roles of predictors in determining out-of-sample performance, eco-

nomic agents can make better-informed decisions. We emphasize that the PBSVp is very flexible:

it is model agnostic—so it can be used for any fitted prediction model (parametric or nonparamet-

ric, linear or nonlinear)—and it can be applied to any loss function, including the popular mean

squared error (MSE), mean absolute error (MAE), and root mean squared error (RMSE) criteria.

As machine learning has grown in popularity over the past few decades, a variety of tools have

been developed for interpreting fitted prediction models, including a number that are model agnos-

tic. One set of tools analyzes how the in-sample predictions generated by fitted models vary with the

individual predictors. Such methods include partial dependence plots (Friedman, 2001), Shapley

values (Shapley, 1953; S̆trumbelj and Kononenko, 2010, 2014; Lundberg and Lee, 2017), individual

conditional expectation curves (Goldstein et al., 2015), locally interpretable model-agnostic expla-

nations (Ribeiro et al., 2016), and accumulated local effects (Apley and Zhu, 2020). A related set of

tools measures variable importance, namely, how important individual predictors are in accounting

for the predictions produced by fitted models. Variable-importance metrics include those based on

partial dependence plots (Greenwell et al., 2018), permutations (Fisher et al., 2019), and Shapley

values (Lundberg and Lee, 2017; Casalicchio et al., 2018).

Existing tools for interpreting fitted prediction models are typically applied in a manner appro-

priate for cross-sectional data. Specifically, a researcher divides the total sample of observations

into training and test samples. The researcher then fits a prediction model using data from the

3It can also be computed for any subsample of the forecast evaluation period, including a single observation.
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training sample and uses the fitted model to generate predictions for the test-sample observations.

To interpret the model that generates the forecasts, the researcher computes, for example, the vari-

able importance for each predictor based on the fitted model and training data used to estimate the

model. This conventional approach is eminently reasonable, especially in a cross-sectional context.4

However, it is not necessarily appropriate in a time-series setting. In such a setting, a researcher

usually re-estimates the prediction model each period using an expanding or rolling window of

data, as they generate a sequence of out-of-sample forecasts. Thus, instead of a single model, there

is a sequence of estimated models to interpret. Our new PBSVp metric explicitly accounts for a

time-series setting by recognizing that the prediction model is re-estimated regularly as new data

become available when generating the sequence of out-of-sample forecasts. The conventional ap-

proach also focuses on the predictors’ contributions to the in-sample predictions, while the PBSVp

estimates their contributions to the out-of-sample loss—the ultimate object of interest for assessing

forecasting accuracy.

We develop two additional metrics that, in conjunction with the PBSVp, link the predictors’

in-sample importance in fitted models to their contributions to out-of-sample forecasting accuracy.

First, we introduce the TS-Shapley-VIp, an extension of the conventional in-sample Shapley-based

variable-importance measure that aggregates predictor p’s in-sample variable importance across the

entire set of fitted models that generates the sequence of out-of-sample time-series forecasts.

Second, we define the model accordance score (MAS) to assess the extent to which the in-sample

importance of predictors in a sequence of fitted forecasting models aligns with the predictors’

contributions to out-of-sample forecasting accuracy. Specifically, in the spirit of the Spearman

rank correlation, we compare the ranks of the predictors in terms of their in-sample importance

based on the TS-Shapley-VIp and their contributions to out-of-sample forecasting accuracy based

on the PBSVp. A relatively high MAS indicates that the predictors that are the most important

for generating the in-sample fitted values in a sequence of time-series forecasting models are also

the most responsible for improving out-of-sample forecasting accuracy. As the MAS declines, there

are greater discrepancies between the in-sample importance of predictors and their contributions

to out-of-sample accuracy. While a performance metric like the RMSE focuses solely on out-of-

sample performance, the MAS evaluates whether a model’s out-of-sample success mirrors what it

has learned from the in-sample data. In this sense, the MAS paired with a performance metric such

4For example, this approach is used on numerous occasions for the applications in the insightful textbook by
Molnar (2023).
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as the RMSE provides insight into the model’s intentional success. We also develop a procedure

for testing the statistical significance of the MAS.

Philosophically, model interpretation tools can be either true to the model or true to the data

(Chen et al., 2020). The former means that we are interested in interpreting the particular fitted

prediction model (or sequence of fitted models) that generates the out-of-sample forecasts. This is

precisely what interests us in the present paper, so we are true to the model in constructing our

metrics. We discuss remaining true to the model versus true to the data in more detail in Section 2.

We illustrate the use of our new metrics in an empirical application forecasting US inflation.

A spate of recent studies finds that large datasets in conjunction with nonlinear machine-learning

models, including random forests and neural networks, significantly improve inflation forecasts (e.g.,

Medeiros et al., 2021; Goulet Coulombe, 2022; Goulet Coulombe et al., 2022; Hauzenberger et al.,

2023). We generate inflation forecasts using a set of approximately 120 predictors, primarily from

the FRED-MD database (McCracken and Ng, 2016), and a variety of leading machine-learning

methods, including principal component regression (Stock and Watson, 2002a,b), elastic net (Zou

and Hastie, 2005) estimation of a linear model, random forests (Breiman, 2001), XGBoost (Chen

and Guestrin, 2016), and neural networks. We also consider ensembles of individual forecasts gener-

ated by different models. The forecasting models consistently outperform a standard autoregressive

(AR) benchmark model in terms of RMSE at horizons ranging from one to twelve months, in line

with the recent literature.

We employ our new PBSVp to measure how the predictors contribute to the accuracy of the out-

of-sample inflation forecasts. At shorter horizons, the PBSVp identifies the price of oil as a leading

predictor for improving forecasting accuracy across different models, in line with the relevance of

commodity price fluctuations for short-term inflation. Across all reported horizons and a variety of

models, the PBSVp points to the durables component of the CPI, the medical services component

of the CPI, and the spread between the Baa-rated corporate bond yield and the federal funds rate

as important predictors for improving the accuracy of out-of-sample inflation forecasts.

The MAS values reflect the degree of agreement in terms of predictor ranks between the

TS-Shapley-VIp and PBSVp for the different forecasting models. For some models, we find a

relatively low RMSE combined with a relatively low MAS, suggesting that luck played a significant

role in the model’s out-of-sample success. For other models, a low RMSE coincides with a high

MAS, indicating that the sequence of fitted models learned from the in-sample data in a manner

that reliably improves out-of-sample forecasting accuracy. In this regard, the random forest and

ensemble forecasts generally perform the best.
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The rest of the paper is organized as follows. Section 2 derives the PBSVp, TS-Shapley-VIp,

and MAS metrics for analyzing predictor relevance in a time-series context. Section 3 presents the

empirical application forecasting US inflation. Section 4 concludes. We created the Python package

anatomy to implement the algorithms for computing our new metrics.

2. Methodology

We use the following notation in our time-series context. We index individual predictors by p

and collect the predictors in the index set S = {1, . . . , P}. The period-t P -dimensional vector of

predictor observations is denoted by xt = [ x1,t · · · xP,t ]′. The prediction model is given by

yt+1:t+h = f(xt) + εt+1:t+h, (1)

where yt+1:t+h = (1/h)
∑h

k=1 yt+k is the target, h is the horizon for the forecast, f is the conditional

mean (i.e., prediction) function, and εt+1:t+h is an additive, zero-mean disturbance term. We denote

the fitted prediction model by f̂ , while Wi = {ti,start, . . . , ti,end − (h− 1)− 1} denotes the set of

observations used to train the model in Equation (1) based on window Wi. The fitted prediction

model evaluated at instance xt and trained using Wi for horizon h is denoted by f̂(xt ;Wi, h). As

in S̆trumbelj and Kononenko (2014), the only assumption we need is that the fitted model maps

the predictors from a known input space to a known codomain.

2.1. Shapley Values in a Time-Series Context

Shapley values draw on coalitional game theory to utilize the analogy between the predictors

in a model and players in a cooperative game earning payoffs, where an individual predictor’s

payoff corresponds to its contribution to the model’s prediction. In a time-series setting, the aim

of a Shapley value is to quantify the marginal contribution of predictor xp,t to the prediction

f̂(xt ;Wi, h), given the presence of all of the other predictors (S \ {p}). For now, we assume that

the predictors in S are independent; we subsequently explain how we can relax this assumption.

Allocating the contributions of the predictors to the prediction is far from trivial, especially when

the predictors interact and there are complex nonlinearities in the fitted model. Viewed through the

lens of coalitional game theory, Shapley values provide a means for fairly allocating the contributions

of the predictors to a prediction for any fitted model.
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Adapting S̆trumbelj and Kononenko (2014) to our time-series context, the Shapley value for

predictor p and instance xt for a model trained using window Wi for horizon h is given by

φp(xt ;Wi, h) =
∑

Q⊆S\{p}

|Q|!(P − |Q| − 1)!

P !

[
ξQ∪{p}(xt ;Wi, h)− ξQ(xt ;Wi, h)

]
(2)

for p ∈ S and t ∈Wi, where Q is a subset of predictors (i.e., a coalition), Q ⊆ S \ {p} is the set of

all possible coalitions of P − 1 predictors in S that exclude predictor p, |Q| is the cardinality of Q,

|Q|!(P − |Q| − 1)!/P ! is a combinatorial weight,

ξQ(xt ;Wi, h) = E
[
f̂
∣∣Xj,t = xj,t ∀ j ∈ Q ;Wi, h

]
(3)

is the value function, and E is the expectation operator. Equation (3) is the prediction of the

fitted model conditional on the predictors in coalition Q, so ξQ∪{p}(xt ;Wi, h) − ξQ(xt ;Wi, h)

in Equation (2) measures the change in the prediction, conditional on the predictors in coali-

tion Q, when the predictor p is included in the conditioning information set. The difference

ξQ∪{p}(xt ;Wi, h) − ξQ(xt ;Wi, h) is computed for all possible coalitions of P − 1 predictors that

exclude predictor p, with each quantity receiving the weight |Q|!(P − |Q| − 1)!/P ! in the summa-

tion in Equation (2) (the weights sum to one). In essence, the Shapley value uses coalitions to

control for the other predictors when measuring the contribution of predictor p to the prediction

corresponding to instance xt.

The Shapley value in Equation (2) has a number of attractive properties, including the following

(which we express in terms of our time-series setting).

• Efficiency (also known as local accuracy):

∑
p∈S

φp(xt ;Wi, h) = f̂(xt ;Wi, h)− E
[
f̂ ;Wi, h

]
, (4)

where E[f̂ ;Wi, h] is the baseline prediction, which corresponds to the unconditional expecta-

tion of f̂ (i.e., the prediction based on the empty coalition set).

• Missingness :

∀R ⊆ S \ {p} : ξR∪{p}(xt ;Wi, h) = ξR(xt ;Wi, h)⇒ φp(xt ;Wi, h) = 0. (5)
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• Symmetry :

∀R ⊆ S \ {p, q} : ξR∪{p}(xt ;Wi, h) = ξR∪{q}(xt ;Wi, h)⇒

φp(xt ;Wi, h) = φq(xt ;Wi, h).
(6)

• Linearity : For any real numbers c1 and c2 and models f̂(xt ;Wi, h) and f̂ ′(xt ;Wi, h),

φp

(
c1

[
f̂(xt ;Wi, h) + c2f̂

′(xt ;Wi, h)
])

=

c1φp

(
f̂(xt ;Wi, h)

)
+ c1c2φp

(
f̂ ′(xt ;Wi, h)

)
.

(7)

Efficiency says that we can exactly decompose the fitted model prediction corresponding to instance

xt (in terms of the deviation from the baseline prediction) into the sum of the Shapley values for

the individual predictors for that instance. Missingness and symmetry are intuitively appealing,

while linearity is useful for computing Shapley values for ensembles of prediction models.5

In general, it is practically infeasible to compute the exact Shapley value in Equation (2)

for even a moderate number of predictors, as the prediction function has to be evaluated for all

possible coalitions both with and without predictor p. We use a modified version of the algorithm

in S̆trumbelj and Kononenko (2014) to estimate the Shapley value. To derive the algorithm, we

first express Equation (2) in the equivalent form:

φp(xt ;Wi, h) =
1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}(xt ;Wi, h)− ξPrep(O)(xt ;Wi, h)

]
(8)

for p ∈ S and t ∈ Wi, where O is an ordered permutation for the predictor indices in S, π(P ) is

the set of all ordered permutations for S, and Prep(O) is the set of indices that precede p in O.

The algorithm is based on making a random draw m with replacement for an ordered permutation

from π(P ), which we denote by Om. Using Om, we compute

θp,m(xt ;Wi, h) =
1

|Wi|
∑
s∈Wi

[
f̂(xj,t : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h)−

f̂(xj,t : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h)
] (9)

for p ∈ S and t ∈Wi, where Postp(O) is the set of indices that follow p in O. Equation (9) approxi-

mates the effect of removing predictors not in the coalition by replacing them with background data

5As subsequently explained, for missingness in Equation (5) to hold, the Shapley value needs to be computed in
a manner that is true to the data.
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from the training sample. Background data refer to the data used to integrate out the predictors

not in the coalition when estimating the conditional expectation in Equation (3).

Using θp,m(xt ;Wi, h) in Equation (9), the estimate of φp(xt ;Wi, h) in Equation (8) is given by

φ̂p(xt ;Wi, h) =
1

2M

2M∑
m=1

θp,m(xt ;Wi, h) (10)

for p ∈ S and t ∈ Wi, where M is the number of random draws. To increase computational

efficiency, we follow Castro et al. (2009) and compute Shapley values for each predictor p ∈ S for a

randomly drawn ordered permutation from π(P ). In addition, we implement antithetic sampling as

a variance-reduction technique by computing θp,m(xt ;Wi, h) in Equation (9) for the original order

of a randomly drawn ordered permutation, as well as when the order is reversed (Mitchell et al.,

2022). Based on arguments in S̆trumbelj and Kononenko (2014), φ̂p(xt ;Wi, h) in Equation (10)

provides an unbiased and consistent estimate of φp(xt ;Wi, h) in Equation (8). Equation (10) retains

the attractive properties in Equations (4) to (7), including efficiency:

∑
p∈S

φ̂p(xt ;Wi, h) = f̂(xt ;Wi, h)− ¯̂
f(Wi, h)︸ ︷︷ ︸
φ̂∅(Wi,h)

, (11)

where
¯̂
f(Wi, h) = (1/|Wi|)

∑
t∈Wi

f̂(xt ;Wi, h) is the average in-sample prediction for the model

trained using sample Wi, which corresponds to the baseline or unconditional forecast (i.e., the

forecast based on the empty coalition set, which we denote by φ̂∅(Wi, h)).

We now relax the assumption that the predictors in S are independent. Equation (9) effectively

samples from the marginal distribution based on the training sample for the predictors not in the

coalition. This corresponds to the interventional Shapley value, which coincides with remaining

true to the model in Chen et al. (2020). Alternatively, we could sample from the conditional

distribution for the predictors not in the coalition. This corresponds to the observational Shapley

value, which equates with remaining true to the data in Chen et al. (2020).

At first glance, it may seem inappropriate to sample from the marginal instead of the conditional

distribution when the predictors are dependent. However, when the predictors are dependent,

Janzing et al. (2020) use insights from Pearl (2009) to argue that, to fairly allocate the contributions

across the individual predictors, it is more appropriate to use the interventional in lieu of the

observational Shapley value via the marginal distribution and thus remain true to the model.6

6Janzing et al. (2020) point out that sampling from the marginal distribution effectively implements the do-operator
in Pearl (2009).
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Along this line, Janzing et al. (2020) and Sundararajan and Najmi (2020) observe that, unlike the

interventional Shapley value, the observational Shapley value can attribute importance to irrelevant

predictors, so the missingness property in Equation (5) does not hold. Whether to remain true to

the model or true to the data is ultimately a philosophical question that depends on the context

of the problem being analyzed (Chen et al., 2020). In light of the above considerations and in our

context—where we are interested in interpreting the sequence of fitted models that generates the

out-of-sample forecasts—all of our Shapley-based metrics are interventional and thus true to the

model.

The Shapley value φ̂p(xt ;Wi, h) provides a local measure of the contribution of predictor p

to the prediction corresponding to instance xt in the training sample. A global measure of the

importance of predictor p for the training sample can be computed by taking the average of the

absolute values of the Shapley values for predictor p across the training-sample observations:

Shapley-VIp(Wi, h) =
1

|Wi|
∑
t∈Wi

∣∣∣φ̂p(xt ;Wi, h)
∣∣∣ (12)

for p ∈ S. The variable-importance measure in Equation (12) is a popular metric for assessing

predictor importance in machine-learning applications (e.g., Molnar, 2023, Chapter 9.6). Equa-

tion (12) is based on a single training sample. Tools for interpreting fitted models are usually

applied in this manner, which is appropriate for cross-sectional data (or time-series data if the

prediction model is only estimated once). In a time-series context, however, researchers often re-

estimate the prediction model on a regular basis over time as additional data become available, so

there are multiple training samples. Next, we develop a variable-importance metric more suited to

this practice.

Suppose that we are forecasting a monthly variable at horizon h and that we re-estimate the

prediction model each month as additional data become available. This is typically done using

either an expanding or rolling window, where the estimation sample becomes longer (remains the

same size) for the former (latter). Assume that there are t = 1, . . . , T total observations available.

The initial in-sample period ends in t = Tin, while the remaining T−Tin = D observations constitute

the out-of-sample period.

Mimicking the situation of a forecaster in real time, we proceed as follows. We first use ob-

servations from t = 1 through t = Tin − (h− 1) − 1 to fit the prediction model in Equation (1)

and generate an out-of-sample forecast of yTin+1:Tin+h. For an expanding (rolling) window, we

then use observations from t = 1 (t = 2) through Tin − (h− 1) to fit Equation (1) and generate a
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forecast of yTin+2:Tin+h+1. Continuing in this manner, we generate a sequence of D − (h− 1) out-

of-sample forecasts, where, for the final forecast, we use observations from the first period (period

T −D−(h− 1)) through T −2h for an expanding (rolling) window to fit Equation (1) and generate

a forecast of yT−(h−1):T . Note that we only use data available at the time of forecast formation to

train the model so that there is no “look-ahead” bias in the out-of-sample forecasts. We denote

the sequence of time-series forecasts by ŷTin+1:Tin+h, ŷTin+2:Tin+h+1, . . . , ŷT−(h−1):T .

The Shapley-based variable importance in Equation (12) corresponds to a prediction model

trained once using the observations in Wi. To accommodate the sequence of D − (h− 1) time-

series forecasts for models regularly retrained with an expanding or rolling window, we denote the

set of training samples by W =
{
W1, . . . ,WD−(h−1)

}
. In this context, we define the time-series

Shapley-based variable importance as

TS-Shapley-VIp(W,h) =
1

|W |
∑
i∈W

Shapley-VIp(Wi, h) (13)

for p ∈ S, which is the average of the variable-importance measures for predictor p across all of the

training samples used to generate the sequence of time-series forecasts.

2.2. Performance-Based Shapley Values

Out-of-sample forecasts are typically assessed using a loss function. Accordingly, we propose the

PBSVp to decompose the loss over the out-of-sample period into the components attributable to

the individual predictors p ∈ S. We begin by defining the Shapley value for the fitted model

and the vector of predictors used to generate an out-of-sample forecast, which corresponds to an

out-of-sample version of Equation (8):

φoutp

(
xTin+(i−1) ;Wi, h

)
=

1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}

(
xTin+(i−1) ;Wi, h

)
− ξPrep(O)

(
xTin+(i−1) ;Wi, h

)] (14)

for p ∈ S and i = 1, . . . , D − (h− 1), where xTin+(i−1) is the vector of predictors plugged into the

fitted prediction model that is trained with Wi and used to generate the ith out-of-sample forecast,

which is given by ŷTin+i:Tin+h+(i−1) = f̂
(
xTin+(i−1) ;Wi, h

)
.
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To estimate Equation (14), we use a suitably modified version of the algorithm in Section 2.1.

For a random draw m of an ordered permutation, we modify Equation (9) to

θ out
p,m

(
xTin+(i−1) ;Wi, h

)
=

1

|Wi|
∑
s∈Wi

[
f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)
−

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)]
,

(15)

while Equation (10) becomes

φ̂outp

(
xTin+(i−1) ;Wi, h

)
=

1

2M

2M∑
m=1

θ out
p,m

(
xTin+(i−1) ;Wi, h

)
(16)

for p ∈ S and i = 1, . . . , D − (h− 1). Equation (15) continues to approximate the effect of

removing predictors not in the coalition by replacing them with background data from the training

sample Wi. The φ̂outp

(
xTin+(i−1) ;Wi, h

)
estimate in Equation (16) is again characterized by the

properties in Equations (4) to (7). Based on efficiency, we can decompose the out-of-sample forecast

corresponding to xTin+(i−1):

∑
p∈S

φ̂outp

(
xTin+(i−1) ;Wi, h

)
= f̂

(
xTin+(i−1) ;Wi, h

)
− φ̂∅(Wi, h) (17)

for i = 1, . . . , D − (h− 1).

The key insight for computing the PBSVp is to wrap a loss function around the predictions in

Equation (15). We denote a generic loss function by

L
(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1);Wi, h

))
(18)

for i = 1, . . . , D − (h− 1). To incorporate the loss function, we further modify the algorithm. For

a random draw m of an ordered permutation, we adjust Equation (15) as follows:

θ out
p,m

(
xTin+(i−1) ;Wi, h, L

)
=

L

(
yTin+i:Tin+h+(i−1),

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

))
−

L

(
yTin+i:Tin+h+(i−1),

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

))
(19)
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for p ∈ S and i = 1, . . . , D − (h− 1). Equation (16) becomes

φ̂outp

(
xTin+(i−1) ;Wi, h, L

)
=

1

2M

2M∑
m=1

θ out
p,m

(
xTin+(i−1) ;Wi, h, L

)
(20)

for p ∈ S and i = 1, . . . , D − (h− 1).

The local PBSVp in Equation (20) measures the contribution of predictor p to the loss incurred

by the ith out-of-sample forecast. Like Equation (15), Equation (19) approximates the effect of

removing predictors not in the coalition by replacing them with background data from the training

sample Wi. Based on the logic of Shapley values, the local PBSVp in Equation (20) fairly allocates

the loss among the predictors for the ith out-of-sample forecast.7 Along with the properties in

Equations (5) to (7), Equation (20) is characterized by efficiency in Equation (4):

∑
p∈S

φ̂outp

(
xTin+(i−1) ;Wi, h, L

)
=

L
(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1) ;Wi, h

))
− φ̂out∅ (Wi, h, L)

(21)

for i = 1, . . . , D− (h− 1), where φ̂out∅ (Wi, h, L) corresponds to the loss for the baseline or uncondi-

tional prediction based on the empty coalition set.

We are primarily interested in the performance of the entire sequence of out-of-sample forecasts,

so we define the global PBSVp. To obtain the global PBSVp, we again modify the algorithm.

Specifically, we expand Equation (19) to reflect the average loss for the out-of-sample period:

θ out
p,m(W,h,L) =

1

|W |
∑
i∈W

L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)−
1

|W |
∑
i∈W

L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)
(22)

for p ∈ S. Equation (22) again approximates the effect of removing predictors not in the coalition

by replacing them with background data from the training sample. Equation (20) is now given by

φ̂outp (W,h,L) =
1

2M

2M∑
m=1

θ out
p,m(W,h,L) (23)

7Section A.1 of the Online Appendix provides the local PBSVp for the special case of a linear model (with no
interactions) and squared error loss, for which we can derive an analytical expression. More generally, we need to
rely on the algorithm to compute the PBSVp.
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for p ∈ S.

The global PBSVp in Equation (23) allows us to decompose the average loss for a sequence of

out-of-sample forecasts into the contributions of each of the P predictors. In this way, we anatomize

out-of-sample performance by fairly assessing how the individual predictors contribute to out-of-

sample forecasting accuracy. In addition to the properties in Equations (5) to (7), Equation (23)

is again characterized by efficiency in Equation (4):

∑
p∈S

φ̂outp (W,h,L) =
1

|W |
∑
i∈W

L
(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1);Wi, h

))
− φ̂out∅ (W,h,L), (24)

where φ̂out∅ (W,h,L) corresponds to the average loss for the sequence of baseline forecasts based on

the empty coalition set.8

The PBSVp bears some resemblance to the Shapley feature importance (SFIMP) in Casalicchio

et al. (2018), as both are computed using a loss function for the test sample. However, there are

important differences between the PBSVp and SFIMP. The SFIMP assumes that the prediction

model is estimated only once, which is more appropriate for cross-sectional data, while the PBSVp is

explicitly designed for time-series data when the out-of-sample forecasts are generated by a sequence

of fitted models based on an expanding or rolling window. Furthermore, there are substantive

differences in the algorithms used to compute the PBSVp and SFIMP (beyond the fact that the

former is based on a sequence of fitted models, while the latter is not). For example, the SFIMP uses

background data from the test sample to control for predictors not in the coalition when computing

Shapley values; in contrast, Equation (22) always uses background data from the training sample, so

we remain true to the fitted models that generate the out-of-sample forecasts.9 In sum, the PBSVp

furnishes a means for fairly allocating the out-of-sample loss for a sequence of time-series forecasts

across the individual predictors, thereby showing exactly how each predictor contributes to out-

of-sample performance. In this way, the PBSVp provides an anatomy of out-of-sample forecasting

accuracy.10

As an example of computing the PBSVp for a specific loss function, consider the RMSE criterion:

RMSE =

{
1

|W |
∑
i∈W

[
yTin+i:Tin+h+(i−1) − f̂

(
xTin+(i−1) ;Wi, h

)]2}0.5

. (25)

8In addition to the entire out-of-sample period, the PBSVp in Equation (23) can be computed for any subsample
of the forecast evaluation period; for an example, see Figure 2 for the empirical application in Section 3.

9The PBSVp has a different focus from the Shapley regressions proposed by Joseph (2021). Shapley regressions
relate the realized target values to Shapley values for the out-of-sample observations in a linear regression framework.

10We use M = 500 for the algorithms when computing the TS-Shapley-VIp in Equation (13) and the PBSVp in
Equation (23) for the empirical application in Section 3.
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To obtain the global PBSVp for the RMSE, we use the following version of Equation (22):

θ out
p,m(W,h,RMSE) = 1

|W |
∑
i∈W

yTin+i:Tin+h+(i−1) −
1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)2
0.5

−

 1

|W |
∑
i∈W

yTin+i:Tin+h+(i−1) −
1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)2
0.5

(26)

for p ∈ S. The global PBSVp in Equation (23) is then given by

φ̂outp (W,h,RMSE) =
1

2M

2M∑
m=1

θ out
p,m(W,h,RMSE) (27)

for p ∈ S. According to the efficiency property,

∑
p∈S

φ̂outp (W,h,RMSE) = RMSE− φ̂out∅ (W,h,RMSE), (28)

so we exactly decompose the out-of-sample RMSE into the contributions made by each of the

predictors.

2.3. Model Accordance Score

We use the MAS to compare predictor ranks according to the TS-Shapley-VIp in Equation (13)

and the PBSVp in Equation (23). The aim is to gauge how well the in-sample importance of the

predictors in the sequence of fitted forecasting models aligns with the predictors’ roles in determining

out-of-sample forecasting accuracy. The MAS is a type of Spearman rank correlation between a

list of P strictly positive ranks A ∈ {1, . . . , P} (corresponding to the TS-Shapley-VIp) and a list of

P both negative and positive ranks B ∈ {−P, . . . ,−1, 1, . . . , P} (corresponding to the PBSVp). A

is derived from the TS-Shapley-VIp by ranking the predictors in ascending order (with the highest

variable importance receiving the highest rank). B is derived from the PBSVp by ranking “good”

predictors (i.e., those that reduce the out-of-sample loss) separately from “bad” predictors (i.e.,

those that increase the out-of-sample loss). Good predictors are ranked in ascending order from

one to the number of good predictors, where the best predictor receives the highest rank (which is

at most P , if all of the predictors are good); bad predictors are ranked from −1 to the negative of

the number of bad predictors, where the worst predictor receives the most negative rank (which is

−P in the limit if all of the predictors are bad). In the case where all of the predictors contribute to
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lowering out-of-sample loss and the relative importance is the same according to the TS-Shapley-VIp

and PBSVp, then A = B. At the other extreme, the most important predictors according to the

TS-Shapley-VIp are the worst according to the PBSVp and contribute to increasing out-of-sample

loss, so B = −A.

We define the MAS as

MAS = 1− MSDR

E[MSDR]
, (29)

where MSDR is the weighted mean squared deviation in ranks:

MSDR =
1

P

P∑
p=1

wp

[
rank

(
TS-Shapley-VIp(W,h)

)
− signed-rank

(
φ̂outp (W,h,L)

)]2
, (30)

wp is the weight for predictor p (the weights are scaled to sum to P ), and we standardize the MSDR

in Equation (29) by dividing by the expectation of Equation (30) under the assumption that good

predictors are as likely as bad predictors in terms of the out-of-sample loss.11 The greater the

accord in ranks between the TS-Shapley-VIp and PBSVp, the lower (higher) the MSDR (MAS)

will be; when there is exact agreement between the ranks (A = B), the MSDR (MAS) reaches its

minimum (maximum) value of zero (one).

In empirical applications, certain predictors often receive substantially higher in-sample variable

importance, while others have variable importance close to zero. To account for such differences in

in-sample variable importance, we weight the differences in ranks in Equation (30) proportionally

to the TS-Shapley-VIp by setting wp =
TS-Shapley-VIp

1
P

∑P
p=1 TS-Shapley-VIp

. Note that the scaling of the weights

implies that
∑P

p=1wp = P , so the average value of the weights is one. The equal-weighted case

corresponds to wp = 1 for p = 1, . . . , P .

We test for a significant relationship between the ranks for the TS-Shapley-VIp and PBSVp

(A and B, respectively). We do so by generating a distribution for the MSDR under the null

hypothesis of no relationship between the ranks and computing an empirical p-value for the MSDR

corresponding to the original data. We generate random (i.e., unrelated) ranks under the null

hypothesis as follows. To simulate a random rank of predictors for B (PBSVp), we first draw P+ ∼
11When good predictors are as likely as bad predictors in terms of the out-of-sample loss and the weights sum to

P , it can be shown that

E[MSDR] =
1

P

(
P∑

p=1

[
wp rank

(
TS-Shapley-VIp(W,h)

)2]
+

P∑
a=0

{(
P

a

)
0.5P [S(a) + S(P − a)]

})
,

where S(n) = [n(n+ 1)(2n+ 1)]/6.
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Binomial(P, α), where α is a hyperparameter corresponding to the proportion of good predictors

anticipated by the researcher under the null hypothesis, and set P− = P−P+.12 Then, we randomly

draw a sequence of P elements from {−P−, ..,−1, 1, .., P+} without replacement. Based on the

original weights and ranks for the TS-Shapley-VIp and the randomly drawn predictor ranks for B,

we compute the MSDR in Equation (30). Repeating this many times, we generate an empirical

distribution for the MSDR under the null hypothesis and compute the empirical p-value as the

proportion of generated MSDR values that are less than or equal to the MSDR for the original

data.

We created the Python package anatomy to implement the algorithms for calculating the

TS-Shapley-VIp, PBSVp, and MAS. Section A.2 of the Online Appendix provides computational

details for the algorithms in the package.13

3. Forecasting Inflation

In this section, we use the metrics developed in Section 2 to analyze predictor relevance in out-

of-sample forecasts of US inflation. Recent evidence shows that traditional inflation benchmark

forecasts can be outperformed by the use of big data in conjunction with machine-learning methods

and that the outperformance is largely attributable to nonlinearities, especially at longer horizons

(e.g., Medeiros et al., 2021; Goulet Coulombe, 2022; Goulet Coulombe et al., 2022; Hauzenberger

et al., 2023). We forecast inflation using a large dataset and a variety of machine-learning models.

3.1. Forecasting Models

Consider the following prediction model for inflation:

πt+1:t+h = f
(
πAR
t−L:t,wt,w

MA(q)
t

)
+ εt+1:t+h, (31)

where πt+1:t+h = (1/h)
∑h

k=1 πt+k, πt = log(CPIt)− log(CPIt−1), CPIt is the month-t US consumer

price index (CPI), πAR
t−L:t = [ πt · · · πt−L ]′ collects the AR components in inflation, wt is a

vector of predictors, and w
MA(q)
t = (1/q)

∑q
k=1wt−(k−1) is a vector of moving averages (MAs) of

order q for the predictors in wt. We gather the entire set of predictors in the P -dimensional vector

xt = [ πAR
t−L:t

′
w′t w

MA(q) ′
t

]′. The inclusion of MAs of the predictors is motivated by Goulet

12Setting the hyperparameter α depends on the forecasting environment. Specifically, it should be set to the
proportion of predictors expected to contribute to reducing the loss against the model with an empty set of predictors
(commonly the unconditional mean forecast).

13While we present the TS-Shapley-VIp, PBSVp, and MAS metrics in terms of a regression problem, it is straight-
forward to adapt the metrics for a classification problem.
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Coulombe et al. (2021), who find that MAs of predictors provide substantive out-of-sample gains

for forecasting macroeconomic variables. We set q = 3, which allows predictors up to a quarter in

the past to affect the prediction. In terms of the AR components, we set L = 11, corresponding to

twelve lags of inflation in Equation (31). Based on Equation (31), the forecast of πt+1:t+h is given

by

π̂t+1:t+h = f̂(xt), (32)

where f̂ is the fitted prediction function based on data through t.

We consider a variety of machine-learning models for forecasting inflation based on Equa-

tion (31).

• Principal component regression (PCR, Stock and Watson, 2002a,b)

• Elastic net (ENet, Zou and Hastie, 2005) estimation of a linear model

• Random forest (Breiman, 2001)

• XGBoost (Chen and Guestrin, 2016)

• Neural network

The first two models are linear, while the last three allow for nonlinearities in the prediction

function. We also consider ensembles of individual forecasting models, which are popular in machine

learning. An ensemble forecast can be straightforwardly computed as a simple average of the

forecasts generated by the models in the ensemble.14

• Ensemble-linear: average of the PCR and ENet forecasts

• Ensemble-nonlinear: average of the random forest, XGBoost, and neural network forecasts

• Ensemble-all: average of PCR, ENet, random forest, XGBoost, and neural network forecasts

Section A.3 of the Online Appendix provides details for the construction of the different forecasting

models.

14The algorithm for computing the PBSVp accommodates ensemble forecasts (as shown in Section A.2 of the Online
Appendix).
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3.2. Data

We measure inflation based on the US CPI. CPI data are from the FRED database at the Federal

Reserve Bank of St. Louis (ticker CPIAUCSL). The predictors are from two data sources. We use a

set of 118 predictors from the FRED-MD database (McCracken and Ng, 2016), which is employed

by a number of recent macroeconomic forecasting studies (e.g., Kotchoni et al., 2019; Medeiros

et al., 2021; Borup and Schütte, 2022; Goulet Coulombe et al., 2022; Hauzenberger et al., 2023).

We also include three predictors from the University of Michigan Survey of Consumers.15 The

sample period covers 1960:01 to 2022:12. We specify 1960:01 to 1989:12 as the initial in-sample

period and compute out-of-sample forecasts for 1990:01 to 2022:12. As in Medeiros et al. (2021),

among others, we generate out-of-sample inflation forecasts using a rolling estimation window.

3.3. Results

An AR model of order k serves as the benchmark, where we determine k using the Bayesian

information criterion (BIC, Schwarz, 1978), considering a maximum value of twelve. We also

estimate the AR benchmark model via a rolling window. The AR model is a standard benchmark

in the macroeconomic forecasting literature, including for inflation (e.g., Kotchoni et al., 2019;

Medeiros et al., 2021).

We evaluate the forecasts using the RMSE criterion. Table 1 reports results for the accuracy

of the inflation forecasts for horizons of one, three, six, and twelve months. The table provides the

RMSE for the AR benchmark forecast, as well as the RMSE ratio for each of the competing models

vis-à-vis the AR benchmark. We use the Diebold and Mariano (1995) and West (1996) statistic to

test the null hypothesis that the MSE (in population) for the AR benchmark forecast is less than

or equal to that for the competing forecast against the (one-sided, upper-tail) alternative that the

AR forecast MSE is greater than the competing forecast MSE.16

The RMSE for the AR benchmark forecast decreases monotonically with the horizon from 0.26%

(h = 1) to 0.16% (h = 12) in Table 1. At the one-month horizon in the second column, six of the

eight competing forecasts deliver a lower RMSE than the AR benchmark (the exceptions are PCR

and XGBoost), and the improvement in forecasting accuracy is statistically significant for the ENet,

neural network, ensemble-nonlinear, and ensemble-all forecasts. The ENet, ensemble-nonlinear, and

ensemble-all forecasts provide the largest improvements in accuracy, each with an RMSE ratio of

0.93. Seven of the eight competing forecasts outperform the AR benchmark at the three-month

15Section A.4 of the Online Appendix provides a complete list of the inflation predictors.
16We use a robust standard error (Newey and West, 1987) to compute the Diebold and Mariano (1995) and West

(1996) statistic, which accounts for the autocorrelation induced by overlapping observations when h > 1.
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Table 1. Out-of-sample forecasting results

The table reports the root mean squared error (RMSE) for the autoregressive benchmark forecast and the
RSME ratio for the competing forecast in the first column vis-à-vis the autoregressive benchmark forecast
for inflation for the 1990:01 to 2022:12 out-of-sample period and the horizon (h) in the column heading.
The Diebold and Mariano (1995) and West (1996) statistic is used to test the null hypothesis that the
benchmark forecast MSE is less than or equal to the competing forecast MSE against the (one-sided, upper-
tail) alternative hypothesis that the benchmark forecast MSE is greater than the competing forecast MSE;
∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5)

Forecast h = 1 h = 3 h = 6 h = 12

Autoregressive benchmark RMSE 0.26% 0.23% 0.20% 0.16%

Principal component regression 1.08 1.01 0.96 0.92∗∗

Elastic net 0.93∗∗ 0.95∗ 0.96 0.94

Random forest 0.96 0.97 0.92∗ 0.82∗∗∗

XGBoost 1.00 0.98 0.91∗∗ 0.85∗∗∗

Neural network 0.94∗∗ 0.93∗∗ 0.94 0.83∗∗∗

Ensemble-linear 0.96 0.96 0.93∗ 0.90∗∗

Ensemble-nonlinear 0.93∗∗ 0.93∗∗ 0.90∗∗ 0.81∗∗∗

Ensemble-all 0.93∗∗ 0.93∗∗ 0.90∗∗ 0.84∗∗∗

horizon in the third column (the exception is PCR). The improvements are again significant for the

ENet, neural network, ensemble-nonlinear, and ensemble-all forecasts. The biggest gain in accuracy

is for the neural network, ensemble-nonlinear, and ensemble-all forecasts (RMSE ratio of 0.93 for

each). The results are fairly similar at the six-month horizon in the fourth column, although now

all of the competing forecasts outperform the AR benchmark, and the improvement is significant in

five cases (random forest, XGBoost, ensemble-linear, ensemble-nonlinear, and ensemble-all). The

largest gain in accuracy is for the ensemble-nonlinear and ensemble-all forecasts (RMSE ratio of

0.90 for each).

The best overall results are at the twelve-month horizon in the last column of Table 1. All

eight of the competing forecasts outperform the AR benchmark, and seven of the improvements

are significant (the exception is the ENet). The nonlinear forecasts perform very well for h = 12,

with RMSE reductions of 18%, 15%, and 17% vis-à-vis the AR benchmark for the random forest,

XGBoost, and neural network, respectively. This pattern is consistent with the recent literature

that finds that nonlinear machine-learning models are particularly useful for forecasting inflation

at longer horizons. The ensemble forecasts also perform well at the twelve-month horizon, as each

delivers a significant improvement in forecasting accuracy. Reiterating the strong performance of
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the nonlinear models, the ensemble-nonlinear forecast performs the best at the 12-month horizon,

reducing the RMSE by 19% relative to the AR benchmark.
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Figure 1. PBSV and TS-Shapley-VI: ensemble-nonlinear. The figure shows the PBSVp (left axis)
and TS-Shapley-VIp (right axis) for the ensemble-nonlinear inflation forecast for the 1990:01 to 2022:12 out-
of-sample period. The predictors on the horizontal axis are the top 20 and the bottom ten ordered according
to the PBSVp in terms of improving out-of-sample forecasting accuracy. The numbers associated with the
red bars are the predictor ranks according to the TS-Shapley-VIp.

Next, we demonstrate how our new metrics in Section 2 can be used to interpret fitted predic-

tion models by anatomizing out-of-sample forecasting performance. Figure 1 depicts the PBSVp

based on the RMSE and the TS-Shapley-VIp for the ensemble-nonlinear forecast. We focus on

the ensemble-nonlinear forecast to conserve space and because it performs well overall in Table 1.
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Figures A.1 to A.7 in the Online Appendix provide analogous versions of Figure 1 for the other

forecasts.

The different panels in Figure 1 display results for the different horizons. The predictors on the

horizontal axis in each panel are ordered according to the PBSVp in terms of their contributions

to improving out-of-sample forecasting accuracy. We refer to the predictors on the horizontal axis

by their FRED-MD abbreviations; see Table A.1 in the Online Appendix. The green (red) bars

correspond to the PBSVp (TS-Shapley-VIp).
17 To conserve space, the horizontal axis shows the

top 20 and bottom ten predictors based on the PBSVp. The numbers associated with the red bars

are the predictor ranks based on the TS-Shapley-VIp.

The green bars to the left of the dotted vertical line in each panel of Figure 1 identify the 20

predictors that contribute the most to lowering the RMSE (i.e., improving forecasting accuracy) for

the ensemble-nonlinear forecast. At the one-month horizon, the price of oil (oilpricex) is the top

contributor, highlighting the importance of oil price fluctuations in affecting short-run inflation.

The price of oil also ranks fourth at the three-month horizon. The AR components (ar) make

major contributions at all reported horizons: they rank second at the one-month horizon and first

at the other reported horizons. Other predictors that consistently rank highly across all reported

horizons in Figure 1 include the durables component of the CPI (cusr0000sad), the medical services

component of the CPI (cpimedsl), the durable goods component of the personal consumption

expenditures price index (ddurrg3m086sbea), average weekly hours for the goods producing sector

(ces0600000007), average weekly hours in manufacturing (awhman), the personal consumption

expenditures price index (pcepi), and the spreads between Aaa- and Baa-rated corporate bond

yields and the federal funds rate (aaaffm and baaffm, respectively).

According to the green bars to the right of the dotted vertical lines in Figure 1, there are a

number of predictors that substantively detract from out-of-sample forecasting accuracy, including

a number relating to housing, such as total housing starts (houst) and housing starts in the South

(housts) at all reported horizons; housing starts in the Northeast (houstne) at the one-, three-,

and six-month horizons; housing starts in the West at the three- and six-month horizons; total new

housing permits (permit) at the six- and twelve-month horizons; and new housing permits in the

Northeast (permitne) at the twelve-month horizon.

Comparing the red and green bars in Figure 1, many of the predictors listed above that are

leading contributors to out-of-sample forecasting accuracy based on the PBSVp are also among the

17In Figure 1, we sum the Shapley values for each predictor and its corresponding MA(q) term. We also sum the
Shapley values for the twelve lags of inflation.
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most important predictors on an in-sample basis according to the TS-Shapley-VIp. Nevertheless,

there are a few predictors that evince marked differences across the PBSVp and TS-Shapley-VIp to

the right of the vertical dashed lines in Figure 1. For example, housing starts in the South, which

contributes adversely to out-of-sample performance, ranks among the most important variables on

an in-sample basis at all reported horizons. Other predictors exhibiting a similar pattern include

the index of current economic conditions (soc_icc) at the six- and twelve-month horizons and

employment in the financial activities sector (usfire) at the twelve-month horizon. The MAS

values subsequently reported in Table 2 quantify the degree of accordance between predictor ranks

based on the PBSVp and TS-Shapley-VIp.

In sum, the PBSVp quantifies the contributions of predictors to the accuracy of CPI inflation

forecasts for the 1990:01 to 2022:12 out-of-sample period. It allows us to pinpoint predictors that

play leading roles in accounting for the out-of-sample gains in forecasting accuracy, as well as to

identify predictors that detract from out-of-sample forecasting accuracy. Based on Figure 1 and

Figures A.1 to A.7 in the Online Appendix, in terms of the most important predictors for improving

the accuracy of inflation forecasts across the different models, the PBSVp identifies the price of oil

at shorter horizons, as well as the AR components, the durables component of the CPI, the medical

services component of the CPI, and the spread between the Aaa-rated corporate bond yield and

the federal funds rate at all reported horizons.

We also illustrate how the PBSVp can shed light on the most important contributors to forecast-

ing accuracy for subsamples of the entire sequence of time-series forecasts. This provides a sense

of the predictor contributions to forecasting accuracy over time. Figure 2 plots the cumulative

difference in squared errors (CDSE, Goyal and Welch, 2003, 2008) between a näıve forecast that

ignores the information in the predictors and the ensemble-nonlinear forecast. We again focus on

the ensemble-nonlinear forecast to conserve space. Figures A.8 to A.14 in the Online Appendix

provide analogous versions of Figure 2 for the other forecasts. To further conserve space, we report

results for horizons of one, six, and twelve months in Figure 2.

The CDSE is a convenient and informative graphical device for ascertaining whether a com-

peting forecast is more accurate than the näıve forecast for any subsample of the out-of-sample

period. In terms of Figure 2, we compare the CDSE at the beginning and end of the interval

corresponding to a subsample. If the curve lies to the right (left) at the end of the interval relative

to the beginning, then the ensemble-nonlinear (näıve) forecast is more accurate in terms of MSE for

the subsample. In addition, we compute the PBSVp for the predictors for the ensemble-nonlinear

forecast for non-overlapping twelve-month rolling subsamples. The abbreviation to the right (left)
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Figure 2. Cumulative difference in squared errors: ensemble-nonlinear. The figure shows the
cumulative difference in squared errors for a näıve forecast that ignores the information in the predictors
vis-à-vis the ensemble-nonlinear forecast for the 1990:01 to 2022:12 out-of-sample period. Shifts to the right
(left) imply an improvement (deterioration) in forecasting accuracy relative to the näıve forecast. The figure
also shows the top (bottom) contributor to the improvement (deterioration) in forecasting performance as
identified by the PBSVp for non-overlapping twelve-month subsamples; a green (red) color for the predictor
indicates that the subsample is associated with an improvement (deterioration) in performance. Horizontal
gray bars delineate twelve-month subsamples that contain an NBER-dated recession.

of the curve in Figure 2 indicates the predictor that contributes the most to improving (detracting

from) performance during a subsample. A predictor in green (red) to the right (left) of the curve

indicates that the ensemble-nonlinear forecast delivers a lower (higher) MSE than the näıve forecast

for the twelve-month subsample. The horizontal gray bars delineate twelve-month subsamples that

contain an NBER-dated recession.

The CDSE plots in Figure 2 are consistently positively sloped (when viewed from top to bottom),

so the ensemble-nonlinear forecast outperforms the näıve forecast on a consistent basis over time.

For numerous twelve-month periods before the Great Recession in 2008, the AR components are

most responsible for the outperformance of the ensemble-nonlinear forecast, consistent with the

top and bottom two panels of Figure 1. In line with the top panel of Figure 1, at the one-month
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horizon in the left panel of Figure 2, there are eleven twelve-month periods when the price of oil is

the predictor most responsible for the outperformance of the ensemble-nonlinear forecast, including

during the Great Recession and the recent recession corresponding to the advent of COVID-19, as

well as the inflation surge starting in mid 2021. However, there are two twelve-month periods when

the price of oil detracts the most from forecasting accuracy, pointing to noteworthy time variation

in the predictor’s contribution to forecasting accuracy.

The medical services component of the CPI is the leading predictor in terms of the outperfor-

mance of the ensemble-nonlinear forecast for four of the twelve-month subsamples at the six-month

horizon in the middle panel of Figure 2, consistent with the third panel of Figure 1. Economically,

it accords with Bils and Klenow (2004), who rank medical care among the stickiest components of

the CPI (in terms of its low frequency of price adjustment), and it is an important component in

the Federal Reserve Bank of Atlanta’s Sticky-Price CPI. However, there are a few twelve-month

subsamples in the middle panel of Figure 2 when the medical services component of the CPI de-

tracts the most from forecasting accuracy. Thus, like the price of oil at the one-month horizon,

the medical services component of the CPI evinces important time variation in its contribution to

forecasting accuracy at the six-month horizon. A similar situation holds for the medical services

component of the CPI at the twelve-month horizon in the right panel of Figure 2.

Table 2. Model accordance scores

The table reports the model accordance score (MAS) for the inflation forecast in the first column for the
1990:01 to 2022:12 out-of-sample period and the horizon (h) in the column heading. The MAS compares the
predictor ranks in terms of the in-sample TS-Shapley-VIp and out-of-sample PBSVp, where a higher score
indicates greater agreement in predictor ranks; ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%
level, respectively, with the hyperparameter for the proportion of good predictors under the null hypothesis
set to α = 2/3.

(1) (2) (3) (4) (5)

Forecast h = 1 h = 3 h = 6 h = 12

Principal component regression 0.60∗∗∗ 0.58∗∗∗ 0.49∗∗ 0.45∗

Elastic net 0.55∗∗ 0.37 0.59∗∗ 0.40

Random forest 0.82∗∗∗ 0.62∗∗∗ 0.75∗∗∗ 0.88∗∗∗

XGBoost 0.53∗∗ 0.34 0.46∗ 0.57∗∗∗

Neural network 0.56∗∗∗ 0.57∗∗∗ 0.27 0.46∗

Ensemble-linear 0.64∗∗∗ 0.52∗∗ 0.54∗∗ 0.53∗∗

Ensemble-nonlinear 0.65∗∗∗ 0.61∗∗∗ 0.43 0.59∗∗∗

Ensemble-all 0.68∗∗∗ 0.64∗∗∗ 0.48∗∗ 0.65∗∗∗
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Next, we analyze the MAS in Equation (29). Table 2 reports the MAS for the different forecasts

and horizons, where we set the hyperparameter α equal to 2/3. Recall that the MAS measures

the agreement (in terms of predictor ranks) between the in-sample TS-Shapley-VIp and the out-

of-sample PBSVp. As the MAS increases, there is greater agreement between the predictors that

are deemed important in the sequence of fitted models that generate the forecasts and those that

contribute to improvements in out-of-sample forecasting accuracy. A higher MAS indicates that the

training of the sequence of prediction models identifies the most relevant predictors for improving

out-of-sample performance, thereby inspiring more confidence in the reliability of the model and

implying less reliance on good luck in accounting for a model’s out-of-sample success.

All of the MAS measures are positive in Table 2, ranging from 0.27 (neural network, h = 6) to

0.88 (random forest, h = 12). Many are statistically significant at conventional levels: 27, 24, and

16 of the 32 MAS metrics are significant at the 10%, 5%, and 1% level, respectively. Thus, there

is generally considerable agreement between the in-sample importance of predictors in the fitted

models and their contributions to out-of-sample forecasting accuracy.

The MAS measures for the ensemble-nonlinear forecast in Table 2 align with the impressions of

the results in Figure 1. The MAS is relatively large and statistically significant for the ensemble-

nonlinear forecast at the one-, three-, and twelve-month horizons. It is smaller and insignificant at

conventional levels at the six-month horizon, in line with the more sizable discrepancies in rankings

to the right of the dashed line in the third panel of Figure 1. Recall from Table 1 that the ensemble-

nonlinear forecast outperforms the AR benchmark forecast at the six-month horizon (RMSE ratio

of 0.90, significant at the 10% level). The results for the ensemble-nonlinear forecast at the six-

month horizon in Figure 1 and Table 2 suggest that the ability of the forecast to outperform the

AR benchmark involves some luck. Also, recall from Table 1 that the ensemble-nonlinear forecast

significantly outperforms the AR benchmark at horizons of one, three, and twelve months. The

MAS results in Table 2 indicate that luck plays a more limited role in the out-of-sample success of

the ensemble-nonlinear forecast at those horizons.

Finally, Figure 3 provides additional insight into links between the MAS and out-of-sample

forecasting accuracy as measured by the RMSE. Each panel in the figure depicts a quadrant plot

with RMSE (MAS) on the horizontal (vertical) axis, where both measures are standardized in the

form of Z-scores. The top-right intentional success quadrant is the most desirable, as forecasts

located there have above-average MAS and below-average RMSE.18 In contrast, the bottom-right

unintentional success quadrant is less desirable, in the sense that forecasts located there have

18Note that the RMSE on the horizontal axis is decreasing from left to right.
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Figure 3. Quadrant plots. The figure shows the RMSE and MAS Z-scores in quadrant plots for forecast
horizons of one, three, six, and twelve months in Panels A through D, respectively. The frontier of non-
dominated forecasts is highlighted (a forecast is non-dominated if no other model has a higher MAS and
a lower RMSE). Black dots are non-dominated forecasts (i.e., are on the frontier) that have above-average
MAS and below-average RMSE. Gray dots are non-dominated forecasts that have below-average MAS and
RMSE.

lower-than-average RMSE but also below-average MAS, suggesting that luck plays a larger role in

accounting for their out-of-sample success. Each quadrant plot includes a frontier of non-dominated

forecasts. A forecast is non-dominated if no other forecast has both a higher MAS and a lower

RMSE. Forecasts with black dots in Figure 3 are non-dominated forecasts with above-average MAS

and below-average RMSE (i.e., are in the intentional success quadrant); non-dominated forecasts

with gray dots have below-average MAS and RMSE (i.e., are in the unintentional success quadrant).

Panel A indicates that the random forest and ensemble-all forecasts perform well at the one-

month horizon in terms of the MAS-RMSE combination. Both forecasts are in the intentional

success quadrant and lie on the frontier. The ensemble-linear and ensemble-nonlinear forecasts

also reside in the intentional success quadrant, and the latter is very close to the frontier. At the
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three-month horizon in Panel B, the neural network, ensemble-nonlinear, and ensemble-all forecasts

stand out, as they all lie on the frontier and are in the intentional success quadrant.

Turning to the six-month horizon in Panel C, the random forest lies on the frontier and is the

only forecast in the intentional success quadrant. The ensemble-nonlinear and ensemble-all forecasts

are also on the frontier and in the unintentional success quadrant. However, the MAS metrics for

these forecasts lie close to the boundary for the intentional success quadrant, so it is unlikely that

luck plays an outsize role in explaining their out-of-sample success. At the twelve-month horizon

in Panel D, the random forest and ensemble-nonlinear forecasts lie on the frontier and are in the

intentional success quadrant, while the ensemble-all and XGBoost forecasts are in the intentional

success quadrant but not on the frontier. Overall, the quadrant plots in Figure 3 identify the

random forest, ensemble-nonlinear, and ensemble-all forecasts as among the best forecasts with

regard to intentional success.

4. Conclusion

Many economic agents rely extensively on time-series forecasts when making decisions, including

forecasts of macroeconomic and financial variables. As large datasets and machine learning grow in

popularity in macroeconomics and finance, the interpretation of forecasting models fitted with time-

series data is becoming increasingly important. We develop the PBSVp to measure the contributions

of individual predictors in fitted machine-learning models to out-of-sample forecasting accuracy,

thereby furnishing a powerful new model-interpretation tool that fosters a deeper understanding of

the sources of a model’s out-of-sample performance. The PBSVp is model agnostic—so it can be

applied to any machine-learning model—and can be used for any loss function, making it a very

flexible tool.

We develop two additional metrics to complement the PBSVp. The first is the TS-Shapley-VIp,

which extends the conventional Shapley-based variable-importance metric by measuring a predic-

tor’s importance across the entire set of fitted prediction models that generates the sequence of

out-of-sample forecasts. The second is the MAS, which compares predictor ranks based on the

TS-Shapley-VIp and PBSVp. As the MAS increases, there is greater accord between the predic-

tors’ importance in the sequence of fitted models used to generate the out-of-sample forecasts and

their importance with respect to out-of-sample performance. A relatively high MAS together with

a low average loss indicates that the model learned from the in-sample data in a manner that leads

to out-of-sample success, while a relatively low MAS and average loss suggest that luck plays a

more substantive role in the model’s out-of-sample success. In the former (latter) case, we can be
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more (less) confident that a model will continue to perform well on an out-of-sample basis going

forward.

To demonstrate the use of the PBSVp, TS-Shapley-VIp, and MAS metrics, we undertake an

empirical application forecasting monthly US inflation based on a large number of predictors and

a variety of machine-learning methods. In line with recent studies, machine-learning forecasts

generally outperform a standard AR benchmark at horizons ranging from one to twelve months.

The outperformance is the greatest at the twelve-month horizon for machine-learning methods that

allow for nonlinearities.

According to the PBSVp, predictors that play leading roles in improving forecasting accuracy

across the different models include the price of oil at shorter horizons, as well as the durables

component of the CPI, the medical services component of the CPI, and the spread between the

Baa-rated corporate bond yield and the federal funds rate at all reported horizons. Using the

MAS to compare predictor ranks based on the TS-Shapley-VIp and PBSVp, we find considerable

agreement between the in-sample importance of predictors in fitted models and their contributions

to out-of-sample forecasting accuracy, although the link is relatively weak for some models. We

use quadrant plots to identify models that deliver a relatively low RMSE combined with a high

MAS; such models successfully learn from the in-sample data to reliably improve out-of-sample

forecasting accuracy. The random forest, ensemble-nonlinear, and ensemble-all forecasts generally

perform the best in terms of the quadrant plots. Overall, our new metrics provide keen insight into

the sources of the out-of-sample forecasting accuracy of machine-learning forecasts of US inflation.

We created the Python package anatomy to facilitate the implementation of the new metrics

developed in this paper to better understand the sources of the out-of-sample forecasting accuracy

of fitted machine-learning models. In ongoing research, we are exploring strategies for using our

new metrics to refine forecasting models over time to potentially improve future out-of-sample

performance, so the metrics can serve as both interpretation and development tools for time-series

forecasting models.
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