Online Appendix for

"The Anatomy of Out-of-Sample Forecasting Accuracy"

Not for Publication

July 9, 2024

A.1. Linear Prediction Model Without Interactions

Suppose that the prediction model is linear without interactions: $f(\boldsymbol{x}_t) = \alpha + \sum_{p=1}^{P} \beta_p x_{p,t}$. The fitted prediction model is given by $\hat{f}(\boldsymbol{x}_t) = \hat{\alpha} + \sum_{p=1}^{P} \hat{\beta}_p x_{p,t}$, where $\hat{\alpha}, \hat{\beta}_1, \dots, \hat{\beta}_P$ are estimates of $\alpha, \beta_1, \dots, \beta_P$, respectively. In this case, the Shapley value in Equation (8) in the paper is given by

$$\phi_p(\boldsymbol{x}_t; W_i, h) = \hat{\beta}_p(\boldsymbol{x}_{p,t} - \bar{\boldsymbol{x}}_p) \tag{A.1}$$

for $p \in S$ and $t \in W_i$, where \bar{x}_p is the sample mean of $x_{p,t}$ for the training sample. The Shapley value in Equation (14) in the paper is given by

$$\phi_p^{\text{out}}(\boldsymbol{x}_{T_{\text{in}}+(i-1)}; W_i, h) = \hat{\beta}_p(x_{p,T_{\text{in}}+(i-1)} - \bar{x}_p)$$
(A.2)

for $p \in S$ and i = 1, ..., D - (h - 1), where $\hat{\beta}_p$ and \bar{x}_p are again the estimate of β_p and sample mean of $x_{p,t}$, respectively, based on the training sample.

Because the loss function can be nonlinear, for a prediction model that is linear without interactions, we do not have a simple expression analogous to Equations (A.1) and (A.2) for the local PBSV_p. Nevertheless, we can derive an analytical expression for the local PBSV_p for a specific loss function in this special case. For example, consider squared error loss for the *i*th out-of-sample forecast:

$$L(y_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)}, \hat{y}_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)}) = (y_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)} - \hat{y}_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)})^2.$$
(A.3)

For a linear model without interactions and Equation (A.3), the local $PBSV_p$ can be expressed as

$$\phi_{p}^{\text{out}}(\boldsymbol{x}_{T_{\text{in}}+(i-1)}; W_{i}, h, \text{SE}) = \underbrace{\hat{\beta}_{p}(x_{p,T_{\text{in}}+(i-1)} - \bar{x}_{p})}_{\phi_{p}^{\text{out}}(\boldsymbol{x}_{T_{\text{in}}+(i-1)}; W_{i}, h)} \begin{bmatrix} (\hat{y}_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)} - y_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)}) \\ -(y_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)} - \phi_{\emptyset}(W_{i}, h)) \end{bmatrix},$$
(A.4)

where $\phi_p^{\text{out}}(\boldsymbol{x}_{T_{\text{in}}+(i-1)}; W_i, h) = \hat{\beta}_p(x_{p,T_{\text{in}}+(i-1)} - \bar{x}_p)$ is from Equation (A.2). We can view $\phi_{\emptyset}(W_i, h)$ in Equation (A.4) as a naïve forecast that ignores the information in the predictors and simply uses the sample mean of the target for the training sample as the prediction. For squared error loss, the local PBSV_p measures the contribution of predictor p to the squared error for the forecast that incorporates the information in the predictors relative to the squared error for the naïve forecast that ignores the information. For a linear model without interactions, Equation (A.4) says that $\phi_p^{\text{out}}(\boldsymbol{x}_{T_{\text{in}}+(i-1)}; W_i, h, \text{SE})$ is proportional to the error for the forecast based on the set of predictors—after adjusting for the naïve forecast error—where the factor of proportionality is given by $\hat{\beta}_p(x_{p,T_{\text{in}}+(i-1)} - \bar{x}_p)$ (i.e., the Shapley value for predictor p and instance $\boldsymbol{x}_{T_{\text{in}}+(i-1)}$ for a linear model). Furthermore, the sign of $\phi_p^{\text{out}}(\boldsymbol{x}_{T_{\text{in}}+(i-1)}; W_i, h, \text{SE})$ in Equation (A.4) depends on the signs of $\hat{\beta}_p(x_{p,T_{\text{in}}+(i-1)} - \bar{x}_p)$ and the term in brackets.

To gain some intuition for Equation (A.4), suppose that the forecast is perfect:

$$\hat{y}_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)} = y_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)}.$$
(A.5)

In addition, assume that the realized target value is greater than the naïve forecast:

$$y_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)} > \phi_{\emptyset}(W_i,h), \tag{A.6}$$

so the term in brackets in Equation (A.4) is negative. If $\hat{\beta}_p(x_{p,T_{\text{in}}+(i-1)}-\bar{x}_p) > 0$, then $\phi_p^{\text{out}}(x_{T_{\text{in}}+(i-1)}; W_i, h, \text{SE}) < 0$. In this case, predictor p contributes to the forecast being higher

than the naïve forecast—since $\hat{\beta}_p(x_{p,T_{\text{in}}+(i-1)}-\bar{x}_p) > 0$ —which is in line with the realized target value being greater than the naïve forecast; accordingly, the local PBSV_p in Equation (A.4) deems that predictor p contributes to lowering the squared error vis-à-vis the naïve forecast.

Conversely, if $\hat{\beta}_p(x_{p,T_{\text{in}}+(i-1)}-\bar{x}_p) < 0$, then $\phi_p^{\text{out}}(\boldsymbol{x}_{T_{\text{in}}+(i-1)}; W_i, h, \text{SE}) > 0$. In this case, although the forecast is perfect, the local PBSV_p deems that predictor p increases the squared error vis-à-vis the naïve forecast, as p contributes to the forecast being below the naïve forecast, while the realized target value is above the naïve forecast. A perfect forecast together with $y_{T_{\text{in}}+i:T_{\text{in}}+h+(i-1)} > \phi_{\emptyset}(W_i, h)$ and $\hat{\beta}_p(x_{p,T_{\text{in}}+(i-1)}-\bar{x}_p) < 0$ imply that there are one or more other predictors $q \neq p$ for which $\hat{\beta}_q(x_{q,T_{\text{in}}+(i-1)}-\bar{x}_q) > 0$ and $\phi_q^{\text{out}}(\boldsymbol{x}_{T_{\text{in}}+(i-1)}; W_i, h, \text{SE}) < 0$, as the other predictors contribute to the forecast being higher than the naïve forecast, ultimately producing the perfect forecast.

A.2. Algorithms

We created the Python package anatomy to implement the algorithms for computing the TS-Shapley-VI_p, PBSV_p, and MAS. The algorithms divide the estimation procedure into two steps: (1) evaluate the fitted models using coalitions of predictors from the sampled permuted orders and store the forecasts; (2) compute the Shapley-based metrics from the stored forecasts. After the models are evaluated in the computationally expensive first step, arbitrary combinations of models and transformations of the forecasts can be evaluated inexpensively in the second step to compute the desired metric. Algorithm 1 provides the structure for the first step. Using the results from the first step, any metric can be computed inexpensively in the second step without the need to rerun the first step.

Algorithm 1 provides the essential components for computing the TS-Shapley-VI_p and PBSV_p: the matrix of base forecasts ($\bar{\mathbf{Y}}$), which contains the naïve forecast (i.e., the forecast based on the empty coalition of predictors) for out-of-sample period t (t = 1, ..., T) and model k (k = 1, ..., K); the matrix of model forecasts ($\hat{\mathbf{Y}}$), which contains the forecast for out-of-sample period t for model k with predictor p (p = 1, ..., P) excluded and included in the coalition of predictors preceding pin the *m*th sample $\mathcal{O}_{m,\cdot} \in \pi(P)$, denoted by $\hat{\mathbf{Y}}(t,k,p,m,1)$ and $\hat{\mathbf{Y}}(t,k,p,m,2)$, respectively. An estimate of the period-t Shapley value for predictor p for the combination forecast of the K models

- **Result:** \hat{Y} : $T \times K \times P \times 2M \times 2$ array of forecasts for T out-of-sample periods and K models evaluated over coalitions of P predictors deactivated and activated in M forward and reversed permuted orders; \bar{Y} : $T \times K$ matrix of naïve forecasts (i.e., model evaluations with empty predictor coalitions)
- Input: \hat{F} : $T \times K$ matrix of forecast functions; X: T training data matrices of sizes $\mathcal{T}_t \times P$ for t = 1, ..., T; \mathcal{X} : $P \times T$ out-of-sample data matrix; M: number of ordered permutations to draw from $\pi(P)$ Generate permutation matrix \mathcal{O} of size $M \times P$ containing M permutations of $\{1, ..., P\}$

for t = 1 to T do // loop over out-of-sample periods for k = 1 to K do // loop over models Store forecast with all predictors deactivated (naïve forecast): $\bar{\mathbf{Y}}_{t,k} = \frac{1}{T_t} \sum_{s=1}^{T_t} \hat{\mathbf{F}}_{t,k} \left(\mathbf{X}_{s,\cdot}^{(t)} \right)$ // loop over permutations for m = 1 to M do Copy order to preserve it across runs: $\boldsymbol{o}^{\dagger} = \{\boldsymbol{\mathcal{O}}_{m,1}, \dots, \boldsymbol{\mathcal{O}}_{m,P}\}$ // original and reverse order for $i \in \{0, 1\}$ do Copy training data to preserve it across runs: $\boldsymbol{X}^{\dagger} = \boldsymbol{X}^{(t)}$ Initialize previous activation as naïve forecast: $\hat{y}_{\text{pre}} = \bar{Y}_{t,k}$ for $p \in \left\{ \boldsymbol{o}_{1}^{\dagger}, \dots, \boldsymbol{o}_{P}^{\dagger} \right\}$ do // loop over predictors Store forecast with previously activated predictors: $\hat{Y}_{t,k,p,iM+m,1} = \hat{y}_{pre}$ Activate predictor p in \mathbf{X}^{\dagger} by setting all elements of column p to $\mathbf{X}_{p,t}$: $\mathbf{X}_{p,t}^{\dagger} = \mathbf{X}_{p,t}$ Store forecast with p and previously activated predictors: $\hat{Y}_{t,k,p,iM+m,2} = rac{1}{\mathcal{T}_t}\sum_{s=1}^{\mathcal{T}_t}\hat{F}_{t,k}\left(X_{s,\cdot}^{\dagger}
ight)$ Update previous activation for next iteration: $\hat{y}_{\text{pre}} = \hat{Y}_{t,k,p,iM+m,2}$ Reverse \boldsymbol{o}^{\dagger} for antithetic sampling end end end

end

Algorithm 1: Forecast evaluation of permuted orders of predictors for interventional Shapley values

in \hat{F}_t can be computed directly from the 2M samples contained in $\hat{Y}(t, \cdot, p, \cdot, 1)$ and $\hat{Y}(t, \cdot, p, \cdot, 2)$:

$$\hat{\phi}_{p,t}^{(\hat{F}_{t})} = \frac{1}{2M} \sum_{m=1}^{2M} \left[\underbrace{\frac{1}{K} \sum_{k=1}^{K} \hat{Y}(t,k,p,m,2)}_{\hat{y}_{+p,t,m}^{(\hat{F}_{t})}} - \underbrace{\frac{1}{K} \sum_{k=1}^{K} \hat{Y}(t,k,p,m,1)}_{\hat{y}_{-p,t,m}^{(\hat{F}_{t})}} \right]$$
(A.7)

for p = 1, ..., P and t = 1, ..., T, where $\hat{y}_{+p,t,m}^{(\hat{F}_t)}$ and $\hat{y}_{-p,t,m}^{(\hat{F}_t)}$ denote the period-*t* equal-weighted combination forecasts of the *K* fitted models in \hat{F}_t with *p* included and excluded, respectively, in the coalition of predictors preceding *p* in the *m*th sample of permuted orders.¹ The base prediction and the estimated Shapley values sum to the period-*t* equal-weighted combination forecast of the

¹As explained in the paper, to avoid look-ahead bias, the fitted models in \hat{F}_t are based on data through period t-1.

K models in \hat{F}_t :

$$\hat{y}_t^{\text{EW}} = \hat{\phi}_{\emptyset,t}^{\left(\hat{F}_t\right)} + \sum_{p=1}^P \hat{\phi}_{p,t}^{\left(\hat{F}_t\right)}$$
(A.8)

for t = 1, ..., T, where the base contribution to the forecast is given by

$$\hat{\phi}_{\emptyset,t}^{(\hat{F}_t)} = \frac{1}{K} \sum_{k=1}^{K} \bar{Y}_{t,k}.$$
(A.9)

To compute the TS-Shapley-VI_p, we take the average absolute value of $\hat{\phi}_{p,t}^{(\hat{F}_t)}$ in Equation (A.7) over the out-of-sample period: $(1/T) \sum_{t=1}^{T} \left| \hat{\phi}_{p,t}^{(\hat{F}_t)} \right|$ for $p = 1, \ldots, P$.

We can similarly decompose the squared error to obtain the local PBSV_p by wrapping the loss around the forecasts:

$$\hat{\phi}_{p,t}^{(L=SE)} = \frac{1}{2M} \sum_{m=1}^{2M} \left[L\left(y_t, \hat{y}_{+p,t,m}^{(\hat{F}_t)}\right) - L\left(y_t, \hat{y}_{-p,t,m}^{(\hat{F}_t)}\right) \right]$$
(A.10)

for p = 1, ..., P and t = 1, ..., T, where $SE(y_t, \hat{y}_t) = (y_t - \hat{y}_t)^2$. The local PBSV_p measures in Equation (A.10) sum to the squared error for the period-t equal-weighted combination forecast of the K models in \hat{F}_t :

$$\operatorname{SE}(y_t, \hat{y}_t^{\mathrm{EW}}) = \hat{\phi}_{\emptyset, t}^{(L=\mathrm{SE})} + \sum_{p=1}^{P} \hat{\phi}_{p, t}^{(L=\mathrm{SE})}$$
(A.11)

for $t = 1, \ldots, T$, where the base contribution to the squared loss is given by

$$\hat{\phi}_{\emptyset,t}^{(L=\text{SE})} = \text{SE}\left(y_t, \hat{\phi}_{\emptyset,t}^{((\hat{F}_t))}\right).$$
(A.12)

We can also decompose the global $PBSV_p$ —based, for example, on the root mean squared error (RMSE) criterion—for the out-of-sample period (t = 1, ..., T):

$$\hat{\phi}_{p}^{(L=\text{RMSE})} = \frac{1}{2M} \sum_{m=1}^{2M} \left[L\left(y_{1:T}, \hat{y}_{+p,1:T,m}^{(\hat{F}_{t})}\right) - L\left(y_{1:T}, \hat{y}_{-p,1:T,m}^{(\hat{F}_{t})}\right) \right]$$
(A.13)

for p = 1, ..., P, where $\text{RMSE}(y_{1:T}, \hat{y}_{1:T}) = \left[(1/T) \sum_{t=1}^{T} (y_t - \hat{y}_t)^2 \right]^{0.5}$. The global PBSV_p measures in Equation (A.13) sum to the RMSE for the equal-weighted combination forecast of the K models in \hat{F}_t for the out-of-sample period:

$$\operatorname{RMSE}(y_{1:T}, \hat{y}_{1:T}^{\mathrm{EW}}) = \hat{\phi}_{\emptyset}^{(L = \operatorname{RMSE})} + \sum_{p=1}^{P} \hat{\phi}_{p}^{(L = \operatorname{RMSE})}, \qquad (A.14)$$

where the base contribution to the RMSE is given by

$$\hat{\phi}_{\emptyset}^{(L=\text{RMSE})} = \text{RMSE}\left(y_{1:T}, \hat{\phi}_{\emptyset,1:T}^{(\hat{F}_{t})}\right).$$
(A.15)

A.3. Forecasting Model Details

A natural starting point for generating an inflation forecast based on x_t is a linear predictive regression:

$$\pi_{t+1:t+h} = \underbrace{\alpha + \mathbf{x}'_t \beta}_{f(\mathbf{x}_t)} + \varepsilon_{t+1:t+h}, \tag{A.16}$$

where α is the intercept, and $\beta = [\beta_1 \cdots \beta_P]'$ is a *P*-dimensional vector of slope coefficients. It is straightforward to estimate Equation (A.16) via ordinary least squares (OLS), leading to the forecast:

$$\hat{\pi}_{t+1:t+h}^{\text{OLS}} = \hat{\alpha}^{\text{OLS}} + \boldsymbol{x}_t' \,\hat{\boldsymbol{\beta}}^{\text{OLS}},\tag{A.17}$$

where $\hat{\alpha}^{\text{OLS}}$ and $\hat{\beta}^{\text{OLS}}$ are the OLS estimates of α and β , respectively, in Equation (A.16) based on data through t. Although straightforward to compute, the forecast in Equation (A.17) tends to perform poorly in practice. By construction, OLS maximizes the fit of the model over the training sample, which can result in in-sample overfitting and thus poor out-of-sample performance, especially since the signal-to-noise ratio for inflation is limited.

A.3.1. Principal Component Regression

An ample literature employs principal component regression (PCR, Stock and Watson, 2002a,b) as a dimension-reduction technique for large datasets to forecast macroeconomic variables, including inflation (e.g., Stock and Watson, 1999; Bernanke and Boivin, 2003; Banerjee and Marcellino, 2006). Let $\mathbf{z}_t = \begin{bmatrix} z_{1,t} & \cdots & z_{C,t} \end{bmatrix}'$ denote the vector containing the first C principal components corresponding to \mathbf{x}_t , where $C \ll P$. The PCR specification can be expressed as

$$\pi_{t+1:t+h} = \alpha_z + \mathbf{z}'_t \,\boldsymbol{\beta}_z + \varepsilon_{t+1:t+h},\tag{A.18}$$

where $\beta_z = [\beta_{z,1} \dots \beta_{z,C}]'$ is a *C*-dimensional vector of slope coefficients. The forecast corresponding to Equation (A.18) is given by

$$\hat{\pi}_{t+1:t+h}^{\text{PCR}} = \hat{\alpha}_z^{\text{OLS}} + \hat{z}_t' \hat{\beta}_z^{\text{OLS}}, \tag{A.19}$$

where $\hat{\alpha}_z^{\text{OLS}}$ and $\hat{\beta}_z^{\text{OLS}}$ are the OLS estimates of α_z and β_z , respectively, in Equation (A.18), and \hat{z}_t is the *C*-dimensional vector of the first *C* principal components computed from \boldsymbol{x}_t , all of which are based on data through *t*. Because the principal components are linear combinations of the underlying predictors in \boldsymbol{x}_t , the PCR forecast itself is linear in the predictors. Intuitively, we extract a limited set of principal components from \boldsymbol{x}_t to estimate the key latent variables that underlie the comovements among the entire set of predictors, which filters some of the noise from the predictors. The principal components then serve as predictors in a low-dimensional predictive regression with uncorrelated explanatory variables.² We select *L* in $\boldsymbol{\pi}_{t-L:t}^{\text{AR}}$ and *C* by choosing the combination that maximizes the adjusted R^2 for the training sample (allowing for maximum values of eleven and ten for *L* and *C*, respectively).

A.3.2. Elastic Net

Next, we use the elastic net (ENet, Zou and Hastie, 2005) to estimate the linear predictive regression in Equation (A.16). The ENet employs penalized regression to shrink the estimated slope coefficients toward zero to guard against overfitting, and there is evidence that penalized regression

²The principal components are uncorrelated by construction. Following convention, we standardize the predictors (using data through t) before computing the principal components.

helps to improve inflation forecasts (e.g., Medeiros and Mendes, 2016; Smeekes and Wijler, 2018). The ENet is a refinement of the least absolute shrinkage and selection operator (LASSO, Tibshirani, 1996), a seminal machine-learning device for implementing shrinkage. The LASSO relies on the ℓ_1 norm in its penalty term, so it can shrink slope coefficients to exactly zero, thereby performing variable selection. A potential drawback to the LASSO is that it tends to arbitrarily select a single predictor from a group of highly correlated predictors. The ENet mitigates this tendency by including both ℓ_1 and ℓ_2 components in its penalty term; the latter is from ridge regression (Hoerl and Kennard, 1970).

The objective function for ENet estimation of Equation (A.16) can be expressed as

$$\underset{\alpha,\beta}{\operatorname{arg\,min}} \frac{1}{2[t - (h - 1) - 1]} \left\{ \sum_{s=1}^{t - (h - 1) - 1} \left[\pi_{s+1:s+h} - \left(\alpha + x'_s \beta\right) \right]^2 \right\} + \lambda P_{\delta}(\beta), \tag{A.20}$$

where

$$P_{\delta}(\beta) = 0.5(1-\delta) \|\beta\|_{2}^{2} + \delta \|\beta\|_{1};$$
(A.21)

 $\lambda \geq 0$ is a hyperparameter that governs the degree of shrinkage; $\|\cdot\|_1$ and $\|\cdot\|_2$ are the ℓ_1 and ℓ_2 norms, respectively; and $0 \leq \delta \leq 1$ is a hyperparameter for blending the ℓ_1 and ℓ_2 components in the penalty term.³ We follow the recommendation of Hastie et al. (2023) and set $\delta = 0.5$, which they point out results in a stronger tendency to select highly correlated predictors as a group. To tune λ , we use a walk-forward cross-validation procedure designed for a time-series context. The ENet forecast based on Equation (A.16) is given by

$$\hat{\pi}_{t+1:t+h}^{\text{ENet}} = \hat{\alpha}^{\text{ENet}} + \boldsymbol{x}_t' \,\hat{\boldsymbol{\beta}}^{\text{ENet}},\tag{A.22}$$

where $\hat{\alpha}^{\text{ENet}}$ and $\hat{\beta}^{\text{ENet}}$ are the ENet estimates of α and β , respectively, in Equation (A.16) based on data through t.

³The ENet objective function in Equation (A.20) reduces to that for OLS when $\lambda = 0$. If $\delta = 1$ ($\delta = 0$), then Equation (A.20) corresponds to the LASSO (ridge) objective function.

A.3.3. Random Forest

Random forests (Breiman, 2001) build on regression trees, machine-learning devices for incorporating nonlinearities in a flexible manner via multi-way interactions and higher-order effects of the predictors. A random forest uses an ensemble of "deep" decision trees and has a strong track record in macroeconomic forecasting (e.g., Medeiros et al., 2021; Borup and Schütte, 2022; Goulet Coulombe et al., 2022). A regression tree is constructed by sequentially splitting the predictor space into regions, with the final set of regions referred to as "terminal nodes" or "leaves." The prediction is the average value of the target in a given leaf. We can express the forecast corresponding to a regression tree with U leaves as

$$\hat{\pi}_{t+1:t+h}^{\text{RT}} = \sum_{u=1}^{U} \bar{\pi}_u \mathbf{1}_u(\boldsymbol{x}_t; \hat{\boldsymbol{\eta}}_u), \qquad (A.23)$$

where the indicator function $\mathbf{1}_u(\mathbf{x}_t; \hat{\mathbf{\eta}}_u) = 1$ if $\mathbf{x}_t \in R_u(\hat{\mathbf{\eta}}_u)$ for the *u*th region denoted by R_u (which is determined by the estimated parameter vector $\hat{\mathbf{\eta}}_u$) and 0 otherwise, and $\bar{\pi}_u$ is the average value of the target observations in R_u for the training sample based on data through t.

A large (i.e., deep) regression tree is typically able to capture complex nonlinear relationships in the data. However, in light of the bias-variance trade-off, it is susceptible to overfitting due to the high variance of the tree. A random forest reduces the variance by averaging forecasts across many deep regression trees, where each tree is constructed based on a bootstrap sample of the original data using a randomly selected subset of the predictors for each split. By using a randomly selected subset of the predictors, we "decorrelate" the trees to further reduce the variance. Indexing the bootstrap samples by b, the random forest forecast is given by

$$\hat{\pi}_{t+1:t+h}^{\rm RF} = \frac{1}{B} \sum_{b=1}^{B} \left[\sum_{u=1}^{U} \bar{\pi}_{u}^{(b)} \mathbf{1}_{u}^{(b)}(\boldsymbol{x}_{t}; \hat{\boldsymbol{\eta}}_{u}) \right],$$
(A.24)

where *B* is the number of bootstrap samples, and $\bar{\pi}_u^{(b)}$ and $\mathbf{1}_u^{(b)}(\boldsymbol{x}_t; \hat{\boldsymbol{\eta}}_u)$ are the counterparts to $\bar{\pi}_u$ and $\mathbf{1}_u(\boldsymbol{x}_t; \hat{\boldsymbol{\eta}}_u)$, respectively, in Equation (A.23) for the *b*th bootstrap sample. We set B = 500and let each tree grow fully deep. The proportion of predictors randomly selected for each split is tuned via a walk-forward cross-validation procedure.

A.3.4. XGBoost

Another strategy for forecasting with a regression tree is a boosted tree, which is based on gradient boosting (Breiman, 1997; Friedman, 2001), a sequential ensemble method for improving out-of-sample prediction. The basic idea is to fit a prediction function additively:

$$\hat{f}(\boldsymbol{x}_t; \hat{\boldsymbol{\eta}}) = \sum_{j=1}^{J} \hat{f}_j(\boldsymbol{x}_t; \hat{\boldsymbol{\eta}}_j).$$
(A.25)

Each function $\hat{f}_j(\boldsymbol{x}_t; \hat{\boldsymbol{\eta}}_j)$ on the right-hand-side of Equation (A.25) is a "weak" learner (i.e., a relatively simple model); for a boosted tree, $\hat{f}_j(\boldsymbol{x}_t; \hat{\boldsymbol{\eta}}_j)$ corresponds to a fitted tree with a forecast of the form in Equation (A.23). Relatively simple models help to guard against overfitting; however, they are more likely to be exhibit substantive bias and thus poor fit. Boosting improves the fit by adding another tree that is trained using the residuals from the previous function in the sequence. In sum, boosting entails constructing a sequence of relatively "shallow" trees, which are then combined into an ensemble. While a random forest starts with a deep tree with low bias and uses bagging across a large number of trees to reduce the variance, a boosted tree starts with a shallow tree with low variance and refines the tree to reduce the bias.

Friedman (2002) proposes stochastic gradient boosting to make boosting more robust. Instead of basing each $\hat{f}_j(\boldsymbol{x}_t; \hat{\boldsymbol{\eta}}_j)$ in Equation (A.25) on all of the training data, each element is based on a randomly drawn (without replacement) subsample of the data. We fit boosted trees via stochastic gradient boosting using the popular XGBoost algorithm (Chen and Guestrin, 2016), where we tune the hyperparameters for the algorithm using a walk-forward cross-validation procedure. XGBoost performs well in forecasting competitions in a range of domains.

A.3.5. Neural Network

Our final forecasting model is a feedforward neural network. Neural networks are flexible machinelearning devices that permit general forms of nonlinearities. A neural network contains multiple layers. The first is the input layer, which is comprised of the set of predictors, followed by $L \ge 1$ hidden layers. Each hidden layer l contains P_l neurons, where each neuron takes signals from the neurons in the previous layer to generate a subsequent signal via a nonlinear activation function:

$$h_m^{(l)} = g\left(\omega_{m,0}^{(l)} + \sum_{j=1}^{P_{l-1}} \omega_{m,j}^{(l)} h_j^{(l-1)}\right)$$
(A.26)

for $m = 1, ..., P_l$ and l = 1, ..., L, where $h_m^{(l)}$ is the signal corresponding to the *m*th neuron in the *l*th hidden layer⁴; $\omega_{m,0}^{(l)}, \omega_{m,1}^{(l)}, ..., \omega_{m,P_{l-1}}^{(l)}$ are weights; and $g(\cdot)$ is the activation function. The output layer is the final layer. It takes the signals from the last hidden layer and converts them into a prediction:

$$\hat{\pi}_{t+1:t+h}^{\text{NN}} = \omega_0^{(L+1)} + \sum_{j=1}^{P_L} \omega_j^{(L+1)} h_j^{(L)}.$$
(A.27)

The activation function determines the strength of the signal passed through the network. For the activation function, we use the popular rectified linear unit (ReLU) function: $g(x) = \max\{x, 0\}$. The interactions in the network and activation function permit complex nonlinearities as the inputs feed through to the hidden layers and finally to the output layer.

Theoretically, a single hidden layer is sufficient for approximating any smooth function (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989; Hornik, 1991; Barron, 1994); however, there are potential advantages to including multiple hidden layers in neural networks (Goodfellow et al., 2016; Rolnick and Tegmark, 2018). Determining the neural network architecture (i.e., the number of hidden layers and the number of neurons in each layer) for a given application is largely an empirical matter, and we cannot know that the optimal architecture has been selected (Goodfellow et al., 2016). Accordingly, we choose an equal-weighted ensemble of two different architectures: a "shallow" neural network with one hidden layer and a "deep" neural network with three hidden layers. We follow a conventional geometric pyramid rule (Masters, 1993) in setting the number of neurons in the hidden layers, so the shallow neural network has $\lceil \sqrt{P} \rceil$ neurons in its hidden layer, while the deep neural network has $\lceil P^{3/4} \rceil$, $\lceil P^{2/4} \rceil$, and $\lceil P^{1/4} \rceil$ in its first, second, and third hidden layers, respectively.

We fit the neural networks (i.e., estimate the weights) by minimizing the training sample MSE using the Adam stochastic gradient descent algorithm (Kingma and Ba, 2015). To reduce the

⁴For the first hidden layer, $h_j^{(0)} = x_{j,t}$ for $j = 1, \dots, P$.

influence of the random number generator in the initialization of the weights when fitting the neural networks, we fit each model 199 times with a different seed each time and use the median of the predictions.⁵

A.4. Inflation Predictors

The data for the inflation predictors are from two sources. The first is the FRED-MD database (McCracken and Ng, 2016). Table A.1 lists the 118 variables from FRED-MD and their abbreviations. The second source is the University of Michigan Survey of Consumers, from which we use three variables: Index of Consumer Sentiment (soc_ics), Index of Consumer Expectations (soc_ice), and Index of Current Economic Conditions (soc_icc). The variables from the University of Michigan Survey of Consumers are specified in levels.

References

- Banerjee, A. and M. Marcellino (2006). Are there any reliable leading indicators for US inflation and GDP growth? *International Journal of Forecasting* 22(1), 137–151.
- Barron, A. R. (1994). Approximation and estimation bounds for artificial neural networks. Machine Learning 14(1), 115–133.
- Bernanke, B. S. and J. Boivin (2003). Monetary policy in a data-rich environment. Journal of Monetary Economics 50(3), 525–546.
- Borup, D. and E. C. M. Schütte (2022). In search of a job: Forecasting employment growth using Google Trends. Journal of Business & Economic Statistics 40(1), 186–200.
- Breiman, L. (1997). Arcing the edge. Technical Report 486, Statistics Department, University of California, Berkeley.

Breiman, L. (2001). Random forests. Machine Learning 45(1), 5–32.

⁵Although the Adam algorithm is a powerful optimizer, it is our experience that neural networks at times get stuck near local minima. Using the median of 199 fitted neural networks substantially reduces the influence of local minima in computing the prediction. We fit the neural networks using the scikit-learn package in Python. We augment the objective function with an ℓ_2 penalty term and set the hyperparameter for the ℓ_2 penalty term to 0.0001 in the MPLregressor function. The batch size and number of epochs are set to 32 and 1,000, respectively.

- Chen, T. and C. Guestrin (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794.
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals, and Systems* 2(4), 303–314.
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics 29(5), 1189–1232.
- Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis 38(4), 367–378.
- Funahashi, K.-I. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks 2(3), 183–192.
- Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. Boston: MIT Press.
- Goulet Coulombe, P., M. Leroux, D. Stevanovic, and S. Surprenant (2022). How is machine learning useful for macroeconomic forecasting? *Journal of Applied Econometrics* 37(5), 920–964.
- Hastie, T., J. Qian, and K. Tay (2023). An introduction to glmnet. Manuscript.
- Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: Applications to nonorthogonal problems. *Technometrics* 12(1), 69–82.
- Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks 4 (2), 251–257.
- Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are universal approximators. *Neural Networks* 2(5), 359–366.
- Kingma, D. P. and J. Ba (2015). Adam: A method for stochastic optimization. In Proceedings of the Third Annual International Conference on Learning Representations.
- Masters, T. (1993). Practical Neural Network Recipes in C++. Boston: Academic Press.

- McCracken, M. W. and S. Ng (2016). FRED-MD: A monthly database for macroeconomic research. Journal of Business & Economic Statistics 34 (4), 574–589.
- Medeiros, M. C. and E. F. Mendes (2016). ℓ_1 -regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors. *Journal of Econometrics* 191(1), 255–271.
- Medeiros, M. C., G. F. R. Vasconcelos, Álvaro Veiga, and E. Zilberman (2021). Forecasting inflation in a data-rich environment: The benefits of machine learning methods. *Journal of Business & Economic Statistics 39*(1), 98–119.
- Rolnick, D. and M. Tegmark (2018). The power of deeper networks for expressing natural functions.In Sixth Annual International Conference on Learning Representations.
- Smeekes, S. and E. Wijler (2018). Macroeconomic forecasting using penalized regression methods. International Journal of Forecasting 34 (3), 408–430.
- Stock, J. H. and M. W. Watson (1999). Forecasting inflation. Journal of Monetary Economics 44(2), 293–335.
- Stock, J. H. and M. W. Watson (2002a). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97(460), 1167–1179.
- Stock, J. H. and M. W. Watson (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics 20(2), 147–162.
- Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288.
- Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 67(2), 301–320.

Table A.1. FRED-MD variables

The table lists the 118 variables and their abbreviations from FRED-MD that are used as inflation predictors. The third and sixth columns indicate the transformations for the predictors.

(1)	(2)	(3)	(4)	(5)	(6)
(+)	(~)	Transform-	(*)	(0)	Transform-
Variable	Abbreviation	ation	Variable	Abbreviation	ation
Real Personal Income	rpi	$\Delta \log$	All Employees: Total Nonfarm	payems	$\Delta \log$
Real Personal Income Excluding Current Transfer Receipts	w875rx1	$\Delta \log$	All Employees: Goods-Producing Industries	usgood	$\Delta \log$
Real Consumption	dpcera3m086sbea	$\Delta \log$	All Employees: Mining	ces1021000001	$\Delta \log$
Real Manufacturing & Trade Industries Sales	cmrmtsplx	$\Delta \log$	All Employees: Construction	uscons	$\Delta \log$
Retail & Food Services Sales	retailx	$\Delta \log$	All Employees: Manufacturing	manemp	$\Delta \log$
Industrial Production: Total Index	indpro	$\Delta \log$	All Employees: Durable Goods	dmanemp	$\Delta \log$
Industrial Production: Final Products and Nonindustrial Supplies	ipfpnss	$\Delta \log$	All Employees: Nondurable Goods	ndmanemp	$\Delta \log$
Industrial Production: Final Products	ipfinal	$\Delta \log$	All Employees: Service-Providing Industries	srvprd	$\Delta \log$
Industrial Production: Consumer Goods	ipcongd	$\Delta \log$	All Employees: Trade, Transport- ation & Utilities	ustpu	$\Delta \log$
Industrial Production: Durable Consumer Goods	ipdcongd	$\Delta \log$	All Employees: Wholesale Trade	uswtrade	$\Delta \log$
Industrial Production: Nondurable Consumer Goods	ipncongd	$\Delta \log$	All Employees: Retail Trade	ustrade	$\Delta \log$
Industrial Production: Business Equipment	ipbuseq	$\Delta \log$	All Employees: Financial Activities	usfire	$\Delta \log$
Industrial Production: Materials	ipmat	$\Delta \log$	All Employees: Government	usgovt	$\Delta \log$
Industrial Production: Durable Materials	ipdmat	$\Delta \log$	Average Weekly Hours: Goods Producing	ces0600000007	None
Industrial Production: Nondurable Materials	ipnmat	$\Delta \log$	Average Weekly Overtime Hours: Manufacturing	awotman	Δ
Industrial Production: Manufacturing (SIC)	ipmansics	$\Delta \log$	Average Weekly Hours: Manufact- uring	awhman	None
Industrial Production: Residential Utilities	ipb51222s	$\Delta \log$	Housing Starts: Total	houst	log
Industrial Production: Fuels	ipfuels	$\Delta \log$	Housing Starts: Northeast	houstne	log
Capacity Utilization: Manufacturing	cumfns	Δ	Housing Starts: Midwest	houstmw	log
Non-farm vacancies	hwi	$\Delta \log$	Housing Starts: South	housts	log
HWI/(# unemployed)	hwiuratio	Δ	Housing Starts: West	houstw	log
Civilian Labor Force	clf16ov	$\Delta \log$	New Private Housing Permits: Total	permit	log
Civilian Employment	ce16ov	$\Delta \log$	New Private Housing Permits: Northeast	permitne	log
Unemployment Rate	unrate	Δ	New Private Housing Permits: Midwest	permitmw	log
Average Duration of Unemployment (Weeks)	uempmean	Δ	New Private Housing Permits: South	permits	log log
Number Unemployed—Less Than 5 Weeks	uemplt5	$\Delta \log$	New Private Housing Permits: West	permitw	log
Number Unemployed for 5–14 Weeks	uemp5to14	$\Delta \log$	New Orders for Durable Goods	amdmnox	$\Delta \log$
Number Unemployed—15 Weeks & Over	uemp15ov	$\Delta \log$	Unfilled Orders for Durable Goods	amdmuox	$\Delta \log$
Number Unemployed for 15–26 Weeks	uemp15t26	$\Delta \log$	Total Business Inventories	businvx	$\Delta \log$
Number Unemployed for 27 Weeks & Over	uemp27ov	$\Delta \log$	Total Business: Inventories to Sales Ratio	isratiox	Δ
Initial Claims	claimsx	$\Delta \log$	Monetary Base	bogmbase	$\Delta \log$

Table A.1 (continued)

(1)	(2)	(3)	(4)	(5)	(6)
Variable	Abbreviation	Transform- ation	Variable	Abbreviation	Transform- ation
Total Reserves of Depository Institutions	totresns	$\Delta \log$	Japan/US Foreign Exchange Bate	exipusx	Δlog
Nonborrowed Reserves of Depository Institutions	nonborres	$\Delta \log$	US/UK Foreign Exchange Rate	exusukx	$\Delta \log$
Commercial & Industrial Loans	busloans	$\Delta \log$	Canada/US Foreign Exchange Rate	excausx	$\Delta \log$
Real Estate Loans at All Commercial Banks	realln	$\Delta \log$	Producer Price Index: Finished Goods	wpsfd49207	$\Delta \log$
Total Nonrevolving Credit	nonrevsl	$\Delta \log$	Producer Price Index: Finished Consumer Goods	wpsfd49502	$\Delta \log$
Nonrevolving Consumer Credit to Personal Income	conspi	Δ	Producer Price Index: Intermediate Materials	wpsid61	$\Delta \log$
S&P Common Stock Price Index: Composite	s&p500	$\Delta \log$	Producer Price Index: Crude Materials	wpsid62	$\Delta \log$
S&P Common Stock Price Index: Industrial	s&p:indust	$\Delta \log$	Crude Oil Price (Spliced WTI & Cushing)	oilpricex	$\Delta \log$
S&P 500 Index Dividend Yield	s&p:divyield	Δ	Producer Price Index: Metals & Metal Products	ppicmm	$\Delta \log$
S&P PE Ratio	s&p:peratio	$\Delta \log$	Consumer Price Index: Apparel	cpiappsl	$\Delta \log$
Effective Federal Funds Rate	fedfunds	Δ	Consumer Price Index: Transportation	cpitrnsl	$\Delta \log$
3-Month AA Financial Commercial Paper Rate	cp3mx	Δ	Consumer Price Index: Medical Care	cpimedsl	$\Delta \log$
3-Month Treasury Bill Rate	tb3ms	Δ	Consumer Price Index: Commodities	cusr0000sac	$\Delta \log$
6-Month Treasury Bill Rate	tb6ms	Δ	Consumer Price Index: Durables	cusr0000sad	$\Delta \log$
1-Year Treasury Note Rate	gs1	Δ	Consumer Price Index: Services	cusr0000sas	$\Delta \log$
5-Year Treasury Note Rate	gs5	Δ	Consumer Price Index: All Items Less Food	cpiulfsl	$\Delta \log$
10-Year Treasury Bond Rate	gs10	Δ	Consumer Price Index: All Items Less Shelter	cusr0000sa012	$\Delta \log$
Moody's Seasoned Aaa Corporate Bond Rate	aaa	Δ	Consumer Price Index: All Items Less Medical Care	cusr0000sa015	$\Delta \log$
Moody's Seasoned Baa Corporate Bond Rate	baa	Δ	Personal Consumption Expenditures Price Index: Total	pcepi	$\Delta \log$
3-Month Commercial Paper Minus Federal Funds Rate	compapffx	None	Personal Consumption Expenditures Price Index: Durable Goods	ddurrg3m086sbea	$\Delta \log$
3-Month Treasury Bill Minus Federal Funds Rate	tb3smffm	None None	Personal Consumption Expenditures Price Index: Nondurable Goods	dndgrg3m086sbea	$\Delta \log$
6-Month Treasury Bill Minus Federal Funds Rate	tb6smffm	None	Personal Consumption Expenditures Price Index: Services	dserrg3m086sbea	$\Delta \log$
1-Year Treasury Note Minus Federal Funds Rate	tlyffm	None	Average Hourly Earnings: Goods Producing	ces060000008	$\Delta \log$
5-Year Treasury Note Minus Federal Funds Rate	t5yffm	None	Average Hourly Earnings: Construction	ces200000008	$\Delta \log$
10-Year Treasury Bond Minus Federal Funds Rate	t10yffm	None	Average Hourly Earnings: Manufacturing	ces300000008	$\Delta \log$
Moody's Aaa Corporate Bond Minus Federal Funds Rate	aaaffm	None	Consumer Motor Vehicle Loans Outstanding	dtcolnvhfnm	$\Delta \log$
Moody's Baa Corporate Bond Minus Federal Funds Rate	baaffm	None	Total Consumer Loans & Leases Outstanding	dtcthfnm	$\Delta \log$
Switzerland/US Foreign Exchange Rate	exszusx	$\Delta \log$	Securities in Bank Credit at All Commercial Banks	invest	$\Delta \log$

Figure A.1. PBSV and TS-Shapley-VI: PCR. The figure shows the $PBSV_p$ (left axis) and TS-Shapley-VI_p (right axis) for the PCR inflation forecast for the 1990:01 to 2022:12 out-of-sample period. The predictors on the horizontal axis are the top 20 and the bottom ten ordered according to the PBSV_p in terms of improving out-of-sample forecasting accuracy. The numbers associated with the red bars are the predictor ranks according to the TS-Shapley-VI_p.

Figure A.2. PBSV and TS-Shapley-VI: ENet. See the notes to Figure A.1 with "ENet" replacing "PCR."

Figure A.3. PBSV and TS-Shapley-VI: random forest. See the notes to Figure A.1 with "random forest" replacing "PCR."

Figure A.4. PBSV and TS-Shapley-VI: XGBoost. See the notes to Figure A.1 with "XGBoost" replacing "PCR."

Figure A.5. PBSV and TS-Shapley-VI: neural network. See the notes to Figure A.1 with "neural network" replacing "PCR."

Figure A.6. PBSV and TS-Shapley-VI: ensemble-linear. See the notes to Figure A.1 with "ensemble-linear" replacing "PCR."

Figure A.7. PBSV and TS-Shapley-VI: ensemble-all. See the notes to Figure A.1 with "ensemble-all" replacing "PCR."

1990 -	ddurrg3m086sbea e houstne $h = 1$	ces060000008 cpimedsl	h = 6	usfire e compapffx	h = 12
	soc_ice • housts	soc_ice • housts		exjpusx 🔶 usfire	
1992 -	soc_ice • ar	soc_ics ar		exszusx 🌒 houst	
	soc_ice • ar	claimsx 🌢 ar		soc_ice ar	
1994 -	gs5 🌢 ar	usfire a r		usfire ar	
	exjpusx 🌢 ar	busloans 🌢 ar		uswtrade 🍳 ar	
1996 -	amdmuox 🌢 ar	s&p: indust 🌢 ar		s&p 500 🔪 ar	
-	ipbused ar	s&p 500 e ar		s&p 500 🖉 ar	
1998 -	t5yffm e ar	ustire a r		s&p 500 🗨 ar	
-	dndgrg3m086sbea • ar	housts • ar		s&p: indust 🎽 ar	
2000 -	cpitrnsi e ar	realin e ai	r 	noustmw ar	
	compapitx • ar	toyiim •	ar	tioyiim •	ar
2002 -	realin ar	uemp150V	ar	usgovi	ar
2004		really		really	
2004 -	wpsid61 a oilpricex	cuer0000eac	ar	houst	
2006 -	aaaffm ar	amdmuox	Ces300000008	wpsid61	Ces300000008
2000 -	cpitrnsl e cpimedsl	soc ice	realin	amdmuox	ces3000000008
2008 -	totresns cusr0000sa0l2	wpsid61	realln	ar	houstw
2000 -	bogmbase soc ics	ar	totresns	wpsid61	cpimedsl
2010 -	houstmw • s&p pe ratio	houstmw	ar	s&p pe ratio	ar
	ar ● s&p 500	ar 🖕	houstmw	realln	houstmw
2012 -	cpiappsl 🛛 ar	cpiappsl •	aaaffm	cpiappsl	houstne
	hwiuratio e conspi	uempmean	cpimedsl	ndmanemp	cpimedsl
2014 -	uempmean 🔷 oilpricex	hwiuratio (cpimedsl	ndmanemp	cpimedsl
-	hwiuratio • oilpricex	ndmanemp	cpimedsl	ndmanemp	cpimedsl
2016 -	dtcthfnm	ces1021000001	e ar	ces1021000001	cpimedsl
-	ddurrg3m086sbea e cpimedsl	ddurrg3m086sbea	cpimedsl	ces1021000001	🛉 ar
2018 -	fedfunds 🛛 baa	cusr0000sad	excausx	cusr0000sad	 excausx
-	bogmbase exusukx	aaaffm	cpimedsl	soc_icc	cpimedsl
2020 -	ce16ov v uemp5to14	srvprd 🗸	cpiappsl	amdmuox	• t5yffm
-	soc_icc • cusr0000sa0l5	cpimedsl 🔶	uemp15t26	ipfinal	• unrate
2022 -	baa b ddurrg3m086sbea	baa 🌢	ddurrg3m086sbea	rpi	 ddurrg3m086sbea
-		← underperformance of	outperformance \rightarrow		
			1		1
	0 .0007 .0014	0 .0004	.0000	0 .0004	.0006

Figure A.8. Cumulative difference in squared errors: PCR. The figure shows the cumulative difference in squared errors for a naïve forecast that ignores the information in the predictors vis-à-vis the PCR forecast for the 1990:01 to 2022:12 out-of-sample period. Shifts to the right (left) imply an improvement (deterioration) in forecasting accuracy relative to the naïve forecast. The figure also shows the top (bottom) contributor to the improvement (deterioration) in forecasting accuracy relative to the naïve forecast. The figure also shows the top (bottom) contributor to the improvement (deterioration) in forecasting performance as identified by the PBSV_p for non-overlapping twelve-month subsamples; a green (red) color for the predictor indicates that the subsample is associated with an improvement (deterioration) in performance. Horizontal gray bars delineate twelve-month subsamples that contain an NBER-dated recession.

	1	I I			1		
1990 -	usfire e oilpricex $h = 1$	usfire 🖣 🗄	baaffm	h = 6	usfire 🛉	compapffx	h = 12
-	soc_ice oilpricex	soc_ice 🖣	рсері		soc_ice 🍳	usfire	
1992 -	soc_ice 🖣 ar	_ ≷	pcepi		soc_ice	usfire	
	soc_ice 🖣 ar	soc_ice	pcepi		soc_ice	🔍 ar	
1994 –	fedfunds ar	soc_ice	e 🍳 pcepi		soc_ic	e 🍋 ar	
1000	baattm 🌒 ar	ppicm	ım 🎈 ar		ppicn	nm ar	
1996 -		amami			sæp		
1000]	baaffm ar		haaffm a soc	ice	anne		
1990	oilpricex ar		baaffm soc	ice		houstmy	c ice
2000 -	wpsfd49502 • oilpricex		amdmuox so	c ice		houstmw so	o_ice
	nonborres cusr0000sad		permitw s	- ice		amdmuox 🛓 s	oc_ice
2002 -	realln 🖕 ar		houstmw	baaffm		permitw 💊	amdmuox
-	wpsfd49207 oilpricex		permitw	baaffm		permitw	ar
2004 -	houstw 🛉 ar		houstw	🛉 ar		permitw	ar
	conspi 🔙 oilpricex		houstw	• ar		amdmuox	🛉 ar
2006 -	baaffm 🍹 ar		amdmuox	ddurrg3m086sbea		amdmuox	ddurrg3m086sbea
	oilpricex ar		pcepi	• ddurrg3m086sbea		amdmuox	ddurrg3m086sbea
2008 -			рсері	ρ baaπm		pcepi	amdmuox
2010	ar skip div yleid		inhusog	pcepi		рсерг	adurrgsmusosbea
2010]	totresps roi			inhusea		cnimedsl	uswtrade
2012			ipbusea	cpimedsl		wpsid61	cpimedsl
	ipb51222s • rpi		uemp27ov	cpimedsl		uswtrade	cpimedsl
2014 -	totresns • oilpricex		· · •	cpimedsl		ustpu	cpimedsl
	tb3ms 🎍 oilpricex		soc_icc 🖕	cpimedsl		wpsid61	cpimedsI
2016 -	totresns oilpricex		soc_icc 🔶	cpimedsl		wpsid61	cpimedsl
-	totresns • oilpricex		soc_icc 🛉	cpimedsl		cpimeds	e ces0600000007
2018 -	ar 🌒 ipb51222s		cpimedsl 🖕	ipbuseq		cpimedsl	 fedfunds
	totresns rpi		aaaffm 🌶	cpimedsl		soc_icc	cpimedsl
2020 -	ce16ov oilpricex		ipbuseq 🦸	awhman		cpimeds	houstmw
	cpimedsi oliprice	۲ ۲	ipbused	pnmat	d	ocera3m086sbea	awhman
2022 -	sap aiv yield 🖲 ar		•			cpimedsi	 ipideis
1		← underpe	rtormance	outperformance →			
	0 .0007 .0014	0	.0004	.0008	Ċ	.0004	.0008

Figure A.9. Cumulative difference in squared errors: ENet. See the notes to Figure A.8 with "ENet" replacing "PCR."

1990 -	wpsfd49207 oilpricex	h = 1	wpsid61 compapffx	<i>h</i> = 6	pcepi t5yffm	h = 12
1992 -	houstne ar		conspi ar		soc_ice pcepi	
	cusr0000sac 🖕 ar		conspi 🔪 ar		conspi 🖕 pcepi	
1994 -	ces1021000001 💊 ar		permit 💊 ar		exusukx 💊 pcepi	
-	oilpricex 🖣 ar		wpsid61 🖢 ar		ppicmm 🔖 pcepi	
1996 -	wpsid62 🖕 ar		baaffm 🔌 ar		baaffm 🖢 ar	
	ces1021000001 🖉 wpsfd49207		usfire 🔌 ar		wpsid62 🔪 ar	
1998 –	gs10 🎙 ar		baaffm 🍡 ar		permit 🗨 ar	
	oilpricex • ar		t5yffm 🎙 ar		baaffm 🎙 ar	
2000 -	wpstd49207 aaaffm		realin ar		realin pce	pi oni
2002]	cesobooooor of officex		cos060000007	ar	usire pc	epi
2002]	wpsfd49207		realln	ar	realln	nceni
2004 -	wpsid62 oilpric	ex	houstmw	ar	realln	ar
2004	cusr0000sas e oilpric	ex	amdmuox	• ar	houstw	ar
2006 -	permitmw oilpr i	cex	houstne	ddurrg3m086sbea	рсері	ddurrg3m086sbea
	oilpricex crealIn		aaaffm	ddurrg3m086sbea	houstne	ddurrg3m086sbea
2008 -	soc_ics	oilpricex	ddurrg3m086sbea	aaaffm	tb3smffm	baaffm
-	oilpricex 📢	realln	soc_ics •	рсері	usfire	🛉 рсері
2010 -	oilpricex 🔶	realln	permitmw 🔶	uswtrade	usfire	cpimedsl
	soc_ics •	oilpricex	cpimedsl 🔶	uswtrade	cpimedsl	 wpsid62
2012 -	ipb51222s 🌢	oilpricex	houstmw 🔶	soc_ics	usfire	 houstne
	oilpricex •	cusr0000sac	usgood	awhman	ndmanemp	• awhman
2014 -	housts	ollpricex	housts	awhman	ustire	houstmw
2016	riousts	onpricex	housts	awnman	nouse	s foustmw
2010]	oliphicex	oilpricey	company	cpimedal	soc_ic	et awhman
2018]	oilprices	realln	awhman	aaaffm	houstm	w houstw
2010	ces200000008	oilpricex	compapffx	cpimedsl	hou	st awhman
2020 -	totresns	oilpricex	ipbuseq	ces0600000007	houst	w houstmw
	dndgrg3m086sbe	a 🗙 wpsid61	wpsid61	aaaffm	wpsid6	2 awhman
2022 -	oilprid	cex Ъ ar	cusr0000sa0l2	hwiuratio	compap	ffx 🎍 permitmw
-			← underperformance	outperformance \rightarrow		
	0 0007	0014	0 0004	0008		1

Figure A.10. Cumulative difference in squared errors: random forest. See the notes to Figure A.8 with "random forest" replacing "PCR."

1			1					
1990 -	wpsfd49207 oilpricex	h = 1	wpsid61	compapffx	h = 6	wpsid61	t5yffm	h = 12
1002	soc_ice uswtrade		wpsid61	ces0600000008		pcepi •	ces0600000008	
1992]	uemp27ov ar		houstne	ar		conspi	ar	
1004	ppicmm		amdmno	ar		permi	ar	
	exszusx ar		piqq	mm ar		moiag	mar	
1996 -	uemp5to14 ar		exip	usx ar		baa	affm ar	
-	ces1021000001 ar		e	xjpusx ar		ex	jpusx 🔪 ar	
1998 -	s&p: indust 💊 ar			baaffm ar			rpi 💊 ar	
-	wpsfd49502 🖕 wpsfd4	9207	cu	sr0000sac ≽ ar			baaffm ┝ ar	
2000 -	wpsfd49207 🤙 aaaffm			realln 🖕 ar			realln 🖕 pce	pi
-	uemplt5 🍾 aaaffr	n	dserre	g3m086sbea 🔌 a	r		realln 🔌 pc	epi
2002 -	ndmanemp 🖕 ar			nonborres	ar		ustrade 🄖 a	amdmuox
-	wpsfd49207 🎙 ar			realln	ar		realln 🛉	ar
2004 -	exusukx 🔶 oil	pricex		houstne	ddurrg3m086sbea		realln 🔶	ddurrg3m086sbea
	houstw 🌒 oil	pricex	d	durrg3m086sbea	● ar		houstw 🛉	ddurrg3m086sbea
2006 -	amdmuox 🎙 a	ar		amdmuox	ddurrg3m086sbea		ar 🛉	ddurrg3m086sbea
	ddurrg3m086sbea	r		baaffm	• ar	. او او		ddurrg3m086sbea
2008 7	soc_	indure		noustmw		aau	irrg3m086sbea	baamm ddumma2m086abaa
2010]		aaaffm		boustmy	pcepi		SUC_ICS	adurrgsmoosbea
2010]	innconad	rni			uswtrade		cnimedal	
2012 -	iphoonigu	oilpricex		amdmuox	ces1021000001		houstmw	houstw
2012	ipb51222s	cusr0000sac		ar	cpimedsl		usfire	cpimedsl
2014 -	ipcongd	oilpricex		uswtrade	cpimedsl		ar	cpimedsl
	rpi	oilpricex		ipdcongd	cpimedsl		usfire	cpimedsl
2016 -	cpimedsl	bogmbase		ipfuels	cpimedsl		soc_ico	c 🖕 cpimedsl
-	ces1021000001 (oilpricex		dtcolnvhfnm	cpimedsl		cpimeds	ces0600000007
2018 -	ar (ces0600000007		cpimedsl	ces0600000007		awhman	excausx
-	dpcera3m086sbea	oilpricex		hwiuratio	ces0600000007		cpiapps	l 🛉 houstmw
2020 -	busloans	oilpricex		cpimedsl	ar		busloans	s 🌢 houstmw
	cpitrn	si 🔪 ar		cpimedsl 🤙	ces300000008		wpsid62	2 🔶 busloans
2022 -		rpi 🐌 businvx		uempmean	hwiuratio		wpsid6	2 🌢 cusr0000sad
			← underper	formance	$outperformance \rightarrow$			
	0 0007	0014	(0008			
	0 .0007	.0014	(.0004	.0000	C C	.0004.0	0000

Figure A.11. Cumulative difference in squared errors: XGBoost. See the notes to Figure A.8 with "XGBoost" replacing "PCR."

		1	1			
1990 -	usfire pipb51222s	n = 1 usfire	soc_icc	h = 6	usfire • soc_icc	h = 12
1000	soc_ice uswtrade	soc_ice	usfire		soc_ice • usfire	
1992]	boustne ar	soc_ice	ne ar		soc_ice ar	
1994	uswtrade ar	hou	istne ar		tb6smffm ar	
	houstne • ar	s	oc icc ar		ppicmm ar	
1996 -	dserrg3m086sbea e cusr0000sad		exjpusx 👌 ar		soc_icc ar	
	cmrmtsplx 🖢 cusr0000sad		exjpusx 🔪 ar		tb6smffm 🔌 ar	
1998 -	cusr0000sa0l2 🖢 cusr0000sad		exjpusx 🖉 ar		tb6smffm 🖢 ar	
-	ppicmm 🕈 cusr0000sad		t5yffm 🔖 ar		baaffm 🍬 ai	
2000 -	usgovt 🖣 ipb51222s		realln 🔌 soo	c_ice	soc_icc 🛛 s	oc_ice
	totresns è cusr0000sad		exjpusx a	r	t5yffm	soc_ice
2002 -	realin e ar		tb3smffm	ar	exjpusx 1	ar
2004			realin (baaπm	realin	e ar
2004]	innmat ar		excausy	ar	houstw	ar
2006 -	realinear		amdmuox	ar	houst	ar
2000 -	oilpricex ar		soc ice	• ar	amdmuox	ar
2008 -	excausx p oilprices	c l	soc_ice	baaffm	ar	e usfire
	oilpricex ┥ rpi		ar 🖸	oilpricex	usfire	e 闷 houstmw
2010 -	permits 🌢 s&p pe r	atio	houstne	houstmw	usfir	e 🍦 houstmw
-	houstw 🌢 rpi		realin 🔶	housts	houstmy	v 🔶 housts
2012 -	rpi 🌢 cpimeds	·	housts 🔶	awhman	houst	s 🛉 ces060000007
	awotman 🌢 awhman		housts •	awhman	houst	s • cpimedsl
2014 -		000007	ar	awhman	hous	
2016		×	amumuox	awhman	nou	ar awhman
2010	excausy e cnimed	^ sl	cusr0000sad	cnimedsl	cnime	
2018 -	ar • ipb5122	25	cpimedsl	uempmean	cpime	
2010	uemp5to14 e oilprice	x	soc icc	awhman	SOC	icc • awhman
2020 -	uemp5to14 e oilpri	cex	ustrade 💗 s	srvprd	aaat	fm • ces0600000007
	housts 🖢 cusr	0000sad	cpimedsl 🧹 co	onspi	cpime	tsl 🖕 usfire
2022 -	housts bus	sinvx	ar 🌢	ddurrg3m086sbea	cpimed	sl 🌢 ddurrg3m086sbea
-		← under	performance	outperformance \rightarrow		
				1		
	0 .0007 .0014		0.0004.	0008	0 .0004 .0	0008

Figure A.12. Cumulative difference in squared errors: neural network. See the notes to Figure A.8 with "neural network" replacing "PCR."

Figure A.13. Cumulative difference in squared errors: ensemble-linear. See the notes to Figure A.8 with "ensemble-linear" replacing "PCR."

Figure A.14. Cumulative difference in squared errors: ensemble-all. See the notes to Figure A.8 with "ensemble-all" replacing "PCR."