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A.1. Linear Prediction Model Without Interactions

Suppose that the prediction model is linear without interactions: f(x;) = o + 25:1 Zp. The
fitted prediction model is given by f(x;) = & + Z;;l Bpa:p,t, where &, 31, ..., Bp are estimates of

a, B1,...,Bp, respectively. In this case, the Shapley value in Equation (8) in the paper is given by

p(xe; Wiy h) = Bp(l‘pﬂf — Tp) (A1)

for p € S and t € W;, where ), is the sample mean of x,,; for the training sample. The Shapley

value in Equation (14) in the paper is given by

(@ s -1) s Wi h) = By (2p10-1) — Tp) (A.2)
forpe Sandi=1,...,D — (h—1), where Bp and 7, are again the estimate of 5, and sample
mean of x,;, respectively, based on the training sample.

Because the loss function can be nonlinear, for a prediction model that is linear without inter-
actions, we do not have a simple expression analogous to Equations (A.1) and (A.2) for the local
PBSV,,. Nevertheless, we can derive an analytical expression for the local PBSV,, for a specific

loss function in this special case. For example, consider squared error loss for the ith out-of-sample



forecast:

~ ~ 2
L(?/Tin+z‘:Tin+h+(z‘—1)ami+z‘:Tin+h+(i—1)) = (mi+z':Tin+h+(z‘—1> - yTi,,+z‘:Tm+h+(z‘—1>) : (A.3)

For a linear model without interactions and Equation (A.3), the local PBSV,, can be expressed as

gut (‘”TinJr(i—l) ;Wi h, SE) = Bp (@’p,Tm(i—l) - xp) [(@Tin+i:Tin+h+(i—l) - yTin+i:Tm+h+(i—l))

/

#9ut (2 1y, 1. i-1)3Wish) (A.4)

— (Y it ht i-1) — Po(Wi, b)) ],

where gbgut (a: Tt (i—1) 3 Wi, h) = Bp (xp,Tin—i—(i—l) - :Ep) is from Equation (A.2). We can view ¢g(W;, h)
in Equation (A.4) as a naive forecast that ignores the information in the predictors and simply uses
the sample mean of the target for the training sample as the prediction. For squared error loss,
the local PBSV,, measures the contribution of predictor p to the squared error for the forecast
that incorporates the information in the predictors relative to the squared error for the naive
forecast that ignores the information. For a linear model without interactions, Equation (A.4)
says that gbg“t (a:TinJr(i_l) s Wi, h, SE) is proportional to the error for the forecast based on the set
of predictors—after adjusting for the naive forecast error—where the factor of proportionality is
given by Bp (Cﬂp,Tm+(z’—1) — i‘p) (i-e., the Shapley value for predictor p and instance 1, 1 (;—1) for a
linear model). Furthermore, the sign of ¢ (mTinJr(i_l) ; Wi, h,SE) in Equation (A.4) depends on
the signs of Bp (xpmiHi,l) — ip) and the term in brackets.

To gain some intuition for Equation (A.4), suppose that the forecast is perfect:
U Ty i Tt b (i—1) = YTt Ton+ht-(i—1) - (A.5)
In addition, assume that the realized target value is greater than the naive forecast:
YT isTo+ht-(i—1) > Gp(Wi, b), (A.6)

so the term in brackets in Equation (A.4) is negative. If Bp(xp’TinJr(i,l) —jzp) > 0, then

ngUt (achL(l-_l) Wi, h, SE) < 0. In this case, predictor p contributes to the forecast being higher



than the naive forecast—since ffp (:zp’TinJr(i,l) — jp) > O0—which is in line with the realized target
value being greater than the naive forecast; accordingly, the local PBSV,, in Equation (A.4) deems
that predictor p contributes to lowering the squared error vis-a-vis the naive forecast.

Conversely, if £, (TpTis(i-1) — Tp) < 0, then ¢S (@7, (;—1); Wi, h,SE) > 0. In this case,
although the forecast is perfect, the local PBSV,, deems that predictor p increases the squared error
vis-a-vis the naive forecast, as p contributes to the forecast being below the naive forecast, while the
realized target value is above the naive forecast. A perfect forecast together with y, i {hy—1) >
¢g(Wi, h) and Bp (:L'p7’1“in+(i_1) — fp) < 0 imply that there are one or more other predictors ¢ # p
for which Bq ($q,ﬂn+(i—1) — a’cq) > 0 and qﬁfl’“t (a:TinJr(i,l) s Wi, h, SE) < 0, as the other predictors
contribute to the forecast being higher than the naive forecast, ultimately producing the perfect

forecast.

A.2. Algorithms

We created the Python package anatomy to implement the algorithms for computing the
TS-Shapley-VI,, PBSV,,, and MAS. The algorithms divide the estimation procedure into two steps:
(1) evaluate the fitted models using coalitions of predictors from the sampled permuted orders and
store the forecasts; (2) compute the Shapley-based metrics from the stored forecasts. After the
models are evaluated in the computationally expensive first step, arbitrary combinations of models
and transformations of the forecasts can be evaluated inexpensively in the second step to compute
the desired metric. Algorithm 1 provides the structure for the first step. Using the results from the
first step, any metric can be computed inexpensively in the second step without the need to rerun
the first step.

Algorithm 1 provides the essential components for computing the TS-Shapley-VI, and PBSV;:
the matrix of base forecasts (Y'), which contains the naive forecast (i.e., the forecast based on the
empty coalition of predictors) for out-of-sample period ¢t (¢t =1...,T) and model k (k =1,...,K);
the matrix of model forecasts (Y), which contains the forecast for out-of-sample period ¢ for model
k with predictor p (p = 1,..., P) excluded and included in the coalition of predictors preceding p
in the mth sample O,,. € w(P), denoted by Y (t,k,p,m,1) and Y (¢, k,p,m,2), respectively. An

estimate of the period-t Shapley value for predictor p for the combination forecast of the K models


https://www.python.org/
https://pypi.org/project/anatomy/

Result: Y: T x K x P x 2M X 2 array of forecasts for T' out-of-sample periods and K models evaluated
over coalitions of P predictors deactivated and activated in M forward and reversed permuted

orders; Y: T x K matrix of naive forecasts (i.e., model evaluations with empty predictor

coalitions)
Input: F: T x K matrix of forecast functions; X: T training data matrices of sizes T¢ x P for t =1,..., T}
X: P x T out-of-sample data matrix; M: number of ordered permutations to draw from 7(P)
Generate permutation matrix O of size M x P containing M permutations of {1,..., P}
fort=1to T do // loop over out-of-sample periods
for k=1 to K do // loop over models
Store forecast with all predictors deactivated (naive forecast): Y, = 7_% Z:’zl F (X §”)
for m =1 to M do // loop over permutations
Copy order to preserve it across runs: of = {Om1,...,O0m,p}
for i € {0,1} do // original and reverse order

Copy training data to preserve it across runs: X = X ®
Initialize previous activation as naive forecast: Jpre = f’}k
for p € {OL .. .,o;} do // loop over predictors
Store forecast with previously activated predictors: f’}’k,m M+m,1 = YUpre
Activate predictor p in X' by setting all elements of column p to Xpi: ti =X,
Store forecast with p and previously activated predictors:
YikpiMtm2 = 7—% Z:;l Fy (XJ)
Update previous activation for next iteration: fpre = Yi g .p.ittm.2

end

Reverse o' for antithetic sampling

end

end

end

end
Algorithm 1: Forecast evaluation of permuted orders of predictors for interventional

Shapley values

in F} can be computed directly from the 2M samples contained in Y(t, 4 p,-, 1) and Y(t, Dy 2):

() ] Mo, K 1 K
~ t ey >
Pt = 3q7 EZY(t,k»Pam’ 2) - EZY@”?’P’W 1) (A7)
m=1 k=1 k=1
i i
_(Fy) (F) : ;
forp=1,....,Pand ¢t =1,...,T, where g,;,, and §*,;,, denote the period-t equal-weighted

combination forecasts of the K fitted models in F}, with p included and excluded, respectively, in
the coalition of predictors preceding p in the mth sample of permuted orders.! The base prediction

and the estimated Shapley values sum to the period-t equal-weighted combination forecast of the

! As explained in the paper, to avoid look-ahead bias, the fitted models in F, are based on data through period
t—1.



K models in Ft:

P
~EW
0y d>@ Z (A8)
for t =1,...,T, where the base contribution to the forecast is given by

£ K
%’t Z (A.9)

k:

To compute the TS-Shapley-VI,, we take the average absolute value of éz()?) in Equation (A.7)

HUF)

¢py | forp=1,..., P

over the out-of-sample period: (1/7) Zt "

We can similarly decompose the squared error to obtain the local PBSV,, by wrapping the loss

around the forecasts:

¢({2 SE) _ MZM:[ (yt7y_(~_p2m>—L(yt,gjgﬁgm>] (A.10)

forp=1,...,Pand t = 1,...,T, where SE(y;, %) = (y: — @t)Q. The local PBSV,, measures in
Equation (A.10) sum to the squared error for the period-t equal-weighted combination forecast of

the K models in Ft:

. (L=SE) (L=SE)
SE (v, 9™) =y, ) + Z o5 (A.11)
fort =1,...,T, where the base contribution to the squared loss is given by
(L=SE) ~(F)
%t = SE[( v, %,t . (A.12)

We can also decompose the global PBSV,,—based, for example, on the root mean squared error

(RMSE) criterion—for the out-of-sample period (t =1,...,7T):

2M

gZ)](JL:RMSE) Z [ <y1 T, y+p 2 Tm) — L<y13T7Q(—I;2:T,m>:| (A.13)

m:



0.5
forp=1,..., P, where RMSE(y1.7, J1.7) = [(1/T) Zthl(yt - gt)Q] . The global PBSV,, measures
in Equation (A.13) sum to the RMSE for the equal-weighted combination forecast of the K models

in F} for the out-of-sample period:

P
RMSE(yLT, Q{Ey) _ QgéL:RMSE) + Z (Z)I()L:RMSE)7 (A.14)
p=1

where the base contribution to the RMSE is given by

o (B,
e RMSE):RMSE@LT@&L;). (A.15)

A.3. Forecasting Model Details

A natural starting point for generating an inflation forecast based on x; is a linear predictive

regression:
T titph = O + Ty B+ Ep1i4hs (A.16)
N——
flze)
where « is the intercept, and 3 =1[ 8, ... fBp |'is a P-dimensional vector of slope coefficients.

It is straightforward to estimate Equation (A.16) via ordinary least squares (OLS), leading to the

forecast:
L OLS ~OLS | 1 AOLS
Tiptusn = a7+ 8777, (A.17)

where ¢°8 and ,@OLS are the OLS estimates of a and 3, respectively, in Equation (A.16) based
on data through ¢. Although straightforward to compute, the forecast in Equation (A.17) tends
to perform poorly in practice. By construction, OLS maximizes the fit of the model over the
training sample, which can result in in-sample overfitting and thus poor out-of-sample performance,

especially since the signal-to-noise ratio for inflation is limited.



A.3.1. Principal Component Regression

An ample literature employs principal component regression (PCR, Stock and Watson, 2002a,b) as
a dimension-reduction technique for large datasets to forecast macroeconomic variables, including
inflation (e.g., Stock and Watson, 1999; Bernanke and Boivin, 2003; Banerjee and Marcellino,
2006). Let z; = | 21 204 |" denote the vector containing the first C' principal components

corresponding to x;, where C' < P. The PCR specification can be expressed as

Tilth = Oz + 24 Bz + €t 1itth,s (A.18)

where 8. =[ 8,; --- B,¢ |"is a C-dimensional vector of slope coefficients. The forecast corre-

sponding to Equation (A.18) is given by
~PCR ~OLS ~1 AOLS
Ter1it+n — @z + Z; ,62 ’ (Alg)

where &9 and ,C:}?LS are the OLS estimates of a, and 3., respectively, in Equation (A.18), and
2 is the C-dimensional vector of the first C' principal components computed from a;, all of which
are based on data through t. Because the principal components are linear combinations of the
underlying predictors in @, the PCR forecast itself is linear in the predictors. Intuitively, we
extract a limited set of principal components from @; to estimate the key latent variables that
underlie the comovements among the entire set of predictors, which filters some of the noise from
the predictors. The principal components then serve as predictors in a low-dimensional predictive
regression with uncorrelated explanatory variables.”? We select L in ﬂ'tA_l:%:t and C' by choosing the
combination that maximizes the adjusted R? for the training sample (allowing for maximum values

of eleven and ten for L and C, respectively).

A.3.2. Elastic Net

Next, we use the elastic net (ENet, Zou and Hastie, 2005) to estimate the linear predictive re-
gression in Equation (A.16). The ENet employs penalized regression to shrink the estimated slope

coefficients toward zero to guard against overfitting, and there is evidence that penalized regression

2The principal components are uncorrelated by construction. Following convention, we standardize the predictors
(using data through t) before computing the principal components.



helps to improve inflation forecasts (e.g., Medeiros and Mendes, 2016; Smeekes and Wijler, 2018).
The ENet is a refinement of the least absolute shrinkage and selection operator (LASSO, Tibshi-
rani, 1996), a seminal machine-learning device for implementing shrinkage. The LASSO relies on
the £ norm in its penalty term, so it can shrink slope coefficients to exactly zero, thereby perform-
ing variable selection. A potential drawback to the LASSO is that it tends to arbitrarily select a
single predictor from a group of highly correlated predictors. The ENet mitigates this tendency by
including both ¢; and ¢ components in its penalty term; the latter is from ridge regression (Hoerl
and Kennard, 1970).

The objective function for ENet estimation of Equation (A.16) can be expressed as

1 t—(h—1)—1
argfgin 2[t — (h — 1) — 1] ; [W8+128+h - (Oé + m; IB)]Q + )\P(S(/B)v (AQO)
where
P5(8) = 0.5(1 = ) (18113 + 9118113 (A.21)

A > 0 is a hyperparameter that governs the degree of shrinkage; ||-||; and ||-||2 are the ¢; and ¢y
norms, respectively; and 0 < § < 1 is a hyperparameter for blending the ¢; and {2 components in
the penalty term.® We follow the recommendation of Hastie et al. (2023) and set § = 0.5, which
they point out results in a stronger tendency to select highly correlated predictors as a group. To
tune A\, we use a walk-forward cross-validation procedure designed for a time-series context. The

ENet forecast based on Equation (A.16) is given by
= 6N a2)

where aENet and BENet gre the ENet estimates of o and 3, respectively, in Equation (A.16) based

on data through t.

3The ENet objective function in Equation (A.20) reduces to that for OLS when A = 0. If § = 1 (§ = 0), then
Equation (A.20) corresponds to the LASSO (ridge) objective function.



A.3.3. Random Forest

Random forests (Breiman, 2001) build on regression trees, machine-learning devices for incorpo-
rating nonlinearities in a flexible manner via multi-way interactions and higher-order effects of the
predictors. A random forest uses an ensemble of “deep” decision trees and has a strong track
record in macroeconomic forecasting (e.g., Medeiros et al., 2021; Borup and Schiitte, 2022; Goulet
Coulombe et al., 2022). A regression tree is constructed by sequentially splitting the predictor space
into regions, with the final set of regions referred to as “terminal nodes” or “leaves.” The prediction
is the average value of the target in a given leaf. We can express the forecast corresponding to a

regression tree with U leaves as

U
ﬁﬂ;prh = Z ﬁulu(wt ; ﬁu)v (A'23)
u=1

where the indicator function 1, (x;;1,) = 1 if ; € Ry (7)) for the uth region denoted by R, (which
is determined by the estimated parameter vector 7),,) and 0 otherwise, and 7, is the average value
of the target observations in R, for the training sample based on data through ¢.

A large (i.e., deep) regression tree is typically able to capture complex nonlinear relationships in
the data. However, in light of the bias-variance trade-off, it is susceptible to overfitting due to the
high variance of the tree. A random forest reduces the variance by averaging forecasts across many
deep regression trees, where each tree is constructed based on a bootstrap sample of the original
data using a randomly selected subset of the predictors for each split. By using a randomly selected
subset of the predictors, we “decorrelate” the trees to further reduce the variance. Indexing the

bootstrap samples by b, the random forest forecast is given by

1 B
~RF _
Tit1:t4+h = B Z

a1 (@ ; ﬁu)] : (A.24)
where B is the number of bootstrap samples, and ﬁqsb) and L(Lb) (x¢;my) are the counterparts to 7,
and 1,(x;;n,), respectively, in Equation (A.23) for the bth bootstrap sample. We set B = 500
and let each tree grow fully deep. The proportion of predictors randomly selected for each split is

tuned via a walk-forward cross-validation procedure.



A.3.4. XGBoost

Another strategy for forecasting with a regression tree is a boosted tree, which is based on gradient
boosting (Breiman, 1997; Friedman, 2001), a sequential ensemble method for improving out-of-

sample prediction. The basic idea is to fit a prediction function additively:

(@5 my5). (A.25)

CCt7

||M&

Each function fj(azt ;M;j) on the right-hand-side of Equation (A.25) is a “weak” learner (i.e., a
relatively simple model); for a boosted tree, fj(a:t ;M) corresponds to a fitted tree with a forecast
of the form in Equation (A.23). Relatively simple models help to guard against overfitting; however,
they are more likely to be exhibit substantive bias and thus poor fit. Boosting improves the fit by
adding another tree that is trained using the residuals from the previous function in the sequence. In
sum, boosting entails constructing a sequence of relatively “shallow” trees, which are then combined
into an ensemble. While a random forest starts with a deep tree with low bias and uses bagging
across a large number of trees to reduce the variance, a boosted tree starts with a shallow tree with
low variance and refines the tree to reduce the bias.

Friedman (2002) proposes stochastic gradient boosting to make boosting more robust. Instead
of basing each fj (¢;m;) in Equation (A.25) on all of the training data, each element is based on a
randomly drawn (without replacement) subsample of the data. We fit boosted trees via stochastic
gradient boosting using the popular XGBoost algorithm (Chen and Guestrin, 2016), where we tune
the hyperparameters for the algorithm using a walk-forward cross-validation procedure. XGBoost

performs well in forecasting competitions in a range of domains.

A.3.5. Neural Network

Our final forecasting model is a feedforward neural network. Neural networks are flexible machine-
learning devices that permit general forms of nonlinearities. A neural network contains multiple
layers. The first is the input layer, which is comprised of the set of predictors, followed by L > 1

hidden layers. Each hidden layer [ contains P, neurons, where each neuron takes signals from the

10


https://xgboost.readthedocs.io/en/stable/

neurons in the previous layer to generate a subsequent signal via a nonlinear activation function:

P4
) =g w o+ Z ’J ] (A.26)
form=1,...,P and | = 1,..., L, where th) is the signal corresponding to the mth neuron in
the Ith hidden layer?; waO, w,(fl{l, . 7“’7(7? p_, are weights; and g(-) is the activation function. The

output layer is the final layer. It takes the signals from the last hidden layer and converts them

into a prediction:

Py,
~ L 1) L 1
N = wi Z TR (A.27)

The activation function determines the strength of the signal passed through the network. For the
activation function, we use the popular rectified linear unit (ReLU) function: g(x) = max{z,0}.
The interactions in the network and activation function permit complex nonlinearities as the inputs
feed through to the hidden layers and finally to the output layer.

Theoretically, a single hidden layer is sufficient for approximating any smooth function (Cy-
benko, 1989; Funahashi, 1989; Hornik et al., 1989; Hornik, 1991; Barron, 1994); however, there
are potential advantages to including multiple hidden layers in neural networks (Goodfellow et al.,
2016; Rolnick and Tegmark, 2018). Determining the neural network architecture (i.e., the number
of hidden layers and the number of neurons in each layer) for a given application is largely an
empirical matter, and we cannot know that the optimal architecture has been selected (Goodfellow
et al., 2016). Accordingly, we choose an equal-weighted ensemble of two different architectures: a
“shallow” neural network with one hidden layer and a “deep” neural network with three hidden
layers. We follow a conventional geometric pyramid rule (Masters, 1993) in setting the number of
neurons in the hidden layers, so the shallow neural network has [v/P] neurons in its hidden layer,
while the deep neural network has [P3/4], [P?/*], and [P'/*] in its first, second, and third hidden
layers, respectively.

We fit the neural networks (i.e., estimate the weights) by minimizing the training sample MSE

using the Adam stochastic gradient descent algorithm (Kingma and Ba, 2015). To reduce the

4For the first hidden layer, h;o) =z forj=1,...,P.

11



influence of the random number generator in the initialization of the weights when fitting the
neural networks, we fit each model 199 times with a different seed each time and use the median

of the predictions.’

A.4. Inflation Predictors

The data for the inflation predictors are from two sources. The first is the FRED-MD database
(McCracken and Ng, 2016). Table A.1 lists the 118 variables from FRED-MD and their abbrevi-
ations. The second source is the University of Michigan Survey of Consumers, from which we use
three variables: Index of Consumer Sentiment (soc_ics), Index of Consumer Expectations (soc_-
ice), and Index of Current Economic Conditions (soc_icc). The variables from the University of

Michigan Survey of Consumers are specified in levels.
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Table A.1. FRED-MD variables

The table lists the 118 variables and their abbreviations from FRED-MD that are used as inflation predictors.
The third and sixth columns indicate the transformations for the predictors.

(1) (2) (3) (4) (5) (6)
Transform- Transform-
Variable Abbreviation ation Variable Abbreviation ation
Real Personal Income rpi Alog All Employees: Total Nonfarm payems Alog
Real Personal Income Excluding Current w875rx1 Alog All Employees: Goods-Producing usgood Alog
Transfer Receipts Industries
Real Consumption dpcera3m086sbea Alog All Employees: Mining €es1021000001 Alog
Real Manufacturing & Trade Industries cmrmtsplx Alog All Employees: Construction uscons Alog
Sales
Retail & Food Services Sales retailx Alog All Employees: Manufacturing manemp Alog
Industrial Production: Total Index indpro Alog All Employees: Durable Goods dmanemp Alog
Industrial Production: Final Products ipfpnss Alog All Employees: Nondurable Goods ndmanemp Alog
and Nonindustrial Supplies
Industrial Production: Final Products ipfinal Alog All Employees: Service-Providing srvprd Alog
Industries
Industrial Production: Consumer Goods ipcongd Alog All Employees: Trade, Transport- ustpu Alog
ation & Utilities
Industrial Production: Durable Consumer ipdcongd Alog All Employees: Wholesale Trade uswtrade Alog
Goods
Industrial Production: Nondurable ipncongd Alog All Employees: Retail Trade ustrade Alog
Consumer Goods
Industrial Production: Business ipbuseq Alog All Employees: Financial Activities usfire Alog
Equipment
Industrial Production: Materials ipmat Alog All Employees: Government usgovt Alog
Industrial Production: Durable ipdmat Alog Average Weekly Hours: Goods ces0600000007 None
Materials Producing
Industrial Production: Nondurable ipnmat Alog Average Weekly Overtime Hours: awotman A
Materials Manufacturing
Industrial Production: Manufacturing ipmansics Alog Average Weekly Hours: Manufact- awhman None
(SIC) uring
Industrial Production: Residential ipb51222s Alog Housing Starts: Total houst log
Utilities
Industrial Production: Fuels ipfuels Alog Housing Starts: Northeast houstne log
Capacity Utilization: Manufacturing cumfns A Housing Starts: Midwest houstmw log
Non-farm vacancies hwi Alog Housing Starts: South housts log
HWI/(# unemployed) hwiuratio A Housing Starts: West houstw log
Civilian Labor Force clfi6ov Alog New Private Housing Permits: permit log
Total
Civilian Employment cel6ov Alog New Private Housing Permits: permitne log
Northeast
Unemployment Rate unrate A New Private Housing Permits: permitmw log
Midwest
Average Duration of Unemployment uempmean A New Private Housing Permits: permits log
(Weeks) South log
Number Unemployed—Less Than 5 Weeks uemplt5 Alog New Private Housing Permits: permitw log
West
Number Unemployed for 5-14 Weeks uemp5tol4 Alog New Orders for Durable Goods amdmnox Alog
Number Unemployed—15 Weeks & Over uemp15ov Alog Unfilled Orders for Durable Goods amdmuox Alog
Number Unemployed for 15-26 Weeks uemp15t26 Alog Total Business Inventories businvx Alog
Number Unemployed for 27 Weeks & Over uemp270v Alog Total Business: Inventories to isratiox A
Sales Ratio
Initial Claims claimsx Alog Monetary Base bogmbase Alog
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Table A.1 (continued)

1)

(2)

(3)

(4)

(5)

(6)

Transform- Transform-
Variable Abbreviation ation Variable Abbreviation ation
Total Reserves of Depository Institutions totresns Alog Japan/US Foreign Exchange Rate exjpusx Alog
Nonborrowed Reserves of Depository nonborres Alog US/UK Foreign Exchange Rate exusukx Alog
Institutions
Commercial & Industrial Loans busloans Alog Canada/US Foreign Exchange Rate excausx Alog
Real Estate Loans at All Commercial Banks realln Alog Producer Price Index: Finished Goods wps£d49207 Alog
Total Nonrevolving Credit nonrevsl Alog Producer Price Index: Finished wpsfd49502 Alog
Consumer Goods
Nonrevolving Consumer Credit to Personal conspi A Producer Price Index: Intermediate wpsid61 Alog
Income Materials
S&P Common Stock Price Index: Composite s&p500 Alog Producer Price Index: Crude Materials wpsid62 Alog
S&P Common Stock Price Index: Industrial s&p:indust Alog Crude Oil Price (Spliced WTI & oilpricex Alog
Cushing)
S&P 500 Index Dividend Yield s&p:divyield A Producer Price Index: Metals & Metal ppicmm Alog
Products
S&P PE Ratio s&p:peratio Alog Consumer Price Index: Apparel cpiappsl Alog
Effective Federal Funds Rate fedfunds A Consumer Price Index: Transportation cpitrnsl Alog
3-Month AA Financial Commercial Paper cp3mx A Consumer Price Index: Medical Care cpimedsl Alog
Rate
3-Month Treasury Bill Rate tb3ms A Consumer Price Index: Commodities cusr0000sac Alog
6-Month Treasury Bill Rate tbéms A Consumer Price Index: Durables cusr0000sad Alog
1-Year Treasury Note Rate gsl A Consumer Price Index: Services cusr0000sas Alog
5-Year Treasury Note Rate gsb A Consumer Price Index: All Items Less cpiulfsl Alog
Food
10-Year Treasury Bond Rate gs10 A Consumer Price Index: All Items Less cusr0000sa012 Alog
Shelter
Moody’s Seasoned Aaa Corporate Bond aaa A Consumer Price Index: All Items Less cusr0000sa015 Alog
Rate Medical Care
Moody’s Seasoned Baa Corporate Bond baa Personal Consumption Expenditures pcepi Alog
Rate Price Index: Total
3-Month Commercial Paper Minus Federal compapffx None Personal Consumption Expenditures ddurrg3m086sbea Alog
Funds Rate Price Index: Durable Goods
3-Month Treasury Bill Minus Federal Funds tb3smffm None Personal Consumption Expenditures dndgrg3m086sbea Alog
Rate None Price Index: Nondurable Goods
6-Month Treasury Bill Minus Federal Funds tb6smffm None Personal Consumption Expenditures dserrg3m086sbea Alog
Rate Price Index: Services
1-Year Treasury Note Minus Federal Funds tlyffm None Average Hourly Earnings: Goods ces0600000008 Alog
Rate Producing
5-Year Treasury Note Minus Federal Funds tbyffm None Average Hourly Earnings: ces2000000008 Alog
Rate Construction
10-Year Treasury Bond Minus Federal Funds t10yffm None Average Hourly Earnings: ces3000000008 Alog
Rate Manufacturing
Moody’s Aaa Corporate Bond Minus Federal aaaffm None Consumer Motor Vehicle Loans dtcolnvhfnm Alog
Funds Rate Outstanding
Moody’s Baa Corporate Bond Minus Federal baaffm None Total Consumer Loans & Leases dtcthfnm Alog
Funds Rate Outstanding
Switzerland/US Foreign Exchange Rate exszusx Alog Securities in Bank Credit at All invest Alog

Commercial Banks
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HEl PBSV (left axis) Il TS-Shapley-VI (right axis)

Figure A.1. PBSV and TS-Shapley-VI: PCR. The figure shows the PBSV, (left axis) and
TS-Shapley-VI, (right axis) for the PCR inflation forecast for the 1990:01 to 2022:12 out-of-sample pe-
riod. The predictors on the horizontal axis are the top 20 and the bottom ten ordered according to the
PBSV,, in terms of improving out-of-sample forecasting accuracy. The numbers associated with the red bars
are the predictor ranks according to the TS-Shapley-VI,.
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Figure A.2. PBSV and TS-Shapley-VI: ENet. See the notes to Figure A.1 with “ENet” replacing
L(PCR.”
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Figure A.3. PBSV and TS-Shapley-VI: random forest. See the notes to Figure A.1 with “random
forest” replacing “PCR.”
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Figure A.4. PBSV and TS-Shapley-VI: XGBoost. See the notes to Figure A.1 with “XGBoost”

replacing “PCR.”
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Figure A.5. PBSV and TS-Shapley-VI: neural network. See the notes to Figure A.1 with “neural
network” replacing “PCR.”
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Figure A.6. PBSV and TS-Shapley-VI: ensemble-linear. See the notes to Figure A.1 with “ensemble-
linear” replacing “PCR.”
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Figure A.7. PBSV and TS-Shapley-VI: ensemble-all. See the notes to Figure A.1 with “ensemble-all”
replacing “PCR.”
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soc_icc cpimedsl
amdmuox t5yffm
ipfinal unrate
rpi ddurrg3m086sbea

T

Figure A.8.
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PCR. The figure shows the cumulative

difference in squared errors for a naive forecast that ignores the information in the predictors vis-a-vis the
PCR forecast for the 1990:01 to 2022:12 out-of-sample period. Shifts to the right (left) imply an improvement
(deterioration) in forecasting accuracy relative to the naive forecast. The figure also shows the top (bottom)
contributor to the improvement (deterioration) in forecasting performance as identified by the PBSV,, for
non-overlapping twelve-month subsamples; a green (red) color for the predictor indicates that the subsample
is associated with an improvement (deterioration) in performance. Horizontal gray bars delineate twelve-
month subsamples that contain an NBER-dated recession.
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1990 | usfire @ oilpricex h=1 usfire @ baaffm h=6 usfire compapffx h=12

- soc_ice oilpricex soc_ice pcepi soc_ice usfire
1992 - soc_ice @ ar pcepi soc_ice usfire

E soc_ice ar soc_ice pcepi soc_ice ar
1994 - fedfunds & ar soc_ice ® pcepi soc_ice ar

- baaffm ar ppicmm ar ppicmm ar
1996 - isratiox & ar amdmuox & ar s&p 500 ar

- uswtrade ar hwi ar amdmuox ar
1998 - baaffm @ ar baaffm @ soc_ice usfire ar

E oilpricex ar baaffm soc_ice houstmw soc_ice
2000 - wpsfd49502 & oilpricex amdmuox & soc_ice houstmw soc_ice

E nonborres cusr0000sad permitw soc_ice amdmuox soc_ice
2002 - realln & ar houstmw W baaffm permitw amdmuox

= wpsfd49207 oilpricex permitw baaffm permitw ar
2004 - houstw @ ar houstw & ar permitw ar

E conspi oilpricex houstw ar amdmuox ar
2006 - baaffm amdmuox ¢ ddurrg3m086sbea amdmuox ddurrg3m086sbea

E oilpricex pcepi ddurrg3m086sbea amdmuox ddurrg3m086sbea
2008 - oilpricex pcepi @ baaffm pcepi amdmuox

- ar ¢ s&p div yield ar ¢ pcepi pcepi ddurrg3m086sbea
2010 - conspi @ s&p pe ratio ipbuseq @ aaaffm excausx cpimedsl|

E totresns rpi cpimedsl ipbuseq cpimedsl uswtrade
2012 - rpi @ oilpricex ipbuseq @ cpimedsl wpsid61 cpimedsl

- ipb51222s rpi uemp27ov @ cpimedsl uswtrade cpimedsl
2014 - totresns q oilpricex cpimedsl| ustpu cpimedsl|

E tb3ms oilpricex soc_icc cpimedsl wpsid61 cpimedsl
2016 - totresns @ oilpricex soc_icc @ cpimedsl wpsid61 cpimedsl

E totresns oilpricex soc_icc cpimedsl cpimedsl ces0600000007
2018 - ar @ ipb51222s cpimeds| @ ipbuseq cpimedsl| fedfunds

= totresns rpi aaaffm cpimedsl soc_icc cpimedsl
2020 - ce16ov & oilpricex ipbuseq ¢ awhman cpimedsl| houstmw

- cpimedsl| oilpricex ipbuseq ipnmat dpcera3m086sbea awhman
2022 - s&p div yield @ ar cpimedsl| ipfuels
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Figure A.9. Cumulative difference in squared errors: ENet. See the notes to Figure A.8 with
“ENet” replacing “PCR.”
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1990 +

wpsfd49207 [o]

ilpricex

wpsid61 compapffx

pcepi

t5yffm

12

houstne wpsfd49207 soc_ice ces0600000008 wpsid61 amdmuox
1992 - houstne @ ar conspi & ar soc_ice pcepi
E cusr0000sac ar conspi ar conspi pcepi
1994 - ces1021000001 ar permit W ar exusukx pcepi
E oilpricex & ar wpsid61 ar ppicmm pcepi
1996 - wpsid62 & ar baaffm baaffm & ar
E ces1021000001 wpsfd49207 usfire wpsid62
1998 - gs10 @ ar baaffm &g ar permit g ar
E oilpricex ar t5yffm ar baaffm ar
2000 - wpsfd49207 & aaaffm realln @ ar realln pcepi
E ces0600000007 oilpricex t5yffm ar usfire pcepi
2002 - oilpricex @ ar ¢es0600000007 W ar usfire pcepi
E wpsfd49207 ar realln ar realln pcepi
2004 - wpsid62 @ oilpricex houstmw @ ar realln ¢ ar
E cusr0000sas oilpricex amdmuox ar houstw ar
2006 - permitmw & oilpricex houstne @ ddurrg3m086sbea pcepi ddurrg3m086sbea
E oilpricex aaaffm @ ddurrg3m086sbea houstne ddurrg3m086sbea
2008 - oilpricex ddurrg3m086sbea @ aaaffm tb3smffm baaffm
E oilpricex realln soc_ics pcepi usfire pcepi
2010 - oilpricex @ realln permitmw @ uswtrade usfire cpimedsl
E soc_ics oilpricex cpimedsl uswtrade cpimedsl wpsid62
2012 - ipb51222s @ oilpricex houstmw @ soc_ics usfire houstne
- oilpricex @ cusr0000sac usgood @ awhman ndmanemp awhman
2014 - housts @ oilpricex housts @ awhman usfire § houstmw
E housts oilpricex housts awhman housts houstmw
2016 - oilpricex @ realln houst @ cpimedsl soc_icc @ houstmw
E ar @ oilpricex compapffx cpimedsl houst awhman
2018 - oilpricex @ realln awhman @ aaaffm houstmw @ houstw
= €es2000000008 oilpricex compapffx cpimedsl houst awhman
2020 - totresns § oilpricex ipbuseq @ ces0600000007 houstw houstmw
E dndgrg3m086sbea wpsidé1 wpsidé1 aaaffm wpsid62 awhman
2022 - oilpricex @ ar cusr0000sa0l2 @ hwiuratio compapffx permitmw
T « underperformance outperformance —
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Figure A.10. Cumulative difference in squared errors: random forest. See the notes to Figure A.8
with “random forest” replacing “PCR.”
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1990 - wpsfd49207 @ oilpricex h wpsid61 @ compapffx h=6 wpsidé1 @ t5yffm h=12

E soc_ice uswtrade wpsid61 ces0600000008 pcepi ces0600000008
1992 - conspi ar nonrevsl & ar conspi wpsidé1

E uemp27ov ar houstne conspi ar
1994 - ppicmm ar amdmnox & ar permit ar

- exszusx ar ppicmm ar ppicmm ar
1996 - uemp5to14 exjpusx baaffm & ar

E ces1021000001 ar exjpusx exjpusx
1998 - s&p:indust @ ar baaffm &g ar rpi § ar

= wpsfd49502 wpsfd49207 cusr0000sac ar baaffm ar
2000 - wpsfd49207 & aaaffm realln realln Q@ pcepi

E uemplts aaaffm dserrg3m086sbea ar realln pcepi
2002 - ndmanemp & ar nonborres & ar ustrade § amdmuox

= wpsfd49207 ar realln ar realln ar
2004 - exusukx @ oilpricex houstne @ ddurrg3m086sbea realin @ ddurrg3m086sbea

E houstw oilpricex ddurrg3m086sbea @ ar houstw ddurrg3m086sbea
2006 - amdmuox amdmuox @ ddurrg3m086sbea ar @ ddurrg3m086sbea

E ddurrg3m086sbea baaffm ¢ ar amdmuox ddurrg3m086sbea
2008 - oilpricex houstmw @ aaaffm ddurrg3m086sbea @ baaffm

E ppicmm soc_icc pcepi soc_ics ddurrg3m086sbea
2010 - uscons @ aaaffm houstmw @ uswtrade excausx @ cpimedsl|

- ipncongd rpi cpimedsl uswtrade cpimedsl usfire
2012 - ipb51222s @ oilpricex amdmuox @ ces1021000001 houstmw @ houstw

- ipb51222s cusr0000sac ar @ cpimedsl| usfire cpimedsl
2014 - ipcongd & oilpricex uswtrade @ cpimedsl ar @ cpimedsl

E rpi oilpricex ipdcongd cpimedsl usfire cpimedsl
2016 - cpimedsl bogmbase ipfuels ® cpimedsl soc_icc cpimedsl

E ces1021000001 oilpricex dtcolnvhfnm cpimedsl cpimedsl ces0600000007
2018 - ar @ ces0600000007 cpimeds| @ ces0600000007 awhman @ excausx

— dpcera3m086sbea oilpricex hwiuratio ces0600000007 cpiappsl houstmw
2020 - busloans & oilpricex cpimeds| ¢ ar busloans @ houstmw

E cpitrns| ar cpimedsl ces3000000008 wpsid62 busloans
2022 - rpi uempmean W@ hwiuratio wpsid62 @ cusr0000sad
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Figure A.11. Cumulative difference in squared errors: XGBoost. See the notes to Figure A.8 with

“XGBoost” replacing “PCR.”
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1990 - usfire @ ipb51222s h=1 usfire @ soc_icc h=6 usfire @ soc_icc h=12
E soc_ice @ uswtrade soc_ice usfire soc_ice usfire
1992 - soc_ice @ uswtrade soc_ice ar soc_ice usfire
E houstne q ar houstne ar soc_ice ar
1994 - uswtrade & ar houstne & ar tbésmffm & ar
- houstne ¢ ar sac_icc ar ppicmm ar
1996 - dserrg3m086shea § cusr0000sad exjpusx & ar sac_icc
E cmrmtsplx & cusr0000sad exjpusx ar tbBsmffm
1998 - cusr0000sa0l2 § cusr0000sad exjpusx & ar tb6smffm & ar
E ppicmm @ cusr0000sad t5yffm ar baaffm ar
2000 - usgovt q ipb51222s realln soc_ice soc_icc soc_ice
E totresns @ cusr0000sad exjpusx ar t5yffm soc_ice
2002 - realln q ar tb3smffm W ar exjpusx § ar
- houstw @ cusr0000sad realln baaffm realln ar
2004 - houstw ¢ ar houstw ¢ ar excausx @ ar
E ipnmat q ar excausx ar houstw ar
2006 - realln amdmuox @ ar houst ¢ ar
E oilpricex soc_ice ar amdmuox ar
2008 - excausx oilpricex soc_ice @ baaffm ar @ usfire
E oilpricex @ rpi ar oilpricex usfire houstmw
2010 - permits @ s&p pe ratio houstne houstmw usfire houstmw
E houstw @ rpi realln housts houstmw housts
2012 - rpi @ cpimedsl| housts @ awhman housts @ ces0600000007
- awotman @ awhman housts awhman housts cpimeds|
2014 - housts @ ces0600000007 ar @ awhman housts & cpimedsl
E clf16ov @ oilpricex amdmuox awhman housts ces0600000007
2016 - ipb51222s @ oilpricex ar @ awhman ar @ awhman
E excausx @ cpimedsl cusr0000sad cpimedsl cpimedsl ¢es2000000008
2018 - ar @ ipb51222s cpimedsl uempmean cpimedsl| soc_icc
= uemp5to14 & oilpricex soc_icc awhman soc_icc awhman
2020 - uemp5to14 @ oilpricex ustrade srvprd aaaffm ces0600000007
- housts & cusr0000sad cpimedsl conspi cpimedsl usfire
2022 - housts ® businvx ar ® ddurrg3m086sbea cpimedsl ® ddurrg3m086sbea
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Figure A.12. Cumulative difference in squared errors: neural network. See the notes to Figure A.8
with “neural network” replacing “PCR.”
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1990 — usfire @ oilpricex h=1 usfire @ cpiappsl h=6 usfire compapffx h=12
- soc_ice oilpricex soc_ice usfire soc_ice usfire
1992 — soc ice & ar soc_ics pcepi soc_ice usfire
- soc_ice ar soc_ice pcepi soc_ice ar
1994 - fedfunds & ar soc_jce & ar soc_ice ® ar
- baaffm ar ppicmm ar ppicnm ar
1996 - isratiox amdmuox & ar s&p 500 & ar
E exjpusx ar hwi ar amdmuox
1998 - baaffm @ ar baaffm & ar usfire ar
E oilpricex ar baaffm ar houstmw ar
2000 - baaffm oilpricex amdmuox soc_ice houstmw soc_ice
E nonborres cusr0000sad permitw amdmuox soc_ice
2002 - realin § ar houstmw W ar permitw W ar
E wpsfd49207 ar realln ar realln ar
2004 - houstw ¢ ar houstw & ar permitw ¢ ar
E conspi oilpricex houstw ar amdmuox ar
2006 - baaffm amdmuox @ ddurrg3m086sbea amdmuox @ ddurrg3m086sbea
E oilpricex pcepi ar amdmuox ddurrg3m086sbea
2008 - oilpricex pcepi @ baaffm pcepi amdmuox
E oilpricex ipnmat ar totresns pcepi ddurrg3m086sbea
2010 - totresns s&p pe ratio houstmw aaaffm s&p pe ratio cpimedsl
E totresns rpi cpimedsl ipbuseq cpimedsl houstmw
2012 - rpi @ oilpricex ipbuseq cpimedsl wpsid61 cpimedsl
- ipb51222s rpi uempmean cpimedsl uswtrade cpimedsl
2014 - totresns @ oilpricex hwiuratio @ cpimedsl ndmanemp § cpimedsl|
E tb3ms oilpricex ndmanemp cpimedsl wpsid61 cpimedsl
2016 - dtcolnvhfnm @ oilpricex ces1021000001 cpimedsl| wpsid61 cpimedsl|
E ddurrg3m086sbea cpimedsl soc_icc cpimedsl cpimedsl| ces0600000007
2018 - ar @ s&p div yield cpimeds| @ baa cpimedsl| fedfunds
E totresns oilpricex aaaffm cpimedsl soc_icc cpimedsl
2020 - claimsx & oilpricex ipbuseq awhman cpimedsl| houstmw
- totresns cusr0000sad cpimedsl uemp15t26 dpcera3m086sbea awhman
2022 - s&p div yield @ ar baa @ ddurrg3m086sbea cpimedsl| ddurrg3m086sbea
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Figure A.13. Cumulative difference in squared errors: ensemble-linear. See the notes to Figure A.8

with “ensemble-linear” replacing “PCR.”
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1990 - usfire @ oilpricex h=1 usfire @ houstne h=6 usfire @ t5yffm h=12
- soc_ice uswtrade soc_ice usfire soc_ice usfire
1992 - soc ice @ ar soc_ice & ar soc_ice usfire
- houstne ar houstne ar soc_ice ar
1994 - uswirade & ar houstne & ar soc_ice & ar
- houstne ar soc_icc ar ppicmm ar
1996 - usgovt exjpusx & ar soc_icc & ar
E exjpusx ar exjpusx amdmuox
1998 - baaffm @ ar baaffm g ar exjpusx W ar
E ppicmm ar t5yffm ar baaffm ar
2000 - wpsfd49207 & cusr0000sad amdmuox @ soc_ice realln soc_ice
E totresns cusr0000sad permitw & ar tyffm soc_ice
2002 - realln & ar ces0600000007 g ar permitw ® ar
= wpsfd49207 ar realln ar realln
2004 - houstw @ oilpricex houstw & ar realln
E houstw oilpricex excausx @ ar houstw
2006 - amdmuox amdmuox @ ddurrg3m086sbea amdmuox @ ddurrg3m086sbea
E oilpricex baaffm ¢ ar amdmuox ddurrg3m086sbea
2008 - oilpricex ar ¢ baaffm ddurrg3m086sbea  baaffm
- oilpricex ipb51222s ar ¢ pcepi usfire ddurrg3m086sbea
2010 - housts ¢ s&p pe ratio houstne @ realln usfire @ houstmw
E totresns oilpricex cpimedsl housts cpimedsl housts
2012 - ipb51222s @ oilpricex housts @ awhman housts @ ces0600000007
- amdmuox rpi ar @ cpimedsl housts cpimedsl
2014 - ipcongd & oilpricex housts @ cpimedsl| housts & cpimedsl
E rpi oilpricex amdmuox @ cpimedsl housts cpimedsl
2016 - ipb51222s @ oilpricex soc_icc @ cpimedsl wpsid61 cpimedsl
E ces1021000001 oilpricex dtcolnvhfnm cpimedsl cpimedsl| awhman
2018 - ar @ ipb51222s cpimedsl @ uempmean cpimedsl soc_icc
E uemp5to14 oilpricex soc_icc @ cpimedsl soc_icc cpimedsl
2020 - w875rx1 & oilpricex ustrade ¢ srvprd aaaffm @ houstmw
E cpimedsl| oilpricex cpimedsl conspi cpimedsl awhman
2022 - s&p div yield @ businvx ar ® ddurrg3m086sbea cpimeds| @ ddurrg3m086sbea
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Figure A.14. Cumulative difference in squared errors: ensemble-all. See the notes to Figure A.8
with “ensemble-all” replacing “PCR.”
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