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I. Introduction 
 
The event study is often used to provide a visual overview of the impact of a change in 

policy on behavior and outcomes. According to Currie, Kleven, and Zwiers (2020), it has 

become increasingly more common have an events study analysis accompany a difference-in-

difference analysis. They found that in 2005 less than two percent of papers in top five journals 

and in the NBER working paper series included event studies, but by 2018 that share had 

increased to approximately seven percent.  

Most event-study analyses analyze the impact of a single policy event, with the primary 

focus on identifying pre-trends and a baseline comparison for post-treatment effects. Miller 

(2023) provides an overview of the features and the decision process of the event study model. 

However, with heterogeneous impacts of a treatment across treated units, as is likely in many 

economic program evaluations, diagnostic information obtained from a simple, standard event 

study analysis can often be inadequate or misleading. In situations with only a small number of 

unique (and treatment-unit assignable) effects, one could simply introduce several new groups of 

event-time effects, one for each unique treatment effect, in the analysis to provide accurate 

information, as suggested by Miller (2023). This approach, while fairly general, could possibly 

introduce considerable noise because of the multiplicity of event-time study effects. The 

individual group-specific event-time effects could be quite imprecise, and thus uninformative 

estimates of trends in the outcomes occurring before and after the introduction of the treatment. 

In the case of treatment effects depending on continuously observed covariates, an approach that 

allows for a different “event study” for each level of the treatment effect would seldom be 

feasible.  
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In this paper, we discuss a simple approach to overcome the shortcomings of using a 

standard, single-treatment effect event study to assess the ability of an empirical model to 

measure heterogenous treatment effects. Equally as important, we discuss how the standard 

errors reported in a typical event study analysis for the post-treatment event-time effects are, 

without additional information, of limited use for assessing post-treatment variations in the 

treatment effects. The simple reformulation of the standard event study approach described 

below overcomes the limitation of the conventionally reported standard error bounds presented 

in typical event study analyses.  

 The approach we suggest for evaluating event-time effects directly carries over to 

generalized difference-in-differences (GDiD) models where treatment effects are not modeled as 

simple separable effects that do not vary across time. In these GDiD models, one allows for the 

realistic possibility that the impacts of the treatments could depend on measured variations in 

individual and location characteristics over time. The impact of a job training program on 

employment, for example, could depend on one’s age and education, as well as local labor 

market conditions and the availability of public transportation.  

Once one introduces such realistic, heterogeneous, and time-varying responses to a 

treatment, there is no longer a “single treatment effect” in the post-treatment period. Any attempt 

to construct an event study graph displaying a simple shift in the outcome immediately following 

the initiation of the treatment would not capture the treatment effect heterogeneity in a 

meaningful fashion. More substantively, should the “treatment effect” singled out as the impact 

of a legal change in a simple event study be the impact on school attendance for a seventeen-

year-old white youth from a poorly-educated family in a high-unemployment period, or the 

impact on a similar Hispanic youth during a low-unemployment regime, or a somewhat arbitrary 
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“average” effect estimated from a statistical model that ignores economic and policy motivations 

for aggregating the heterogeneous treatment effects?    

The fact that there is no unchanging single effect, however, does not imply that event 

study analyses cannot provide important information. However, rather than using a simple event-

time graph to display the levels of “treatment effects” as a function of the time since treatment 

initiation (i.e., the event-time), it is likely to be more informative and less arbitrary to focus 

instead on the primary purpose of using an event study analysis. That purpose is to uncover any 

persistent patterns or trends in the outcome that are not captured by the empirical model related 

to the timing of the treatment.  

In this paper, we provide an overview of the methodology and use artificially-constructed 

data sets to illustrate the advantages and disadvantages of various event-study techniques. We 

begin by precisely defining an event study formulation with a simple, conventional single-

treatment effect specification. We then present a slightly different formulation of the event-study 

that estimates “different” event-study time effects but is otherwise a statistically and 

substantively identical model specification. In this reformulated simple model, the reformulation 

is akin to a change in the “base category” for a set of mutually exclusive dummy variables; 

differences arise only because we focus on post-treatment deviations from the “treatment effect” 

estimated for the first post-treatment time period.1 We then expand the analysis to situations 

where there is no simple homogeneous treatment effect to demonstrate the usefulness of the 

event-study reformulation. We close this paper by applying these event-study approaches to 

artificial data sets where there are heterogeneous “treatment effects” that depend upon exogenous 

characteristics.  

 
1 Other normaliza.ons could be used; for example, one might instead examine devia.ons about some “average 
effect” across all post-treatment .me periods.  
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II. A Basic Event Study Formulation	

To begin, suppose the model under consideration is a simple model with separable 

treatment effects of the form: 

𝑦(𝑠, 𝑡) = 𝛽!∗ + 𝛽#∗𝑇(𝑠, 𝑡) + 𝛽$∗%𝑥(𝑠, 𝑡) + 𝜂∗(𝑠, 𝑡) 

(1) 

where the treatment unit is indexed by s and time periods by t.2  Let 𝑦(𝑠, 𝑡) represent the 

outcome of interest that could be impacted by the treatment, measured by the dummy variable 

𝑇(𝑠, 𝑡) which equals 1 if the treatment were in effect at time period t. The vector 𝑥(𝑠, 𝑡) captures 

characteristics of the treatment units and time periods impacting the outcome that could measure 

time- or unit-invariant variables, collections of fixed effects, or varying effects by unit and/or 

time. All unit-level fixed effects and time fixed effects, if any, are subsumed within 𝑥(𝑠, 𝑡). 

However, 𝑥(𝑠, 𝑡) does not contain any explicit “time-of-commencement-of-treatment” related 

variables. These will be introduced explicitly below.3  To minimize the notation, we only 

consider the case where once the treatment takes place it remains in place throughout the end of 

the period of observation, or, equivalently,  [𝑇(𝑠, 𝑡) = 1] ⇒ [𝑇(𝑠, 𝑡 + 1) = 1].  

 Define D(s) as the date at which the treatment becomes in effect for unit s.4   We define 

the set of “event-time” dummy variables as 𝐸𝑉&(𝑠, 𝑡) = 	1[𝑡 − 𝐷(𝑠) = 𝑟], where 1[. ] is the 

indicator function that equals 1 (instead of 0) if the event within the brackets is true. For 

 
2 It is straighAorward to introduce mul.ple observa.ons per unit s and .me period t. For this discussion, that only 
adds an unnecessary level of abstrac.on. Note that data do not need to be “balanced.” 
3 To simply apply the approaches suggested here, it is crucial for one to understand the precise meaning of the 
“event-.me” effects in the presence of variables in 𝑥(𝑠, 𝑡) that might be perfectly colinear with some collec.on of 
the event .me variables.  
4 We assume that the treatment eventually starts in each unit s within the period of observa.on. This means that 
we do not need to somehow assign, perhaps probabilis.cally, event-.mes to units never observed being treated.  
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example, 𝐸𝑉!(𝑠, 𝑡)  is a dummy variable taking the value 1 in the time period when the treatment 

commences for unit s; 𝐸𝑉'#(𝑠, 𝑡) is a dummy variable taking the value 1 only in the last time 

period before the treatment commences for unit s;  and 𝐸𝑉#(𝑠, 𝑡) is a dummy variable taking the 

value 1 in the second time period the treatment is in effect for unit s. Across all observations, the 

values of 𝐸𝑉&(𝑠, 𝑡) range from -B  to A.5 

 Using these dummy variables, the standard event study empirical model becomes: 	

𝑦(𝑠, 𝑡) = 𝛽9! + : 𝛽9&()𝐸𝑉&(𝑠, 𝑡)
'$

&*'+

+:𝛽9&()𝐸𝑉&(𝑠, 𝑡)
,

&*!

+ 𝛽9$%𝑥(𝑠, 𝑡) + 𝜂;(𝑠, 𝑡), 

(2) 

Note that each coefficient 𝛽9&() in equation (2) measures how the estimated “intercept” for event 

time period r differs from the intercept for the excluded event-time -1, the last period prior to the 

introduction of the treatment.  𝛽9!()is typically interpreted as the effect of the treatment in the first 

time period under the treatment, but formally all it measures is how the estimated intercept at 

event-time period 0, the time period when the treatment is introduced, differs from the intercept 

for event-time period -1.  

A standard event-study graph plots the coefficients 𝛽9&() against the event-study time 

variable r. Typically, if the model is well-specified, the coefficients 𝛽9&() for r < -1 should cluster 

around 0. The visual pattern followed by the estimates 𝛽9'+() through 𝛽9'$() is often used as an 

informal “test” for the parallel trend assumption used to validate a difference-in-difference or 

other related types of model specifications. Researchers frequently look for patterns in the post-

 
5 For each 𝐸𝑉𝑟(𝑠, 𝑡) for r ranging between -B and A, we assume there is at least one unit s that has 𝐸𝑉𝑟(𝑠, 𝑡) = 1 
for all values of t. We do this mostly to simplify the nota.on. Depending on the configura.on of the explanatory 
variables 𝑥(𝑠, 𝑡), however, addi.onal assump.ons may be needed to ensure that “event-.me effects” iden.fiable, 
in the sense of measuring exactly pure .me effects about the commencement of the .ming of the treatment. Note, 
importantly, the defini.ons of the event-.me coefficients will crucially depend upon any arbitrary normaliza.on(s) 
that would be chosen in such instances.  
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treatment event-time coefficients, the 𝛽9!() through 𝛽9,(), and interpret those patterns as a 

description of how the impact of the treatment evolves as a function of the duration of time since 

the initiation of the treatment.  

 There is a convenient, alternative normalization that makes it easier to track the evolution 

of the post-event-time coefficients; this normalization will be especially useful in instances when 

there is not a simple invariant “treatment effect.”   For the model described in equation (1), a 

mathematically and statistically equivalent specification for the event study presented in equation 

(2), when all coefficients are interpreted correctly, is given by:    

𝑦(𝑠, 𝑡) = 𝛽<! + : 𝛽<&()𝐸𝑉&(𝑠, 𝑡)
'$

&*'+

+ 𝛽<!()𝑇(𝑠, 𝑡) +:𝛽<&()𝐸𝑉&(𝑠, 𝑡)
,

&*#

+ 𝛽<$%𝑥(𝑠, 𝑡) + �̂�(𝑠, 𝑡) 

(3). 

Note that all of the coefficients in equation (3) are identical to the corresponding coefficients in 

equation (2), except for the coefficients on the event-time dummy variables after the beginning 

of the treatment (i,e., 𝛽<&()and the 𝛽9&() for r>0).6  In particular, the coefficient on the treatment 

dummy variable in equation (3) is identical to the coefficient on the dummy variable for the 

event-time equaling 0 in equation (2), i.e., 𝛽<!() is identical to the 𝛽9!()multiplying the term  

𝐸𝑉!(𝑠, 𝑡) in equation (2). The coefficients 𝛽<&(), for r > 0, in equation (3) equal exactly the 

differences (𝛽9&() − 𝛽9!()) in the coefficients from equation (2),7 so they measure how the 

 
6 The error terms in the two equa.ons are also iden.cal, as the two models describe exactly the same rela.onship. 
They only differ by using different arbitrary normaliza.ons.  
7 Using equa.on (3), a test of no change in treatment effect by event-.me following treatment ini.a.on would only 
require a joint test that all of the 𝛽,"#$ coefficients for r>0 equaling zero. The same test, when using equa.on (2), 
would require one to test that each of the coefficients  𝛽-"#$ for r>0 equals the coefficient corresponding to the 
treatment effect in the first year of treatment, 𝛽-%#$, or its logical equivalent. 
 



 7 

treatment effects during each of the post treatment time periods differs from the initial treatment 

effect. 

 The coefficients on the  𝐸𝑉&(𝑠, 𝑡) for r>0 in equation (3), the 𝛽<&() for r>0,  have a 

different interpretation than the corresponding coefficients in equation (2). This is the case 

because equation (3) controls for the treatment dummy variable  𝑇(𝑠, 𝑡), and because of the 

“fact” that the treatment, once initiated, does not stop during the period of observation. 

Specifically, 𝑇(𝑠, 𝑡) = 1 for all time periods post-initiation of the treatment for unit s. The 

coefficient  𝛽<&() for r>0  measures how the intercept for event-time r (for r>0) differs from the 

intercept of the first period when the treatment is in effect, i.e., the intercept for event-time r=0. 

If the specification in equation (1) were correct, that is there is a constant treatment effect 

through time once the treatment commences, then the coefficients 𝛽<&() for r>0 in equation (3) 

should cluster around 0. Estimates from equation (2) highlight the magnitude to which post-

treatment effects differ from pre-treatment outcome level at time r=-1. Equation (3), on the other 

hand, is not designed directly to uncover the magnitude of the treatment effect, but rather to 

highlight any post-trends or patterns that are not captured in the model (relative to the treatment 

effect as estimated for the first treatment period, r=0, 𝛽<!()). This feature is illustrated in one of 

the examples presented in Section IV.  

Another key difference between the event studies defined by equations (2) and (3) 

concerns the standard errors used to define the confidence intervals around the estimated event-

time effects. In equation (2), all the standard errors for the event-time effects, both prior to and 

subsequent to the commencement of the treatment, are appropriate when describing differences 

between the intercept at each event-time and the intercept at event-time -1. In many instances, 

however, one would like to evaluate the performance of the model in the post-treatment period 
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and/or evaluate the evolution of the treatment effect over time. If that is the case, the standard 

errors corresponding to how the intercepts in post-treatment initiation periods differ from the 

intercept in the first treatment time period would be the appropriate ones to use for simple 

hypothesis tests. Equation (3) provides these exact standard errors. 

 

III.  Event Study Formulations for Heterogeneous Treatment Effects	

The utility of the normalization used in equation (3) becomes most apparent when the 

effect of the treatment is no longer just a simple, single effect. Suppose, as discussed briefly 

above, that the treatment differs depending on the variables 𝑥(𝑠, 𝑡). Those are key features that 

should be incorporated into any evaluation of the treatment. The effect of compulsory schooling 

on teen labor force participation, for example, could be different for 16- and 17-year-olds even 

when both are subject to the mandate. Additionally, the types of jobs teens might consider 

appropriate could depend on local employment conditions or their ability to drive to a job during 

the evening or at night (Argys, Mroz, and Pitts, 2023). 

 One direct way to capture such differential effects is to allow there to be different 

functions describing the outcome during the pre-treatment regime and under the treatment 

regime. Let 𝑔-[𝑥(𝑠, 𝑡), 𝜃!] be the regression function describing the outcome in the absence of 

the treatment and 𝑔#[𝑥(𝑠, 𝑡, 𝜃#)] be the regression function describing the outcome in the 

presence of the treatment. The model in equation (1) is an extremely simple 

representation/example of these two different regression models. Using this new notation, the 

regression model describing the impacts of the treatment is given by 

𝑦(𝑠, 𝑡) = 𝑔-[𝑥(𝑠, 𝑡), 𝜃!] ∙ 1[𝑇(𝑠, 𝑡) = 0] 	+ 𝑔#[𝑥(𝑠, 𝑡), 𝜃#] ∙ 1[𝑇(𝑠, 𝑡) = 1] 	+ 𝜂∗(𝑠, 𝑡) 

Or, since  1[𝑇(𝑠, 𝑡) = 0] = 1 − 1[𝑇(𝑠, 𝑡) = 1] 	
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𝑦(𝑠, 𝑡) = 𝑔-[𝑥(𝑠, 𝑡), 𝜃!] + Effect[𝑥(𝑠, 𝑡), 𝜃] ∙ 1[𝑇(𝑠, 𝑡) = 1] 	+ 𝜂∗(𝑠, 𝑡), 

(4) 

where		

Effect[𝑥(𝑠, 𝑡), 𝜃] = {	𝑔#[𝑥(𝑠, 𝑡), 𝜃#] − 	𝑔![𝑥(𝑠, 𝑡), 𝜃!]	}.	

In	this	formulation,	there	is	no	single	treatment	effect.	Rather,	the	effect	of	the	

treatment,	Effect[𝑥(𝑠, 𝑡), 𝜃],		is	a	function	of	the	vector	of	characteristics	𝑥(𝑠, 𝑡).	The	

treatment	effects	could	vary	through	time	as	well	as	by	the	value	of	observable	unit-specific	

characteristics.	One	could,	in	principle,	construct	a	different	event-time	set	of	dummy	

variables	for	every	relevant	combination	of	the	elements	in	the	vector	𝑥(𝑠, 𝑡)	and	use	those	

to	specify	a	high-dimensional	event	study	in	the	spirit	of	equation	(2).	That	approach,	

however,	often	would	be	infeasible	or	yield	mostly	noise,	especially	when	the	number	of	

units	s	and/or	time	periods	t	is	small	relative	to	the	number	of	unique,	relevant	values	of	

the	vectors	𝑥(𝑠, 𝑡).		

The	event	study	formulation	in	equation	(3),	however,	could	easily	be	adapted	to	

assess	whether	there	are	variations	in	the	outcome		𝑦(𝑠, 𝑡),	such	as	non-parallel	trends	

prior	to	the	initiation	of	the	treatment,	that	are	not	captured	well	by	the	model	in	equation	

(4).	Adopting	some	of	the	same	notation	as	in	equation	(3)	above,	one	could	augment	the	

regression	model	in	equation	(4)	to	yield		

𝑦(𝑠, 𝑡) = 𝑔d!e𝑥(𝑠, 𝑡), 𝜃f!g + Effecth e𝑥(𝑠, 𝑡), 𝜃fg ∙ 1[𝑇(𝑠, 𝑡) = 1]		

+ : 𝛽<&()𝐸𝑉&(𝑠, 𝑡)
'$

&*'+

+:𝛽<&()𝐸𝑉&(𝑠, 𝑡)
,

&*#

+ �̂�(𝑠, 𝑡).	

(5) 
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In	equation	(5),	the	interpretations	of	the	parameters	𝛽<&() 	for	all	values	of	r	(not	equal	to	-1	

or	0,	given	the	imposed	normalization)	would	be	identical	to	those	discussed	for	equation	

(3).	The	𝛽<&() 	for	r<-1	could	be	used	to	identify	pre-treatment	trends	not	captured	by	the	

functional	form;	the	presence	of	such	trends	would	suggest	a	misspecified	model.	Similarly,	

any	patterns	associated	with	the		𝛽<&() 	for	r>0	would	be	indicative	of	a	failure	to	model	well	

the	evolution	of	the	outcomes	𝑦(𝑠, 𝑡)	with	the	chosen	functional	forms.	Additionally,	it	

would	be	simple	to	test	the	null	hypothesis	that	the	regression	model	is	correctly	specified	

by	testing	the	joint	hypothesis	that	all	the	𝛽<&() = 0,.	for	r=-B,…,-2,1,…A.		

	 There	is	a	cost	of	moving	from	a	high-dimensional	collection	of	event	studies	and	

their	corresponding	event-time	effects	(say	separate	sets	of	event-time	coefficients,	one	for	

each	age	and/or	education	level)	to	a	single	set	of	homogeneous	event-time	effects.	In	

particular,	consider	some	subgroup	of	the	data	that	is	defined	by	a	particular	configuration	

of	their	𝑥(𝑠, 𝑡)	values.	Suppose	this	subgroup’s	outcome	had	been	trending	differently	than	

other	non-treated	groups	in	the	pre-treatment	period.	By	focusing	on	only	one	combined	

set	of	event-time	effects	as	in	equation	(5),	estimation	of	the	empirical	model	might	not	put	

much	emphasis	on	this	one	subgroup’s	deficiencies	for	identifying	effects.8		That	could	

result	in	the	single,	aggregate	event	study	failing	to	uncover	the	model’s	deficiencies.		

	 There	are	alternatives	to	reducing	the	number	of	possible	event	studies	to	just	one	

set	of	event-time	effects.	One	could	categorize	the	data	into	multiple	subgroups	and	

incorporate	separate	sets	of	event-time	effects	for	each	subgroup.	A	single	joint	test	that	all	

of	the	subgroups’	event-time	effects	satisfy	the	conditions	for	model	adequacy	might	

 
8 If such disparate trends were incorporated appropriately into the 𝑔&[𝑥(𝑠, 𝑡), 𝜃%]	and 𝑔'[𝑥(𝑠, 𝑡), 𝜃%] func.ons, 
then there would be no reason for the event-.me coefficients to detect a model misspecifica.on; and this 
discussion would be moot.  
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provide	a	more	powerful	test	of	the	null	hypothesis	that	the	model	is	appropriate	for	

describing	the	effects	of	the	treatment	than	the	test	from	a	single	aggregated	event	study.	

Attempts	to	later	test	which	subgroup(s)	might	have	led	to	the	overall	rejection	of	the	

model,	however,	might	be	quite	imprecise	and	inexact	unless	one	appropriately	controlled	

for	the	pre-testing	and	multiple	hypothesis	issues.		

	If	one	did	have	some	a	priori	information	that	some	particular	subgroup(s)	might	

be	differentially	problematic,	that	information	should	be	incorporated	explicitly	into	the	

specification	of	the	event	studies.	That	is	the	approach	used	in	Argys,	Mroz,	and	Pitts	

(2023).	They	allow	for	two	different	event	study	sets	of	effects:	one	for	comparisons	of	

those	currently	subject	to	Graduated	Driver	Licensing	restrictions	when	compared	to	those	

never	covered;	the	other	for	those	who	only	formerly	faced	driving	restrictions	compared	

to	those	who	never	faced	driving	restrictions.	But	even	without	such	prior	information,	the	

single	set	of	event	study	effects	described	in	equation	(5)	should	allow	one	to	uncover	

many	empirical	models’	inadequacies.	In	the	following	section	we	simulate	data	to	

illustrate	these	points.		

	

IV. 		Simulated	Examples	of	Event	Studies	in	the	Presence	of	Heterogenous	Effects	

		 We	create	artificial	data	to	illustrate	comparisons	across	the	different	approaches	

for	modeling	the	event-study	time	effects.	The	artificial	data	sets	constructed	for	this	

exercise	contain	a	collection	of	50	potentially	treated	units	observed	over	20	time	periods,	

which,	for	ease	of	exposition,	we	now	label	states	and	years.	We	include	10	observations	

within	each	state-year,	but	those	multiple	observations	are	not	crucial	for	the	issues	

discussed	here.	Each	state	is	observed	for	at	least	two	years	prior	to	the	introduction	of	a	
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non-reversible	treatment,	and	the	propensity	to	start	the	treatment	in	state	s	is	

stochastically	related	to	the	magnitude	of	the	potential	treatment	effect	for	the	state.	

Precise	details	of	the	data-generating	process	for	the	collection	of	explanatory	variables	are	

contained	in	the	Stata	do-file	“make_locality_data.do”,	available	in	the	online	appendix.	

In	the	first	of	our	two	data-generating	processes	(DGPs)	built	upon	this	framework,	

we	allow	the	outcome	variable	(y)	to	be	impacted	by	a	common	time	trend	(t)	and	a	time-

varying	state-specific	explanatory	variable	(x).	We	specify	and	identify	three	groups	of	

states	differentiated	by	their	time	trends	in	the	exogenous,	but	stochastic	propensity	to	

initiate	the	treatment.	There	is	no	variation	in	the	treatment	effect	within	each	of	the	three	

state	groupings.	Thus,	there	are	exactly	three	different	treatment	effects.	Details	on	the	

exact	model	specification	and	Stata	code	for	this	first	data	set	and	the	first	set	of	graphs	

that	follow	can	be	found	in	the	Stata	do-file	“simpler_model.do.”	in	the	online	appendix.		

The	first	column	in	Table	1	contains	the	true	parameters	defining	the	regression	

model	for	this	first	set	of	three	treatment	effects,	and	the	second	column	displays	the	

regression	output	from	one	simulated	data	set	generated	by	the	DGP	using	the	exact	

regression	model	used	in	the	DGP.	Prior	to	the	introduction	of	the	treatment	in	each	state,	

there	are	no	systematic	differences	in	the	outcome	across	groups	that	are	not	explained	by	

the	exogenous	variable	x	and	the	time	trend	t.	The	third	column	contains	estimates	using	

the	same	data	set	from	a	model	that	incorrectly	imposes	a	single	treatment	effect	that	

applies	to	all	states.		

The	estimates	in	the	second	column	of	Table	1	closely	correspond	to	the	true	

regression	coefficients	specified	in	Column	1	for	the	actual	DGP.	When	we	impose	the	

restriction	that	the	three	treatment	effects	are	identical,	the	estimated	coefficients	on	the	
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explanatory	variable	x	and	the	time	trend	change	little.	The	state-group	membership	

coefficients,	however,	do	differ	substantially	from	their	true	zero	values.	The	single	

estimated	treatment	effect	falls	within	the	range	of	the	three	treatment	effects,	but	it	does	

not	represent	an	easily	interpretable	average	effect	(e.g.,	Callaway and Sant’Anna, 2021; 

Goodman-Bacon,	2021;	Sun	and	Abraham,	2021).	This	reflects	the	model	misspecification	

due	to	the	assumption	of	a	single	treatment	effect	rather	than	any	bias	due	to	the	staggered	

treatments.	We	only	know	this,	of	course,	because	we	made	up	the	data	and	know	precisely	

the	form	of	the	true	model.		

Table	1	

Model	Parameters	and	a	Sample	Regression	

Variables	 Data	Generating	
Process	

Correct	
Model	

Incorrect	
Model	

Group	1	 0.0	 0.0810	 -2.304***	
	 	 (0.0588)	 (0.0298)	
Group	2	 0.0	 0.0647	 -1.212***	
	 	 (0.0612)	 (0.0299)	
Group*	Treatment	 	 	 	
				Group	1		 0.0	 -0.0357	 	
	 	 (0.0396)	 	
				Group	2		 1.5	 1.445***	 	
	 	 (0.0446)	 	
				Group	3		 3.0	 3.000***	 	
	 	 (0.0590)	 	
Treatment	 NA	 	 1.014***	
	 	 	 (0.0335)	
t	 0.2	 0.199***	 0.207***	
	 	 (0.00220)	 (0.00243)	
x	 1.0	 0.994***	 0.996***	
	 	 (0.0105)	 (0.0116)	
Constant	 0.0	 -0.0270	 1.506***	
	 	 (0.0503)	 (0.0335)	
Observations	 	 10,000	 10,000	
R-squared	 	 0.805	 0.762	
Standard	errors	in	parentheses;	***	p<0.01,	**	p<0.05,	*	p<0.1	
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Next,	we	present	a	standard	event	study	graph	corresponding	to	the	“single	

treatment	effect”	estimates	in	Table	1	column	(3).	To	do	this	we	follow	equation	(2).	We	

replace	the	treatment	effect	variable,	treat,	with	a	sequence	of	dummy	variables	indicating	

the	time	since	the	introduction	of	the	treatment	(event-time	dummy	variables),	using	the	

excluded	event-time	dummy	for	the	last	pre-treatment	period	(r=-1)	as	the	base	event-

time.	We	also	combine	11	or	more	years	pre-treatment	into	a	single	event-time	dummy	

variable,	and	we	group	11	or	more	years	post-treatment	into	a	single	dummy	variable.	

Figure	1	displays	this	event	time	study.		

Figure	1	
A	Standard	Event	Study	

	

	  
Standard	event	study	that	assumes	a	single	treatment	effect	for	the	coefficients	reported	in	
Column	3	of	Table	1.	Period	0	indicates	the	treatment	initiation	and	period	-1	is	the	base.	Small	
dashed	shaded	lines	are	the	upper	bound	and	the	long-dashed	shaded	lines	are	the	lower	bound	
of	the	95%	confidence	intervals.	
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A	cursory	examination	of	Figure	1	suggests	that	while	the	outcome	does	appear	to	

be	trending	downwards	in	the	early	pre-treatment	years,	there	is	an	immediate	uptick	in	

outcome	at	the	time	of	the	treatment	initiation	that	only	diminishes	slightly	the	longer	the	

treatment	has	been	in	effect.	Since	we	made	up	these	data,	however,	we	know	there	are	no	

such	features	in	the	true	DGP	corresponding	to	any	of	the	pre-	or	post-treatment	trends.	In	

fact,	in	this	incorrectly	specified	model,	we	resoundingly	reject	the	null	hypothesis	that	all	

of	the	pre-treatment	event-time	effects	are	zero	(10	restrictions;	p<0.0001).9	We	also	

reject	the	null	hypothesis	that	all	of	the	post-treatment	effects	are	the	same	(11	

restrictions;	p=0.0048).	Not	surprisingly	a	combined	test	for	the	two	composite	

hypotheses	rejects	the	combined	null	hypothesis	(21	restrictions,	p<0.001).	Of	course,	

these	three	p-values,	given	that	we	examine	sequentially	three	related	tests,	are	not	

accurate	representations	of	the	true	probabilities	under	each	stated	null	hypothesis.		

Instead	of	using	the	standard	event	study	framework	described	in	equation	(2),	this	

next	event	study	utilizes	the	approach	described	in	equation	(3)	that	controls	for	the	post-

treatment	effect	when	estimating	the	event-time	coefficients.	In	this	statistically-equivalent	

specification,	the	post-initiation	event-time	effects	are	measured	relative	to	the	measured	

impact	of	the	treatment	in	the	initial	treatment	year	(instead	of	relative	to	the	last	year	

prior	to	the	treatment).	The	right-hand	panel	of	Figure	2	presents	this	modified	event	

study	approach	while	the	left-hand	panel	merely	repeats	Figure	1.		

	

	

  
 

9 The power to reject in these examples, however, is extremely arbitrary as we set the accuracy of the model in our 
specifica.on of the DGP. 
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Figure 2 
Comparison of the Two Event Study Approaches with a Single Treatment Effect 
 

Standard Event Study 
Assuming Single Treatment Effect 

Column 3, Table 1 

 
Modified Event Study 

Event Time 0 Effect (se): 
1.22 (0.07) 

 

 

Period	0	indicates	the	treatment	initiation	and	period	-1	is	the	base.	Small	dashed	shaded	
lines	are	the	upper	bound	and	the	long-dashed	shaded	lines	are	the	lower	bound	of	the	95%	
confidence	intervals.	The	event	time	0	effect	and	standard	error	come	from	the	event	study	
estimation;	see	the	do-file	“simpler_model.do”	in	the	appendix.		
	

 
There	are	two	major	differences	between	these	two	event	study	graphs.	First,	the	

post-treatment	initiation	event	study	effects	in	the	right-hand	panel	are	measured	relative	

to	the	treatment	impact	(intercept)	at	event-time	0	(the	first	treatment	period).	In	the	left-

hand	panel	they	are	instead	measured	relative	to	the	“effect”	(intercept)	at	event-time	-1.	

Second,	and	more	importantly,	the	standard	errors	used	to	construct	the	pointwise	

confidence	interval	bands	in	the	right-hand	graph	correspond	to	the	standard	errors	for	
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testing	hypotheses	about	how	the	effects	for	event-times	+1	and	later	differ	from	the	initial	

treatment	effect	(at	event-time	0).	The	standard	errors	used	to	construct	the	confidence	

intervals	in	the	left-hand	graph,	instead,	correspond	to	the	standard	errors	appropriate	for	

testing	differences	from	the	“event-time	effect”	estimated	for	the	last	pre-treatment	time	

period.	The	confidence	bands	in	the	right-hand	panel	likely	provide	more	relevant	

measures	for	assessing	the	adequacy	of	the	estimated	model,	which	would	typically	be	the	

reason	to	apply	an	event	study	framework.10			

Since we know there are three different groups of states with possibly different effect 

sizes across state-groups, we can construct different event studies for each of the three groups. 

To do this we construct three separate sets of pre- and post-treatment dummy variables, one for 

each of the three groups of states.11  The “Group 2 event-time -5 dummy variable,” for example, 

equals 1 only for an observation in a state belonging to Group 2 exactly five years before the 

beginning of the treatment in that particular state; otherwise, it is zero. Figure 3 presents these 

three sets of event-studies together in a single graph. 

By correctly modeling the heterogeneous treatment effects, the anomalies uncovered in the 

single treatment effect event studies presented in Figure 2 disappear when examining Figure 3. 

There is no apparent evidence of any pre- or post-treatment trends for any of the three groups 

from a visual inspection of Figure 3, just like in the true DGP. Additionally, all hypothesis tests 

(separate or combined by group, and pre- or post-treatment effects separate or combined) fail to 

reject their corresponding null hypothesis (no pre-treatment trends and no variations in post-

treatment trends) 

 
10 Though, as noted above, one could easily construct the more-relevant event-.me effects and their standard 
errors for the right-hand graph from the informa.on contained in the regression output for the leX-hand panel.  
11 For the DGP used here, the ranges of event-.mes observed separately by the three different groups differ. That is 
obvious in Figure 3 where there are fewer pre-treatment event .me effects for Group 3 than for Groups 1 and 2.  
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Figure 3 

A Small Number (3) of Different Treatment Effects 

 

Period	0	indicates	the	treatment	initiation	and	period	-1	is	the	base.	Small	dashed	shaded	
lines	are	the	upper	bound	and	the	long-dashed	shaded	lines	are	the	lower	bound	of	the	95%	
confidence	intervals.	G	refers	to	group.	The	event	time	effects	and	standard	errors	come	
from	the	event	study	estimation;	see	the	do-file	simpler_model.do	in	the	appendix.		

 

The treatment effects displayed on the right-hand side of Figure 3 appear to convey a 

significant amount of information visually, but that is mostly because in our made-up DGP we 

specified the treatment effects to be quite disparate. Additionally, in more realistic models, it 

might be difficult to assess from the post-treatment portions of Figure 3 whether or not there are 

significant deviations from the constant effects in the post-treatment period without a solid 

reference point. We begin to address these shortcomings by slightly respecifying the event study 

regression model in a way that allows one to better assess visually whether there are significant 
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deviations from the modeled treatment effect. That type of assessment is one of the primary 

purposes for examining an event study graph in the post-treatment period.  

In Figure 4 we apply the approach used in equation (3) adapted to difference out the three 

separate, event-time r=0 treatment effects from the post-treatment event time-effects displayed in 

Figure 3. We do this by replacing the three event-time 0 dummy variables that were used in the 

regression model underlying Figure 3, with the three different treatment dummy variables.  

Figure 4 

Event Study for Three Treatment Effects Using Modified Equation (3) 

 

Period 0 indicates the treatment initiation and period -1 is the base period for the pre-treatment 
event study effects and the time 0 event effects; period 0 is the “base” for the post-treatment event-
time effects. Small dashed shaded lines are the upper bound and the long-dashed shaded lines are 
the lower bound of the 95% confidence intervals. Different treatment and event time effects are 
estimated for each group (G). Event time 0 effects (se): G1: -0.049 (0.101); G2: 1.520 (0.104); G3: 
3.108 (0.136). These come from the event study estimation in the do-file simpler_model.do in the 
appendix.  
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By removing the event-time r=0 effects, the pointwise confidence bands overlap considerably, 
making it difficult to visually inspect the three separate sets of event-time effects. With only 
three “treatment effects” in this model, one could easily plot out three separate graphs, one for 
each set of event-time coefficients. And, of course, a simple F-test of all the event-time effects in 
Figure 4 equaling zero would provide a test of the adequacy of the regression model that 
incorporates the group-specific treatment effects.  
 

To reduce the clutter in Figure 4, we apply the single set of event-times approach 

described in equation (5) to this same set of data. In a real data set, where there could be model 

inadequacies related to the treatment groups or other factors, this approach could help one to 

uncover issues with the specified econometric model. However, if as mentioned above, one has 

an a priori notion that some subgroup might be differentially subject to model misspecifications 

than other subgroups, then the information obtained by using the simplification found in equation 

(5), instead of using equation (3) with multiple sets of event-time effects, might be a less useful 

approach. Of course, in this made-up data set, where we know there are no peculiarities in the 

DGP related to event-times, there is no real information loss from examining only a single set of 

event-time effects. As expected, Figure 5 displays this feature of the true DGP from an estimated 

model with only a single set of event-time “effects.”  
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Figure 5 

Event Study for Three Treatment Effects Using Equation (5) 

 

Period 0 indicates the treatment initiation and period -1 is the base period for the pre-treatment 
event study effects and the time 0 event effects; period 0 is the “base” for the post-treatment event-
time effects. Small dashed shaded lines are the upper bound and the long-dashed shaded lines are 
the lower bound of the 95% confidence intervals. Different treatment and event time effects are 
estimated for each group (G). Event time 0 effects (se): G1: 0.020 (0.071); G2: 1.491 (0.072); G3: 
3.037 (0.081). These come from the event study estimation in the do-file simpler_model.do in the 
appendix.  

 
We next turn to a more complicated set of treatment effects where the impact of the 

treatment varies over time and across groups as a function of observed exogenous variables. In 

this DGP (see Stata do-file less_simple_model.do) there are differential group-specific impacts 

on the level (intercept) of the treatment effects, explanatory variables with trends impacting the 

outcome differentially by group that change after the treatment commences (WVAR), and time 

trends whose effects shift differentially by group at the start of the treatment (TVAR). The true 

regression parameters for this DGP are displayed in the first column of Table 2, and the second 
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column contains estimates from one simulated data set using the (correct) regression model as 

specified in the DGP. We also create a third DGP that alters the second DGP slightly to allow for 

post-treatment, state-specific shifts in the outcome that have a 10% hazard of taking place after 

the treatment has been in effect for 3 time periods. The idea behind incorporating these post-

treatment shifts is that there could be related unmodeled policy changes taking place after the 

start of the initial treatment. The regression results displayed in the third column of Table 2 

contain the point estimates when the regression model used in the second column is applied to 

the DGP that has these unmodeled, randomly starting outcome shifts that can commence post-

treatment and vary differentially for units with the same groups. 

Figure 6 contains the event study results for the regression model presented in column 2 

of Table 2 as described by equation (5). Not surprisingly, since the regression model corresponds 

exactly to the true DGP, there is no evidence of a model misspecification in either the pre-

treatment period or in the post-treatment period. All tests of pre- and post-treatment event study 

coefficients fail to reject the null hypothesis of zero event-time effects, whether tested pre- 

treatment as a group, post-treatment as a group, or all event-time effects tested jointly. Figure 6 

provides a concise summary of the regression model’s performance even though there is a 

different treatment effect associated with each unit within each group that varies across the post-

treatment periods as a function of exogenous variables and time trends. 
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Table 2 
Data Generating Process with Treatment Effects depending on Groups with 

Group-Specific Responses to Time Trends and Trended Exogenous Variables 
 

Variables Data Generating Process Correct 
Model 

Incorrect 
Model 

Group 1 1.00 1.038*** 1.040*** 

  (0.156) (0.159) 
Group 2 2.00 2.134*** 2.137*** 

  (0.163) (0.167) 
Group*Treatment    
    Group 1 0.00 0.131 0.0469 

  (0.0882) (0.0900) 
    Group 2 1.50 1.485*** 1.331*** 

  (0.0994) (0.101) 
    Group 3 3.00 3.076*** 3.005*** 

  (0.159) (0.162) 
Group*WVAR    
    Group 1  0.60 0.563*** 0.560*** 

  (0.111) (0.114) 
    Group 2  0.80 0.851*** 0.846*** 

  (0.111) (0.113) 
    Group 3  1.00 1.147*** 1.146*** 

  (0.166) (0.169) 
Group *Treatment* WVAR 
    Group 1 0.80 0.790*** 0.767*** 

  (0.126) (0.129) 
    Group 2   1.30 1.252*** 1.357*** 

  (0.123) (0.125) 
    Group 3   1.80 1.643*** 1.639*** 

  (0.175) (0.179) 
Group*TVAR     
    Group 1  0.20 0.224*** 0.224*** 

  (0.00715) (0.00730) 
    Group 2  0.20 0.189*** 0.190*** 

  (0.0130) (0.0133) 
    Group 3  0.20 0.194*** 0.194*** 

  (0.0262) (0.0268) 
Group*Treatment*TVAR 
    Group 1  -0.03 -0.0569*** -0.0360*** 

  (0.00815) (0.00832) 
    Group 2  0.05 0.0565*** 0.0724*** 

  (0.0136) (0.0139) 
    Group 3  0.11 0.116*** 0.127*** 

  (0.0267) (0.0272) 
X 1.00 0.995*** 0.999*** 
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 Table 2 (cont.)   

  (0.0110) (0.0112) 
Constant 0.00 -0.0930 -0.0936 

  (0.142) (0.145) 
DGP has an unmodeled post treatment revision  No Yes 
Observations  10,000 10,000 
R-squared   0.917 0.916 

         Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1 

 

Figure 6 
Heterogeneous Effects Varying over Time and By Group 

 
 

Non-traditional event study, which removes all treatment effects, trends, and interactions that are 
modeled as responding to the treatment. Period 0 indicates the treatment initiation and period -1 is 
the base period for the pre-treatment event study effects and the time 0 event effects; period 0 is 
the “base” for the post-treatment event-time effects. Small dashed shaded lines are the upper 
bound and the long-dashed shaded lines are the lower bound of the 95% confidence intervals.  
 
A comparison of coefficients in columns 2 and 3 of Table 2 demonstrates the importance 

of the model misspecification due to the additional post-treatment shifts in the outcome variable. 

Almost all the estimated coefficients in the third column are within one standard error of the 

estimates in the second column, and in only one instance out of the 18 estimated coefficients is 
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the difference as large as two standard errors. A cursory examination of this table might suggest 

that there is no evidence of model misspecification. 

However, the event study analysis presented in Figure 7 tells a different story. There is 

some evidence of a post-treatment commencement uptick in the “treatment effect.”  That visual 

observation is confirmed by an F-test that all of the event-time effects jointly equal zero. Even 

though there are variable treatment effects across groups and units and across unit variations in 

the model not fitting well, the use of a simple event study is able to pick up the misspecifications 

after one removes the treatment effects as described in equation (5). 

Figure 7 
Heterogeneous Effects Varying over Time and By Group 

Incorrect Regression Model 

 

Non-traditional event study, which removes all treatment effects, trends, and interactions that are 
modeled as responding to the treatment. Period 0 indicates the treatment initiation and period -1 is 
the base period for the pre-treatment event study effects and the time 0 event effects; period 0 is 
the “base” for the post-treatment event-time effects. Small dashed shaded lines are the upper 
bound and the long-dashed shaded lines are the lower bound of the 95% confidence intervals.  
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V.  Conclusion 
 
The event study approach described in equation (5) has the ability to capture model 

misspecifications in the presence of heterogeneous treatment effects. Unlike the imposed, single 

homogeneous effect analysis displayed in Figures 1 and 2, it should be less prone to false 

rejections of the null hypothesis of no event-time variations in the outcome after modeling the 

appropriate treatment effect heterogeneity. Additionally, even in the presence of a single 

treatment effect or a small number of treatment effects, the standard errors obtained by using 

versions of equation (3) provide the correct information for assessing how treatment effects 

might vary post-treatment. The standard errors from a more conventional event study analysis, 

which focus on variations in event-time effects compared to the “level” in the last pre-treatment 

period, do not provide that correct information directly. All of these features will contribute to a 

more precise understanding of the impacts of policy changes on outcomes and behaviors.  
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