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1 Introduction

Standard inference in linear instrumental variable (IV) models depends critically on two properties

of the instruments: (i) their strength or relevance in explaining the variation in the endogenous

variables and (ii) their exogeneity that ensures correct specification of the model moment conditions.

Given that models should always be viewed only as approximations of a possibly unknowable data

generating process, it is often prudent to assess the degree of model misspecification by subjecting

the moment conditions to a test for correct specification by remaining agnostic about the strength

of the identification signal of the instruments. Unfortunately, standard specification tests in the

existing literature are not robust to uncertainty about the instrument strength and their limiting

behavior (under the null and the alternative) tends to break down when the instruments are weak

or irrelevant. For example, under failure of the rank condition for identification, the conventional

tests for the validity of the overidentifying restrictions in linear models have a non-standard limit

under the null and are inconsistent under the alternative hypothesis (Cragg and Donald, 1996;

Kitamura, 2006; Gospodinov, Kan and Robotti, 2017; among others). Since the access to strong

observable instruments that can point-identify the economic model is often constrained, detecting

model misspecification – such as invalidity of the instruments – in an identification-robust way

appears elusive. And yet, many interesting economic models of policy relevance are characterized

by the presence of weak (or outright irrelevant) but possibly endogenous instruments that lead to

the violation of the model moment conditions (see, for example, Murray, 2006; Bazzi and Clemens,

2013; among many others).

When the dimension of the instrument vector, k, is large relative to the sample size n, the tests

for overidentifying restrictions can be modified to reflect the expanding set of instruments. More

specifically, while the Sargan-Hansen J test for overidentifying restrictions has a chi-squared limit

when k is fixed, its scaled and recentered version Sn,k = (Jn,k−k)/
√
2k has a standard normal limit

under the condition k = o(n1/3); see Donald, Imbens and Newey (2003). Similar adjustments can

render the Anderson-Rubin test asymptotically normal (Andrews and Stock, 2007) with moderately

many instruments. In Bekker’s (1994) many instrument framework, where the instruments grow at

rate that is proportional to the sample size, Anatolyev and Gospodinov (2011) construct corrected

versions of these tests that are robust to the numerosity of the instruments and are valid under both

the fixed and many instrument asymptotics. However, these results require that the IV estimator

is root-n consistent; a rate that may not be attainable when the degree of identification of the
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model is compromised.1 Thus, it seems desirable to have a consistent test, with a standard limiting

distribution under the null, that remains uniformly valid, irrespective of the identification strength

of the instruments.

It is instructive, at this point, to compare and contrast the tests for unconditional moment

restrictions, described above, to the tests for validity of conditional moment restrictions, devel-

oped by Bierens (1982), Bierens and Ploberger (1987), de Jong and Bierens (1994), Carrasco and

Florens (2000), Donald, Imbens and Newey (2003), Tripathi and Kitamura (2003), among others.

First, many economic models are defined by a set of conditional moment restrictions with a small

number of conditioning variables. The expanding number of instruments (or continuum of moment

conditions), k, is then constructed as a sequence of basis functions of the conditioning variables,

which is completely under the control of the researcher. This approach has a substantial practical

advantage because it does not require access to many economic variables that can serve as instru-

ments.2 While in the latter case the choice and justification of the relationship between k and n

can be arbitrary, in the conditional moment restriction test, the expanding set of basis functions

k can be obtained in practice precisely as the limiting theory (under the null or the alternative)

requires. With this distinction in mind, the conditional specification test has also been shown to

converge asymptotically to the standard normal distribution, provided that k → ∞ at some rate

and the estimator is root-n consistent; i.e., under the maintained assumption that the identification

or rank condition is satisfied.

In this paper, we build on these strands of literature and establish the uniform validity of the

test for instrument exogeneity in linear models which is completely agnostic to the degree of model

identification, without the need of any prior knowledge of whether the instruments are strong,

semi-strong, weak or completely irrelevant. The test statistic Sn,k, based on k basis functions g(zi)

of some finite number of conditioning variables or potential instruments zi, is pivotal under the

null of instrument exogeneity H0 : Pr(E(εi|zi) = 0) = 1, where εi denotes the regression errors. As

a result, the test is straightforward to implement as it uses standard normal critical values with a

tuning parameter (k) that is fully under the control of the researcher.

To characterize the full range of possibilities for the identification signal, we cast it as a drifting

1Under some conditions and parameterizations (see Chao and Swanson, 2005; Han and Phillips, 2006; Mikusheva

and Sun, 2022), an expanding set of weak instruments may enhance the identification signal and render the estimator

consistent.
2While there are situations in which a large number of instruments can be constructed by interacting different

variables (Angrist and Krueger, 1991) or using lagged dependent variables in panel data models (Arellano and Bond,

1991), this is not always the case and invoking the many instrument asymptotics may be challenging.
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parameter sequence of the sample size. More specifically, we parameterize the conditional mean

of the endogenous variables xi given zi as C(zi)/n
δ for some arbitrary, but not necessarily linear,

measurable localizing function C(z) and a scalar parameter δ ∈ [0,+∞] that controls the degree

of identification. To obtain the asymptotic behavior of the specification test Sn, we establish the

limiting properties of the generalized method of moments (GMM) estimator over the range of values

of δ under both the null and alternative hypotheses. First, for any δ ≥ 1/2, which represents “weak

instrument” region and includes the case of completely irrelevant instruments (δ = +∞), we show

that the GMM estimator has a probability limit but is inconsistent. Furthermore, for 0 ≤ δ < 1/2

– which covers the strong instrument (δ = 0) and semi strong/weak instrument case – consistent

estimation is possible but it hinges on the choice k. If k grows at a slower rate than n1−2δ, then the

GMM estimator is consistent. If k grows at the same rate as n1−2δ or faster, then the consistency is

lost but the convergence to a probability limit is preserved. We then use these results to establish

the uniform validity, under the null, of the N(0, 1) limit of Sn,k over δ ∈ [0,+∞].

Under the alternative, H1 : Pr (E(εi|zi) = 0) < 1, the limiting behavior of the GMM estimator

is characterized by the interaction between the invalidity of the instruments and their identification

strength. When the instruments are weak or completely irrelevant (δ ≥ 1/2), the GMM estimator

diverges at rate
√
n/k while the GMM estimator converges to its pseudo-true value when the

instruments are strong (δ = 0). These results, along with the limiting behavior of the optimal

weighting matrix, ensure that the Sn,k test statistic diverges to +∞ under the alternative as the

sample size grows. Interestingly, while the source of power is standard for δ ∈ [0, 1/2), in the case of

weak or completely irrelevant instruments (δ ≥ 1/2) the power of the test is driven by the increasing

number of generated instruments, k.

It may be beneficial to further position these results in the literature on specification testing

with identification failure. Dovonon and Gospodinov (2024a) obtained conditions under which the

specification test Sn,k retains its standard normal limit when first-order local identification fails

but global identification is still attainable. Doko Tchatoka and Dufour (2023) derive conditions

for consistency of exogeneity tests in weakly identified IV models. The consistency of the tests,

however, requires existence of at least some minimal signal in the instruments which is not satisfied

in the case of completely irrelevant instruments which is covered by our theory (see, also, Caner,

2014).3 Furthermore, in a setup where the conditional moment restrictions are estimated nonpara-

3When there is uncertainty about the strength of the identification signal, one could resort to identification-robust

inference (see, for example, Kleibergen, 2005). However, Guggenberger (2012) shows that these methods do not
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metrically, Jun and Pinkse (2009) obtain asymptotically valid specification tests without assuming

identification. Their tests, however, are consistent only if identification is not too weak, which

rules out the possibility of completely irrelevant instruments. Finally, Antoine and Lavergne (2023)

also establish the uniform validity, irrespective of the identification strength, of a nonparametric

(integrated conditional moment) statistic that tests jointly the value of the coefficient and the spec-

ification of the model (see also Stock and Wright, 2000). The asymptotic distribution of this test

is non-pivotal and critical values are obtained by simulation. In contrast, our test is pivotal, easy

to construct and implement, with uniform validity that is obtained in a richer, parameter-drifting

setting. In closing, we should note that our arguments (under both the null and the alternative)

would continue to go through, with minor modifications, if zi itself is a high-dimensional vector

such as in Kolesár et al. (2015), Guo et al. (2018), and Frandsen, Lefgren and Leslie (2023).

The rest of the paper is organized as follows. Section 2 introduces the conditional moment

restriction setup and the main assumptions, the drifting parameterization of the identification signal

and the expanding basis functions of the conditioning variables. Section 3 derives the asymptotic

behavior of the estimator, weighting matrix and the tests statistic for instrument exogeneity under

the null hypothesis. Section 4 characterizes the rates of the estimator and the weighting matrix

under the alternative hypothesis and obtains the consistency of the specification test. Section 5

reports simulation results while Section 6 illustrates the practical benefits of the proposed test in an

empirical application of the effect of international trade on economic growth. Section 7 concludes.

The proofs of the main results are provided in Appendix A while some additional results are

relegated to an Online Appendix.

Throughout the paper, we use the following notation. Let λmax(M) and λmin(M) denote the

largest and smallest eigenvalues of the square matrix M , respectively. For a vector a, ∥a∥2 =
√
a′a

represents the Euclidean norm of a and for a matrix A, ∥A∥2 =
√

λmax(A′A). Also, N and Rm

signify the set of natural numbers and the set of real m× 1 vectors, respectively. For two scalars a

and b, a∨b = max(a, b). Furthermore, Ip stands for the identity matrix of dimension p. Convergence

in distribution is denoted by
d−→, while the abbreviation a.s. stands for ‘almost surely.’ Finally,

an = oP (1) denotes that the sequence an tends to zero in probability, an = OP (1) signifies that an

produce correct coverage when the exogeneity condition for the instruments is violated. Similar distortions arise

for misspecification-robust inference (see, for example, Hall and Inoue, 2003) in the presence of weak or irrelevant

instruments. A unified inference framework, that is fully robust to both model misspecification and potential lack of

identification, is currently not available (Andrews, Stock and Sun, 2019, p. 749). Thus, valid pre-tests – as the test for

instrument exogeneity developed in this paper – could still be quite informative about the source of misspecification

or lack of identification of the model, and may lead to more efficient estimation and inference.
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is bounded in probability, and an << bn means that an/bn tends to 0 as n grows to ∞.

2 Main setup

2.1 Model, notation and drifting parameterization

Consider the linear regression model

yi = η0 + x′iθ0 + εi, i = 1, . . . , n. (1)

All of the explanatory variables xi are allowed to be endogenous and inference about the model

parameters relies on instrumental variable (IV) methods with zi denoting a vector of instruments

available. We assume throughout the paper that the sample {(xi, zi, yi) ∈ Rp × Rm × R : i =

1, . . . , n} is a triangular array of independent and identically distributed random vectors with

common distribution Pn that is allowed to change with the sample size n. We also maintain that

the regression error εi has zero mean under Pn. Our methodology requires that a subset of zi

are continuous random variables although zi with a rich enough support will suffice. The overall

instrument set can still contain discrete instruments but the basis functions, defined below, can be

applied only to the subset of instruments that are continuous.

The relevance and exogeneity of the instruments play an essential role in obtaining standard

inference in this linear IV setup. This paper is concerned with testing the exogeneity of the

instruments irrespective of their strength. We assume that the informative part of the conditional

mean of xi given zi can be reparameterized as local-to-zero in a way that covers the spectrum of

all relevant identification features. More specifically, under Pn, we set:4

E(xi|zi) = µx +
C(zi)

nδ
, (2)

where µx ∈ Rp is the population mean of xi, δ ∈ [0,+∞] is a scalar parameter, and C(z) is an

arbitrary measurable function. This representation of the conditional expectation is quite flexible

and varying δ in the specified ranges captures all the identification traits encountered in the litera-

ture.5 Note also that we let the function C(z) be unspecified instead of posing a linear relation as

it is commonly done in the literature (e.g., Staiger and Stock, 1997).

4The fact that the right-hand-side of (2) depends on n is the key motivation of representing the sample as a

triangular array. Expectations throughout the paper are taken under Pn although we do not make this explicit for

notational convenience.
5As xi lies in Rp, we could extend this setting to account for the possibility that each component of the conditional

mean is possibly local-to-zero with a specific value for δ. However, such a consideration may increase the notational

burden without adding more insight. Instead, in the theory developed below, we focus on the case where δ is the

same for all components and report simulation results on the more general configuration.

5



The setup when δ = 0 corresponds to the case of strong instruments if V ar(C(z)) is non-

singular. The case δ ̸= 0 corresponds to semi strong/weak instruments as studied by Antoine and

Renault (2009, 2012, 2020) and Dovonon, Doko Tchatoka and Aguessy (2023) for unconditional

moment models. In this case, the information content of the instruments vanishes as the sample

size grows, making the instruments progressively irrelevant. The case where the instruments are

completely irrelevant or uninformative about the parameter θ0 corresponds to the case δ = +∞.

We are interested in testing the null of exogeneity of the instruments :

H0 : E(εi|zi) = 0, a.s.

against the alternative:

H1 : Pr (E(εi|zi) = 0) < 1.

We consider the specification test for conditional moment restrictions proposed by Dovonon

and Gospodinov (2024a) and investigate its properties under the null and the alternative when the

explanatory variables and instruments are consistent with (1) and (2). We obtain the conditions

under which this test delivers uniformly valid inference irrespective of the instruments strength;

i.e., for any value of δ ≥ 0 while leaving C(z) unspecified.

Under the null of exogeneity, εi is uncorrelated with any suitable measurable function of zi.

Let {gl(·) : Rm 7→ R}l be a sequence of functions that forms a basis of the separable Hilbert space

L2(Pz) := L2(Rm;B(Rm);Pz) of square Pz-integrable real-valued functions defined on Rm, where

Pz is the probability distribution of zi and B(Rm) is the Borel σ-algebra of Rm. (We refer to

de Jong and Bierens (1994), Donald, Imbens and Newey (2003), and Dovonon and Gospodinov

(2024a), among others, for specific choices of gl.)

Let g(k)(z) = (g1(z), g2(z), . . . , gk(z))
′ for k = 1, 2, . . ., and Zi = g(k)(zi). We consider a test for

H0 based on the moment restriction.6

Cov(Zi, εi) = E
(
(Zi − µz)[yi − µy − (xi − µx)

′θ0]
)
= 0, k = 1, . . . ,

with a feasible version given by:

E
(
(Zi − Z̄)[yi − ȳ − (xi − x̄)′θ0]

)
= 0, k = 1, . . . , (3)

6Exploiting covariance leads to a demeaned moment equality which presents the non-trivial advantage of getting

rid of the intercept η. So long as the constant instrument is included, the intercept in IV regressions is always strongly

identified regardless of the strength of the remaining instruments. In case of (semi)-weak instruments, the intercept

is typically estimated at a faster rate than the slope parameters. Standard (non-demeaned) moment restrictions

would, therefore, make the theoretical analysis more complicated because of the induced heterogeneity of rates while

demeaned restrictions are immune to such issues.
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where µα = E(αi), and ᾱ =
∑n

i=1 αi/n.

Finally, letting Ŵ be a (k, k)-symmetric positive definite matrix and θ̃ be the generalized method

of moments (GMM) estimator of θ0, based on this sequence of feasible moments restrictions, θ̃ is

given by:

θ̃ = argmin
θ

(µ̃zy − µ̃zxθ)
′ Ŵ (µ̃zy − µ̃zxθ) =

(
µ̃′
zxŴ µ̃zx

)−1 (
µ̃′
zxŴ µ̃zy

)
,

with µ̃αβ = n−1
∑n

i=1(αi − ᾱ)(βi − β̄)′, where (αi, βi) ∈ Rn1 × Rn2 for i = 1, . . . , n, and for some

integers n1 and n2.

The test statistic is based on the GMM objective function using the weighting matrix Ṽ −1 given

by

Ṽ = n−1
n∑

i=1

[yi − ȳ − (xi − x̄)′θ̃]2(Zi − Z̄)(Zi − Z̄)′, (4)

where the weighting matrix Ŵ associated with θ̃ is possibly non-optimal. Typically, Ŵ is set to Ik

or V̂z = n−1
∑n

i=1(Zi − Z̄)(Zi − Z̄)′ which yields the two-stage least squares estimator (2SLS). Let

θ̂ be the two-step GMM (2SGMM) estimator based on Ŵ = Ṽ −1,

θ̂ =
(
µ̃′
zxṼ

−1µ̃zx

)−1 (
µ̃′
zxṼ

−1µ̃zy

)
. (5)

Let V̂ be defined as Ṽ but with θ̂ replacing θ̃, that is:

V̂ = n−1
n∑

i=1

[yi − ȳ − (xi − x̄)′θ̂]2(Zi − Z̄)(Zi − Z̄)′, (6)

and let

Jn,k := n
(
µ̃zy − µ̃zxθ̂

)′
V̂ −1

(
µ̃zy − µ̃zxθ̂

)
be a version of the Sargan-Hansen J test for overidentifying restrictions.7 The test statistic for the

exogeneity condition is given by:

Sn,k =
Jn,k − k√

2k
. (7)

In developing the limiting theory, we adopt a setup with an expanding set of instruments k → ∞,

as a function of n.

7Note that the standard Sargan-Hansen test statistic, Jn,k, is defined using Ṽ instead of V̂ . For reasons that we

will explain later in Remark 1, the slightly modified version that we consider in this paper for the specification test

statistic is required to obtain asymptotic uniform validity of our specification test over the whole range δ ∈ [0,+∞].

We index the statistic Jn,k by k to signify that it is a function of an expanding set of k instruments, while we reserve

the notation Jn for the conventional test for overidentifying restrictions with a fixed number of instruments.
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2.2 Assumptions

This section collects the main assumptions that provide the basis for characterizing the limiting

behavior of the GMM estimator, the weighting matrix and the test statistic for instrument exo-

geneity. First, the representation of the conditional mean given by (2) is formally stated in the

following assumption, recalling that the expectations are under Pn.

Assumption 1 There exists an Rp-valued function C(z) and δ ∈ [0,+∞] such that, letting ak :=

E ((Zi − µz)C(zi)
′),

(a) E(xi|zi) = µx + n−δC(zi); (b) ∥ak∥2 = O(1), Rank(ak) = p, and lim inf
k

λmin(a
′
kak) > 0.

Part (a) captures the possibility of varying degrees of identification. Part (b) sets the magnitude

of ak := Cov(Zi, C(zi)). Although this is a (k, p)-matrix with k growing, the order of magnitude

imposed on the norm of this matrix is realistic, especially in the light of the case of linear IV models.

Indeed, when C(zi) = Π′(Zi − µz) and δ = 0 as in standard linear IV models, we have

xi = µx +Π′(Zi − µz) + vi,

with Π ∈ Rk×p and E(vi|zi) = 0. Hence,

ak := E[(Zi − µz)C(zi)
′] = E[(Zi − µz)(xi − µx)

′] = VzΠ,

with Vz := E[(Zi − µz)(Zi − µz)
′]. Besides,

Vx := E[(xi − µx)(xi − µx)
′] = Π′VzΠ+ V ar(vi).

Thus, Vx − λmin(Vz)Π
′Π is positive semidefinite. Under the condition that Vz has its smallest

eigenvalue bounded away from 0, we can claim that ∥Π∥2 < ∞. Therefore,

∥ak∥2 =
∥∥E [(Zi − µz)C(zi)

′]∥∥
2
= ∥VzΠ∥2 ≤ ∥Vz∥2 · ∥Π∥2 = O(1)

using that ∥Vz∥2 = O(1) which is implied by Assumption 2 below. □

The requirement that Rank(ak) = p, for k large enough, ensures first-order local identification

of the model when δ ∈ [0, 1/2). This condition is not restrictive either. A sufficient condition for it

to hold is that V ar (E(xi|zi)) is positive definite. For δ = 0, we establish the connection as follows.

By the definition of the components of Zi as basis functions of L
2(Pz), for k large enough, we write

E(xi − µx|zi) ≃ ΛZi,
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where Λ is a matrix of suitable size. Thus,

V ar (E(xi|zi)) = E
[
E(xi − µx|zi)E(xi − µx|zi)′

]
≃ E

[
Λ(Zi − µz)C(zi)

′] = Λak,

where we use part (a) of the assumption, the fact that E(C(zi)) = 0 and the definition of ak.
8

Then, it follows that:

p = Rank[V ar (E(xi|zi))] ≤ Rank(ak) ≤ p.

Similar to the result of Antoine and Renault (2012) for k fixed, we show that with a growing k,

the model parameter is consistently estimable. The condition on the rank is useful to establish that

the GMM estimator is consistent and to derive its rate of convergence. While the rank requirement

implies that the singular values of ak are non-zeros for k large enough, the last condition in part

(b) rules out the possibility that ak does have a subsequence with smallest (or more precisely, pth

largest) singular values that converge to 0. This is a technical condition that is useful to evaluate

the magnitude of quantities involving the inverse of a′kWak in their expression.

Next, let Z̃i = V
−1/2
z (Zi − µz). Note that the dimensions of this matrix are allowed to grow

(k → ∞) which necessitates additional conditions that rule out ill-conditioned matrices.

Assumption 2 Assume that (a) xi, εi, and Zi have up to finite eighth moments, (b) there exist

0 < λ ≤ λ̄ < ∞ such that λ ≤ λmin(Vz) ≤ λmax(Vz) ≤ λ̄, (c) λmax

(
E(w2

i (Zi − µz)(Zi − µz)
′)) ≤ λ̄,

for wi ∈ {εi, xhi : h = 1, . . . , p}, and (d) k−1
∑k

l=1E(Z̃8
i,l) ≤ ∆ < ∞.

This assumption proves useful in deriving and controlling the magnitude of the quadratic mean

of quantities such as µ̃′
zxŴ µ̃zx and µ̃′

zxŴ µ̃zy that form the GMM estimator. Note also that the

moment condition on Zi in part (a) holds trivially for choices of basis functions {gl(z) : l = 1, . . .}

that are uniformly bounded. In this case, only the existence of fourth moments for xi and εi are

required. The boundedness of the eigenvalues of Vz rules out the possibilities of ill-conditioning.

This is a common assumption in the literature. (See, e.g., Cattaneo, Jansson and Newey, 2018; Han

and Phillips, 2006; and Dovonon and Gospodinov, 2024a.) Part (c) is not particularly restrictive

and would follow from a subset of the other mild assumptions if ε and x were independent of z.

Primitive conditions for the eigenvalues of Vz and quantities such as E(w2
i (Zi − µz)(Zi − µz)

′) to

be bounded away from 0 and from above are given by Proposition S.3 of Dovonon and Gospodinov

(2024b). This proposition is followed by simulations confirming, in more realistic configurations,

8Noting that ak := E[(Zi − µz)C(zi)
′] = E[(Zi − µz)(xi − µx)

′] and using the law of iterated expectations, we

have ak ≃ VzΛ
′, so that V ar (E(xi|zi)) ≃ ΛVzΛ

′.
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that part (c) is not too restrictive. Similar conditions on eigenvalues will subsequently be required

in Assumptions 4 and 5. Parts (b) and (d) of Assumption 2 are useful to claim that, for any

1 ≤ ν ≤ 4,

E
(
(Zi − µz)

′(Zi − µz)/k
)ν

= O(1), (8)

√
n(Z̄ − µz) is, component-wise, asymptotically normally distributed and

∥
√
n(Z̄ − µz)∥2 = OP (

√
k). (9)

This last claim follows by observing that E(∥
√
n(Z̄ −µz)∥22) = O(k). We rely on the properties (8)

and (9) routinely in the proofs of the subsequent results.

Finally, we make the following assumption on the sequence of weighting matrices Ŵ .

Assumption 3 Assume that there exists W a nonrandom (k, k)-matrix symmetric positive definite

such that ∥Ŵ −W∥2 = oP (k
−1/2) and λmax(W ) ≤ λ̄ (with λ̄ as in Assumption 2.)

This assumption is trivially satisfied if the sequence of weighting matrix is set to Ik. Also,

Proposition A.2 of Dovonon and Gospodinov (2023) establishes that the standard weighting matrix

for IV estimation - given by the inverse of sample variance of the instruments - satisfies this

assumption under mild conditions.

2.3 Robust choice of k

In this section, we study – under the null – the asymptotic stochastic order of magnitude of the

GMM estimator θ̃ for different values of δ ∈ [0,+∞], and k = o(n) but growing with the sample

size. This analysis allows us to propose a robust choice of k that guarantees the most favorable

behavior of the GMM estimator in terms of consistency and rate of convergence regardless of the

degree of identification; i.e., for any value of δ ∈ [0,+∞]. Let C1k be the p-vector and V1k the

(p, p)-matrix defined respectively by:

C1k := k−1E (q1i · εi · (xi − µx)) and V1k := k−1E
(
q1i · (xi − µx)(xi − µx)

′) ,
with q1i := (Zi − µz)

′W (Zi − µz).

Theorem 2.1 Under H0, if Assumptions 1, 2 and 3 hold and k → ∞ with k = o(n), we have the

following:

(a) If δ ≥ 1/2, then θ̃ = θ0 + V−1
1k C1k +OP (k

−1/2).

10



(b) If 0 ≤ δ < 1/2, then:

(b1) If k ≪ n1/2−δ or k ∼ n1/2−δ, θ̃ = θ0 +OP (n
−1/2+δ).

(b2) If n1/2−δ ≪ k ≪ n1−2δ, θ̃ = θ0+n2δ−1k(a′kWak)
−1C1k+OP

(
k1/2n2δ−1 ∨ k2n4δ−2

)
.

(b3) If k ∼ n1−2δ, θ̃ = θ0 + (V1k + a′kWak)
−1C1k +OP (n

−1/2+δ).

(b4) If k ≫ n1−2δ, θ̃ = θ0 + V−1
1k C1k +OP

(
1√
k
∨ n1−2δ

k

)
.

The proof of Theorem 2.1 is provided in the Online Appendix. Part (a) of this theorem is an

extension of the result of Dovonon and Gospodinov (2023) who study the case δ = +∞. They

found that the GMM estimator has a probability limit but is inconsistent. Part (a) shows that

this actually holds for any δ ≥ 1/2. Fixed number of instruments k would lead, as well known in

the literature on weak instruments, to GMM estimators without probability limit (see, e.g., Staiger

and Stock, 1997; Andrews and Cheng, 2012; among others).

Part (b) of this theorem is new and quite interesting. For 0 ≤ δ < 1/2, it appears that consistent

estimation is possible. However, this hinges on the choice k. If k grows at a slower rate than n1−2δ,

then the GMM estimator is consistent. If k grows at the same rate as n1−2δ or faster, then,

consistency is lost but convergence to a probability limit is warranted. A further consideration

of the cases of convergence - (b1) and (b2) - shows that the sharpest rate of convergence of the

estimator is n−1/2+δ which is obtained by the choices of k ∼ n1/2−δ or k ≪ n1/2−δ.

The perverse effect of large k may be connected to the results of Newey and Smith (2004) who

show that increased number of moment restrictions translates into bias for the GMM estimator. In

our configuration, having k increasing too fast leads to a pervasive bias.

As the practitioner may be agnostic about the value of δ which may range from 0 to +∞, a good

point to address concerns how can we choose k so that consistent estimation is guaranteed regardless

of the value of δ ∈ [0, 1/2[ without altering the convergence of the estimator when δ ≥ 1/2.9 The

standard approach consists in choosing k ∼ nα for some α > 0. Nevertheless, for a given α, it is

always possible to find a range for δ < 1/2 such that k ∼ nα ≫ n1/2−δ; especially for values of δ

close to 1/2. Because of this, the quest for robustness points to choices of sequences k that have a

slower rate of explosion than power functions. This motivates our consideration of

k ∼ a(log n)b, a, b > 0.

9Note that the convergence of the estimator is important for the specification test to be valid for δ ≥ 1/2.
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Such choices of k fit with the conditions in (b1) and therefore, guarantees not only consistent

estimation but also the sharpest rate of convergence when 0 ≤ δ < 1/2 while preserving convergence

when δ ≥ 1/2.

It is worth mentioning that the rate n−1/2+δ derived for the GMM estimator corresponds to the

optimal rate derived by Hahn and Kuersteiner (2002) and Antoine and Renault (2009, 2012) for

the GMM when the unconditional moment restrictions are local to 0 with 0 ≤ δ < 1/2. Theorem

2.1(b1) extends this result to increasing number of moment restrictions obtained from conditional

moment restriction models.

In the subsequent development, we will consider k ∼ a(log n)b, a, b > 0 instead of k = o(n1/3)

as in Dovonon and Gospodinov (2023) and Donald, Imbens and Newey (2003). This choice of

smaller values for k may affect negatively the power of the specification test that we propose in this

paper but this may be the price to pay for this test to be uniformly valid over the range of values

δ ∈ [0,+∞].

3 Asymptotic behavior under the null

Before deriving the asymptotic distribution of the specification test statistic, we need to shed some

light on the limiting behavior of the optimal weighting matrix Ṽ and the two-step GMM estimator

– as given by (4) and (5), respectively – and this for all values of δ ∈ [0,+∞]. Let vi := xi−E(xi|zi)

and

r1i = εi − v′i
(
E(q1i · viv′i)

)−1
(E(q1i · εi · vi))

be the scaled remainder of the linear regression of
√
q1i · εi on

√
q1i · vi. (The actual remainder is

√
q1i · r1i.) We use the index ‘1’ to stress the dependence of the residual on the weighting matrix

W through q1i. Let

V1,δ =


E(ε2i (Zi − µz)(Zi − µz)

′) if 0 ≤ δ < 1/2,

E(r21i(Zi − µz)(Zi − µz)
′) if δ ≥ 1/2.

The next result derives the probability limits of Ṽ and Ṽ −1 and that of the two-step GMM estimator.

In addition to Assumptions 1, 2 and 3, we make the following assumption.

Assumption 4 With Zi = g(k)(zi) and λ and λ̄ defined as in Assumption 2, we have:

(a) k−2
k∑

l,m=1

V ar(Ui(Zil −µzl)(Zim −µzm)) ≤ ∆ < ∞, and λmax (E[Ui(Zi − µz)(Zi − µz)
′]) ≤ λ̄,
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with Ui ∈ {1, |εi|, ε2i , |xih−µxh|, |vih|, |C(zi)h|, (xih−µxh)·(xih′−µxh′), v2ih, C(zi)
2
h : h, h′ = 1, . . . , p},

(b) E(r1ivi|zi) = 0, (c) λ ≤ λmin(V1,δ).

This assumption is not overly restrictive. Part (a) ensures that no component of Ui(Zi−µz)(Zi−

µz)
′ has variance that dominates the others. This assumption is useful to establish that the sample

mean of this quantity converges to its population mean at a suitable rate. (See Lemma OA.1.)

The boundedness of eigenvalues in (a) and (c) is standard in the literature. Part (b) is equivalent

to E(q1i · r1i · vi|zi) = 0. By definition of r1i, E(q1i · r1i · vi) = 0. Assumption 4(b) imposes that

this zero expectation holds conditionally to zi. Note that this assumption holds if εi and vi are

independent of zi or, alternatively if E(εi · vi|zi) = E(εi · vi) and E(vi · v′i|zi) = E(vi · v′i). The latter

set of conditions are those used in Dovonon and Gospodinov (2023).

In our proofs, Assumption 4(b) is useful only for the case δ ≥ 1/2 and under the null hypothesis.

It is also worth mentioning that for δ > 0 and under the condition of the model,

C1k = k−1E(q1i · εi · vi) +O(n−δ), V1k = k−1E(q1i · vi · v′i) +O(n−δ), and

V−1
1k C1k =

(
E(q1i · vi · v′i)

)−1
E(q1i · εi · vi) +O(n−δ).

We then have the following result.

Theorem 3.1 Suppose Assumptions 1, 2, 3, and 4 hold and k → ∞ with k ∼ a(log n)b, for some

a, b > 0. Then, under H0, we have:

(a) If 0 ≤ δ < 1/2, Ṽ − V1,δ = OP (n
−1/2+δ) and Ṽ −1 − V −1

1,δ = OP (n
−1/2+δ).

If δ ≥ 1/2, Ṽ − V1,δ = OP (k
−1) and Ṽ −1 − V −1

1,δ = OP (k
−1).

(b) If 0 ≤ δ < 1/2, θ̂ = θ0 +OP (n
−1/2+δ).

If δ ≥ 1/2, θ̂ = θ0 + V−1
2k C2k +OP (k

−1/2),

with C2k and V2k defined as C1k and V1k but with q1i replaced by q2i := (Zi − µz)
′V −1

1,δ (Zi − µz).

Theorem 3.1 highlights some interesting features of the estimation procedure especially when

it comes to the probability limit of the sample variance of the estimating function evaluated at an

estimator. In relation to Theorem 2.1, the two-step GMM estimator turns out to be a particular

case of the estimator θ̃ associated with some weighting matrix Ŵ . In particular, note that all the

conditions of Theorem 2.1 are fulfilled for θ̂ once it is established that Ṽ −1 − V −1
1,δ = oP (k

−1/2) as

is done in part (a). Hence, as expected, while θ̂ is consistent when 0 ≤ δ < 1/2, it is not consistent

13



in general when δ ≥ 1/2. Instead, it converges to a probability limit θ0 +V−1
2k C2k at the same rate

k−1/2 as in the general case in Theorem 2.1. Note however that the probability limit is different as

it depends on the limit of the sequence of the weighting matrices. It is useful to mention that this

dependence on the probability limit of the sequence of weighting matrices vanishes if we make the

stronger assumption of Dovonon and Gospodinov (2023) which amounts to E(εivi|zi) = E(εivi)

and E(viv
′
i|zi) = E(viv

′
i).

Remark 1 This dependence on the weighting matrix of the probability limit of θ̂ in the case δ ≥ 1/2

justifies the slight change to the definition of the Jn,k (therefore, to the test statistic Sn,k) that

we mentioned above. Theorem 3.1 shows that Ṽ converges to E(r21i(Zi − µz)(Zi − µz)
′) which

depends on W (the weighting matrix of the first-step GMM estimation). Besides, as we show in

the proof of Theorem 3.2 below, the leading term of
√
n(µ̃zy − µ̃zxθ̂) is n

−1/2
∑n

i=1 r2i(Zi −µz) (see

definition of r2i below) and it is important to use a sequence of weighting matrices that converges to

E(r22i(Zi−µz)(Zi−µz)
′)−1 to have asymptotic normality of the test statistic Sn,k, therefore, uniform

validity of the test. While we could not obtain this property using Ṽ , the asymptotic normality is

obtained for δ ≥ 1/2 using V̂ −1 as weighting matrix. This is due to the fact that the latter is

obtained using residuals that are evaluated at the right estimator θ̂.

We next turn to the derivation of the asymptotic distribution of the specification test statistic

Sn,k. Define r2i as r1i but with the weighting matrix W replaced by V −1
1,δ , and V2,δ as V1,δ but with

r1i replaced by r2i, that is:

r2i = εi − vi
(
E(q2i · viv′i)

)−1
(E(q2i · εi · vi)) , with q2i = (Zi − µz)

′V −1
1,δ (Zi − µz),

and

V2,δ =


E(ε2i (Zi − µz)(Zi − µz)

′) if 0 ≤ δ < 1/2,

E(r22i(Zi − µz)(Zi − µz)
′) if δ ≥ 1/2.

Theorem 3.2 Suppose Assumptions 1, 2, 3, and 4 hold with Assumption 4(b,c) holding for r2i

and V2,δ as well, and k → ∞ with k ∼ a(log n)b, for some a, b > 0. Then, under H0, for any value

of δ ∈ [0,+∞], we have:

Sn,k
d−→ N(0, 1).

This result establishes the asymptotic uniformity of the specification testing procedure using

Sn,k over values of δ ∈ [0,+∞]. This main result shows that irrespective of the strength of the

instruments, the proposed specification test statistic is asymptotically standard normal.
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4 Asymptotic behavior under the alternative

In this section, we assume that the exogeneity of the instruments is compromised, that is:

H1 : Pr(E(εi(η, θ)|zi) = 0) < 1, for any (η, θ) ∈ Rp+1, with εi(η, θ) := yi − η − x′iθ.

Under H1, Lemma 4.4 of Dovonon and Gospodinov (2024a) (see also Lemma 1 of de Jong and

Bierens (1994)) ensures that, for a suitable choice of basis functions (g(k)(z))k∈N and any compact

subset C of Rp+1,

∃k0 ∈ N and δ0 > 0 : inf
(η,θ)∈C

∥E(g(k)(zi)εi(η, θ))∥2 > δ0.

With this insight, we can claim that under the alternative, for k large enough,

cz := E(g(k)(zi)εi(η0, θ0)) := E(Ziεi) ̸= 0.

For the same reasons as those that led us to impose that ∥ak∥2 := ∥E(Zi −µz)(xi −µx)
′∥2 = O(1),

we shall impose that ∥cz∥2 = O(1). Indeed, if E(εi|zi) were a linear function of Zi − µz, we would

have:

εi = (Zi − µz)
′d+ wi, with E(wi|zi) = 0, for k large enough.

Then, since V ar(εi) = d′Vzd + V ar(wi) and λmin(Vz) bounded away from 0, we necessarily have

∥d∥2 = O(1). Hence, by the fact that ∥Vz∥2 = O(1), we have cz := E((Zi − µz)εi) = Vzd = O(1).

Thus, we maintain under the alternative that cz ̸= 0 and ∥cz∥2 = O(1). This approach amounts to

setting k1 ∼ ∥cz∥2 in Dovonon and Gospodinov (2023, Section 4) to be bounded instead of allowing

it to grow with the sample size. Nevertheless, we reach the same conclusion as them in the case

δ = ∞ which is of interest in their study.

We next explore the limit behavior of Sn,k under the alternative and show that it yields a

consistent test. This will require that we first investigate the behavior under the alternative of the

GMM estimator and the optimal weighting matrix. The limiting behavior of the first-step GMM

estimator for different degrees of identification (different values of δ) is presented in Proposition

OA.2 in the Online Appendix. When δ = 0,

θ̃ = θ0 + (a′kWak)
−1a′kWcz +OP

(
k−1/2

)
so that θ̃ converges to its pseudo-true value with an asymptotic bias bk,0 = (a′kWak)

−1a′kWcz.
10

10The pseudo-true value reduces to the true value θ0 if and only if cz = 0; that is the model is correctly specified.
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For δ > 0, the GMM estimator diverges (at rate
√
n/k for δ ≥ 1/2 and nδ for 0 < δ < 1/2) to

infinity which is in line with Dovonon and Gospodinov (2023) who focus on the case δ = ∞.

The weighting matrix associated to θ̃ is given by (4). To establish its order of magnitude we

introduce the following notation and assumption. For any u ∈ Rp, define

V3(u) = E
(
[u′(xi − µx)]

2 · (Zi − µz)(Zi − µz)
′)

and let

V3,0 = E
(
[εi − b′k,0(xi − µx)]

2(Zi − µz)(Zi − µz)
′) . (10)

For δ = 0, the term εi − b′k,0(xi − µx) in V3,0 is the leading term of the prediction error of yi using

the inconsistent estimator θ̃. In what follows, V3(u) will determine the leading part of Ṽ with u set

to the estimation error ẽ in the cases where δ > 0 while V3,0 will be established to be the probability

limit of Ṽ in the case where δ = 0.

Assumption 5 (a) inf{u∈Rp:∥u∥2=1} λmin(V3(u)) ≥ λ > 0. (b) λmin(W ) ≥ λ and λmin(V3,0) ≥ λ.

(c) There exists h ∈ {1, . . . , p}: λmin (V ar ((xih − µxh)(Zi − µz))) ≥ λ. (d) lim infk ∥a′kWcz∥2 > 0.

Parts (a), (b) and (c) of Assumption 5 are standard and are similar to Assumptions 2(b) and

4(c). Part (d) imposes that W 1/2ak and W 1/2cz are not orthogonal for all k large enough. If we

set W = Ik, this condition amounts to the requirement that the smallest absolute inner product

of the columns of ak by cz is bounded away from 0 as k grows, except maybe for finitely many k.

This condition ensures that the leading term of the expansion of θ̃−θ0, as it appears in Proposition

OA.2(a), does not vanish. This is useful to make a claim about the order of magnitude of ∥θ̃−θ0∥−1
2 .

Proposition OA.3 in the Online Appendix characterizes the properties of the optimal weighting

matrix for various values of δ under H1. For δ > 0, Ṽ diverges so that Ṽ −1 shrinks to 0 as the

sample size grows. But, when δ = 0, Ṽ and Ṽ −1 converge to V3,0 and V −1
3,0 , respectively. This

peculiar behavior of Ṽ requires that we study separately the 2SGMM estimator. In particular,

Assumption 2(c) on the sequence of weighting matrices, under which Proposition OA.2 is derived,

is not fulfilled by Ṽ .

For these reasons, we establish below the behavior of the 2SGMM estimator θ̂ and the estimated

optimal weighting matrix V̂ which uses the 2SGMM residuals ε̂ = yi− ȳ− (xi− x̄)′θ̂. (See Equation

(6).) In order to do this, we need to impose extra regularity conditions through the following

assumption. Define D̄ := n−1/2
∑n

i=1(Zi − µz)v
′
i, with vi = xi − E(xi|zi).
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Assumption 6 Let S1 := {u ∈ Rp : ∥u∥2 = 1}. Assume that

(a) lim infk ∥a′kV
−1
3,0 cz∥2 > 0, lim infk inf{u∈S1} ∥a′kV3(u)

−1cz∥2 > 0,

lim infk inf{u∈S1} ∥D̄′V3(u)
−1cz + a′kV3(u)

−1cz∥2 is positive with probability one, and

lim infk inf{u∈S1} ∥D̄′V3(u)
−1cz∥2 is positive with probability one.

(b) sup{u∈S1} ∥D̄
′V3(u)

−1cz∥2 = OP (1).

This assumption is an extension of Assumption 5. This is mainly needed to deal - under H1 -

with the expansion of V̂ which is the optimal weighting matrix evaluated at the 2SGMM estimator

θ̂. Given the leading term of θ̂ − θ0 – under H1 – for different value of δ, the need to control the

magnitude of ∥θ̂− θ0∥−1
2 requires that some terms do not vanish, just as established by Proposition

OA.3 for Ṽ . Part (a) of Assumption 6 essentially makes an explicit connection to these leading

terms. Specifically, Assumption 6(a) helps to deal with the cases δ = 0, 0 < δ < 1/2, δ = 1/2 and

δ > 1/2, respectively. Note that all these restrictions are mild, whereas doing away with them may

leads to a more complicated exposition. The purpose of Part (b) of this assumption is to control

the magnitude of the leading term of the expansion of θ̂ − θ0 in the case δ ≥ 1/2. Note that this

assumption also is very mild. Indeed, for each value u in the compact set S1, D̄
′V3(u)

−1cz = OP (1).

To see this, we observe that: E
(
D̄′V3(u)

−1cz
)
= 0 and

E
(
c′zV3(u)

−1D̄D̄′V3(u)
−1cz

)
= c′zV3(u)

−1E[(Zi−µz)v
′
ivi(Zi−µz)

′]V3(u)
−1cz ≤ λ̄′

zV3(u)
−2cz = O(1),

where we use Assumptions 4(a) and 5(a). This shows that ∥D̄′V3(u)
−1cz∥2 = OP (1) for all u ∈ S1.

Part (b) imposes that the supremum of this quantity over S1 is OP (1) which would follow trivially

under asymptotic equicontinuity of the function u 7→ ∥D̄′V3(u)
−1cz∥2.

Let V3,1 be defined as V3,0 but with bk,0 replaced by bk,1 = (a′kV
−1
3,0 ak)

−1a′kV
−1
3,0 cz, where V3,0 is

given by (10). We then have the following result.

Theorem 4.1 Suppose Assumptions 1, 2, 3, 4(a), 5, and 6 hold, and k ∼ a(log n)b, for some

a, b > 0. Then, under H1, we have:

(a) For 0 < δ < 1/2,

θ̂ − θ0 = nδ
(
a′kV3(ũ)

−1ak
)−1

a′kV3(ũ)
−1cz +OP

(
n2δ−1/2

√
k ∨ 1

)
,
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V̂ = V3(ê) +OP (n
δ), and V̂ −1 = V3(ê)

−1 +OP (n
−3δ),

where ẽ = θ̃ − θ0, ũ := ẽ/∥ẽ∥2, ê = θ̂ − θ0, and θ̃ is the first-step GMM estimator.

(b) For δ = 0,

θ̂ − θ0 =
(
a′kV

−1
3,0 ak

)−1
a′kV

−1
3,0 cz +OP (1/

√
k)

V̂ = V3,1 +OP (1/
√
k), and V̂ −1 = V −1

3,1 +OP (1/
√
k).

(c) For δ ≥ 1/2,

θ̂ − θ0 =

√
n

k

(
k−1/2D̄′V3(ũ)

−1k−1/2D̄
)−1

×
(
D̄′V3(ũ)

−1cz + n−δ+1/2a′kV3(ũ)
−1cz

)
+OP

(√
n/k3/2

)
,

V̂ = V3(ê) +OP

(√
n/k

)
, and V̂ −1 = V3(ê)

−1 +OP

(
k3/n3/2

)
,

where ẽ, ũ and ê are defined as in (a).

Comparing the results in Theorem 4.1 with those in Propositions OA.2 and OA.3 (and the

discussion above) reveals some similarities between the first-step and two-step GMM estimators.

Both estimators have the same rate of convergence for various values of δ. While the weighting

matrix converges to 0 for the 2SGMM, its scale does not seem to matter too much for the (rate)

behavior of the estimator since there is a cancellation of its magnitude in the derivation process.

The main difference between the first-step GMM and the 2SGMM estimators occurs for 0 < δ < 1/2

where the leading term of the estimation error appears to be random in the latter case and non-

random for the first-step GMM.

We are now ready to explore the behavior of our test statistic under the alternative H1. Define

Σ := V3(ũ), if 0 < δ < 1/2 and Σ := V3,0, if δ = 0,

and let

Pδ = Σ−1/2ak(a
′
kΣ

−1ak)
−1a′kΣ

−1/2, and ∆k = c′zΣ
−1/2(Ik − Pδ)Σ

−1/2cz.

Pδ is the matrix of the orthogonal projection on the column span of Σ−1/2ak while ∆k is the

squared-norm of the (orthogonal) projection of Σ−1/2cz on the orthogonal of Σ−1/2ak.

As shown in Theorem 4.2 below, ∆k is a leading term that determines the consistency of the

proposed test in the case 0 ≤ δ < 1/2 and it is essential that it does not vanish as k grows. Note

that, through Σ, ∆k depends on u ∈ Rp (with u = b0,k or u = ẽ/∥ẽ∥). In the Online Appendix
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(Section OA.3), Lemma OA.4 demonstrates that for u being constant in k, ∆k is a non-decreasing

function of k while Lemma OA.5 exploits the fact that b0,k and ẽ/∥ẽ∥ lie in a (fixed) compact set,

respectively, to show that ∆k is uniformly bounded away from 0. This ensures the consistency of

the test so long as there exists k0 such that cz does not belong to the column span of ak0 .

Theorem 4.2 Suppose Assumptions 1, 2, 3, 4(a), 5, and 6 hold, and k ∼ a(log n)b, for some

a, b > 0. Then, under H1, we have:

(a) For 0 < δ < 1/2: There exists a constant C > 0 such that,

Jn,k ≥ n1−2δ · C ·∆k +OP (n
1/2−δ

√
k ∨ n1−3δ), w.p.a.1.

(b) For δ = 0: There exists a constant C > 0 such that,

Jn,k ≥ n · C ·∆k +OP (n/
√
k), w.p.a.1.

In both cases (a) and (b): As k grows, if cz does not lie in the column span of ak, then ∆k > 0

and, for a constant C > 0, we have:

Sn,k =
Jn,k − k√

2k
≥ n1−2δ

√
k

· C ·∆k + oP

(
n1−2δ

√
k

)
, w.p.a.1

and both Jn,k and Sn,k diverge to +∞, in probability as n → ∞.

(c) For δ ≥ 1/2: There exists a random sequence πn ≥ 0 such that limϵ↓0 supn P (πn ≤ ϵ) = 0

and, with probability approaching 1,

Jn,k ≥ k2 · πn · ∥cz∥22 +OP (k
3/
√
n), Sn,k ≥ 2−3/2 · k3/2 · πn · ∥cz∥22 +OP (k

5/2/
√
n)

so that both Jn,k and Sn,k diverge to +∞, in probability as n → ∞.

Theorem 4.2 establishes that the test statistic diverges to +∞ under the alternative as the

sample size grows. Several remarks on these results are warranted. First, although the test statistic

is standard normal under the null, it diverges only to +∞ under the alternative implying that power

would be maximum if a one-sided version of the test is implemented. This makes sense if we recall

that the test is essentially a chi-squared test that is normalized to account for increasing degrees-

of-freedom. As such, we should reject the null only when the test statistic is large positive. The

testing rule shall then consist in rejecting the null if Sn,k is larger than q1−α, the (1− α)-quantile

of the standard normal distribution, α ∈ (0, 1).
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Second, for the case δ ≥ 1/2 where the instruments are weak or completely irrelevant, the

power of the test is driven by the increasing number of generated instruments, k. If k were fixed,

the statement in Part (c) of the theorem would not be sufficient to claim consistency of the test.

More specifically, in the presence of weak/irrelevant instruments, 2SGMM diverges but at a rate

that is moderated by k. Thus, the inverse of the optimal variance does not converge to 0 as fast

as the signal part of Jn,k diverges under H1. This favorable trade-off is the source of power of the

test. This extends the results of Dovonon and Gospodinov (2023), who focus on δ = +∞, to the

range δ ∈ [1/2,+∞]. Further clarification of this surprising power properties of the test is given

in Section OA.4 in the Online Appendix where a model with a single regressor and a completely

irrelevant instrument is considered. More specifically, we study the limiting behavior of the statistic

Jn,k = n(µ̄zy − θ̂µ̄zx)
′V̂ −1(µ̄zy − θ̂µ̄zx) and observe, in this case, that θ̂ − θ0 = ê ∼

√
n
k hn, with

hn = OP (1).
11 Thus, θ̂ diverges but at a rate that is dampened by the growing k which is key to

the consistency of our test. After substituting and rearranging terms, this implies that

√
n(µ̄zy − θ̂µ̄zx) ∼

√
ncz.

Furthermore, the leading term of V̂ is a function of ê2

V̂ ∼ ê2E(x2iZiZ
′
i),

and, as a result,

Jn,k ∼ k2 · h−2
n · c′zE(x2iZiZ

′
i)
−1cz.

This shows that, due to the expanding k, Jn,k grows to infinity under the alternative at a rate at

least k2 and Sn,k consequently grows at the rate k3/2. This explains the test’s consistency in the

case δ = +∞.

When δ ∈ [0, 1/2), the source of power is more standard as it stems from the increase of the

sample size, regardless of k. The only associated restriction is that cz shall not lie in the column

span of ak, that is the column span of Cov(Zi, xi), infinitely often (as k → ∞). An analogous

restriction is standard in the GMM literature for k fixed and is often maintained to establish the

evidence of power for the Sargan-Hansen specification test.

Third, although the results in Theorem 4.2 consider a fixed alternative by imposing that cz is a

non-vanishing O(1) sequence, similar arguments can be used to elicit evidence of power under local

alternatives. For instance, one may consider cz to be local to 0 by stating that hn(zi) := E(εi|zi)
11The notation ‘an ∼ bn’ means that the leading term in the expansion of an is bn.
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or cz := E((Zi −µz)εi) tend to 0 at a certain rate. Then, ∥cz∥2 may then be taken as proportional

to k−α, with 0 ≤ α < 1/2 if 0 ≤ δ < 1/4 and 0 ≤ α < 3/4 in the case δ ≤ 1/2. Even though these

statements could be refined, studying power under local alternatives is beyond the scope of this

paper is left for future research.

5 Simulation results

In this section, we undertake a Monte Carlo simulation experiment that assesses the empirical size

and power properties of the specification test Sn,k over a wide range of values that determine the

identification strength of the instruments. We consider two simulation designs both of which have

three potential instruments generated as zi = (z1i, z2i, z3i)
′ ∼ NID(0, I3). The first setup contains

only one endogenous variable xi. The {yi, xi} sample is simulated as

yi = θ0xi + α0z1i + εi,

xi = π(δ)′zi + vi,

where (εi, vi)
′ is bivariate normal with mean zero and covariance matrix Ω =

(
1 0.3

0.3 1

)
and

θ0 = 1. The vector π(δ) takes the form π(δ) = (1/nδ, 1/nδ, 1/nδ)′ and imposes the same loadings

and identification strength on the instrument vector for various values of δ ≥ 0. In all experiments,

the estimated model includes a constant term and, as a result, we add a vector of ones to the vector

of instruments.

We present results for the Sn,k test and the conventional test for overidentifying restrictions

Jn. The moment condition in our test Sn,k takes the form E
[
g(k)(zi) (yi − ȳ − θ(xi − x̄))

]
= 0

with g(k) = (g1, . . . , gk)
′ with and k = ⌈log(n)⌉, where ⌈a⌉ denotes the least integer greater

than or equal to a. In the case m := size(z) = 1, the basis functions are constructed as gl =

cos(tlΨ(zi)) + sin(tlΨ(zi)), where Ψ(zi) = 2 arctan(zi).
12 For the case m > 1, Ψ(·) and gl(·) are

applied component-wise to z leading to k = m · ⌈log(n)⌉ moment restrictions. We report results

for the one-sided test Sn,k at nominal level α, Ẑ > q1−α, where q1−α denotes the (1 − α) For the

standard Jn test, we use the demeaned values of the instrument vector (z1i, z2i, z3i)
′. With this

instrument vector, the Jn test statistic is compared to the χ2(2) critical values. The sample size is

n = 500 and the number of Monte Carlo replications is 100,000.

12In our implementation of the test, we do not include the original instruments zi along with the set of basis

functions. Overall, our numerical experiments suggest that this choice (provided that zi are transformed to be on a

similar scale as gk(zi)) makes very little difference to the results.
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For better visualization and more compact reporting of the results, we plot the empirical size and

power curves on a grid of values that represent the identification strength of the instruments and

the deviations from the null hypothesis, respectively. For the size computations (at 5%, 10%, 20%,

80%, 90% and 95% nominal levels), we set α0 = 0 and δ = (100, 5, 2, 1, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1, 0)

in π(δ) defined above. For the power computations (at 5% nominal level), we construct the grid

α0 = (0, 0.005, 0.01, . . . , 0.4) and plot the empirical power curves for four different degrees of the

identification signal: ‘irrelevant’ (δ = 100), ‘very weak’ (δ = 1), ‘weak’ (δ = 0.5), ‘semi-strong’

(δ = 0.2), and ‘strong’ (δ = 0).

Figure 1 presents the empirical rejection rates of the Sn,k (left plot) and Jn (right plot) tests over

a range of values for the drifting sequence that span the cases of irrelevant, weak, semi-strong and

strong instruments. The rejection rates of the Sn,k are very close to the nominal levels uniformly

over the different degrees of identification strength. The Jn test does not have a χ2 limit in the part

of the region that is associated with irrelevant and weak instruments. While the under-rejections

of the Jn test near the origin appear small, the Jn test is inconsistent when the identification of

the model is compromised, as illustrated in Figure 2.

Figure 2 plots the empirical power curves for the Sn,k (left) and Jn (right) tests at the 5%

nominal level for 5 different identification signals, parameterized by δ. Again, consistent with the

evidence in Figure 1, the Sn,k test is well-sized at the origin (α0 = 0) for all values of δ while the

Jn test under-rejects when the identification is weak. In the weak identification cases, Figure 2

shows that the power of the Jn test plateaus at a value less than 1 and, hence, is inconsistent. By

contrast, the Sn,k test is consistent across all cases although the cases with a weaker identification

signal may require larger samples (see the Online Appendix for the power curves of Sn,k and Jn

tests with n = 5, 000). Of course, the uniformity and the robustness of the Sn,k test comes at the

cost of moderate power losses when the identification is strong. This is visible in Figures 1 and 2

where the power curve for the Jn test with strong instruments in Figure 2 is steeper and shifted to

the left relative to the corresponding power curve of the Sn,k test in Figure 1. This arises from the

fact that the Sn,k test is using more instruments than necessary, which in turn affects the power of

the test.

The seemingly higher power (for moderate deviations from the null in Figure 1) of the Sn,k

test with irrelevant instruments relative to the case of strong instruments may also warrant some

explanation. As discussed below Theorem 4.2, the power of the Sn,k test when δ ≥ 1/2 is due to

the expanding k while the source of the power in the case δ ∈ [0, 1/2) is more standard as it stems
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from the increase of the sample size n. Thus, interestingly, the power of the Sn,k test with irrelevant

instruments may exceed the power of the test with strong instruments if k is large relative to n.

The second experiment continues to use 3 potential instruments zi = (z1i, z2i, z3i)
′ ∼ NID(0, I3)

but the model has two endogenous variables xi = (x1i, x2i)
′ with the sample {yi, x′i} generated as

yi = x′iθ0 + z′iα0 + εi,

xi = Π(δ)′zi + vi,

where (εi, v
′
i)
′ is trivariate normal with mean zero and covariance matrix Ω =

 1 0.3 0.3

0.3 1 0

0.3 0 1


and θ0 = (1, 1)′. For size and power computations, we set α0 = (0, 0, 0)′ and α0 = (0.5, 0.5, 0.5)′,

respectively. The matrix Π(δ) takes the form Π(δ) =

 1/nδ1 0

0 1/nδ3

1/nδ2 1/nδ4

 for different combinations

of (δ1, δ2, δ3, δ4), and is intended to illustrate the robustness of the results to heterogeneity in the

drifting sequences across instruments. Again, the sample size is n = 500 and the number of Monte

Carlo replications is 100,000.13 The basis functions and the choice of k for the Sn,k test are the

same as in the first experiment with the data being demeaned prior to estimation.

To explore the robustness of our uniformity results to differential identification strength of the

instruments, Table 1 reports the empirical size and power of the Sn,k test for various combina-

tions of the drifting parameters (δ1, δ2, δ3, δ4) at the 1%, 5% and 10% nominal level. Panel A of

Table 1 presents the results for the recommended one-sided Sn,k test. Reassuringly, the results

suggest that the proposed Sn,k test continues to control size uniformly across different degrees

of identification while it remains consistent. We should note that the derived N(0, 1) limit is a

large-sample approximation and the sufficient condition for k that ensures uniform inference; i.e.,

k = ⌈log(500)⌉ = 7, appears to be relatively small for the asymptotic approximation to fully kick

in, especially at the more extreme tails (e.g., at 1% nominal level). These small size distortions

are eliminated as n increases. They are also reduced for the two-sided test as illustrated in Panel

B of Table 1. For more extensive simulations in the case of completely irrelevant instruments, see

Dovonon and Gospodinov (2023).

13Results for n = 100 and non-Gaussian (multivariate t-distribution with 5 degrees of freedom) zi and (εi, v
′
i)

′ are

reported in the Online Appendix.
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6 Empirical application: Trade and economic growth

Our application revisits some results in the empirical growth literature of the impact of international

trade on economic growth. Some suggestive evidence about the direction and magnitude of this

impact can be obtained from a cross-country regression of income per person on some proxy of trade

share (e.g., the ratio of exports or imports to GDP), controlling for other important determinants.

However, proxies of trade are typically endogenous which compromises the causal interpretation of

these regressions and necessitates the use of instrumental variables (for a review, see Durlauf et al.,

2005). For example, Frankel and Romer (1999) exploit geographical characteristics to construct

a gravity-based instrument for trade openness while Hausmann et al. (2007) use country size

(population and land area) as instruments for an indicator that captures the productivity level

associated with a country’s exports. But the reliability of the IV inference in identifying the causes

of economic growth depends crucially on the strength and validity of the chosen instruments, as

argued by Bazzi and Clemens (2013) who raised concerns about the validity of the size instruments.

We start by applying our test for instrument exogeneity to the modeling framework by Haus-

mann et al. (2007). More specifically, we consider pooled estimation of ten-year and five-year

cross-country regressions for 79 countries and 3 (for ten-year regressions) or 7 (for five-year regres-

sions) time periods for 1962–2000. The dependent variable is average annual growth in GDP per

capita over the (ten-year or five-year) period. The endogenous variable of interest is the log of

the initial productivity level of country’s i exports, EXPYi with control and instrumental variables

including time period dummies, and logarithms of initial GDP per capita, human capital, area and

population.14 Table 2 presents results (two-step GMM estimates (with fixed and an expanding set

of instruments) as well as the Jn and Sn,k tests, along with their p-values)15 for several combinations

of log area, log population and log human capital as external instruments.

We report results for both the ten-year (Panel A) and five-year (Panel B) samples for various

model specifications: column (·u) reports the GMM with fixed k while column (·c) reports the

GMM results based on an expanding set of instruments k. Variables, whose cells in the table are

left empty, serve as external instruments for the endogenous variable EXPY. Column (1u) replicates

the results in Hausmann et al. (2007) although we report the results for the 2SGMM estimator while

Hausmann at al. (2007) present the 2SLS estimates. For this specification, ‘area’ and ‘population’

14The data is retrieved from the replication files of Bazzi and Clemens (2013).
15The choice of basis functions and tuning parameters for the Sn,k test is the same as the one described and

implemented in the simulation section. For Sn,k, we report p-values for the one-sided test.
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are the excluded instruments and the Jn test strongly rejects the null of instrument exogeneity.

The invalidity of the instruments jeopardizes the reliability of the statistical inference which should

be adjusted using misspecification-robust standard errors as proposed by Maasoumi and Phillips

(1982) and Hall and Inoue (2003). The results based on the 2SGMM estimator with an expanding

k and the Sn,k test proposed in this paper lead to similar conclusions.

The other two specifications are used here to only illustrate the advantages of our approach by

including ‘human capital’ as an instrument in place of ‘population’ or ‘area’ in columns (2) and

(3), respectively. Two main observations emerge from the results based on specifications (2) and

(3) in Table 2. First, while the Jn test does not reject the null at 5% significance level in both

specifications and samples, the Sn,k test strongly suggests that the instruments are not exogenous.

This may be partly due to the fact that the strength of the instruments is weaker16 so that the

asymptotic distribution of the Jn test becomes non-standard and its power using χ2(1) critical values

is compromised. Second, there are some interesting differences in the GMM estimates obtained

from a fixed and an expanding set of instruments. We start by noting that when the specification

tests were in agreement, as in columns (1u) and (1c), the GMM estimates exhibited very little

differences across the two approaches. However, when the tests lead to different conclusions, the

GMM estimates show substantial differences. The 2SGMM estimator based on an expanding set

of instruments k tends to produce more stable estimates across the different specifications and

across the ten-year and five-year samples. On the other hand, the 2SGMM estimates with a fixed k

increase sharply relative to the first specification with a value of 0.251, for example, in specification

(3u) relative to 0.092 in (1u). This behavior can be attributed to the divergence of the 2SGMM

estimator under the alternative when the instruments are weak. But this rate of divergence is

dampened for the 2SGMM estimator with an expanding k so that the rate for this GMM estimator

is
√

n/k instead of
√
n as established in Section 4.

One appealing feature of our test arises in the context of just-identified models where the Jn

test for overidentifying restrictions cannot be used. By contrast, our Sn,k test can be applied to

both just-identified or over-identified models, without the need of any adjustments. To demonstrate

this aspect of our testing procedure, we consider the model by Frankel and Romer (1999), with

the modified specifications and instruments proposed by Deij et al. (2019). The cross-country

growth regression setup is similar to the one considered above but the main endogenous variable

16For specification (3·) in the last two columns of Table 2, for example, the first stage F -test has values of 2.99 and

5.70 for the ten-year and five-year samples, respectively.
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is trade share measured as country i’s ratio of total trade (exports + imports) to GDP. Deij et

al. (2019) generate two alternative instruments for trade based on estimation of a bilateral trade

equation on a set of geographic characteristics. The instruments are constructed by aggregating

the predictions of this equation: (a) by including predictions for all potential (zero or non-zero)

bilateral trade flows and (b) by including predictions only for observations with active (positive)

bilateral trade. The former instrument was originally proposed by Frankel and Romer (1999) while

the latter instrument is also widely used in empirical studies. For more details, see Frankel and

Romer (1999) and Deij et al. (2019).17

Table 3 presents the results for the two-step GMM estimator (with expanding k) in a cross-

country regression model of log of real GDP per capita on trade share (endogenous regressor)

and control variables that include population, land area, distance to Equator, percentage of land

in tropics, and regional dummies. The endogenous variable ‘trade share’ is instrumented by one

of the two instruments defined above. Columns (·a) in Table 3 refer to the model that uses the

instrument in part (a) while columns (·b) refer to specifications that use the instrument in part (b)

that reflects only positive trade flows. These are just-identified models but our approach produces

an overidentifying framework with k instruments (k = ⌈log(n)⌉ and n = 98).

For the most restricted specification in columns (1a) and (1b), the Sn,k test strongly rejects

the null of exogeneity of the instruments. The results for the other specifications suggest that

the validity of the instruments appears to hold when more control variables are included. While

the non-rejection of the null may also be attributed to the small sample size, the capability of the

proposed test to assess model specification and instrument exogeneity – by converting just-identified

models into models with overidentifying restrictions, irrespective of their degree of identification –

proves to be quite valuable and promising.

7 Conclusion

This paper develops a framework for testing instrument exogeneity in linear IV models which is

uniformly valid over the whole range of identification signal strengths. We propose a test for

conditional moment restrictions with an expanding set of constructed instruments. The limiting

distribution of the test is standard normal under the null and is not affected by the uncertainty

about the degree of identification. We establish that the test is consistent under the alternative

17The data for this empirical exercise is obtained from the replication files provided by Deij et al. (2019).
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even when the instruments are weak or completely irrelevant. This stands in contrast to the stan-

dard test for overidentifying restrictions which fails to exhibit asymptotic power when identification

is compromised. Using a general drifting framework for the identification signal, we derive novel

results that characterize the orders of magnitude for the GMM estimator under the null and alter-

native hypothesis. The proposed test is straightforward to construct and it allows the researcher

to use standard inference for testing instrument exogeneity without taking a stand on whether the

instruments are strong, semi-strong, weak or completely irrelevant. We illustrate the appealing

properties of the test in simulations and an empirical application of the effect of trade on economic

growth.

There are some interesting directions in which this work can be extended. First, it is worth

exploring the properties of the version of the test statistic that uses the ordinary least squares

(OLS) estimator instead of 2SGMM. The fact that OLS always has a probability limit would

help control the behavior of the weighting matrix and the resulting test would be consistent.

Second, the proposed framework with an expanding number of instruments can be extended to

construct tests for nonlinear conditional moment restrictions that are robust to the strength of

the identification signal. Finally, in order to accommodate empirical problems with limited sample

sizes, it is desirable to establish the uniform validity of the bootstrap version of the proposed test

for instrument exogeneity. These research topics are currently under investigation by the authors.
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Figure 1. Empirical rejection rates at 5%, 10%, 20%, 80%, 90% and 95% nominal levels of the
Sn,k test (left chart) and the Jn test (right chart) as a function of the identification strength of the

instruments, parameterized as 1/nδ for δ = (100, 5, 2, 1, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1, 0).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. Empirical power curves at 5% nominal level of the Sn,k test (left chart) and the Jn
test (right chart) for various degrees of the identification signal: ‘irrelevant’ (δ = 100), ‘very weak’
(δ = 1), ‘weak’ (δ = 0.5), ‘semi-strong’ (δ = 0.2), and ‘strong’ (δ = 0).
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Table 1. Empirical rejection rates (size and power) of the Sn,k test with instruments that exhibit
differential identification strength as a function of (δ1, δ2, δ3, δ4).

Panel A: one-sided Sn,k test Panel B: two-sided Sn,k test

(δ1, δ2, δ3, δ4) size power size power

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

(0, 0.5, 0.2, 100) 1.6 5.0 8.6 95.4 97.7 98.5 1.0 4.3 9.2 94.3 96.8 97.7

(100, 0.3, 0.1, 100) 1.6 4.7 8.3 89.4 93.2 94.9 1.1 4.2 9.2 87.7 91.5 93.2

(0, 0.2, 0.5, 0) 1.5 4.7 8.3 100 100 100 1.0 3.9 8.9 100 100 100

(0.8, 0.2, 0.5, 0.4) 1.4 4.2 7.4 93.8 96.1 97.1 0.9 4.3 9.7 92.8 95.1 96.1

(0.5, 0.4, 0.3, 0.1) 1.2 3.9 6.8 96.1 97.5 98.2 0.8 4.0 9.3 95.4 96.9 97.5

(0, 100, 100, 0) 1.5 4.8 8.3 100 100 100 1.0 4.0 8.9 100 100 100

(0.1, 0.2, 0.5, 0.5) 1.2 3.9 6.8 86.9 91.2 93.1 0.8 3.8 9.2 85.1 89.3 91.3

(0.6, 0.5, 0.2, 1) 1.2 3.9 7.0 89.8 93.2 94.7 0.8 4.0 9.4 88.4 91.7 93.2
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Table 2. Two-step GMM estimates and specification tests for the ten-year and five-year cross-
country regressions for the period 1962–2000 (Hausmann et al., 2007).

Panel A: ten-year sample (n = 299)

(1u) (1c) (2u) (2c) (3u) (3c)

log EXPY 0.092 0.092 0.132 0.074 0.251 0.080

log initial GDP/capita -0.038 -0.038 -0.054 -0.028 -0.105 -0.031

log human capital 0.004 0.004

log area -0.003 -0.002

log population -0.009 -0.000

Jn test
(p-value)

11.25
(0.001)

0.369
(0.544)

0.453
(0.501)

Sn,k test
(p-value)

2.628
(0.004)

3.491
(0.000)

3.255
(0.001)

Panel B: five-year sample (n = 604)

(1u) (1c) (2u) (2c) (3u) (3c)

log EXPY 0.074 0.052 0.116 0.075 0.213 0.087

log initial GDP/capita -0.030 -0.021 -0.047 -0.029 -0.088 -0.034

log human capital 0.003 0.004

log area -0.003 -0.003

log population -0.008 -0.001

Jn test
(p-value)

15.79
(0.000)

0.163
(0.686)

2.855
(0.091)

Sn,k test
(p-value)

2.473
(0.007)

2.786
(0.003)

3.438
(0.000)

Table 3. Two-step GMM estimates (with expanding k) and specification test for instrument
exogeneity for various specifications of the effect of trade on growth (Frankel and Romer, 1999;
Deij et al., 2019).

(1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b)

trade share 1.131 1.879 0.653 0.909 0.690 0.840 0.810 0.962

log population 0.295 0.395 0.105 0.130 0.092 0.109 -0.027 -0.010

log area -0.117 -0.028 -0.103 -0.031 -0.114 -0.069 0.070 0.085

distance to Equator 3.995 4.084

% land in tropics -1.563 -1.630

Sub-Saharan Africa -1.993 -2.010

East Asia -0.637 -0.596

Latin America -0.590 -0.744

Sn,k test
(p-value)

5.009
(0.000)

3.258
(0.001)

1.280
(0.100)

0.456
(0.324)

1.655
(0.049)

0.766
(0.222)

0.608
(0.272)

0.107
(0.457)
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A Appendix: Proofs of main results

Proof of Theorem 3.1: (a) We have

Ṽ =
1

n

n∑
i=1

ε̃2i (Zi − Z̄)(Zi − Z̄)′, ε̃i = yi − ȳ − (xi − x̄)′θ̃.

Let bk := 0 if 0 ≤ δ < 1/2 and bk := V−1
1k C1k if δ ≥ 1/2. Let ẽ = θ̃ − θ0 − bk. From Theorem 2.1,

ẽ = OP (1/
√
k) if δ ≥ 1/2 and ẽ = OP (n

−1/2+δ) if 0 ≤ δ < 1/2.

Let ui := εi − (xi − µx)
′bk. Straightforward calculations yield:

ε̃i = ui − (xi − µx)
′ẽ+ (x̄− µx)

′ẽ+ (x̄− µx)
′bk − ε̄.

We have:

Ṽ =
1

n

n∑
i=1

ε̃2i (Zi − µz)(Zi − µz)
′ − 1

n

n∑
i=1

ε̃2i (Zi − µz)(Z̄ − µz)
′ − (Z̄ − µz) ·

1

n

n∑
i=1

ε̃2i (Zi − µz)
′

+
1

n

n∑
i=1

ε̃2i (Z̄ − µz)(Z̄ − µz)
′ =

1

n

n∑
i=1

ε̃2i (Zi − µz)(Zi − µz)
′ +OP

(
k√
n

)
.

(To obtain the order of magnitude, we use the fact that

ε̃2i ≤ 6
(
ε2i + ∥xi − µx∥22 · ∥bk∥22 + ∥xi − µx∥22 · ∥ẽ∥22 + ∥x̄− µx∥22 · ∥ẽ∥22 + ∥x̄− µx∥22 · ∥bk∥22 + ε̄2

)
.

Then, we use the law of large numbers and the orders of Z̄ − µz, x̄− µx and ε̄ - see Equation (9) -

to conclude.) Also,

ε̃2i = u2i + ((xi − µx)
′ẽ)2 + ((x̄− µx)

′ẽ)2 + ((x̄− µx)
′bk)

2 + ε̄2 − 2ui(xi − µx)
′ẽ+ 2ui(x̄− µx)

′ẽ

+ 2ui(x̄− µx)
′bk − 2uiε̄− 2(xi − µx)

′ẽ · (x̄− µx)
′ẽ− 2(xi − µx)

′ẽ · (x̄− µx)
′bk

+ 2(xi − µx)
′ẽ · ε̄+ 2(x̄− µx)

′ẽ · (x̄− µx)
′bk − 2(x̄− µx)

′ẽ · ε̄− 2(x̄− µx)
′bk · ε̄

and, letting Żi := Zi − µz, we have:

1.

1

n

n∑
i=1

((xi − µx)
′ẽ)2ŻiŻ

′
i ≤ ∥ẽ∥22 ·

1

n

n∑
i=1

∥xi − µx∥22 · ŻiŻ
′
i

= ∥ẽ∥22 ·
p∑

h=1

(
1

n

n∑
i=1

(xih − µxh)
2 · ŻiŻ

′
i

)
= OP

(
∥ẽ∥22

)
,

where, thanks to Assumption 4, we use Lemma OA.1 to claim that

n−1
n∑

i=1

(xih − µxh)
2 · ŻiŻ

′
i = E

(
(xih − µxh)

2 · ŻiŻ
′
i

)
+OP (k/

√
n) = OP (1).
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(We use this Lemma and Assumption for such justification routinely through the end of the proof.)

2.
1

n

n∑
i=1

((x̄− µx)
′ẽ)2 · ŻiŻ

′
i ≤ ∥x̄− µx∥22 · ∥ẽ∥22 ·

1

n

n∑
i=1

ŻiŻ
′
i = OP

(
n−1∥ẽ∥22

)
.

3.
1

n

n∑
i=1

((x̄− µx)
′bk)

2 · ŻiŻ
′
i ≤ ∥x̄− µx∥22 · ∥bk∥22 ·

1

n

n∑
i=1

ŻiŻ
′
i = OP

(
1

n

)
.

4.
1

n

n∑
i=1

ε̄2 · ŻiŻ
′
i = ε̄2 · 1

n

n∑
i=1

ŻiŻ
′
i = OP

(
1

n

)
.

5. Recalling that ui = εi − (xi − µx)
′bk, we have:∥∥∥∥∥ 1n

n∑
i=1

ui(x̄− µx)
′ẽ · ŻiŻ

′
i

∥∥∥∥∥
2

≤ ∥x̄−µx∥2 ·∥ẽ∥2 ·

[∥∥∥∥∥ 1n
n∑

i=1

|εi|ŻiŻ
′
i

∥∥∥∥∥
2

+ ∥bk∥2 ·
p∑

h=1

∥∥∥∥∥ 1n
n∑

i=1

|xih − µxh|ŻiŻ
′
i

∥∥∥∥∥
2

]
= OP

(
1√
n
∥ẽ∥2

)
.

Similar derivations yield∥∥∥∥∥ 1n
n∑

i=1

ui · (x̄− µx)
′bk · ŻiŻ

′
i

∥∥∥∥∥
2

= OP

(
1√
n

)
and

∥∥∥∥∥ 1n
n∑

i=1

ui · ε̄ · ŻiŻ
′
i

∥∥∥∥∥
2

= OP

(
1√
n

)
.

6. ∥∥∥∥∥ 1n
n∑

i=1

(xi − µx)
′ẽ · (x̄− µx)

′ẽ · ŻiŻ
′
i

∥∥∥∥∥
2

≤ ∥ẽ∥22 · ∥x̄− µx∥2 ·

[
p∑

h=1

∥∥∥∥∥ 1n
n∑

i=1

|xih − µxh|ŻiŻ
′
i

∥∥∥∥∥
2

]
= OP

(
n−1/2∥ẽ∥22

)
.

Similarly, we obtain: ∥∥∥∥∥ 1n
n∑

i=1

(xi − µx)
′ẽ · (x̄− µx)

′bk · ŻiŻ
′
i

∥∥∥∥∥
2

= OP

(
∥ẽ∥2√

n

)
,

and ∥∥∥∥∥ 1n
n∑

i=1

(xi − µx)
′ẽ · ε̄ · ŻiŻ

′
i

∥∥∥∥∥
2

= OP

(
∥ẽ∥2√

n

)
.

7. ∥∥∥∥∥ 1n
n∑

i=1

(x̄− µx)
′ẽ · (x̄− µx)

′bk · ŻiŻ
′
i

∥∥∥∥∥
2

≤ ∥x̄−µx∥22 · ∥ẽ∥2 · ∥bk∥2 ·

∥∥∥∥∥ 1n
h∑

i=1

ŻiŻ
′
i

∥∥∥∥∥
2

= OP

(
∥ẽ∥2
n

)
.
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Similarly,∥∥∥∥∥ 1n
n∑

i=1

(x̄− µx)
′ẽ · ε̄ · ŻiŻ

′
i

∥∥∥∥∥
2

= OP

(
∥ẽ∥2
n

)
, and

∥∥∥∥∥ 1n
n∑

i=1

(x̄− µx)
′bk · ε̄ · ŻiŻ

′
i

∥∥∥∥∥
2

= OP

(
1

n

)
.

I. Consider the case 0 ≤ δ < 1/2. Using the orders derived above, we claim that

Ṽ =
1

n

n∑
i=1

ε2i ŻiŻ
′
i −

2

n

n∑
i=1

εi(xi − µx)
′ẽŻiŻ

′
i +OP

(
n−1+2δ ∨ n−1/2

)
= E

(
ε2i ŻiŻ

′
i

)
− 2

n

n∑
i=1

εi(xi − µx)
′ẽŻiŻ

′
i +OP

(
k√
n

)
+OP

(
n−1+2δ ∨ n−1/2

)
.

We have:∥∥∥∥∥ 1n
n∑

i=1

εi(xi − µx)
′ẽŻiŻ

′
i

∣∣∣∣∣ ∥2 ≤ ∥ẽ∥2 ·

∥∥∥∥∥ 1n
n∑

i=1

|εi| · ∥xi − µx∥2ŻiŻ
′
i

∥∥∥∥∥
2

≤ ∥ẽ∥2 ·

(∥∥∥∥∥ 1n
n∑

i=1

ε2i · ŻiŻ
′
i

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

∥xi − µx∥22 · ŻiŻ
′
i

∥∥∥∥∥
2

)
= OP

(
n−1/2+δ

)
.

Thus, Ṽ = V1,δ +OP (k/
√
n) +OP (n

−1/2+δ). Since k grows slower than any (positive) power of n,

we can claim that

V̂ = V1,δ +OP (n
−1/2+δ). (A.1)

II. Consider the case δ ≥ 1/2.

V̂ =
1

n

n∑
i=1

u2i ŻiŻ
′
i −

2

n

n∑
i=1

ui(xi − µx)
′ẽŻiŻ

′
i +OP

(
1

k

)

= E
(
u2i ŻiŻ

′
i

)
−

n∑
h=1

ẽh ·
2

n

n∑
i=1

ui(xih − µxh)ŻiŻ
′
i +OP

(
k√
n

)
+OP

(
1

k

)
.

Recall that ui = εi− (xi−µx)
′V−1

1k C1k. Using the fact that xi−µx = n−δC(zi)+ vi, we obtain:

C1k = k−1E(q1i · εi · vi) +O(n−δ), and V1k = k−1E(q1i · viv′i) +O(n−δ)

and, as a result,

bk := V−1
1k C1k =

(
k−1E(q1i · viv′i)

)−1 (
k−1E(q1i · εi · vi)

)
+O(n−δ) := b0k +O(n−δ).

Also,

ui = εi − (n−δC(zi) + vi)
′(b0k +O(n−δ)) = r1i − n−δC(zi)

′b0k − n−δC(zi)
′O(n−δ)− v′iO(n−δ),

35



with r1i = εi − v′ib0k. Thus, we obtain that:

1

n

n∑
i=1

u2i ŻiŻ
′
i =

1

n

n∑
i=1

r21iŻiŻ
′
i +OP (n

−δ) = E(r21iŻiŻ
′
i) +OP (k/

√
n) +OP (n

−δ).

Besides,

(xih − µxh)ui = (n−δC(zi)h + vih)[r1i − n−δC(zi)
′b0k − n−δC(zi)

′O(n−δ)− v′iO(n−δ)]

and it is not hard to find that:

1

n

n∑
i=1

(xih − µxh)ui · ŻiŻ
′
i =

1

n

n∑
i=1

r1ivih · ŻiŻ
′
i +OP (n

−δ)

= E(r1ivih · ŻiŻ
′
i) +OP (k/

√
n) +OP (n

−δ) = OP (k/
√
n),

where we use the fact, from Assumption 4(b), that E(r1ivi|zi) = 0. It follows that

Ṽ =
1

n

n∑
i=1

ε̃2i (Zi − Z̄)(Zi − Z̄)′ = E(r21iŻiŻ
′
i) +OP (k/

√
n) +OP (k

−1) := V1,δ +OP (k
−1). (A.2)

This completes the proof of part (a).

(b) This follows readily from (A.1) and (A.2) by observing that V1,δ is nonsingular.

(c) Part (b) puts us in the conditions of Theorem 2.1 and the fact that k ∼ a(log n)b ensures that

we are in the context of (b1) when 0 ≤ δ < 1/2. The definition of the probability limit when

δ ≥ 1/2 - case (a) of the theorem - is obtained with the limit of the estimated weighting matrix,

V −1
1,δ . The result follows. □

Proof of Theorem 3.2: Note that, under the conditions of the theorem, using Theorem 3.1(b),

we have: if 0 ≤ δ < 1/2,

∥V̂ −1 − V −1
2,δ ∥2 = OP (n

−1/2+δ) = oP (k
−1)

and if δ ≥ 1/2,

∥V̂ −1 − V −1
2,δ ∥2 = OP (k

−1).

Recall that

Jn,k = n ·
(
µ̃zy − µ̃zxθ̂

)′
V̂ −1

(
µ̃zy − µ̃zxθ̂

)
= n ·

(
µ̃zy − µ̃zxθ̂

)′
V −1
2,δ

(
µ̃zy − µ̃zxθ̂

)
+ n ·

(
µ̃zy − µ̃zxθ̂

)′ (
V̂ −1 − V −1

2,δ

)(
µ̃zy − µ̃zxθ̂

)
:= (a) + (b).
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We first show that (b) = OP (1) and therefore negligible. We have:

µ̃zy − µ̃zxθ̂ = µ̄zε − µ̄zx(θ̂ − θ0) +OP (
√
k/n) = OP (

√
k/n) +OP (n

−δ ∨
√

k/n)OP (∥θ̂ − θ0∥2).

From Theorem 3.1(b), we have θ̂− θ0 = OP (n
−1/2+δ) if 0 ≤ δ < 1/2 and θ̂− θ0 = OP (1) if δ ≥ 1/2.

Thus, in both cases,

µ̃zy − µ̃zxθ̂ = OP (
√
k/n).

It follows that:

n ·
∣∣∣∣(µ̃zy − µ̃zxθ̂

)′ (
V̂ −1 − V −1

2,δ

)(
µ̃zy − µ̃zxθ̂

)∣∣∣∣ ≤ n · ∥µ̃zy − µ̃zxθ̂∥22 · ∥V̂ −1 − V −1
2,δ ∥2 = OP (1).

Thus,

Jn,k = n ·
(
µ̃zy − µ̃zxθ̂

)′
V −1
2,δ

(
µ̃zy − µ̃zxθ̂

)
+OP (1).

Using the expression of θ̂ − θ0, we write:

µ̃zy − µ̃zxθ̂ = µ̄zε − µ̄zx(µ̃
′
zxṼ

−1µ̃zx)
−1(µ̃′

zxṼ
−1µ̃zε) +OP (

√
k/n).

I. Consider the case 0 ≤ δ < 1/2. We write:

Jn,k = n
(
µ̄′
zεV

−1
2,δ µ̄zε + (µ̃′

zεṼ
−1µ̃zx)(µ̃

′
zxṼ

−1µ̃zx)
−1(µ̄′

zxV
−1
2,δ µ̄zx)(µ̃

′
zxṼ

−1µ̃zx)
−1(µ̃′

zxṼ
−1µ̃zε)

− 2 (µ̄′
zεV

−1
2,δ µ̄zx)(µ̃

′
zxṼ

−1µ̃zx)
−1(µ̃′

zxṼ
−1µ̃zε)

)
+OP (1) := nµ̄′

zεV
−1
2,δ µ̄zε + (1) + (2) +OP (1).

Using (OA.6), (OA.12), and (OA.14) from the Online Appendix, we can see that (1) = OP (1) and

(2) = OP (1). Hence,

Jn,k = nµ̄′
zεV

−1
2,δ µ̄zε +OP (1).

We apply Lemma B2 of Dovonon and Gospodinov (2023) with ri = εi and claim that

nµ̄′
zεV

−1
2,δ µ̄zε − k
√
2k

d−→ N(0, 1).

This shows that Sn,k
d−→ N(0, 1).

II. Consider the case δ ≥ 1/2. From Theorem 3.1(b), we have

θ̂ − θ0 = V−1
2k C2k + ẽ = (E(q2iviv

′
i))

−1E(q2iviεi) +O(n−δ) + ẽ := b0k +O(n−δ) + ẽ,

with ẽ = OP (k
−1/2). Hence,

µ̃zy − µ̃zxθ̂ = µ̄zε − µ̄zx(θ̂ − θ0) +OP (
√
k/n) = µ̄zε − µ̄zx(b0k +O(n−δ) + ẽ) +OP (

√
k/n)

= µ̄zr2 − µ̄zxẽ+OP (n
−δ
√
k/n) +OP (

√
k/n) = µ̄zr2 − µ̄zxẽ+OP (

√
k/n),
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with r2i = εi − v′ib0k. Thus,

√
n(µ̃zy − µ̃zxθ̂) =

√
nµ̄zr2 −

√
nµ̄zxẽ+OP (

√
k/n) := An +Bn +OP (

√
k/n)

and

Jn,k = A′
nV

−1
2,δ An +B′

nV
−1
2,δ Bn + 2A′

nV
−1
2,δ Bn +OP (k/

√
n). (A.3)

We have:

(1)

∥Bn∥2 ≤ ∥
√
nµ̄zx∥2∥ẽ∥2 = OP (n

1/2−δ ∨
√
k)OP (k

−1/2) = OP (1).

Thus,

B′
nV

−1
2,δ Bn = OP (1). (A.4)

(2) Again, the conditions of Lemma B2 of Dovonon and Gospodinov (2023) apply here and we

have:
A′

nV
−1
2,δ An − k
√
2k

d−→ N(0, 1). (A.5)

(3) Let us now consider A′
nV

−1
2,δ Bn. We have:

A′
nV

−1
2,δ Bn =

1

n

n∑
i,j=1

r2i(Zi − µz)
′V −1

2,δ (Zj − µz)(xj − µx)
′ẽ := Cnẽ (A.6)

Under the null hypothesis and Assumption 4(b), we can claim that E(r2i|zi) = 0 and E(r2ixi|zi) = 0

so that E(Cn) = 0.

Similar to the proof of Theorem 3.3 of Dovonon and Gospodinov (2023), letting Cnh be the

h-th component of Ch, we have:

E(C2
n,h) =

1

n2

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E(r2i1Z
′
i1V

−1
2,δ Zi2xi2h · r2i4Z ′

i3V
−1
2,δ Zi4xi4h),

where we assume, without loss of generality, that µz = 0 and µx = 0. We have the following

possibilities:

The four indices are pairwise different: Contribution to expectation is 0.

Two of the indices are equal and different from the other two:

(i1, i1, i3, i4) (i1 ̸= i3 and i1 ̸= i4) - expect. 0, | (i1, i2, i1, i4) (i1 ̸= i2 and i1 ̸= i4) - (p1),

(i1, i2, i3, i1) (i1 ̸= i2 and i1 ̸= i3) - expect. 0, | (i1, i2, i2, i4) (i2 ̸= i1 and i2 ̸= i4) - expect. 0,

(i1, i2, i3, i2) (i2 ̸= i1 and i2 ̸= i3) - (p2) relevant case (i1 = i3), see (p1),

(i1, i2, i3, i3) (i3 ̸= i1 and i3 ̸= i2) - expect. 0.

Three of the indices are equal and different from the fourth:

(i1, i2, i2, i2) (i1 ̸= i2) - expect. 0, | (i1, i2, i1, i1) (i1 ̸= i2) - (p3),

(i1, i1, i3, i1) (i1 ̸= i3) - expect. 0, | (i1, i1, i1, i4) (i1 ̸= i4) - (p4), same as (p3).

All the four indices are equal:

(i1, i1, i1, i1) - (p5).
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Only the cases (p1), (p2), (p3), (p4) and (p5) have terms with non zero expectation. We now

bound these expectations.

Case (p1):∣∣∣E (r2i1Z ′
i1V

−1
2,δ Zi2xi2h · r2i3Z ′

i3V
−1
2,δ Zi4xi4h

)∣∣∣ = ∣∣∣E (r2i1Z ′
i1V

−1
2,δ Zi2xi2h · r2i1Z ′

i1V
−1
2,δ Zi4xi4h

)∣∣∣
=
∣∣∣E (xi2hZ ′

i2V
−1
2,δ E

[
r22i1Zi1Z

′
i1

]
V −1
2,δ Zi4xi4h

)∣∣∣ .
If i2 ̸= i4, by the independent sample assumption and the upper bounds on the eigenvalues of the

matrices involved, for some C > 0, this quantity is bounded by :

CE(xi2hZ
′
i2)E(xi2hZi2) = Cn−2δa′kak = O(n−2δ).

If i2 = i4, by the same arguments, this quantity is bounded by:

CE(x2i2hZ
′
i2Zi2) = C · trace(E(x2i2hZi2Z

′
i2)) = O(k).

It follows that∣∣∣∣∣∣
∑

indices in (p1)

E
(
r2i1Z

′
i1V

−1
2,δ Zi2xi2h · r2i3Z ′

i3V
−1
2,δ Zi4xi4h

)∣∣∣∣∣∣ ≤ n3O(n−2δ) + n2O(k) = O(n3−2δ ∨ n2k).

Case (p2): This case corresponds to i2 = i4, in (p1) and we claim that:∣∣∣∣∣∣
∑

indices in (p2)

E
(
r2i1Z

′
i1V

−1
2,δ Zi2xi2h · r2i3Z ′

i3V
−1
2,δ Zi4xi4h

)∣∣∣∣∣∣ = O(n2k).

Case (p3):∣∣∣E (r2i1Z ′
i1V

−1
2,δ Zi2xi2h · r2i3Z ′

i3V
−1
2,δ Zi4xi4h

)∣∣∣ = ∣∣∣E (r2i1Z ′
i1V

−1
2,δ Zi2xi2h · r2i1Z ′

i1V
−1
2,δ Zi1xi1h

)∣∣∣
= n−δ

∣∣∣E (r2i1Z ′
i1V

−1
2,δ ak · r2i1Z

′
i1V

−1
2,δ Zi1xi1h

)∣∣∣ ≤ Cn−δE
(
r22i1 · |xi1h| · ∥Zi1∥32

)
≤ Cn−δ

(
E(r

16/5
2i1

|xi1h|8/5)
)5/8 (

E(∥Zi1∥82)
)3/8 ≤ Cn−δk3/2

(
k−1

k∑
h=1

E(Z̃8
ih)

)3/8

= O(n−δk3/2),

with Z̃i = V
−1/2
z (Zi−µz). We use in the process the Holder’s inequality and the Jensen’s inequality.

The constant C may differ from row to row. Thus,∣∣∣∣∣∣
∑

indices in (p3)

E
(
r2i1Z

′
i1V

−1
2,δ Zi2xi2h · r2i3Z ′

i3V
−1
2,δ Zi4xi4h

)∣∣∣∣∣∣ = O(n2−δk3/2).
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Case (p4): Same magnitude as (p3).

Case (p5):∣∣∣E (r2i1Z ′
i1V

−1
2,δ Zi2xi2h · r2i3Z ′

i3V
−1
2,δ Zi4xi4h

)∣∣∣ = ∣∣∣E (r22ix2ihZ ′
iV

−1
2,δ Zi · Z ′

iV
−1
2,δ Zixih

)∣∣∣
≤ CE

(
r22ix

2
ih∥Zi∥42

)
≤ C[E(r42ix

4
ih)]

1/2[E(∥Zi∥82)]1/2 ≤ Ck2

(
k−1

k∑
h=1

E(Z8
ih)

)1/2

= O(k2).

Thus, ∣∣∣∣∣∣
∑

indices in (p5)

E
(
r2i1Z

′
i1V

−1
2,δ Zi2xi2h · r2i3Z ′

i3V
−1
2,δ Zi4xi4h

)∣∣∣∣∣∣ = O(nk2).

Then, combining the contributions from (p1) to (p5), we claim that

E(C2
n,h) = O(n1−2δ ∨ k) +O(k) +O(n−2−δk3/2) +O(n−1k2) = O(k).

It results that Cn,h = OP (
√
k) and, we deduce from (A.6) that B′

nV
−1An = OP (1). Hence,

B′
nV

−1
2,δ An√
2k

= OP (k
−1/2). (A.7)

Using (A.3), (A.4), (A.5) and (A.7), we conclude that

Sn,k =
Jn,k − k√

2k
=

A′
nV

−1
2,δ An − k
√
2k

+ oP (1)

and the result follows. □

Proof of Theorem 4.1: We have

θ̂ = θ0 +
(
µ̃′
zxṼ

−1µ̃zx

)−1
µ̃′
zxṼ

−1µ̃zε, and V̂ =
1

n

n∑
i=1

ε̂2(Zi − Z̄)(Zi − Z̄)′.

(a) Consider the case 0 < δ < 1/2. From Propositions OA.2(a) and OA.3(a) and their proofs, we

have:

ẽ = OP (n
δ), Ṽ −1 = V3(ẽ)

−1 +OP (n
−3δ), ∥µ̃zx∥2 = OP (n

−δ), and ∥µ̃zε∥2 = OP (1).

Hence,

µ̃′
zxṼ

−1
3 µ̃zx = µ̃zxV (ẽ)−1µ̃zx +OP (n

−5δ).

Since µ̃zx = n−δak +OP (
√

k/n) and ∥ẽ∥−2
2 = OP (n

−2δ), we obtain

µ̃′
zxV3(ẽ)

−1µ̃zx = n−2δa′kV3(ẽ)
−1ak + ∥V3(ẽ)

−1∥2 ·OP (n
−δ−1/2k1/2)

= ∥ẽ∥−2
2 n−2δa′kV3(ẽ/∥ẽ∥2)−1ak +OP (n

−δ−1/2k1/2∥ẽ∥−2
2 )

= ∥ẽ∥−2
2 n−2δa′kV3(ũ)

−1ak +OP (n
−3δ−1/2

√
k).
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Hence,

µ̃zxṼ
−1µ̃zx = n−2δ∥ẽ∥−2

2 a′kV3(ũ)
−1ak +OP (n

−3δ−1/2
√
k) ∨ (n−5δ) := n−2δ∥ẽ∥−2

2 a′kV3(ũ)
−1ak + E .

Note that:

n−2δ · ∥ẽ∥−2
2 · a′kV3(ũ)

−1ak = OP (n
−4δ), and n2δ · |ẽ∥22 ·

(
a′kV3(ũ)

−1ak
)−1

= OP (n
4δ)

so that

n2δ · |ẽ∥22 ·
(
a′kV3(ũ)

−1ak
)−1 · E = OP (n

δ−1/2
√
k ∨ n−δ) = oP (1).

Thus, following similar lines as in the proof of Proposition OA.3, we have:(
µ̃zxṼ

−1µ̃zx

)−1
= n2δ · ∥ẽ∥22 ·

(
a′kV3(ũ)

−1ak
)−1

+OP (n
5δ−1/2

√
k ∨ n3δ). (A.8)

We now expand µ̃zxṼ
−1µ̃zε. Note that

µ̃zε = cz+n−1
n∑

i=1

(εi(Zi−µz)−cz)+OP (n
−1

√
k) = OP (∥cz∥2)+OP (

√
k/n)+OP (n

−1
√
k) = OP (1).

With this, it is not hard to see that:

µ̃zxṼ
−1µ̃zε = n−δ · ∥ẽ∥−2

2 · a′kV3(ũ)
−1cz +OP (n

−2δ−1/2
√
k ∨ n−4δ). (A.9)

Using (A.8) and (A.9), we get:(
µ̃zxṼ

−1µ̃zx

)−1
· µ̃zxṼ

−1µ̃zε = nδ
(
a′kV3(ũ)

−1ak
)−1

a′kV3(ũ)
−1cz +OP

(
n2δ−1/2

√
k ∨ 1

)
. (A.10)

The result about V̂ is derived along similar lines as in the proof of Proposition OA.3(a). We

obtain that ê = OP (n
δ). The fact that lim infk inf{u:∥u∥2=1} ∥a′kV3(u)

−1cz∥2 > 0 and the eigenval-

ues of (a′kV3(ũ)
−1ak)

−1 are away from zero and from above as the sample size grows ensures that

∥ê∥−1
2 = OP (n

−δ). The steps of the proof follows readily the same lines.

(b) Consider the case δ = 0. We have: µ̃zx = ak + OP (
√
k/n). From Proposition OA.3(b), we

can claim that µ̃′
zxṼ

−1µ̃zx = a′kV
−1
3,0 ak +OP (1/

√
k) so that:(

µ̃′
zxṼ

−1µ̃zx

)−1
=
(
a′kV

−1
3,0 ak

)−1
+OP (1/

√
k).

Also, it is not hard to see that

µ̃′
zxṼ

−1µ̃zε = a′kV
−1
3,0 cz +OP (1/

√
k)

so that

θ̂ − θ0 =
(
a′kV

−1
3,0 ak

)−1
a′kV

−1
3,0 cz +OP (1/

√
k).
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The proof of the results on V̂ follows the same lines as in that of Proposition OA.3(b).

(c) Consider the case δ ≥ 1/2. In this case,

µ̃zx = D̄/
√
n+ n−δak +OP (

√
k/n) = D̄/

√
n+OP (1/

√
n),

with ∥D̄∥2 = OP (
√
k). We have:

µ̃′
zxṼ

−1µ̃zx = µ̃′
zxV3(ẽ)

−1µ̃zx +OP (k
4/n5/2).

Noting that ∥V3(ẽ)
−1∥2 = ∥ẽ∥−2

2 ∥V3(ũ)
−1∥2 = OP (k

2/n), we obtain

µ̃′
zxṼ

−1µ̃zx = D̄′V3(ẽ)
−1D̄/n+OP (k

5/2/n2).

Note that ∥D̄′V3(ẽ)
−1D̄/n∥2 = OP (k

3/n2) and, under the conditions of the theorem, D̄′V3(ẽ)
−1D̄

properly scaled is non-singular with probability approaching 1.

Hence, ∥
(
D̄′V3(ẽ)

−1D̄/n
)−1 ∥2 = OP (n

2/k3). We obtain the following inverse along similar lines

as in the proof of Proposition OA.3. We get:(
µ̃′
zxṼ

−1µ̃zx

)−1
=
(
D̄′V3(ẽ)

−1D̄/n
)−1

+OP

(
n2/k7/2

)
=

n

k
∥ẽ∥22

(
k−1/2D̄′V3(ũ)

−1k−1/2D̄
)−1

+OP

(
n2/k7/2

)
.

Also, we have:

µ̃′
zxṼ

−1µ̃zε = µ̃′
zxV3(ẽ)

−1µ̃zε +OP (k
7/2/n2).

Straightforward derivations yield:

µ̃′
zxṼ

−1µ̃zε =
∥ẽ∥−2

2√
n

(
D̄′V3(ũ)

−1cz + n−δ+1/2a′kV3(ũ)
−1cz

)
+OP (k

7/2/n2).

It follows that:

θ̂ − θ0 =

√
n

k
·
(
k−1/2D̄′V3(ũ)

−1k−1/2D̄
)−1 (

D̄′V3(ũ)
−1cz + n−δ+1/2a′kV3(ũ)

−1cz

)
+OP (

√
n/k3/2).

The proof of the results on V̂ follows the same lines as in that of Proposition OA.3(c). Assumption

6(b) ensures that ê := θ̂ − θ0 = OP (
√
n/k) and this is sufficient to claim, as in the proof of Propo-

sition OA.3(a), that V̂ = V3(ê) + OP (
√
n/k). Under Assumption 6(c), regardless of δ = 1/2 or

δ > 1/2, we can claim that ∥ê∥−1 = OP (k/
√
n) and this is sufficient to claim the same conclusion

as Proposition OA.3(c) regarding V̂ −1. □
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Proof of Theorem 4.2: Recall that Jn,k = n
(
µ̃zy − µ̃zxθ̂

)′
V̂ −1

(
µ̃zy − µ̃zxθ̂

)
and

Sn,k = (Jn,k − k)/
√
2k. Using the expression of θ̂ − θ0 given by Theorem 4.1, we have:

µ̃zy − µ̃zxθ̂ = µ̄zε − µ̄zx(θ̂ − θ0)− (Z̄ − µz)(x̄− µx)
′(θ̂ − θ0). (A.11)

(a) 0 < δ < 1/2. We have:

µ̃zy − µ̃zxθ̂ = cz − ak(a
′
kV3(ũ)

1ak)
−1a′kV3(ũ)

−1cz +OP (n
δ−1/2

√
k ∨ n−δ)

= V3(ũ)
1/2
(
Ik − V3(ũ)

−1/2ak(a
′
kV3(ũ)

−1ak)
−1a′kV3(ũ)

−1/2
)
V3(ũ)

−1/2cz +OP (n
δ−1/2

√
k ∨ n−δ)

:= V3(ũ)
1/2(Ik − Pδ)V3(ũ)

−1/2cz +OP (n
δ−1/2

√
k ∨ n−δ) = OP (1).

From Theorem 4.1(a), we can claim that(
µ̃zy − µ̃zxθ̂

)′
V̂ −1

(
µ̃zy − µ̃zxθ̂

)
=
(
µ̃zy − µ̃zxθ̂

)′
V3(ê)

−1
(
µ̃zy − µ̃zxθ̂

)
+OP (n

−3δ)

= ∥ê∥−2
2 c′zV3(ũ)

−1/2(Ik−Pδ)V3(ũ)
1/2V3(û)

−1V3(ũ)
1/2(Ik−Pδ)V3(ũ)

−1/2cz+OP (n
−δ−1/2

√
k∨n−3δ).

Note that under Assumption 4(a), ∥V3(û)∥2 ≤ C for some C > 0. Also, thanks to Assumption 5,

λmin(V3(ũ)) ≥ λ. [In the next lines, we use C as a generic positive constant with value that may

change with the context.] Thus, for some C > 0, we claim that(
µ̃zy − µ̃zxθ̂

)′
V̂ −1

(
µ̃zy − µ̃zxθ̂

)
≥ C∥ê∥−2

2 c′zV3(ũ)
−1/2(Ik − Pδ)V3(ũ)

−1/2cz +OP (n
−δ−1/2

√
k ∨ n−3δ). (A.12)

Besides, note that

∥ê∥22 = ê′ê = n2δ · c′zV3(ũ)
−1ak(a

′
kV3(ũ)

−1ak)
−2a′kV3(ũ)

−1cz +OP (n
3δ−1/2

√
k ∨ nδ).

But, for any k large enough,

λmax((a
′
kV3(ũ)

−1ak)
−1) ≤ λmax(V3(ũ))

λmin(a′kak)
≤ C,

for some positive constant C, where we use Assumption 1(b) and the fact that ∥V3(ũ)∥2 is bounded

under the maintained assumptions. It follows that:

∥ê∥22 ≤ n2δ · C · c′zV3(ũ)
−1/2PδV3(ũ)

−1/2cz +OP (n
3δ−1/2

√
k ∨ nδ)

≤ n2δ · C +OP (n
3δ−1/2

√
k ∨ nδ),

(for a different value of C > 0), where we use the fact that λmin(V3(ũ)) ≥ λ and c′zcz = O(1).

Therefore,

∥ê∥−2
2 ≥ n−2δ · C ·

(
1 +OP (n

δ−1/2
√
k ∨ n−δ)

)
.
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From (A.12), we can state that:(
µ̃zy − µ̃zxθ̂

)′
V̂ −1

(
µ̃zy − µ̃zxθ̂

)
≥ C · n−2δ · c′zV3(ũ)

−1/2(Ik − Pδ)V3(ũ)
−1/2cz +OP (n

−δ−1/2
√
k ∨ n−3δ) (A.13)

and

Jn,k ≥ n1−2δ · C ·∆k +OP (n
1/2−δ

√
k ∨ n1−3δ)

and the statement in part (a) follows readily.

(b) δ = 0. Using Theorem 4.1(b), its is not hard to see that

µ̄zx(θ̂ − θ0) = ak(a
′
kV

−1
3,0 ak)

−1a′kV
−1
3,0 cz +OP (1/

√
k).

Using (A.11), we have:

µ̃zy − µ̃zxθ̂ = V
1/2
3,0

(
Ik − V

−1/2
3,0 ak(a

′
kV

−1
3,0 ak)

−1a′kV
−1/2
3,0

)
V

−1/2
3,0 cz +OP (1/

√
k)

= V
1/2
3,0 (Ik − Pδ)V

−1/2
3,0 cz +OP (1/

√
k).

It follows that

Jn,k = n
(
c′zV

−1/2
3,0 (Ik − Pδ)V

1/2
3,0 V̂ −1V

1/2
3,0 (Ik − Pδ)V

−1/2
3,0 cz +OP (1/

√
k)
)

= n
(
c′zV

−1/2
3,0 (Ik − Pδ)V

1/2
3,0 V −1

3,1 V
1/2
3,0 (Ik − Pδ)V

−1/2
3,0 cz +OP (1/

√
k)
)

≥ λ̄−1λ · n · c′zV
−1/2
3,0 (Ik − Pδ)V

−1/2
3,0 cz +OP (n/

√
k).

It follows that, if as k grows cz does not lie in the column span of ak, then Jn,k → ∞ in probability

as n → ∞ and Sn,k = (Jn,k − k)/
√
2k = OP (n/

√
k) → ∞ in probability as n → ∞.

(c) δ ≥ 1/2. Using Theorem 4.1(c), we can see that θ̂ − θ0 = OP (
√
n/k). The fact that

µ̄zε = cz +OP (
√

k/n) and µ̄zx = OP (
√

k/n), allows us to claim that

µ̃zy − µ̃zy θ̂ = cz +OP (1/
√
k).

Again, using Theorem 4.1(c), we claim that:

Jn,k :=n(µ̃zy − µ̃zy θ̂)
′V̂ −1(µ̃zy − µ̃zy θ̂)

=n(cz +OP (1/
√
k))′

(
V3(ê)

−1 +OP (k
3/n3/2)

)
(cz +OP (1/

√
k))

=nc′zV3(ê)
−1cz + nc′zV3(ê)

−1 ·OP (1/
√
k) +OP (k

3/
√
n)

=n∥ê∥−2
2 · c′zV3(û)

−1cz +OP (n/
√
k) · ∥ê∥−2

2 +OP (k
3/
√
n)

≥[λmax(V3(û)]
−1n∥ê∥−2

2 · ∥cz∥22 +OP (n/
√
k) · ∥ê∥−2

2 +OP (k
3/
√
n)

≥C · n∥ê∥−2
2

(
∥cz∥22 +OP (1/

√
k)
)
+OP (k

3/
√
n),
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with û = ê/∥ê∥2 and for some constant C > 0. The last inequality uses the fact that λmax(V3(u))

is uniformly bound from above over u : ∥u∥2 = 1 and n.

Since ∥cz∥22 is nondecreasing in n and is nonzero for n large enough, we claim that, with

probability approaching 1,

Jn,k ≥ (C/2) · ∥ê∥−2
2 · ∥cz∥22 +OP (k

3/
√
n) = (C/2) · k2 ·

(
nk−2∥ê∥−2

2

)
· ∥cz∥22 +OP (k

3/
√
n).

Letting πn := (C/2) ·
(
nk−2∥ê∥−2

2

)
,

Jn,k ≥ k2πn∥cz∥22 +OP (k
3/
√
n).

Since (k2/n)∥ê∥22 = OP (1), we can claim by definition that limϵ↓0 supn P (πn < ϵ) = 0 and this

establishes the first part of the statement.

We can also claim that, with probability approaching one,

Sn,k ≥(2k)−1/2
(
k2πn∥cz∥22 − k +OP (k

3/
√
n)
)
= 2−1/2k3/2πn

(
∥cz∥22 +OP (1/k)

)
+OP (k

5/2/
√
n)

≥(1/2
√
2)k3/2πn∥cz∥22 +OP (k

5/2/
√
n)

and this concludes the proof. □
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Online Appendix for

“A uniformly valid test for instrument exogeneity”

Prosper Dovonon and Nikolay Gospodinov



This Online Appendix provides some additional theoretical and simulation results and is organized

as follows. Section OA.1 presents the proof of Theorem 2.1 in the paper. Section OA.2 describes

the asymptotic order of magnitude of the GMM estimator under the alternative hypothesis through

Propositions OA.2 and OA.3 along with their respective proofs. Proposition OA.2 focuses on the

case where the weighting matrix does not depend on parameter estimate while Proposition OA.3

focuses on GMM with the optimal weighting matrix. In Section OA.3, we provide two lemmas

(Lemma OA.4 and Lemma OA.5) showing that ∆k in Theorem 4.2 does not vanish as k grows.

Section OA.4 derives the asymptotic distribution of the GMM estimator in the case where 0 ≤

δ < 1/2. Section OA.5 considers a simple model with a single regressor and completely irrelevant

instruments to provide further intuition and clarification of the surprising power properties of the

test. Finally, Section OA.6 reports additional simulation results for different sample sizes and

fat-tailed distributions.

1



OA.1 Proof of Theorem 2.1

Proof of Theorem 2.1: We have:

θ̃ = θ0 +
(
µ̃′
zxŴ µ̃zx

)−1 (
µ̃′
zxŴ µ̃zε

)
.

We derive this result in four steps. In Steps I and II, we derive the orders of magnitude of

µ̃′
zxWµ̃zx and µ̃′

zxWµ̃zε. Step III deals with the magnitudes of the feasible quantities with W

replaced by Ŵ in Steps I and II. Finally, we derive in Step IV the orders of the inverse of µ̃′
zxŴ µ̃zx

and conclude the proof.

I. Consider first µ̃′
zxWµ̃zx. We have:

µ̃′
zxWµ̃zx = µ̄′

zxWµ̄zx − µ̄′
zxW (Z̄ − µz)(x̄− µx)

′ − (x̄− µx)(Z̄ − µz)
′Wµ̄zx

+ (x̄− µx)(Z̄ − µz)
′W (Z̄ − µz)(x̄− µx).

We observe that:

µ̄zx = n−δak +OP (
√
k/n) = OP (n

−δ ∨
√

k/n) (OA.1)

and, using the fact that: x̄− µx = OP (n
−1/2), and Z̄ − µz = OP (

√
k/n), we obtain:

µ̃′
zxWµ̃zx = µ̄′

zxWµ̄zx +OP

( √
k

n1+δ
∨ k

n
√
n

)
. (OA.2)

Now, we consider µ̄′
zxWµ̄zx. We have:

µ̄′
zxWµ̄zx =

1

n2

n∑
i=1

(Zi − µz)
′W (Zi − µz) · (xi − µx)(xi − µx)

′

+
1

n2

∑
i ̸=j

(Zi − µz)
′W (Zj − µz) · (xi − µx)(xj − µx)

′ := (1) + (2). (OA.3)

I.1. Let us consider (2). We have:

E(2) =
1

n2

∑
i ̸=j

E
(
(xi − µx)(Zi − µz)

′)WE
(
(Zi − µz)(xi − µx)

′) = (1− 1

n

)
n−2δa′kWak.

Now, consider the (h, h′)-component of (2) − E(2) := (2)h,h′ − E[(2)h,h′ ]; for h, h′ = 1, . . . , p. We

obtain the order of magnitude of this quantity by deriving its mean-square. We have:

E
(
(2)h,h′ − E[(2)h,h′ ]

)2
=

1

n4
E

∑
i ̸=j

(xih − µxh)(xih′ − µxh′)(Zi − µz)
′W (Zj − µz)− n−2δa′khWakh′

2

:=
1

n4
E

∑
i ̸=j

bi,j

2

,

2



where akh is the h-th column of ak. It is not hard to see that:

E

∑
i ̸=j

bi,j

2

=
∑
i ̸=j

E(b2i,j) +
∑

i ̸=j,i̸=j′,j ̸=j′

E(bi,j · bi,j′) +
∑

i ̸=j,i′ ̸=j,i̸=i′

E(bi,j · bi′,j).

In the next expansions, we will use at times the notation x̃i := xi − µx, x̃ih := xih − µxh.

E(b2i,j) ≤ E
(
x̃ihx̃ih′(Zi − µz)

′W (Zj − µz)
)2

= E
(
x̃ih(Zi − µz)

′WE
[
x̃2jh′(Zj − µz)(Zj − µz)

′]Wx̃ih(Zi − µz)
)

≤ λ̄3trace[E
[
x̃2ih(Zi − µz)(Zi − µz)

′]] ≤ λ̄4k

and

E(bi,j · bi,j′)

= E
(
x̃2ihx̃jh′ x̃j′h′ · (Zi − µz)

′W (Zj − µz) · (Zi − µz)
′W (Zj′ − µz)

)
− n−4δ

(
a′khWakh′

)2
= E

(
x̃jh′(Zj − µz)

′)WE
(
x̃2ih(Zi − µz)(Zi − µz)

′)WE
(
x̃j′h′(Zj′ − µz)

)
+O(n−4δ)

= n−δa′khWE
(
x̃2ih(Zi − µz)(Zi − µz)

′)Wn−δakh′ +O(n−4δ) = O(n−2δ).

It follows that:

1

n4
E

∑
i ̸=j

bi,j

2

=
n(n− 1)

n4
O(k) +

n(n− 1)(n− 2)

n4
O(n−2δ) = O

(
k

n2

)
+O

(
1

n1+2δ

)
.

Thus, for all h, h′ = 1, . . . , p,

(2)hh′ = E(2)hh′ + OP

(√
k

n
∨ 1

nδ+1/2

)
= n−2δa′khWakh′ + OP

(√
k

n
∨ 1

nδ+1/2

)
.

As a result,

(2) = n−2δa′kWak +OP

(√
k

n
∨ 1

nδ+1/2

)
. (OA.4)

I.2. Let us consider (1) as defined by (OA.3). We have:

n · (1) = 1

n

n∑
i=1

(Zi − µz)
′W (Zi − µz) · x̃ix̃′i.

For h, h′ = 1, . . . , p,

n · (1)hh′ =
1

n

n∑
i=1

x̃ihx̃ih′ · (Zi − µz)
′W (Zi − µz).

3



Note that

E(n · (1)hh′) = Ex̃ihx̃ih′ · (Zi − µz)
′W (Zi − µz) := k · V1k,hh′ .

The mean square error is given by:

E
(
n · (1)hh′ − k · V1k,hh′

)2
= E

(
1

n

n∑
i=1

[x̃ihx̃ih′(Zi − µz)
′W (Zi − µz)− k · V1k,hh′ ]

)2

:= E

(
1

n

n∑
i=1

bi

)2

=
1

n2

n∑
i=1

E(b2i ) = n−1E(b2i )

≤ n−1E
(
x̃2ihx̃

2
ih′ [(Zi − µz)

′W (Zi − µz)]
2
)
= n−1E

(
x̃2ihx̃

2
ih′ [Z̃ ′

iV
1/2
z WV 1/2

z Z̃i]
2
)

≤ n−1λ̄4E
(
x̃2ihx̃

2
ih′ [Z̃ ′

iZ̃i]
2
)
≤ n−1λ̄4k2C

(
Ek−1

k∑
h=1

Z̃8
ih

)1/2

= O(k2/n),

where C is a positive constant. The last inequality is obtained by applying the Cauchy-Schwarz

inequality and then the Jensen’s inequality to [k−1Z̃ ′
iZ̃i]

4 and then we use Assumptions 1(b) and

2(d) to conclude.

It follows that

n · (1)hh′ − k · V1k,hh′ = OP (k/
√
n),

that is:

(1) =
1

n2

n∑
i=1

(Zi − µz)
′W (Zi − µz) · x̃ix̃′i =

k

n
V1k +OP

(
k

n
√
n

)
. (OA.5)

Using equations (OA.2), (OA.3), (OA.4) and (OA.5), we obtain:

µ̄′
zxWµ̄zx =

k

n
V1k + n−2δa′kWak +OP

(√
k

n
∨ 1

nδ+1/2

)
(OA.6)

and

µ̃′
zxWµ̃zx =

k

n
V1k + n−2δa′kWak +OP

(√
k

n
∨ 1

nδ+1/2

)
. (OA.7)

It follows that:

• If δ ≥ 1/2,

µ̃′
zxWµ̃zx =

k

n
V1k +OP

(√
k

n

)
.

• If 0 ≤ δ < 1/2,

– If k ≪ n1−2δ,

µ̃′
zxWµ̃zx = n−2δa′kWak +OP

(
k

n
∨ 1

nδ+1/2

)
.

4



– If k ∼ n1−2δ,

µ̃′
zxWµ̃zx =

1

n2δ

(
V1k + a′kWak

)
+OP

(
1

nδ+1/2

)
.

– If k ≫ n1−2δ,

µ̃′
zxWµ̃zx =

k

n
V1k +OP

(√
k

n
∨ 1

n2δ

)
.

II. Consider second µ̃′
zxWµ̃zε. We have:

µ̃zx = µ̄zx − (Z̄ − µz)(x̄− µx)
′; µ̃zε = µ̄zε − (Z̄ − µz)ε̄.

Hence,

µ̃′
zxWµ̃zε = µ̄′

zxWµ̄zε− µ̄′
zxW (Z̄−µz)ε̄−(x̄−µx)(Z̄−µz)

′Wµ̄zε+(x̄−µx)(Z̄−µz)
′W (Z̄−µz)ε̄.

Using (OA.3), the fact that µ̄zε = OP (
√
k/n), along with the orders of magnitude of Z̄ − µz and

x̄− µx, we can claim that:

µ̃′
zxWµ̃zε = µ̄′

zxWµ̄zε +OP

( √
k

n1+δ
∨ k

n
√
n

)
. (OA.8)

Consider now: µ̄′
zxWµ̄zε. We have:

µ̄′
zxWµ̄zε =

1

n2

n∑
i=1

x̃iεi(Zi − µz)
′W (Zi − µz) +

1

n2

∑
i ̸=j

x̃i(Zi − µz)
′W (Zj − µz)εj := (1) + (2).

(OA.9)

II.1 Consider (2). It is not hard to see that, under the null, E((2)) = 0. The mean square of the

h-th component of (2) is given by:

E((2)h)
2 =

1

n4
E

∑
i ̸=j

x̃ih(Zi − µz)
′W (Zj − µz)εj

2

:=
1

n4
E

∑
i ̸=j

bi,j

2

=
1

n4

∑
i ̸=j

E(b2i,j) +
∑
i ̸=j

E(bi,jbj,i) +
∑

i ̸=j,i̸=i′,j ̸=i′

E(bi,jbi′,j).



E(b2i,j) = E
(
x̃2ihε

2
j (Zi − µz)

′W (Zj − µz)(Zj − µz)
′W (Zi − µz)

)
= E

[
x̃2ih(Zi − µz)

′W · E(ε2j (Zj − µz)(Zj − µz)
′) ·W (Zi − µz)

]
≤ λ̄3E(x̃2ih(Zi − µz)

′(Zi − µz)) ≤ λ̄4 · k = O(k).

5



By the Cauchy-Schwarz inequality, this bound also implies that: |E(bi,j · bj,i)| = O(k).

E(bij · bi′j) = E
[
x̃ih(Zi − µz)

′W (Zj − µz)εj · x̃i′h(Zi′ − µz)
′W (Zj − µz)εj

]
= E

(
x̃ih(Zi − µz)

′)WE
(
ε2j (Zj − µz)(Zj − µz)

′)WE (x̃i′h(Zi′ − µz))

= n−δa′khWE
(
ε2j (Zj − µz)(Zj − µz)

′)Wn−δakh ≤ λ̄3n−2δa′khakh = O(n−2δ).

Thus, E((2)h)
2 = O(k/n2) +O(1/n1+2δ) and it follows that:

(2) = OP

(√
k

n
∨ 1

nδ+1/2

)
. (OA.10)

II.2 Consider now (1).

n · (1) = n−1
n∑

i=1

x̃iεi(Zi − µz)
′W (Zi − µz).

For h = 1, . . . , p, consider the h-th component of n · (1), that is: n · (1)h. We have:

E (n · (1)h) = E
(
x̃ihεi(Zi − µz)

′W (Zi − µz)
)
= k · C1k,h,

where the last equality follows by definition of C1k. Also,

E (n · (1)h − k · C1k,h)
2 =

1

n
E
(
x̃ihεi(Zi − µz)

′W (Zi − µz)− k · C1k,h

)2
≤ 1

n
E
(
x̃ihεi(Zi − µz)

′W (Zi − µz)
)2 ≤ λ̄4

n
E
(
x̃2ihε

2
i (Z̃

′
iZ̃i)

2
)

≤ λ̄4

n
· C · k2 · k−1

k∑
l=1

EZ̃8
il = O(k2/n)

for some C > 0, where the last inequality follows from the Cauchy-Schwarz and the Jensen’s

inequalities. Therefore, we have: (1)h = (k/n)C1k,h +OP (k/n
√
n). That is:

(1) =
k

n
C1k +OP

(
k

n
√
n

)
. (OA.11)

Hence,

µ̄′
zxWµ̄zε = (1) + (2) =

k

n
C1k +OP

(√
k

n
∨ 1

nδ+1/2

)
. (OA.12)

Also, using (OA.8), (OA.10), and (OA.11), we obtain:

µ̃′
zxWµ̃zε =

k

n
C1k +OP

(√
k

n
∨ 1

nδ+1/2

)
. (OA.13)

The following cases arise:

6



• If δ ≥ 1/2,

µ̃′
zxWµ̃zε =

k

n
C1k +OP

(√
k

n

)
.

• If 0 ≤ δ < 1/2,

– If k ≪ n1/2−δ or k ∼ n1/2−δ,

µ̃′
zxWµ̃zε = OP (n

−1/2−δ).

– If n1/2−δ ≪ k ≪ n1−2δ,

µ̃′
zxWµ̃zε =

k

n
C1k +OP (n

−1/2−δ).

– If k ∼ n1−2δ or k ≫ n1−2δ,

µ̃′
zxWµ̃zε =

k

n
C1k +OP (n

−1
√
k).

We summarize parts I. and II. by claiming that:

• If δ ≥ 1/2,

µ̃′
zxWµ̃zx =

k

n
V1k +OP

(√
k

n

)
, µ̃′

zxWµ̃zε =
k

n
C1k +OP

(√
k

n

)
.

• If 0 ≤ δ < 1/2,

– If k ≪ n1/2−δ or k ∼ n1/2−δ,

µ̃′
zxWµ̃zx = n−2δa′kWak +OP

(
1

nδ+1/2

)
, µ̃′

zxWµ̃zε = OP (n
−1/2−δ).

– If n1/2−δ ≪ k ≪ n1−2δ,

µ̃′
zxWµ̃zx = n−2δa′kWak +OP

(
k

n

)
, µ̃′

zxWµ̃zε =
k

n
C1k +OP (n

−1/2−δ).

– If k ∼ n1−2δ,

µ̃′
zxWµ̃zx = n−2δ(V1k + a′kWak) +OP

(
1

nδ+1/2

)
, µ̃′

zxWµ̃zε =
k

n
C1k +OP (n

−1
√
k).

– If k ≫ n1−2δ,

µ̃′
zxWµ̃zx =

k

n
V1k +OP

(√
k

n
∨ 1

n2δ

)
, µ̃′

zxWµ̃zε =
k

n
C1k +OP (n

−1
√
k).

7



III. We now assess the effect of replacing W by Ŵ . We use the fact that µ̃zx = OP (n
−δ ∨

√
k/n),

µ̃zε = OP (
√

k/n), and Ŵ −W = oP (k
−1/2) to claim that

∥∥∥µ̃′
zx(Ŵ −W )µ̃zx

∥∥∥
2
= OP

(
1

n2δ
√
k
∨
√
k

n

)
, and

∥∥∥µ̃′
zx(Ŵ −W )µ̃zε

∥∥∥
2
= OP

(
1

n2δ+1/2
√
k
∨

√
k

n3/2

)
.

As a result, we have:

• If δ ≥ 1/2,

µ̃′
zxŴ µ̃zx =

k

n
V1k +OP

(√
k

n

)
, µ̃′

zxŴ µ̃zε =
k

n
C1k +OP

(√
k

n

)
.

• If 0 ≤ δ < 1/2,

– If k ≪ n1/2−δ or k ∼ n1/2−δ,

µ̃′
zxŴ µ̃zx = n−2δa′kWak +OP

(
1

n2δ
√
k

)
, µ̃′

zxŴ µ̃zε = OP (n
−1/2−δ). (OA.14)

– If n1/2−δ ≪ k ≪ n1−2δ,

µ̃′
zxŴ µ̃zx = n−2δa′kWak +OP

(
1

n2δ
√
k
∨ k

n

)
, µ̃′

zxŴ µ̃zε =
k

n
C1k +OP (n

−1/2−δ).

– If k ∼ n1−2δ,

µ̃′
zxŴ µ̃zx = n−2δ(V1k + a′kWak) +OP

(
1

nδ+1/2

)
, µ̃′

zxŴ µ̃zε =
k

n
C1k +OP (n

−1
√
k).

– If k ≫ n1−2δ,

µ̃′
zxŴ µ̃zx =

k

n
V1k +OP

(√
k

n
∨ 1

n2δ

)
, µ̃′

zxŴ µ̃zε =
k

n
C1k +OP (n

−1
√
k).

IV. In this part, we derive the order of magnitude of the inverse of µ̃′
zxŴ µ̃zx and conclude the

proof. We obtain, recalling that θ̃ − θ0 = (µ̃′
zxŴ µ̃zx)

−1µ̃′
zxŴ µ̃zε:

• If δ ≥ 1/2,

(µ̃′
zxŴ µ̃zx)

−1 =
n

k
V−1
1k +OP

(
n

k
√
k

)
, θ̃ − θ0 = V−1

1k C1k +OP

(
1√
k

)
.

• If 0 ≤ δ < 1/2,

8



– If k ≪ n1/2−δ or k ∼ n1/2−δ,

(µ̃′
zxŴ µ̃zx)

−1 = n2δ(a′kWak)
−1 +OP

(
n2δ

√
k

)
, θ̃ − θ0 = OP (n

−1/2+δ). (OA.15)

– If n1/2−δ ≪ k ≪ n1−2δ,

(µ̃′
zxŴ µ̃zx)

−1 = n2δ(a′kWak)
−1 +OP

(
n2δ

√
k
∨ kn4δ

n

)
,

θ̃ − θ0 = kn2δ−1(a′kWak)
−1C1k +OP

(
k1/2n2δ−1 ∨ k2n4δ−2

)
– If k ∼ n1−2δ,

(µ̃′
zxŴ µ̃zx)

−1 = n2δ(V1k + a′kWak)
−1 +OP

(
n3δ−1/2

)
,

θ̃ − θ0 = (V1k + a′kWak)
−1C1k +OP (n

−1/2+δ).

– If k ≫ n1−2δ,

(µ̃′
zxŴ µ̃zx)

−1 =
n

k
V−1
1k +OP

(
n

k
√
k
∨ n2−2δ

k2

)
, θ̃−θ0 = V−1

1k C1k+OP

(
1√
k
∨ n1−2δ

k

)
.

This concludes the proof. □

OA.2 Additional results for the GMM estimator under H1

This section presents the auxiliary Lemma OA.1 and Propositions OA.2 and OA.3. The two

Propositions are related to the limiting behavior of the first-step GMM estimator and its optimal

weighting matrix under H1. The statements of the results are followed by their respective proofs.

Lemma OA.1 Let (Ui, zi) ∈ R×Rm be a sequence of i.i.d. random variables. Let Zi := g(k)(zi) ∈

Rk with mean µz and let

V̂u =
1

n

n∑
i=1

Ui(Zi − µz)(Zi − µz)
′, and Vu = E(Ui(Zi − µz)(Zi − µz)

′).

If k−2
∑k

l,m=1 V ar (Ui(Zil − µzl)(Zim − µzm)) ≤ ∆ < ∞, then

∥V̂u − Vu∥2 = OP (k/
√
n).

9



Proposition OA.2 Suppose Assumptions 1, 2, 3, and 4(a) hold, and k → ∞ with k ∼ a(log n)b,

for some a, b > 0. Then, under H1, we have:

(a) For 0 ≤ δ < 1/2, θ̃ = θ0 + nδ(a′kWak)
−1a′kWcz +OP

(
nδ
√
k

)
.

(b) For δ ≥ 1/2, θ̃ = θ0 +OP

(√
n
k

)
.

If, in addition, V ar ((xih − µxh)(Zi − µz)) has its smallest eigenvalue uniformly bounded away from

0 for at least one h ∈ {1, . . . , p}, then the OP (
√
n/k) remainder has a sharp order of magnitude.

Proposition OA.3 Let ẽ = θ̃ − θ0. Suppose Assumptions 1, 2, 3, 4(a), and 5 hold, and k → ∞

with k ∼ a(log n)b, for some a, b > 0. Then, under H1, we have:

(a) For 0 < δ < 1/2, Ṽ = V3(ẽ) +OP (n
δ), and Ṽ −1 = V3(ẽ)

−1 +OP (n
−3δ).

(b) For δ = 0, Ṽ = V3,0 +OP (1/
√
k), and Ṽ −1 = V −1

3,0 +OP (1/
√
k).

(c) For δ ≥ 1/2, Ṽ = V3(ẽ) +OP (
√
n/k) , and Ṽ −1 = V3(ẽ)

−1 +OP

(
k3/n3/2

)
.

Proof of Lemma OA.1: We have:

∥V̂u − Vu∥2 =
√

λmax[(V̂u − Vu)2] ≤

 k∑
l,m=1

[(V̂u − Vu)l,m]2

1/2

:=
1√
n

 k∑
l,m=1

a2l,m

1/2

,

with al,m = 1√
n

∑n
i=1 [Ui(Zil − µzl)(Zim − µzm)− E(Ui(Zil − µzl)(Zim − µzm))] .

Note that: E(a2l,m) = V ar(Ui(Zil − µzl)(Zim − µzm)). Hence,

E

 k∑
l,m=1

a2l,m

 =
k∑

l,m=1

V ar (Ui(Zil − µzl)(Zim − µzm)) = O(k2).

Thus,
∑k

l,m=1 a
2
l,m = OP (k

2) and the conclusion follows. □

Proof of Proposition OA.2: Recall θ̃ = θ0+(µ̃′
zxŴ µ̃zx)

−1(µ̃′
zxŴ µ̃zε). From part IV of the proof

of Theorem 2.1, we have:(
µ̃′
zxŴ µ̃zx

)−1
= n2δ(a′kWak)

−1 +OP (n
2δk−1/2), if δ ∈ [0, 1/2[; and (OA.16)(

µ̃′
zxŴ µ̃zx

)−1
=

n

k
V−1
1k +OP (nk

−3/2), if δ ≥ 1/2. (OA.17)

I. Consider µ̃zxWµ̃zε. Recall that

µ̃zx = µ̄zx − (Z̄ − µz)(x̄− µx)
′ = µ̄zx +OP (

√
k/n) = n−δak +OP (

√
k/n).
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Also, under our assumptions, the conclusion of Lemma A.1(c) of Dovonon and Gospodinov

(2023) holds and we have

µ̃zε = µ̄zε +OP (n
−1

√
k), µ̄zε = OP (∥cz∥2); µ̄zε =

1

n

n∑
i=1

αi + cz; αi = (Zi − µz)εi − cz.

(OA.18)

We can then claim that

µ̃′
zxWµ̃zε = µ̄zxWµ̄zε +OP

(
∥cz∥2

√
k

n

)
. (OA.19)

Consider µ̄′
zxWµ̄zε. Let x̃i = xi − µx and pick the h-th component of µ̄′

zxWµ̄zε given by:

1

n

n∑
i=1

x̃ih(Zi − µz)
′W

1

n

n∑
i=1

εi(Zi − µz) =
1

n2

n∑
i=1

x̃ih(Zi − µz)
′W

n∑
i=1

αi +
1

n

n∑
i=1

x̃ih(Zi − µz)
′Wcz

:= (A1) + (A2).

I.1. Consider (A1). We have:

(A1) =
1

n2

n∑
i=1

x̃ih(Zi − µz)
′Wαi +

1

n2

∑
i ̸=j

x̃ih(Zi − µz)
′Wαj := (A1.1) + (A1.2).

Consider (A1.2). We have: E(A1.2) = 0. To evaluate the order of magnitude of (A1.2), we

derive as previously E(A1.2)2. We have:

E(A1.2)2 =
1

n4

∑
i ̸=j,l ̸=m

E
(
x̃ih(Zi − µz)

′Wαj · x̃lh(Zl − µz)
′Wαm

)
=

1

n4

∑
i ̸=j

E(x̃ih(Zi − µz)
′Wαj)

2 +
1

n4

∑
i ̸=j

E(x̃ih(Zi − µz)
′Wαj · x̃jh(Zj − µz)

′Wαi)

+
1

n4

∑
i ̸=j,l ̸=j,i̸=l

E(x̃ih(Zi − µz)
′Wαj · x̃lh(Zl − µz)

′Wαj).

We have:

E(x̃ih(Zi − µz)
′Wαj)

2 = E
(
α′
jW · x2ih(Zi − µz)(Zi − µz)

′ ·Wαj

)
≤ C · E(α′

jαj) ≤ C · E(ε2j (Zj − µz)
′(Zj − µz)) = O(k),

for some constant C > 0.

E(x̃ih(Zi − µz)
′Wαj · x̃jh(Zj − µz)

′Wαi) = Etrace(W 1/2x̃jhαj(Zj − µz)
′Wx̃ihαi(Zi − µz)

′W 1/2)

= trace(W 1/2LWLW 1/2) ≤ C · trace(L2) ≤ C · k · ∥L∥22,
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for some C > 0 and with L := E(x̃jhαj(Zj − µz)
′). We have:

L = E(εj x̃jh(Zj − µz)(Zj − µz)
′)− czE((Zj − µz)

′x̃ih) = O(1) +O(∥cz∥2)O(n−δ) = O(1),

where we use the fact that ∥cz∥2 = O(1). We can claim that:

E(x̃ih(Zi − µz)
′Wαj · x̃jh(Zj − µz)

′Wαi) = O(k).

For i, j, l pairwise different, we have:

E(x̃ih(Zi − µz)
′Wαj · x̃lh(Zl − µz)

′Wαj) = E(x̃ih(Zi − µz)
′Wαjα

′
jWx̃lh(Zl − µz)

≤ CE(x̃ih(Zi − µz)
′) · E(x̃ih(Zi − µz)) = O(n−2δ),

for some C > 0, where we use the fact that E(αjα
′
j) ≤ E(ε2i (Zi − µz)(Zi − µz)

′) = O(1).

It follows that E(A1.2)2 = O(k/n2) +O(n−2δ−1). This shows that

(A1.2) = OP

(√
k

n
∨ 1

nδ+1/2

)
.

Hence,

If 0 ≤ δ < 1/2, (A1.2) = OP

(
1

nδ+1/2

)
; and if δ ≥ 1/2, (A1.2) = OP

(√
k

n

)
. (OA.20)

Consider (A1.1). We have En(A1.1) = E(x̃ih(Zi − µz)
′Wαi).

E[n((A1.1)− En(A1.1)]2 =
1

n2

n∑
i=1

E
(
x̃ih(Zi − µz)

′Wαi − E(A1.1)
)2

=
1

n
E
(
x̃ih(Zi − µz)

′Wαi − E(A1.1)
)2 ≤ 1

n
E(x̃ih(Zi − µz)

′Wαi)
2

=
1

n
E
(
x̃ih(Zi − µz)

′W ((Zi − µz)εi − cz)
)2

≤ 2

n
E
(
x̃ih(Zi − µz)

′W (Zi − µz)εi
)2

+
2

n
E
(
x̃ih(Zi − µz)

′Wcz
)2

.

It is not hard to see that

E
(
x̃2ihε

2
i [(Zi − µz)

′W (Zi − µz)]
2
)
= O(k2)

and

E
(
x̃ih(Zi − µz)

′Wcz
)2 ≤ E(x̃2ih(Zi − µz)

′W (Zi − µz)) · c′zWcz = O(k).

Hence,

n(A1.1) = E(x̃ih(Zi − µz)
′Wαi) +OP (k/

√
n) = k[k−1E(x̃ih(Zi − µz)

′Wαi)] +OP (k/
√
n).

12



Note that E(x̃ih(Zi − µz)
′Wαi) = E(x̃ihεi(Zi − µz)

′W (Zi − µz)) +O(n−δ) and it follows that,

n(A1.1) = k[k−1E(x̃ihεi(Zi − µz)
′W (Zi − µz))] +O(n−δ ∨ k/

√
n).

We conclude that:

(A1.1) =
k

n
[k−1E(x̃ihεi(Zi − µz)

′W (Zi − µz))] + O(n−1−δ ∨ k/n3/2) = O

(
k

n

)
. (OA.21)

From (OA.20) and (OA.21), we have:

If 0 ≤ δ < 1/2, (A1) = OP

(
1

nδ+1/2

)
; and if δ ≥ 1/2, (A1) = OP

(
k

n

)
. (OA.22)

It follows using (OA.19) that:

If 0 ≤ δ < 1/2, µ̃′
zxWµ̃zε = (A2) +OP

(
1

nδ+1/2

)
; and

if δ ≥ 1/2, µ̃′
zxWµ̃zε = (A2) +OP

(
k

n

)
, (OA.23)

with (we keep the same notation for the vector) (A2) := 1
n

∑n
i=1(xi − µx) · (Zi − µz)

′Wcz.

I.2. The effect of W̃ . We have:

µ̃′
zxŴ µ̃zε = µ̃′

zxWµ̃zε + µ̃′
zx(Ŵ −W )µ̃zε.

But

∥µ̃′
zx(Ŵ −W )µ̃zε∥2 ≤ ∥µ̃zx∥2∥Ŵ −W∥2∥µ̃zε∥2 = OP (n

−δ ∨
√

k/n)oP (1/
√
k)OP (∥cz∥2).

Then, from (OA.23), we have:

If 0 ≤ δ < 1/2, µ̃′
zxŴ µ̃zε = (A2) + oP

(
1

nδ
√
k

)
; and

if δ ≥ 1/2, µ̃′
zxŴ µ̃zε = (A2) + oP

(
1√
n

)
. (OA.24)

II. Sharp order of magnitude of (A2). We have

E(A2) = E(x̃ih(Zi − µz)
′Wcz) = n−δa′khWcz,

13



where akh is the h-th component of ak as defined in Assumption 1. To check the order of magnitude

of (A2), we derive:

E((A2)− E(A2))2 =

E

(
1

n

n∑
i=1

(x̃ih(Zi − µz)
′Wcz − n−δa′khWcz)

)2

=
1

n
E(x̃ih(Zi − µz)

′Wcz − n−δa′khWcz)
2

=
1

n
c′zWE

(
(x̃ih(Zi − µz)− n−δakh) · (x̃ih(Zi − µz)− n−δakh)

′
)
Wcz

=
1

n
c′zWV ar(x̃ih(Zi − µz))Wcz.

Under the condition that V ar(x̃ih(Zi − µz)) has its smallest eigenvalue uniformly bounded away

from 0, we can claim that:

(C1/n)∥cz∥22 ≤ E((A2)− E(A2))2 ≤ (C2/n)∥cz∥22,

for some constants C1, C2 > 0. Thus,

if 0 ≤ δ < 1/2, (A2) = n−δa′khWcz +OP

(
1√
n

)
; and

if δ ≥ 1/2, (A2) = OP

(
1√
n

)
, (OA.25)

where the OP (1/
√
n) bound is sharp in each case.

III. Using (OA.16), (OA.17), (OA.24) and (OA.25), some straightforward derivations yield:

If 0 ≤ δ < 1/2,

θ̃ = θ0 + nδ(a′kWak)
−1a′kWcz +OP

(
nδ

√
k

)
; (OA.26)

and if δ ≥ 1/2,

θ̃ = θ0 +OP

(√
n

k

)
, (OA.27)

where the OP (
√
n/k) term in the case δ ≥ 1/2 is sharp. □

Proof of Proposition OA.3: We have: Ṽ = 1
n

∑n
i=1 ε̃

2
i (Zi − Z̄)(Zi − Z̄)′. We observe that

ε̃i = −(xi − µx)
′(θ̃ − θ0) + (x̄− µx)

′(θ̃ − θ0) + εi − ε̄.

From Proposition OA.2: For 0 < δ < 1/2 , ẽ := θ̃ − θ0 = OP (n
δ);

for δ = 0, ẽ := θ̃ − θ0 − bk,0 = OP (1/
√
k), with bk,0 = (a′kWak)

−1a′kWcz; and

14



for δ ≥ 1/2, ẽ := θ̃ − θ0 = OP (
√
n/k). Using this, we find that:

If 0 < δ < 1/2,

Ṽ =
1

n

n∑
i=1

ε̃2i (Zi − µz)(Zi − µz)
′ +OP

(
kn2δ−1/2

)
.

If δ = 0,

Ṽ =
1

n

n∑
i=1

ε̃2i (Zi − µz)(Zi − µz)
′ +OP

(
kn−1/2

)
.

Finally, if δ ≥ 1/2

Ṽ =
1

n

n∑
i=1

ε̃2i (Zi − µz)(Zi − µz)
′ +OP

(
k−1√n

)
.

(a) Consider the case: 0 < δ < 1/2. Straightforward calculations yields:

1

n

n∑
i=1

ε̃2i (Zi − µz)(Zi − µz)
′ = V3(ẽ) +OP (n

δ)

so that

Ṽ = V3(ẽ) +OP (n
δ).

Assumptions 5 and 4(a) ensure that

λ ≤ inf
u∈Rp:∥u∥2=1

λmin(V3(u)) ≤ sup
u∈Rp:∥u∥2=1

λmax(V3(u)) ≤ Cλ̄,

for some positive constant C. Therefore, we can claim, since V3(u) is an homogeneous function of

degree 2, that

λ · ∥ẽ∥22 · Ik ≤ V3(ẽ) ≤ Cλ̄ · ∥ẽ∥22 · Ik,

where the inequality is in terms of matrices: (A ≤ B meaning that A−B is positive semidefinite.)

Since the leading term in the expansion of ∥ẽ∥2 is n2δc′zWak(a
′
kWak)

−2a′kWcz, we use the fact

that: lim infk ∥a′kWcz∥2 > 0, lim infk λmin(a
′
kak) > 0 and the fact that W has bounded eigenvalues

to claim that

∥ẽ∥−2
2 = OP (n

−2δ).

It follows that

V3(ẽ)
−1 = OP (n

−2δ).

Now, write Ṽ = V3(ẽ) + E , with E = OP (n
δ). We have

∥V3(ẽ)
−1E∥2 = OP (n

−δ) = oP (1).
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Thus,

(Ik + V3(ẽ)
−1E)−1 = Ik − V3(ẽ)

−1E +OP (n
−2δ)

and

Ṽ −1 = V3(ẽ)
−1 − V3(ẽ)

−1EV3(ẽ)
−1 +OP (n

−4δ) = V3(ẽ)
−1 +OP (n

−3δ).

This completes the proof of part (a).

(b) Consider the case δ = 0. Using the expression of ε̃i in which we replace θ̃− θ0 by ẽ+ bk,0,

with, as we recalled ẽ = OP (1/
√
k) (note also that bk,0 = O(1) which ensures along with the

conditions on the relevant eigenvalues that V3,0 is bounded), we obtain:

Ṽ = V3,0 +OP (1/
√
k), implying that Ṽ −1 = V −1

3,0 +OP (1/
√
k).

(c) Consider the case δ ≥ 1/2. The proof of this part follows the same lines as the proof of

part (a). We obtain:

Ṽ = V3(ẽ) +OP

(√
n

k

)
.

The leading term of ẽ can be obtained from the proof of Proposition OA.2 as

n

k
V−1
1k

1

n

n∑
i=1

[
(xi − µx)(Zi − µz)

′ − E((xi − µx)(Zi − µz)
′)
]
Wcz.

By application of the central limit theorem for independent and (row-wise) identically distributed

triangular arrays, we can claim that

n−1/2
n∑

i=1

[
(xi − µx)(Zi − µz)

′Wcz − E((xi − µx)(Zi − µz)
′Wcz)

]
is asymptotically normally distributed and, therefore, does not have an atom mass at 0 as n grows

if the asymptotic variance is nondegenerate. Actually, we can make the claim of no atom of prob-

ability at 0 if at least one component, say h of the quantity above is asymptotically normal with

nondegenerate variance. This is the case for any component h such that the smallest eigenvalue of

V ar ((xih − µxh)(Zi − µz)) is uniformly bounded away from 0. This shows that ẽ properly scaled

by its order of magnitude does not have any atom at 0. It follows that, ∥ẽ∥−2
2 = OP (k

2/n) which

allows to claim the stated result. □
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OA.3 Lower bound on ∆k in Theorem 4.2

The aim of this appendix is to show that the sequence ∆k, appearing in Theorem 4.2, is uniformly

bounded away from 0 so that consistency of the proposed test is ensured. For this purpose, ∆k is

considered the image of a specific point in Rp of a function that we study in Lemmas OA.4 and

OA.5 below. The connection to Theorem 4.2 is established in Remark OA.1 below.

Let Σk(u) be a sequence of symmetric positive definite (k, k)-matrices such that for any k ≥ 2,

Σk+1(u) =

(
Σk(u) v

v′ σ2

)
,

where v ∈ Rk and σ2 > 0 are also functions of u ∈ Rp, but we omit the dependence for simplicity.

Let ak and ck be two sequences of (k, p)-matrices and (k, 1)-vectors, respectively, such that ak is

full rank for k large enough and

ak+1 =

(
ak

α′
k+1

)
, ck+1 =

(
ck

β′
k+1

)

for some sequences αk ∈ Rk and βk ∈ R. Define

Pk := Σk(u)
−1/2ak

(
a′kΣk(u)

−1ak
)−1

a′kΣk(u)
−1/2, and ∆k(u) := c′kΣk(u)

−1/2 (Ik − Pδ) Σk(u)
−1/2ck.

Lemma OA.4 u 7→ ∆k(u) is a non-decreasing sequence of functions, i.e., for any k ≥ 2,

∆k(u) ≤ ∆k+1(u), ∀u ∈ Rp.

Lemma OA.5 Assume that the sequence of real-valued functions u 7→ ∆k(u) are all defined on a

compact subset C of Rp. If there exists k0 such that u 7→ ∆k0(u) is continuous and ak0 does not lie

in the column span of ak0, then, for any u ∈ C and any k ≥ k0,

∆k(u) ≥ ∆k0(u) ≥ ν,

where ν > 0 is an absolute constant.

Remark OA.1 Lemma OA.5 applies to ∆k introduced in Theorem 4.2. Indeed, note that, for

δ = 0, ∆k is obtained through Σk(u) = E((εi − u′(xi − µx))
2(Zi − µz)(Zi − µz)

′), with u = b0,k =

(a′kWak)
−1(a′kWcz). Also, note that:

∥b0,k∥2 ≤
∥ak∥2λmax(W )∥cz∥2
λmin(W )λmin(a′kak)

≤ M,
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where M > 0 is an absolute constant. The last inequality holds under Assumptions 1(b) and 3 and

the conditions ∥cz∥2 = O(1) and λmin(W ) > λ > 0. For the result in Lemma OA.5 to hold, we can

consider u to lie in the compact: C = {u ∈ Rp : ∥u∥2 ≤ M}.

In the case 0 < δ < 1/2, ∆k is obtained through Σk(u) = E((u′(xi−µx))
2(Zi−µz)(Zi−µz)

′), with

u = ũ = (θ̃−θ0)/∥θ̃−θ0∥2. We can then consider u to lie in the compact: C = {u ∈ Rp : ∥u∥2 = 1}.

In both cases, Σk(u) is positive definite for all u ∈ C and continuous in u as a polynomial function.

It follows that u 7→ ∆k(u) is continuous and the conditions of Lemma OA.5 are satisfied. We can

therefore conclude in both cases that ∆k ≥ ν > 0 for k large enough and this, so long as as there

exists k0 such that cz(∈ Rk0) does not belong to the column span of ak0.

Proof of Lemma OA.4: We have:

∆k+1(u) := c′k+1Σk+1(u)
−1ck+1 − c′k+1Σk+1(u)

−1ak+1

(
a′k+1Σk+1(u)

−1ak+1

)−1
a′k+1Σk+1(u)

−1ck+1.

Using the block inverse formula, we get:

Σk+1(u)
−1 =

 Σk(u)
−1 +Σk(u)

−1vv′Σk(u)
−1/µ −Σk(u)

−1v/µ

−v′Σk(u)
−1/µ 1/µ

 , µ = σ2 − v′Σk(u)
−1v.

Straightforward derivations yield:

a′k+1Σk+1(u)
−1ak+1 = a′kΣk(u)

−1ak +
1

µ
V V ′, with V = a′kΣk(u)

−1v − α′
k+1.

Let us define Sk := a′kΣk(u)
−1ak. By the Woodbury formula, we get:

S−1
k+1 :=

(
a′k+1Σk+1(u)

−1ak+1

)−1
= S−1

k −
S−1
k · 1

µV V ′ · S−1
k

1 + 1
µV

′S−1
k V

. (OA.28)

Also, we obtain:

a′k+1Σk+1(u)
−1ck+1 = a′kΣk(u)

−1ck +
λk

µ
V, λk = v′Σk(u)

−1ck − βk+1, (OA.29)

and

c′k+1Σk+1(u)
−1ck+1 = c′kΣk(u)

−1ck +
λ2
k

µ
. (OA.30)

Plugging (OA.28), (OA.29) and (OA.30) into the expression of ∆k+1(u) above, we obtain:

∆k+1(u) = ∆k(u)−
2λk

µ

(
c′kΣk(u)

−1ak
)
S−1
k V −

λ2
k

µ2
V ′S−1

k V +
λ2
k

µ

+

(
c′kΣk(u)

−1ak +
λk

µ
V ′
)

S−1
k · 1

µV V ′ · S−1
k

1 + 1
µV

′S−1
k V

(
a′kΣk(u)

−1ck +
λk

µ
V

)
.
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Setting A1 = c′kΣk(u)
−1akS

−1
k V and A2 = V ′S−1

k V , we get:

∆k+1(u) = ∆k(u)−
2λk

µ
A1 −

λ2
k

µ2
A2 +

λ2
k

µ
+

1
µ

(
A1 +

λk
µ A2

)2
1 + 1

µA2
= ∆k(u) +

(A1 − λk)
2

µ+A2
≥ ∆k(u). □

Proof of Lemma OA.5: From Lemma OA.4, ∆k(u) ≥ ∆k0(u) for all u ∈ C and all k ≥

k0. Since u 7→ ∆k0(u) is continuous on the compact set C, there exists u0 ∈ C such that

∆k0(u0) = minu∈C ∆k0(u). The fact that ck0 does not belong to the column span of ak0 ensures

that ∆k0(u0) > 0. We can take δ = ∆k0(u0). □

OA.4 Limiting distribution of the GMM estimator for 0 ≤ δ < 1/2

Let Σk := (a′kWak)
−1a′kWE[ε2i (Zi − µz)(Zi − µz)

′)]Wak(a
′
kWak)

−1.

Proposition OA.6 Under H0, if Assumptions 1, 2 and 3 hold for 0 ≤ δ < 1/2, k ∼ a(lnn)b, for

a, b > 0 and Σk converges to Σ as k → ∞, then

n1/2−δ(θ̃ − θ0)
d−→ N(0,Σ).

As it appears, the possibility of using the result in Proposition OA.6 to carry out feasible

and asymptotically valid inference about θ0 may rely on knowing δ and a useful estimate of ak.

Nevertheless, it turns out that this is not necessary. From the definition of ak in Assumption 1, we

also have

ak = nδE((Zi − µz)(xi − µx)
′) := nδℓk.

Hence, we can claim that:

√
n(θ̃− θ0) ∼ AN(0, n2δΣk), and n2δΣk = (ℓ′kWℓk)

−1ℓ′kWE[ε2i (Zi − µz)(Zi − µz)
′)]Wℓk(ℓ

′
kWℓk)

−1.

With this observation, the crucial observation of Antoine and Renault (2009) that there is no need to

know δ to carry out inference about θ also holds in our context. Standard GMM inference formulas

are obtained by replacing the quantities in the expression of n2δΣk above by their respective sample

analogues. It is not hard to see that the standard GMM inference formulas lead to valid inference

in the context of Proposition OA.6, regardless of the value of δ ∈ [0, 1/2).

Remark OA.2 In contrast to the result in Antoine and Renault (2009), there is no parameter

space rotation involved in the asymptotic distribution of the GMM estimator θ̃. This is mainly
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due to the fact that each component of E(xi − µx|zi) is local-to-zero at the same rate n−δ. Such

a rotation may appear in the asymptotic distribution of θ̃ if each component of xi is allowed to

have a conditional mean with a specific local-to-zero rate. Although, this is not expected to affect

the distribution of the specification test (see Section 2.1), this may change the distribution derived

in Proposition OA.6 for the parameter estimate. The full study of the GMM estimator in this

identification configuration is beyond the scope of this paper.

Proof of Proposition OA.6: Recall that θ̃ = θ0 +
(
µ̃′
zxŴ µ̃zx

)−1 (
µ̃′
zxŴ µ̃zε

)
. We have:

µ̃zx = n−δak +OP (
√
k/n) = OP (n

−δ), and µ̃zε = µ̄zε +OP (
√
k/n) = OP (

√
k/n).

Using the fact that Ŵ −W = oP (k
−1/2) we obtain:

µ̃′
zxŴ µ̃zε = n−δa′kWµ̄zε + oP (n

−1/2−δ).

Using (OA.15), we obtain:

n1/2−δ
(
µ̃′
zxŴ µ̃zx

)−1 (
µ̃′
zxŴ µ̃zε

)
= (a′kWak)

−1 1√
n

n∑
i=1

a′kW (Zi − µz)εi + oP (1).

We use the fact that {a′kW (Zi −µz)εi}i is a triangular array that is row-wise i.i.d. with zero mean

and variance that is uniformly bounded to claim, by the central limit theorem that:

n1/2−δ(θ̃ − θ0)
d−→ N(0,Σ),

with

Σ = lim
n→∞

(a′kWak)
−1a′kWE[ε2i (Zi − µz)(Zi − µz)

′)]Wak(a
′
kWak)

−1. □
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OA.5 Power with single regressor and irrelevant instrument

This section illustrates in the simplest model that, in the presence of completely irrelevant instru-

ments, the power of the proposed test originates essentially from growing number, k, of generated

instruments. More precisely, in the presence of irrelevant instruments, 2SGMM diverges but with

a rate that is moderated by k. Thus the inverse of the optimal variance does not converge to 0 as

fast as the signal part of Jn,k diverges under H1. This favorable trade-off is at the source of power.

Consider the linear model without intercept and only one regressor, which may be endogenous,

and one instrument. The absence of intercept implies that, demeaning is not essential as we can

show that the test statistic in (7) is equivalent to the same expression but with Jn,k replaced by

J̄n,k := n
(
µ̄zy − θ̂µ̄zx

)′
V̂ −1

(
µ̄zy − θ̂µ̄zx

)
, with V̂ = n−1

n∑
i=1

[yi − θ̂xi]
2ZiZ

′
i,

µ̄αβ = n−1
∑n

i=1(αi − E(αi))(βi − E(βi))
′, and θ̂ the 2SGMM estimator based on a first step

estimator θ̃ associated to identity weighting matrix and obtained without demeaning. Recalling

that cz := E(Ziεi), Straightforward calculations (also see proof of Proposition OA.2(b)) yields

θ̃ = θ0 + ẽ := θ0 +

√
n

k

(√
nµ̄′

zxcz
)/√n

k
µ̄′
zx

√
n

k
µ̄zx +OP (1).

Let Ṽ be as V̂ but with θ̃ replacing θ̂ and V3(1) = E(x2iZiZ
′
i). We have (see Proposition OA.3(c)),

Ṽ = ẽ2V3(1) +OP (
√
n/k), and Ṽ −1 = ẽ−2(V3(1))

−1 +OP (k
3/n3/2).

Moreover,

θ̂ = θ0 + ê := θ0 +

√
n

k

(√
nµ̄′

zxṼ
−1cz

)/(√n

k
µ̄′
zxṼ

−1

√
n

k
µ̄zx

)
+OP (1)

= θ0 +

√
n

k

(√
nµ̄′

zx(V3(1))
−1cz

)/(√n

k
µ̄′
zx(V3(1))

−1

√
n

k
µ̄zx

)
+OP (k

1/2)

:=

√
n

k
hn +OP (k

1/2).

We also obtain:

V̂ = ê2V3(1) +OP (
√
n/k), and V̂ −1 = ê−2(V3(1))

−1 +OP (k
3/n3/2).

Turning back to the signal part of J̄n, we obtain

√
n(µ̄zy − θ̂µ̄zx) =

√
n(µ̄zε − êµ̄zx) =

√
ncz +OP (

√
n/k) = OP (

√
n).
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It follows that:

J̄n = n(cz +OP (1/
√
k))′ê−2V3(1)

−1(cz +OP (1/
√
k)) +OP (k

3/
√
n).

Noting that ê−2 = (n1/2k−1hn)
−2+OP (k

7/2/n3/2) and that both hn and h−1
n are OP (1), we obtain

J̄n = k2h−2
n c′z(V3(1))

−1cz +OP (k
3/2).

Since ∥cz∥2 is bounded away from 0 (underH1), the leading term of J̄n is k2h−2
n c′z(V3(1))

−1cz, which

diverges to infinite as n grows. Turning to our test statistic Sn,k, its leading term, by definition is

2−1/2k3/2h−2
n c′z(V3(1))

−1cz and this ensures that Sn.k diverges to +∞ with probability approaching

1 as n grows. This establishes that the test is consistent. By the expression of this leading term,

consistency of the test is essentially due to increasing k. For k fixed, this argument would not hold.

22



OA.6 Additional simulation evidence

This section reports additional simulation results for other sample sizes n and different distributional

assumptions. Figure OA.1 presents the power curves for the Sn,k and Jn tests at the 5% nominal

level but for n = 5, 000 observations instead of n = 500 as in Figure 2 in the paper.
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Figure OA.1. Empirical power curves at 5% nominal level of the Sn,k test (left chart) and the
Jn test (right chart) for various degrees of the identification signal: ‘irrelevant’ (δ = 100), ‘very
weak’ (δ = 1), ‘weak’ (δ = 0.5), ‘semi-strong’ (δ = 0.2), and ‘strong’ (δ = 0). The sample size is
n = 5, 000.

Table OA.1 is based on the same simulation design as Table 1 in the main text but n = 100

instead of n = 500 as in Table 1. While the size distortions of the test increase in the extreme tails

of the distribution, the test Sn,k exhibits only mild over-rejections at 10% nominal level. Table

OA.2 is based on the same simulation design as Table 1 in the main text with n = 500 but (εi, vi)
′

is bivariate t-distributed with the same variance matrix Ω and 5 degrees of freedom and zi is also

drawn independently from a t-distribution with 5 degrees of freedom and I3 as a variance matrix.

This design is to assess the robustness of the proposed test to violations of Assumption 2(a).
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Table OA.1. Empirical rejection rates (size and power) of the Sn,k test with instruments that
exhibit differential identification strength as a function of (δ1, δ2, δ3, δ4) with n = 100.

Panel A: one-sided Sn,k test Panel B: two-sided Sn,k test

(δ1, δ2, δ3, δ4) size power size power

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

(0, 0.5, 0.2, 100) 3.3 8.2 12.8 42.7 59.1 67.6 2.3 5.9 10.6 37.0 51.4 59.2

(100, 0.3, 0.1, 100) 2.9 7.3 11.6 50.4 65.2 72.4 2.0 5.3 10.2 45.1 58.5 65.4

(0, 0.2, 0.5, 0) 3.2 8.2 12.8 55.0 73.1 81.5 2.3 5.8 10.5 48.3 64.8 73.1

(0.8, 0.2, 0.5, 0.4) 2.7 6.7 10.7 52.6 66.4 73.5 1.8 5.1 10.1 47.4 60.2 66.6

(0.5, 0.4, 0.3, 0.1) 2.6 6.7 10.6 45.1 61.2 69.8 1.8 5.1 9.9 39.5 53.8 61.4

(0, 100, 100, 0) 3.4 8.5 13.2 60.2 77.2 84.8 2.4 6.0 10.8 53.7 69.6 77.2

(0.1, 0.2, 0.5, 0.5) 2.5 6.7 10.6 30.2 45.5 54.6 1.8 5.0 9.9 25.4 38.2 45.9

(0.6, 0.5, 0.2, 1) 2.5 6.3 10.1 48.1 61.7 68.8 1.7 4.9 9.7 43.2 55.6 62.0

Table OA.2. Empirical rejection rates (size and power) of the Sn,k test with instruments that
exhibit differential identification strength as a function of (δ1, δ2, δ3, δ4) with n = 500 and data
drawn from a multivariate t-distribution with 5 degrees of freedom.

Panel A: one-sided Sn,k test Panel B: two-sided Sn,k test

(δ1, δ2, δ3, δ4) size power size power

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

(0, 0.5, 0.2, 100) 1.5 4.6 8.1 93.7 96.9 97.9 1.0 3.9 8.5 92.1 95.5 96.9

(100, 0.3, 0.1, 100) 1.4 4.5 7.9 89.0 93.1 94.9 0.9 3.9 8.7 87.3 91.4 93.1

(0, 0.2, 0.5, 0) 1.3 4.4 7.8 100 100 100 0.8 3.6 8.1 100 100 100

(0.8, 0.2, 0.5, 0.4) 1.2 4.0 7.0 93.2 95.9 96.9 0.8 3.7 8.9 92.1 94.8 95.9

(0.5, 0.4, 0.3, 0.1) 1.0 3.6 6.4 95.6 97.4 98.1 0.7 3.6 8.6 94.8 96.6 97.4

(0, 100, 100, 0) 1.3 4.4 7.8 100 100 100 0.8 3.6 8.1 100 100 100

(0.1, 0.2, 0.5, 0.5) 1.1 3.6 6.4 86.3 91.1 93.2 0.7 3.6 8.5 84.3 89.0 91.2

(0.6, 0.5, 0.2, 1) 1.1 3.7 6.5 89.6 93.2 94.8 0.7 3.6 8.8 88.1 91.7 93.2
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