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1 Introduction

Competing theories of inflation are embodied in different models and opinions. If one theory

is “true”, all others are false. This means that all models are logically false in an empirical,

inductive inference setting. How should a policy maker hedge against this endemic model

uncertainty? Model aggregation is both informally and formally known to provide opti-

mal hedging in a replicable and transparent manner. In contrast, the commonly employed

methods of “model selection”are logically flawed as they seek to find “the”correct model.

Given that inflation and its reliable prediction are amongst the most pressing current pol-

icy questions, we propose and demonstrate that judicious aggregation of individual inflation

forecasts produces dramatically superior performance compared to its component models of

inflation, according to a wide set of risk criteria. This can provide a formal and transpar-

ent basis for policy maker decisions and pronouncements. Such “aggregation”is informally

undertaken by policy maker faced with competing advice and input from a bewildering ar-

ray of expert opinion and models. Our formal aggregation strategy points the way to an

optimal approach to this informal undertaking, and is dominant over known alternatives. It

also provides a broad view of model averaging and aggregation which identifies alternative

formal and informal methods. As we show, our approach is easily implemented, and it can

also accommodate machine learning models of inflation. Indeed, our method may be seen

as not so "Artificial" Intelligence (AI) decision making when faced with competing analyses

and forecasts.

We propose to aggregate point forecasts of a desired object, such as inflation, although the

proposed method can be readily adapted for aggregation of density forecasts. Information

theory offers powerful measures for contrasting distributions, and we emphasize that other

metrics, such as the Bregman class of measures are transformations of the same information-

theoretic measures. “Optimality” of our aggregators derives from these metrics that are

optimized to find the best aggregators. This also reveals the subjectivity inherent in the

choice of any optimization measure, and helps to identify what aspects of forecasts are being

emphasized or which aspects of forecast errors are penalized. As is clear from our analysis,

inflation is but an important example of wide applicability of the proposed techniques. We

illustrate the advantages of entropy-based aggregation for forecasting U.S. core inflation.

The optimal aggregators also identify the statistically justified weights that are allocated
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to each component model or opinion. This helps to reveal which theories are closer to the

best empirically supported outcome. We discuss the applicability of optimal aggregation to a

wide range of problems, including portfolio construction and asset pricing. Since our method

is time adaptive, the weights change over time, revealing the relative effi cacy of competing

models at different economic stages and/or different policy regimes. We also argue that our

optimization procedure offers a scientific basis for the informal way policy makers refer to

diversity of opinions and models available to them.

2 Conceptual Framework

It is probably not an exaggeration to say that all financial and economic models are inher-

ently misspecified as they are constructed to approximate a complex reality. This is often

done intentionally as parsimonious models draw only partial or incomplete maps of the la-

tent objects of interest either to emphasize particular aspects or because the underlying

structure is completely unknown. As a result, it seems desirable to explicitly acknowledge

the model uncertainty surrounding all investment, asset allocation, and policy decisions.

The information-theoretic or maximum-entropy approach adapts naturally to the underly-

ing model uncertainty and provides a consistent framework for aggregating information from

different, partially specified models.

In this section, we review the analytical framework of Gospodinov and Maasoumi (2021)

for robust aggregation based on information (entropy) theory. This framework capitalizes on

insights fromMaasoumi (1986) who proposed entropy-based aggregators that are constructed

with the size distributions multiple indicators of a latest object, well-being. Furthermore, an

axiomatic approach, based on postulating a few minimal properties (see, Maasoumi, 1993;

Kobus, Kapera and Maasoumi, 2024) can provide a social decision-theoretic basis for policy

maker’s optimal aggregator, see Gospodinov and Maasoumi (2021) (see also Mudekereza,

2025). Finally, Gospodinov and Maasoumi (2025) use this approach to construct “ethical”

measures of inflation which subjectively account for social and policy preferences that reflect

the heterogeneous exposures of households at different income quintiles to various price

components.
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2.1 Divergence Measures

To introduce the maximum entropy principle, let P and Q be two probability measures with

densities p and q with respect to a dominating measure µ; for example, two probability mea-

sures associated with two asset returns or the physical and risk-neutral probability measures.

One way to measure the divergence between the two measures (Csiszár, 1972) is to solve the

following optimization problem

Dφ(P,Q) =

∫
φ

(
dP

dQ

)
dQ,

where φ : R → [0,+∞) is a convex, continuously differentiable function. The measure Dφ

is nonnegative and Dφ(P,Q) = 0 if and only if the two measures coincide, P = Q. For a

choice of φ(·), we use the Cressie-Read (Cressie and Read, 1984) power divergence family of
functions

φ(a) =
aρ+1 − 1
ρ(ρ+ 1)

for a ≥ 0.

Different members of this family can be obtained for different values of the parameter ρ.1

One celebrated member of this divergence family is the Kullback-Leibler divergence which

is given by

KL(P,Q) =
∫
ln

(
p

q

)
qdν.

Our preferred divergence measure is the (scaled) Hellinger distance measure which is obtained

by setting ρ = −1/2 or
H(P,Q) = 1

2

∫ (
p1/2 − q1/2

)2
dν.

2.2 General Aggregation

To introduce the main ideas, suppose that the policy makers observe an information signal

about the underlying —possibly unknowable —object of interest f(·). These decision makers
are endowed with models that represent their ‘views’and are used as a convenient device

to interpret and summarize an incoming information signal. More formally, suppose that

there exists a finite dictionary F = {f1, ..., fM} of M candidate models or functions that

approximate certain features of f(·). The goal is to construct, given the loss or risk function
1When this generalized entropy family is used to as an inequality measure (Maasoumi, 1986), the para-

meter −ρ represents the degree of relative inequality aversion.
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of the policy maker, a risk-minimized aggregator —a weighted sum of all candidate models

—that generates the best approximate mapping between the aggregate and the individual

candidate models, and reflects the uncertainty about f(·). Since we do not assume that the
dictionary contains a “true”model, we refer to this aggregator as a pseudo-true aggregator

that adapts to the least misspecified model in the dictionary.

Consider the flat simplex for a set of weights w = (w1, ..., wM) :

WM =
{
w ∈ RM : wi ≥ 0,

∑M

i=1
wi = 1

}
.

For a given risk functionR : F →R, the pseudo-true aggregator of the candidates {f1, ..., fM}
is defined as

f ∗w = argmin
w∈WM

R(f (w), f).

The sample aggregator, denoted by f̃ (w), is constructed by mimicking the pseudo-true ag-

gregator using the empirical risk function RT (f̃
(w), f).

The form of the aggregator will be inferred with the help of the divergence measures

introduced above as the solution for f̃ (w) is obtained by selecting a distribution which is

as close as possible to the multivariate distribution of fi’s. More specifically, we follow

Maasoumi (1986) in generalizing the pairwise criteria of divergence to a general multivariate

context:

D̃ρ(f̃ , f ;w) =
M∑
i=1

wiRT,ρ(f̃ , fi), (1)

where

RT,ρ(f̃ , fi) =
1

ρ(ρ+ 1)

T∑
t=1

f̃t

[(
f̃t
fi,t

)ρ

− 1
]
. (2)

RT,ρ(f̃ , fi) is the generalized entropy divergence between the aggregator f̃ and each of the

prospective models fi. The aggregator that minimizes D̃ρ(f̃ , f ;w) is given by

f̃
(w)
t ∝

[
M∑
i=1

wif
−ρ
i,t

]−1/ρ
. (3)

The linear and convex pooling of models are obtained as special cases. The case ρ = −1/2
corresponds to our preferred Hellinger distance aggregator.
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2.3 Convex Aggregation

The dominant (convex) aggregator of the candidates {f1, ..., fM} is obtained using the
Kullback-Leibler divergence (ρ = −1) and is given by

f (w) =

M∑
m=1

wmfm, w ∈ WM ,

with its estimator denoted by f̃
(w)
T . Model selection is a special case with w ≡ ei =

(0, 0, ..., 1, 0, ..., 0) with i = 1, ...,M .

When the density properties of the w are recognized, one may incorporate penalties for

departures of the distribution of weights (w) from a priori distributions or desired distri-

butions of weights (π) that may reflect an ordering of the models. For example, consider

the linear aggregator f̃w =
∑M

m=1wmfm of an unknown regression function f . Then, the

aggregation weights may solve the following penalized optimization problem

min
w∈WM

[
M∑
m=1

wmRT (f̃
(w)
T , f) +

β

T
KL(w, π)

]
,

where β > 0 is a penalty parameter, KL(w, π) =
∑M

m=1wm ln
(
wm
πm

)
is the Kullback-Leibler

divergence between w and π, and π ∈ WM is a prior probability density. This could also

be a convenient device when M is large relative to T , as in variable selection problems with

‘big data’attributes. The solution for the above penalized optimization problem is driven

by the form of the entropy divergence function. With the Kullback-Leibler divergence, the

aggregation weights take an exponential form

w∗i =
exp(−TRT (f̃

(w)
T , f)/β)πi∑M

m=1 exp(−TRT (f̃
(w)
T , f)/β)πm

.

Note that this is the quasi-Bayesian approach of Chernozhukov and Hong (2003) where the

estimates of w can be obtained using MCMC methods.

2.4 An Illustrative Example: Portfolio Construction

Suppose now that Re
i denotes the excess return on the risky asset i (i = 1, ..., N), P signifies

the data generating measure and Q is the risk-neutral measure. An interesting problem to
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consider is to find the risk-neutral measure Q with minimal entropy relative to the physical

measure P (Stutzer, 1995). The solution to this problem is obtained as

Q∗ = argmin
Q

EQ
[
ln

(
dQ

dP

)]
subject to the no-arbitrage restriction

EQ[Re
i ] ≡

∫
Re
idQ = 0 for i = 1, ..., N .

The solution Q∗ gives rise to the following density

dQ∗

dP
=

exp
(∑N

i=1w
∗
iR

e
i

)
E
[
exp

(∑N
i=1w

∗
iR

e
i

)] ,
where the density parameters (weights) w∗ = (w∗1, ..., w

∗
N) are the solution to the problem

w∗ = argmin
w=(w1,...,wN )

lnE

[
exp

(
N∑
i=1

wiR
e
i

)]

One interesting observation is that lnE
[
exp

(∑N
i=1wiR

e
i

)]
is the cumulant generating func-

tion of
∑N

i=1wiR
e
i which characterizes all the information in the distribution of the excess

returns. When excess returns are assumed to be multivariate normal, all cumulants beyond

the first two cumulants are zero and the above optimization problem collapses to the usual

mean-variance portfolio problem

w∗ = argmin
w=(w1,...,wN )

E [Re]′w + 0.5w′Cov[Re]w

with the closed-form solution w∗ = −Cov[Re]−1E [Re].2 Substituting for w∗, the relative

entropy (Kullback-Leibler) bound becomes 0.5E [Re]′Cov[Re]−1E [Re] which in the case of

2It follows that the vector of relative portfolio weights invested in N risky assets is ŵMV =
−Cov[Re]−1E [Re] /

(
1NCov[R

e]−1E [Re]
)
. A natural benchmark strategy is an equal-weighted portfolio

with ŵEW = 1/N . Comparing the out-of-sample performance (over the last K observations) of these two
strategies via the Sharpe ratio boils down to computing the test statistic z = (σ̂2µ̂1 − σ̂1µ̂2)/ω̂ with

ω̂2 =
1

K

(
2σ̂21σ̂

2
2 − 2σ̂1σ̂2σ̂12

)
+
1

2
µ̂21σ̂

2
2 +

1

2
µ̂22σ̂

2
1 −

µ̂1µ̂2
σ̂1σ̂2

σ̂212,

where µ̂1, µ̂2, σ̂
2
1, σ̂

2
2, and σ̂12 are the estimated sample means, variances and covariances of the two portfolios.

Under some assumptions, the statistic z is distributed as a standard normal random variable. DeMiguel,
Garlappi and Uppal (2011) do not find suffi cient evidence for the dominance of the optimal portfolio weight
relative to the naive, equally-weighted, scheme. They attribute this finding to the estimation error that
accompanies the construction of the optimal portfolio.
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one asset becomes the squared Sharpe ratio of this asset return. It appears that a large part

of the entropy is accounted for by the higher than second cumulants which arises from the

non-Gaussianity of the excess return data. Thus, ignoring these higher moments in measuring

entropy and dependence will result in a significant misspecification and spurious dynamics

in the first two moments. Once higher moments and more general loss/risk functions are

allowed for, most “anomalies” and “puzzles” tend to diminish in terms of magnitude and

economic significance (see Stutzer, 1995, 2016; Ghosh, Julliard and Taylor, 2017; among

others).

Note that the assets need not be combined by linear pooling which implicitly assumes

a perfect substitutability of the different assets. Suppose that R̃ denotes the aggregator

(portfolio). As above, we characterize the solution for R̃ by selecting a distribution which

is as close as possible to the multivariate distribution of Ri’s using the following measure of

divergence:

Dρ(R̃, R;w) =
N∑
i=1

wi

{
T∑
t=1

R̃t

[(
R̃t

Ri,t

)ρ

− 1
]/

ρ(ρ+ 1)

}
,

The aggregator that minimizes Dρ(R̃, R;w) subject to
∑N

i=1
wi = 1 is given by

R̃∗t ∝
[

N∑
i=1

wiR
−ρ
i,t

]−1/ρ
,

with the linear pooling obtained for ρ = −1 and the Hellinger distance aggregator obtained
for ρ = −1/2.

3 Forecast Combination

Suppose now that f = {f1, ..., fM} denote M forecasts for variable yt+1 (t = 0, ..., T ) and a

convex forecast combination is given by

f(w) =
M∑
m=1

wmfm = w
′f ,

where w ∈ WM ,WM =
{
w ∈ RM : wm ≥ 0,

∑M
m=1wm = 1

}
. The benchmark forecast com-

bination is the equal-weight mixing with wm = 1/M .
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The mean-squared forecast errors (MSFE) over K periods are defined as

σ̂2(w) =
1

K

T∑
t=T−K

(yt+1 −w′ft)2.

One method for forecast combination (Granger-Ramanathan, GR) select the vector of mixing

weights w to minimize MSFE which is equivalent to running the least squares regression

yt+1 = w
′ft + εt+1, t = T −K, ..., T,

with a solution

ŵGR =

(
T∑

t=T−K
ftf
′
t

)−1( T∑
t=T−K

ftyt+1

)
.

But these weights are unconstrained which results in poor forecast performance. The con-

strained GR forecast weights are obtained (using quadratic programming) as

ŵCGR = argmin
w

w′Aw

s.t.
∑M

m=1
wm = 1 and 0 ≤ wm ≤ 1,

where A =
∑

t et+1e
′
t+1 and et+1 = yt+1− ft. A special case for this method (Bates-Granger)

is obtained under the assumption that A is diagonal with weights given by ŵm,BG =

σ̂2m/
∑M

j=1 σ̂
2
j . If the different forecast error variances are approximately equal —which is

often the case in practice —this forecast combination is similar to the constant, equal-weight

mixing. The weights could also be obtained using a cross-validation criterion and leave-

one-out estimator. Finally, other popular combination scheme include the Bayesian model

averaging and the Mallows model averaging (Hansen, 2007, 2008).

Instead of relying on the convex aggregation, we turn again to an aggregator of the

constant-elasticity-of-substitution (CES) form

f̃t =
[∑M

i=1
wif

−ρ
i,t

]−1/ρ
. (4)

Again, our preferred aggregator is based on the value ρ = −1/2 which corresponds to the
Hellinger distance measure

H(P,Q) = 1

2

∫ (
p1/2 − q1/2

)2
dv,
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where p be the density of some favored benchmark (“pivot”), and q the density of the

aggregator f̃ ∗t =
[∑M

i=1
wif

1/2
i,t

]2
. The mixing weights are obtained by minimizing the above

distance measure3 with respect to w, subject to wi ≥ 0 and
∑M

i=1wi = 1. Unlike the other

measures in the Cressie-Read divergence family, the Hellinger distance is a proper measure

of distance since it is positive, symmetric and it satisfies the triangle inequality. We follow

this estimation strategy in the empirical section for forecasting inflation below.

Finally, we would like to remark briefly on some further extensions. First, we should note

that all of these forecast combination methods are designed to produce point forecasts. One

general method for incorporating the forecast uncertainty and constructing forecast intervals

in a model-free way is the conformal predictive inference (Vovk, Gammerman, and Shafer,

2005; Lei, G’Sell, Rinaldo, Tibshirani, and Wasserman, 2018; Chernozhukov, Wüthrich and

Yinchu, 2018). Second, this entropy-based approach can be readily adapted to aggregation

of density forecasts from models or from experts. For example, one could be interested in

combining and summarizing the information fromM probability density (mass) forecasts for

variable y by M survey participants over N prespecified bins of possible values for y. For

details on this, see Gospodinov and Maasoumi (2019).

3.1 Bregman Pseudo-Distances for Forecast Evaluation

Forecast evaluation requires a choice of a loss function. One flexible class of loss functions

are the Bregman (1967) pseudo-distances

Bφ(p, q) = φ(p)− φ(q)− φ′(q)(p− q),

where φ : R → [0,+∞) is again a convex, continuously differentiable function, p = dP/dµ

and q = dQ/dµ. One interesting result (Stummer and Vajda, 2011) is that the scaled

Bregman pseudo-distances are equal to the divergence measures considered above

Bφ(P,Q|Q) = Dφ(P,Q).

Two popular choices of Bregman pseudo-distances (Patton, 2020) for forecast evaluation

(forecast f for variable y) are based on φ(x; k) = |x|k, k > 1 (homogeneous Bregman loss):

L(y, f ; k) = |y|k − |f |k − k sgn(f)|f |k−1(y − f)
3Densities p and q are estimated by a kernel density estimator and the integral is evaluated numerically.
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or based on φ(x; a) = 2a−2 exp(ax), a 6= 0 (non-homogeneous Bregman loss):

L(y, f ; a) =
2

a2
[exp(ay)− exp(af)]− 2

a
exp(af)(y − f).

Different choices of a and k give rise to different penalties for over- and under-predictions.

The standard mean squared error (MSE) is obtained for k = 2 and a→ 0.

3.2 Forecasting Inflation

We will illustrate the advantages of the proposed aggregation approach for forecasting U.S.

core inflation (CPI less food and energy) for the period 1988:01—2018:04. The underlying

data is monthly year-over-year inflation rate and the forecasts are 12-month ahead forecasts.

We consider 5 individual models for inflation. One model is concerned with domestic slack

(PC: Phillips curve), another focuses on the forward-looking component of commodity prices

(CY: convenience yield model (Gospodinov and Ng, 2013; Gospodinov, 2016), and a third

model is completely statistical (MA: integrated moving average model (1,1) model (Stock

and Watson, 2007)). As a benchmark model, we use a simple historical average (HA) model.

Survey expectations constitute another useful source of information about future inflation.

Since these are model-free forecasts, we use it (BC: Blue Chip survey of expected CPI

inflation) as a pivot in constructing

Given the fundamental uncertainty surrounding the underlying data generating process

for inflation, it is not unreasonable to assume that all models for describing and forecasting

the inflation dynamics are inherently incomplete as they are designed to capture different

features of interest. Since the “true”model is unlikely to be in any set of candidate models,

reliance on a single model for policy analysis or forecasting is sub-optimal and results in

loss of information. Using the aggregation approach (AG), we average forecasts from sev-

eral candidate models (PC, CY, MA and HA), where the mixing weights are estimated by

shrinking the aggregator towards survey expectations. The average has a constant-elasticity-

of-substitution form that relaxes the assumption that the candidate models are perfectly

substitutable - which is implicit in the linear pooling of forecasts.

The individual model parameters are estimated using recursive model estimation (ini-

tial sample: 1988:01—1996:12), while the aggregation weights are estimated over a separate

training sample (initial sample: 1997:01—2001:12). The pseudo out-of-sample evaluation is
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over the period 2002:01-2018:04. Results for the forecast performance of the different mod-

els, based on the two Bregman loss functions, are presented in Table 1. The value for the

aggregator (AG) is standardized to be equal to one. As a result, numbers larger than one

indicate that the corresponding model is dominated by AG.

Table 1. Bregman loss functions for different forecasting models

PC HA MA BC CY AG
Homogeneous Bregman Loss (k > 1)
k = 1.1 2.2785 1.9222 2.2682 1.6576 1.3662 1.0000
k = 2 (MSE) 1.9290 2.0506 2.2673 1.7682 1.6063 1.0000
k = 3 1.8157 2.1712 2.2651 1.9128 1.9489 1.0000
k = 3.5 1.8088 2.2210 2.2642 1.9931 2.1540 1.0000
k = 4 1.8212 2.2633 2.2638 2.0783 2.3843 1.0000
Non-homogeneous (exponential) Bregman Loss (a 6= 0)
a = −1 2.3653 1.8120 2.2710 1.5592 1.1570 1.0000
a = −0.5 2.0824 1.9354 2.2695 1.6514 1.3440 1.0000
a→ 0 (MSE) 1.9289 2.0506 2.2673 1.7683 1.6063 1.0000
a = 0.5 1.8689 2.1497 2.2658 1.9122 1.9702 1.0000
a = 1 1.8773 2.2258 2.2658 2.0858 2.4728 1.0000

Notes: All losses are expressed as ratios to that of the aggregator (AG) model.

The results in Table 1 show that the entropy-based forecast combination dominates indi-

vidual model forecasts across all loss functions. The aggregation approach reduces the mean

square forecast error by more than 60% for individual models (including survey forecasts)

with the forecast gains being even larger for asymmetric loss functions that penalize more

heavily over-predictions than under-predictions. Given the challenges in forecasting infla-

tion, these are huge improvements. For the individual models, BC and CY work best except

when over-predictions are very costly. The forecast average assigns the largest weight to the

commodity model but balances the forward-looking, yet volatile, nature of these forecasts

with the more stable behavior of the historical average and survey forecasts. The time varia-

tion of the mixing weights also reveals interesting information about the relative importance

of the individual models over this historical period. Unlike the individual forecasts, the ag-

gregation approach produces an unbiased forecast with a Mincer-Zarnowitz regression slope

coeffi cient of 1.062 (0.234). “Intercept corrections” (à la Klein/Theil) can lead to further

forecast improvements.
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4 Policy Implications

Decision makers routinely employ multiple models to interpret empirical evidence and for-

mulate responses to shocks and policy scenarios, acknowledging that these models are only

partial, low-resolution maps of the underlying economic environment. This paper highlights

the role of model ambiguity and uncertainty and advances the idea of model and forecast

aggregation as a robust analytical framework for accounting for the incomplete nature of

these models. In this respect, it shares some commonalities —in terms of confronting this

uncertainty —with the robust control approach, articulated by Hansen and Sargent (2001)

and in a series of related papers (see also Karantounias, 2020). It is important to stress that

in our framework, we dispense the notion of a true model and treat the candidate models as

genuinely misspecified for the latent object of interest. This stands in contrast to some of

the prevailing approaches, with important implications for designing robust policies.

The most common perspective, that includes Bayesian model averaging and model selec-

tion, is conditioned on one of the models in the decision-maker dictionary being ‘true’. In this

approach, the ambiguity about the true model is resolved asymptotically, and the mixture

that summarizes the beliefs about the individual models assigns a unity weight to one of the

models. Another possibility is to partially relax this assumption and allow the unknown true

model to belong to a neighborhood of an approximate reference model. While this ‘model

ambiguity’approach accounts for some of the uncertainty around the reference model, the

policy formulation still relies on information embedded in a single model. A third possibility

is to assume that a true model exists but it is too complicated or cumbersome to implement

(see Bernardo and Smith, 1994). For all practical purposes, this coincides with our setting as

all of the candidate models should be viewed as approximations of this fully-specified belief

model and hence inherently misspecified. Some important insights about the differences in

policy implications for the latter approach can be gleaned from the analysis in Acemoglu,

Chernozhukov and Yildiz (2006). If the uncertainty across the models, entertained by the

decision makers to interpret an information signal, is not resolved asymptotically but it

persists, the decision makers may exhibit a persistent divergence of opinions, even after ob-

serving the same infinite sequence of signals. This example illustrates the complex nature of

decision making under uncertainty and the potential benefits of optimal aggregation.
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