
1,000 posterior draws takes at least two hours for each location. Figure A.2 report

the results from the four structural models based on the median estimates of Weibull

parameters.

Figure A.2: E↵ective reproduction numbers across all 50 locations, estimated from the four
extended models. The day 0 is the earliest date when the cumulative death toll reached 25 in each
location.
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B Extensions of the SIR model

In this section we describe the three extensions of the standard SIR model that we

consider.

B.1 SEIR model

The SEIR model extends the SIR model by assuming agents first become exposed to

the disease before becoming infected (infectious). At each moment in time, the pop-

ulation N is divided into five states: susceptible S, exposed E, infected I, recovered

R, and dead D. Susceptible agents are at risk of becoming exposed to the disease.

Agents in the exposed state are not infectious but transition to the infectious state at

rate �. Note that 1/� is the average number of days that an agent has been exposed

to the disease but is not yet infectious.

The equations of the model are given by

dS(t)

dt
= �R(t)�I(t), (B.1)

dE(t)

dt
= R(t)�I(t)� �E(t), (B.2)

dI(t)

dt
= �E(t)� �I(t), (B.3)

dR(t)

dt
= (1� ⌫)�I(t), (B.4)

dD(t)

dt
= ⌫�I(t). (B.5)
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As in the SIR model, the e↵ective reproduction number of the disease is

R(t) ⌘ �(t)

�

S(t)

1�D(t)
.

We assume that E(0) = R(0) = D(0) = 0, S(0) is slightly below N and I(0) is

slightly above 0.

The model can be inverted as follows. As before, we have from equations B.4 and

B.5 that
dR(t)

dt
=

1� ⌫

⌫

dD(t)

dt
.

Integrating this expression over time and using the initial conditionsD(0) = R(0) = 0

gives

R(t) =
1� ⌫

⌫
D(t).

Equation B.5 gives

I(t) =
1

⌫�

dD(t)

dt
,

and di↵erentiating this equation we have

dI(t)

dt
=

1

⌫�

d
2
D(t)

dt2
.

Thus, from equation B.3, we have

E(t) =
1

�


1

⌫

dD(t)

dt
+

1

⌫�

d
2
D(t)

dt2

�
.

Using the constraint that categories sum to one gives

S(t) = 1� E(t)� I(t)�R(t)�D(t).

Note that the model implications for the numbers infected and recovered are the same

as the SIR model. The number still susceptible, however, is adjusted to account for

the stock of exposed agents.
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Now consider the e↵ective reproduction number. Note that if we sum equations

B.2 and B.3, we get
dE(t)

dt
+

dI(t)

dt
= [R(t)� 1] �I(t).

Di↵erentiating the equation for E(t) and plugging the other expressions in to the

equation above gives

1

�


d
2
D(t)

dt2
+

1

�

d
3
D(t)

dt3

�
+

1

�

d
2
D(t)

dt2
= [R(t)� 1]

dD(t)

dt
.

Thus, we get the following expression for the e↵ective reproduction number

R(t) = 1 +

✓
1

�
+

1

�

◆ d2D(t)
dt

dD(t)
dt

+
1

��

d3D(t)
dt3

dD(t)
dt

.

Notice that the e↵ective reproduction number is now a function of both the first and

second derivatives of daily deaths.

We choose the two parameters � and � so that the model is consistent with typical

observed doubling times of daily deaths early on in the epidemic and a basic repro-

duction number of around 2.5. If we have daily deaths growing exponentially in the

early phase of the epidemic with growth rate �, then

dD(t)

dt
= exp(d̄+ �t).

From our formula for the e↵ective reproduction number above

R(0) = 1 +

✓
1

�
+

1

�

◆
� +

�
2

��
.

We set � to 0.5 which implies that the average number of days between exposure

and infection is 2. The recovery rate � is set at 0.4. At this value, a 30% growth

rate of daily deaths (doubling time of 2.3 days) corresponds to a basic reproduction

number of 2.8.
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B.2 SIHR model

We now extend the SIR model by adding a state H corresponding to hospitalized.

This additional state allows for a longer period from infection to death than in the

simpler SIR model. Infected agents flow from state I to either hospitalized, H, or

recovered, R. Agents in state H can flow to death, D, or recovery, R. At each

moment in time, the total population N is divided between the five states: S, I, H,

R, D.

The dynamics of the model are given by

dS(t)

dt
= �R(t)�I(t), (B.6)

dI(t)

dt
= [R(t)� 1] �I(t), (B.7)

dH(t)

dt
= ⌘�I(t)� ⇣H(t), (B.8)

dR(t)

dt
= (1� ⌫)⇣H(t) + (1� ⌘)�I(t), (B.9)

dD(t)

dt
= ⌫⇣H(t), (B.10)

where the definition of the e↵ective reproduction number, R(t), is the same as in the

SIR and SEIR versions of the model. Note that the parameter ⌫ is now the fatality

rate conditional on hospitalization and ⌘ is the fraction of the infected population

that ends up hospitalized. The parameter ⇣ determines the duration of hospital

stays. For initial conditions, we assume that D(0) = R(0) = 0, S(0) is slightly below

N , I(0) is slightly above 0, and H(0) may be greater than 0.

We now show how to invert this version of the model to express the e↵ective

reproduction number in terms of total deaths and its time derivatives. From equation
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B.10 we have

H(t) =
1

⌫⇣

dD(t)

dt
.

Di↵erentiating this equation gives

dH(t)

dt
=

1

⌫⇣

d
2
D(t)

dt2
.

These results together with equation B.8 give

I(t) =
1

⌘�


1

⌫

dD(t)

dt
+

1

⌫⇣

d
2
D(t)

dt2

�
.

Integrating B.9 and the initial conditions imply

R(t) = (1� ⌫)⇣

Z t

s=0

H(s)ds+ (1� ⌫)⇣H(0) + (1� ⌘)�

Z t

s=0

I(s)ds+ (1� ⌘)�I(0),

or

R(t) =
1� ⌫

⌫
D(t) +

1� ⌘

⌘


1

⌫
D(t) +

1

⌫⇣

dD(t)

dt

�
+ (1� ⌫)⇣H(0) + (1� ⌘)�I(0).

where

H(0) =
1

⌫⇣

dD(0)

dt
,

and

I(0) =
1

⌘�


1

⌫

dD(0)

dt
+

1

⌫⇣

d
2
D(0)

dt2

�
.

Using the constraint that categories sum to one gives

S(t) = 1� I(t)�H(t)�R(t)�D(t).

Having inverted the model, we can now turn to the e↵ective reproduction number.
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Di↵erentiating our expression for I(t) gives

dI(t)

dt
=

1

⌘�


1

⌫

d
2
D(t)

dt2
+

1

⌫⇣

d
3
D(t)

dt3

�
,

and combining these two expressions with equation B.7 yields

1

�


d
2
D(t)

dt2
+

1

⇣

d
3
D(t)

dt3

�
= [R(t)� 1]


dD(t)

dt
+

1

⇣

d
2
D(t)

dt2

�
.

Thus,

R(t) = 1 +
1

�

h
d2D(t)
dt2 + 1

⇣
d3D(t)
dt3

i

h
dD(t)
dt + 1

⇣
d2D(t)
dt2

i .

As in the SEIR model, the reproductive ratio depends on daily deaths and both its

first and second derivatives. It also depends on the rate at which agents transition

out of hospitalization, ⇣. We set this rate to 1/7 such that the average duration

of hospital stays is one week consistent with values reported on the CDC website.

We choose � so that our model is consistent with observed doubling times of daily

deaths in the early phase of the epidemic when the basic reproduction number in the

model is in line with CDC estimates of R(0) = 2.5. If we have daily deaths growing

exponentially in the early phase of the epidemic, then

dD(t)

dt
= exp(d̄+ �t),

so

R(0) = 1 +
1

�

h
� + 1

⇣ �
2
i

h
1 + 1

⇣ �

i = 1 +
�

�
,

which is the same expression as for the simple SIR model. Thus, we set � = 0.2,

the same value we used for the SIR version. With � set to this value, a 30% daily

growth rate of new deaths, � = 0.3, corresponds to a basic reproduction number of

2.5.
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B.3 SEIHR Model

The SEIHR model extends the SIR model by adding both the exposed state E and

the hospitalized state H. In this version of the model the total population N is

given by the sum of susceptible agents in state S, exposed in state E, infected in I,

hospitalized in H, recovered in R, and dead in D. The dynamics of the model are

given by
dS(t)

dt
= �R(t)�I(t), (B.11)

dE(t)

dt
= R(t)�I(t)� �E(t), (B.12)

dI(t)

dt
= �E(t)� �I(t), (B.13)

dH(t)

dt
= ⌘�I(t)� ⇣H(t), (B.14)

dR(t)

dt
= (1� ⌫)⇣H(t) + (1� ⌘)�I(t), (B.15)

dD(t)

dt
= ⌫⇣H(t), (B.16)

where the e↵ective reproduction number is as defined for the other versions of the

model. Initial conditions are E(0) = R(0) = D(0) = 0, S(0) slightly below N , I(0)

slightly above 0, and H(0) � 0.

We proceed as before with inverting the model. From equation B.16 we have

H(t) =
1

⌫⇣

dD(t)

dt
.
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Di↵erentiating this equation gives

dH(t)

dt
=

1

⌫⇣

d
2
D(t)

dt2
.

These results together with equation B.14 give

I(t) =
1

⌘�


1

⌫

dD(t)

dt
+

1

⌫⇣

d
2
D(t)

dt2

�
.

Integrating B.15 and the initial conditions imply

R(t) = (1� ⌫)⇣

Z t

s=0

H(s)ds+ (1� ⌫)⇣H(0) + (1� ⌘)�

Z t

s=0

I(s)ds+ (1� ⌘)�I(0),

or

R(t) =
1� ⌫

⌫
D(t) +

1� ⌘

⌘


1

⌫
D(t) +

1

⌫⇣

dD(t)

dt

�
+ (1� ⌫)⇣H(0) + (1� ⌘)�I(0),

where

H(0) =
1

⌫⇣

dD(0)

dt
,

and

I(0) =
1

⌘�


1

⌫

dD(0)

dt
+

1

⌫⇣

d
2
D(0)

dt2

�
.

Note that di↵erentiating our expression above for I(t) gives

dI(t)

dt
=

1

⌘�


1

⌫

d
2
D(t)

dt2
+

1

⌫⇣

d
3
D(t)

dt3

�
.

Equation B.13 implies that

E(t) =
1

�


dI(t)

dt
+ �I(t)

�
,
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and combining with our expressions for I(t0 and dI(t)/dt we have

E(t) =
1

�⌘⌫


1

�


d
2
D(t)

dt2
+

1

⇣

d
3
D(t)

dt3

�
+


dD(t)

dt
+

1

⇣

d
2
D(t)

dt2

��
.

Finally, we have

S(t) = 1� E(t)� I(t)�H(t)�R(t)�D(t).

In terms of measuring the e↵ective reproduction number, this model shares with

the SEIR model that the growth of exposed and infected individuals is determined

by
dE(t)

dt
+

dI(t)

dt
= [R(t)� 1] �I(t).

Di↵erentiating the expression for E(t), plugging it and the expressions for I(t) and

dI(t)/dt into the above equation, and rearranging terms gives

R(t) = 1 +

⇣
1
� + 1

�

⌘
d2D(t)
dt2 +

⇣
1
�� + 1

�⇣ +
1
�⇣

⌘
d3D(t)
dt3 + 1

��⇣
d4D(t)
dt4

dD(t)
dt + 1

⇣
d2D(t)
dt2

.

Notice that the reproductive ratio now depends not only on the first two derivatives

of daily deaths but also the third derivative.

To calibrate the parameters �, �, and ⇣ we proceed as before. The parameter ⇣ is

set to 1/7 so that the average duration of a hospital stays is 7 days in line with CDC

reports. The parameters � and � are set to 0.4 and 0.5. These are the same values

used in the SEIR version of the model. This combination of parameter values implies

that a 30% growth rate of new daily deaths corresponds with a basic reproduction

number, R(0), of 2.8.
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