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observed. We show that if omitted or unobserved inputs are not prop-

erly accounted for, then estimated marginal products of health inputs

cannot be easily interpreted. Using a general theoretical model, we

propose empirical specifications to control for the omitted inputs. The

resulting “effects” one can estimate using such specifications do not

correspond exactly to the marginal products of the observed inputs on

health. One can, however, establish some likely bounds on the “true”

marginal products of the observed inputs when one uses empirical

specifications compatible with economic theory. In particular, when

some key health inputs are omitted from the regression, the estimated

effect of an observed, health improving input will often be negatively

biased. We also discuss approaches for obtaining more informative

bounds if one believes that particular separability assumptions in the

utility function are reasonable. We present some empirical evidence to

demonstrate our methodology using Russian Longitudinal Monitoring

System of HSE (RLMS-HSE) data and data from the 2008 Behavioral

Risk Factor Surveillance System.
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1 INTRODUCTION.

1 Introduction.

To make informed recommendations, health policy analysts need to under-

stand how inputs to health production functions affect measurable health

outcomes. Two key issues make this a difficult task. First, individuals’

choices of health inputs likely depend on unobserved to the researcher base-

line health characteristics and individuals’ unobserved abilities to make use

of the inputs. As a consequence, consumers’ choices of the levels of health in-

puts are likely to be statistically endogenous determinants for the estimation

of health production functions. Researchers have long recognized how the

failure to control for the endogeneity of the health inputs can lead to biased

and inconsistent estimates of the marginal effects of health inputs on health

outcomes. They have used a variety of approaches to address these issues,

such as better measures of health and individual productivity, experimentally

assigned health inputs, and instrumental variables, natural experiments, and

regression discontinuity models.

The second issue arises because one almost never can observe all of the

inputs chosen by individuals to affect their health outcomes. Suppose, for

example, that the health production function depends on two inputs, but

the researcher can only observe one of those inputs. Only if the two inputs
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1 INTRODUCTION.

are neither complements nor substitutes would it be possible to estimate

the marginal effect of the observed input on some transformation of the

health outcome without knowledge of the level of the unobserved input or

the process used to determine the choice of the second input. In general the

estimable impact an observed input on the health outcome would confound

the ceteris paribus effect of that observed input with the effects of unobserved

inputs. In this paper we explore the consequences of not observing all of

the relevant inputs to a health production function. The estimation and

interpretation issues we derive apply to any maximization problem where

purchased goods might provide utility indirectly through the production of

household commodities as in Lancaster (1966) or Michael and Becker (1975),

including studies of the impacts of schools and parents behaviors on children’s

developmental outcomes.

We use a static model of utility maximization subject to a budget con-

straint in conjunction with a health production function to derive precise

interpretations of estimated effects of observable inputs on health outcomes.

The economic model provides considerable guidance for researchers about

the types of variables one needs to include in a “hybrid” health production

function in order to justify these interpretations. In general, these estimated
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2 BACKGROUND

effects do not correspond exactly to standard ceteris paribus marginal ef-

fects of the observed inputs in the health production function. Often, the

estimated effects will provide a bound on the magnitude of the true ceteris

paribus effect. These bounds arise solely from a theoretical model describing

the behavior of an optimizing economic agent. Economic theory, rather than

an assumption about the form of measurement error in a statistical model,

provides the basis for the theoretical bounds that we derive. We close the

paper with two empirical examples of how estimates of the effects of health

inputs depend crucially on the inclusion or exclusion of the required control

variables suggested by the theoretical model.

2 Background

Early work on the estimation of production functions with missing inputs

mostly focused on the case where there was a fixed unobserved input that

was not varied as part of the optimization process. The motivation for

these types of formulations came from an assumption that there could be

unobserved, firm specific managerial factors affecting input choices and out-

put levels (Hoch, 1955; Mundlak, 1961). In general, longitudinal data with
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firm specific fixed effects could be used to obtain consistent estimates of the

marginal impacts of the observed inputs to the production process. More re-

cently the industrial organization literature has explored structural methods

to control for time-varying unobserved productivity shocks that could affect

a firm’s input choices (See, Olley and Pakes(1996), Levinsohn and Petrin

(2003), and Ackerberg, Caves and Frazer (2006)). Such approaches, how-

ever, typically would not work in the case when the missing input itself is a

choice variable, which is the focus of this paper.

Rosenzweig and Schultz (1983) took the analysis of production functions

with missing inputs to a more fundamental level. In their analysis, all inputs

are chosen optimally as a part of a household utility maximization process,

but the researcher does not observe the chosen levels for a subset of the in-

puts. They discuss a commonly used approach to deal with the unmeasured

inputs and label this the hybrid production function. In that approach, the

researcher estimates a relationship where output is a function of the observed

inputs, the prices of the unobserved inputs, and the household’s level of ex-

ogenous income. They demonstrate that the estimated impact of an observed

input on health outcomes in this hybrid specification does not measure the

true marginal impact of the observed input holding constant the levels of the
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other observed inputs and the levels of the unobserved inputs. The estimated

impact depends on all of the marginal impacts of the unmeasured inputs as

well as the parameters of the household’s utility function. Unobserved inputs

that are chosen as part of the household’s utility maximization, subject to a

budget constraint, result in consequences well beyond those addressed in the

early literature that only had fixed, unobserved inputs affecting the choices

of the variable inputs and output levels.

Todd and Wolpin (2003), in a discussion of production functions for cog-

nitive achievement, point out that the inclusion of proxy variables like in-

come and prices for unobserved inputs could lead to more biased measures

of the impacts of the observable inputs than an empirical approach that ig-

nores these variable that proxy for the unobserved inputs (see, also, Wolpin,

1997). They present a detailed classification of the types of approaches one

might use when not all of the relevant inputs can be observed and discuss

the assumptions needed with these approaches to obtain asymptotically un-

biased estimates of the marginal effects of the observed inputs. They also

outline several specification tests that researchers could apply to help them

uncover which sets of assumptions might not be rejected by the data. A ma-

jor conclusion of their study is that instrumental variables approaches will be
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unlikely to help resolve problems arising from omitted inputs in the produc-

tion function. This happens because the omitted inputs are chosen by the

families and so would typically be correlated with the observed inputs. In

this situation, any instrument that has power to predict the observed input

should also predict the unobserved inputs. It could not be a valid instru-

ment. They conclude with the somewhat pessimistic advice, “It is therefore

important to have data that contains a large set of inputs spanning both

family and school domains.”

Liu, Mroz, and Adair (2009) use a more formal derivation of Rosenzweig

and Schultz’s (1983) hybrid production function to explore possible biases in

the estimation of marginal effects due to there being optimally chosen unob-

served inputs. Their analysis, like the one presented in this paper, assumes

that all relevant prices and incomes are observed, and they demonstrate how

one can substitute conditional or rationed demand functions into the struc-

tural production function to control for the levels of the unobserved inputs.

By differentiating the resulting hybrid production function with respect to

the observed input, they provide an exact expression for the functional effect

of observed inputs on the health production function.
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3 Preliminary Modeling Issues

A common shortcoming of the studies discussed above is their failure to pro-

vide an exact link between the theoretical model and the specification of the

empirical model. In this section we fill in that gap. In the subsequent section

we use the results from this preliminary analysis to specify and interpret feasi-

ble empirical specifications of health production functions that are consistent

with a theoretical model of household utility optimization. Throughout most

of the analysis in this and the subsequent section, we assume that there are

only two purchased inputs used in the health production function, X and

Z, and that utility only depends on the amount of health produced by the

household, H, and the consumption of a composite commodity C.

Let the function H = F (X,Z) be the health production function. The

standard demand functions for the two health inputs are given by X =

X(pX , pZ , pC , I) and Z = Z(pX , pZ , pC , I) where the p.’s are the prices of the

three purchased goods and I is exogenously determined income. Throughout

this discussion we assume that one could estimate nonparametrically the two

demand functions and the health production function F (X,Z) if H, the two

inputs X and Z, the prices of the three goods, and exogenous income I

were observed by the researcher. Since prices and incomes do not enter
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the production function directly, they are potential candidates to use as

instrumental variables to control for the possible endogeneity of X and Z.

The problem we want to address is what one might be able to estimate if

there is only information on H, the prices, income, and the quantity of the

input X. That is, the levels of the input Z and the consumption goods C

are not observed.

A seemingly obvious approach would be to substitute the demand func-

tion for Z into the production function and then estimate this form of the

hybrid production function. This demand function, by definition, will de-

pend on the household’s preferences over C and H and the form of the

health production function. This approach, however, will in general result

in an unidentified model. This might not be an issue if one actually im-

poses the exact functional form of the health production function F (X,Z)

and has precise information about the functional forms for the demand func-

tion Z(pX , pZ , pC , I), but in general all estimated effects will be arbitrarily

determined.

To see this, substitute the demand function for the unobserved input into

the production function. This yields H = F (X,Z(pX , pZ , pC , I)). When

the functional form of the demand function is unknown, this becomes H =
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G(X, pX , pZ , pC , I) where G is the hybrid production function derived using

standard economic concepts.

Since the input X depends on exactly the same set of variables determin-

ing Z (i.e., each input demand is a function of pX , pZ , pC , and I), there is an

exact functional relationship among the five arguments in the function G(·).

This implies that a nonparametric model for estimating the function G could

admit almost any estimate of the effect of X on H through the function G

by offsetting changes in the impacts of pX , pZ , pC , and I on H through the

function G. This is a nonparametric expression of the identification prob-

lem, and it is similar to perfect multicollinearity in a linear regression model1.

Like in the linear regression model, this identification problem can only be

overcome by the imposition of some, hopefully valid, set of constraints. Eco-

nomic theory, however, provides little guidance for the types of constraints

1The function F (·) does contain some separability restrictions that are not imposed on

a general function like G(·). However, given the nonidentification result discussed above,

it will be impossible to exploit these separability restrictions to uncover the marginal effect

of X. For example, instead of the function H = F (X,Z(p, I)) one can always substitute

an observationally equivalent function H = F (X, (Z(p, I))) + φ(X) − φ(X(p, I)) for any

function φ(·), where X(p, I) is the true demand function for X. Since φ(·) is arbitrary one

can estimate any effect of X on H while satisfying the separability restrictions.
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one might impose in order to obtain the true impact of the input X on the

health outcome.

This non-identification problem is different than the endogeneity of in-

puts issue arising from unobservable productivity in the industrial organiza-

tion literature on estimating production functions. That literature explores

structural approaches to control for time varying productivity differentials

that are not due to variations in optimally chosen unobserved inputs2. Here,

all inputs, both observed and unobserved, are choice variables in the individ-

ual optimization problem.

Rosenzweig and Schultz’s (1983) presentation of the hybrid production

function differs from the one presented here by its exclusion of the price of the

observed input, pX , as a determinant of the health outcome. In general this

would be valid only when the unconditional demand for Z does not depend

on pX . Variations in the observed input X would then arise from variations in

pX , which would not be perfectly determined by variations in pZ , pC , and I.

The Rosenzweig and Schultz formulation for the hybrid production function

2The control-function approaches suggested in Olley and Pakes(1996), Levinsohn and

Petrin(2003), and Ackerberg, Caves and Frazer(2006), for example, would not be feasible

when the ”productivity shock” is itself a chosen input.
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could more generally be derived when all households face the same price for

the input X. But in this case, there would be no variation in the input X

that did not arise from variations in pZ , pC , and I, resulting again in a non-

identified specification. Without strong and mostly ad hoc assumptions, the

form of the hybrid production function discussed by Rosenzweig and Schultz

cannot be derived from a standard model of utility maximization or used to

uncover empirically the impacts of observed health inputs.

The conditional demand function approach discussed in Liu et al (2009)

can overcome the basic identification issue inherent in the unrestricted form

of the hybrid production functionG. In particular, consider the demand func-

tion for the unobserved input Z conditional on the optimally chosen level of

the observed input X. Using standard rationed demand analysis, this condi-

tional function can be written as Z = qz(pC , pZ , I
∗, X), where I∗ = I − pXX

is the amount of income the household has left to allocate between consump-

tion good C and the unobserved input Z. In general, the conditional demand

for Z will depend on the amount of X chosen by the household even holding

the level of I∗ fixed. Substituting this constrained demand for Z into the

true production function yields H = F (X, qz(pC , pZ , I
∗, X)). Without as-

sumptions on the form of the function qz(·), the estimable conditional hybrid
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4 BASIC MODEL

production function becomes H = GC(X, pC , pZ , I
∗). In this situation, the

effect of X on H, through the function GC and conditional on pC , pZ , and

I∗, should be nonparametrically identified.

It is crucial that one condition on the value of I∗ instead of its compo-

nents in order for this particular effect of X to be identified. Liu et al’s (2009)

failure to do that in their empirical model likely limits one’s ability to inter-

pret their hybrid production function estimates, though many of their other

estimated effects do retain a straightforward interpretation. The estimate of

the partial effect of X on H obtained through the conditional hybrid pro-

duction function GC , however, does not have a simple and straightforward

interpretation. In the next section we derive interpretations of this type of

effect using standard price theory tools.

4 Basic Model

4.1 Preferences and Technology

Assume consumers derive utility U from health H and some other consump-

tion goods C. For simplicity, H and C are assumed to be one-dimensional.

Health is produced with several inputs. We denote as X inputs which are
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4.1 Preferences and Technology 4 BASIC MODEL

observed and as Z the unobserved inputs. Assume preferences are given by

a general utility function

U = U(C,H; τ), (1)

where τ is an arbitrary vector of individual-specific taste parameters.

The household health production is given by function F with standard

properties

H = F (X,Z; ρ), (2)

where ρ represents productivity parameters that could vary from individual

to individual3. The household budget constraint is:

pXX + pCC + pZZ = I. (3)

Throughout we consider an interior solution and assume that the correspond-

ing second order conditions are satisfied.

3The taste (τ) and productivity (ρ) parameters do not affect the comparative static
analysis presented below, so we often drop them in the derivations to save notation. They
are, however, crucial determinants of the household’s optimal choices. In the empirical
analysis the presence of these unobserved preference and productivity parameters means
that all observed household inputs must be treated as endogenous variables.
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4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

4.2 Interpreting Estimated Effects of Observed Inputs

Consider the following econometric problem. We would like to estimate the

marginal product of input X on health production: ∂F
∂X

. The information

available is structured in the following way. The levels of H and X are

observed; prices pX , pC , and pZ are observed. Income I is observed. The

levels of other goods C and the health input Z are not observed. Our research

goal is to understand which effects we are able to estimate and whether we

can use these to place bounds on the marginal effects of the observed health

inputs.

The estimated effect of the observed input X on a health measure H

when conditioning on a set of controls Y would measure:

dH

dX

∣∣∣∣
Y

=
∂F

∂X
+
∂F

∂Z

dZ

dX

∣∣∣∣
Y

(4)

Here dZ
dX

∣∣
Y

is the derivative which indicates the change in the unobserved

inputs Z when X changes by dX given the set of control variables Y . A

major issue for an empirical analysis of the effect of X on H is the choice

of appropriate set of controls Y to minimize the “bias term” in the above

expression, ∂F
∂Z

dZ
dX

∣∣
Y =const

.
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4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

As we argued above, using Y = (pC , pZ , pX , I) (all available information)

results in an unidentified model, as X itself is fully explained by those same

variables. Thus, the problem is to place restrictions on the set of conditioning

variables (pC , pZ , pX , I) to obtain an identified econometric model. Once

effects are “identified,” we can provide an economic interpretation of the the

identified estimable effect of X on H.

Using the conditional demand function for the unobserved input discussed

above, consider the following optimization problem conditional on the level

of observed input X:

max
C,Z

U(C,F (X,Z))

s.t. pCC + pZZ = I∗ ≡ I − pXX
(5)

The conditional demand function for unobserved health input Z associ-

ated with this problem is:

Z = qZ(pC , pZ , I − pXX,X) (6)

We assume that the data are rich enough so that we observe relevant varia-

tions in X while holding total expenditure on other goods C and unobserved

17



4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

input Z, I∗ = I − pXX, constant. Then, if we regress the observed health

level H on the observed level of health input X (which does not enter utility

function directly) and the total expenditures on all goods other than X, I∗,

(controlling for prices pZ , pC) we would estimate the following effect:

dH

dX

∣∣∣∣
I∗=I−pXX=const

=
∂F

∂X
+
∂F

∂Z

dZ

dX

∣∣∣∣
I∗=I−pXX=const

(7)

The estimated effect is the sum of the effect of interest, the marginal product

of input X in health production ∂F
∂X

, as well as a bias term related to the

fact that as we change the level of input X the individual might change the

level of unobserved health input Z, even when prices pZ and pC and total

expenditures on C and Z stay constant, i.e. ∂F
∂Z

dZ
dX

∣∣
I∗=I−pXX

4.

The key question we ask is what is the direction and size of the bias. As-

suming that both the observed and unobserved inputs have positive marginal

products, the estimated effect will be biased in the direction towards zero

(negatively biased) whenever the derivative of the conditional demand for

Z with respect to the observed input X is negative. To examine whether

this would be the case, we need to compute how the unobservable input Z

4Thus the set of controls Y is this case is: (pZ , pC , I
∗)
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4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

changes when we change the observed input X holding the combined expen-

diture on Z and C fixed, dZ
dX

∣∣
I∗=I−pXX=const

. That is, we need to understand

the derivative of the conditional demand function Z = qZ(pC , pZ , I
∗, X) with

respect to the observed input X holding I∗ fixed. The following Theorem

provides an answer:

Theorem 1. Suppose health H and other goods C are normal goods and the

degree of complementarity in health production between the beneficial observed

input X and the beneficial unobserved input Z is sufficiently small (the cross

derivative FZX is small if positive or negative: i.e. the increase in one of

the inputs lowers the marginal effect of the other or barely increases it).

Then the regression of observed health H on the observed health input X

holding prices pC , pZ and total expenditure on C and Z (I∗ = I − pXX)

constant, would underestimate the true value of the marginal product of X

in health production. The estimable effect of the productive input might even

be negative.

The appendix contains a complete derivation of results for a wide set of

cases, and here we outline the main result for Theorem 1. The key equation

describing the change in the demand for the unobserved input due to a change

19



4.2 Interpreting Estimated Effects of Observed Inputs 4 BASIC MODEL

in the observed input holding I∗ constant is:

Bias = Bias1 = FZ
dZ

dX
=
UHF

2
ZFX

∆

[
∂

∂H

(
log

UC

UH

)
− FZX

FZFX

]
(8)

The partial derivative with respect to H of the term in parentheses will be

positive whenever C is a normal good5, and ∆ is negative by the second order

conditions. One’s ability to unambiguously sign the overall bias therefore

depends on the substitutability of the two inputs in producing H. If both X

and Z are beneficial inputs and the two inputs are substitutes or only weak

complements, then the conditional demand for Z will fall with an increase

in X. From (7), this implies that the identified effect of X on Z will under-

estimate the true marginal impact of a beneficial input X.

One can also sign this bias term in the case when X and/or Z are harmful,

but have no direct impact on utility (e.g. X maybe dangerous working

5In particular, ∂
∂H

(
log UC

UH

)
= ηC
−ε∗CC

1−sC
H , where ε∗CC is the compensated own price

elasticity, ηC is the income elasticity of demand for good C and sC is the share of income

spent on C. This term will be large when the income elasticity for the consumption good

is high and also when the compensated own price elasticity for the C is small. See Lemma

1 in Appendix 9.2.
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conditions for which person is compensated, so that pX < 0)6. The sign of

this term does not depend on the sign of FZ . When the observed input X

adversely affects health then the bias will be positive provided the term FZX

FXFZ

is negative or small if positive. Thus, we establish the following:

Corollary 1. Suppose health H and other goods C are normal goods. Assume

the observed health input X and the unobserved health input Z have no direct

effect on utility. Suppose that FZX

FZFX
< 0 or small if positive. Then the

regression of observed health H on observed health input X holding prices

pC , pZ and total expenditure on C and Z (I∗ = I − pXX) constant, would

underestimate the true value of the marginal product of a beneficial health

input X and overestimate (underestimate the adverse impact) the marginal

product of a harmful health input X. The bias may be large enough so that

the estimated effect would be opposite in sign to the true marginal effect of

X.

The interpretation of the condition FZX

FZFX
< 0 is quite straightforward. In

6However, in the case of harmful health inputs, a more relevant assumption would be

that those inputs could also affect utility directly, e.g. an individual consumes alcohol

because he receives utility from it despite the fact that it is bad for her health. We discuss

this extension in the next section.
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the case when both X and Z are beneficial inputs it means that FZX < 0,

i.e. an increase in one of the inputs decreases the marginal effect of the other

input. The same condition would suffice in the case when both X and Z are

harmful. The intuitive interpretation will be different though. Suppose that

X is smoking and Z is illegal drug use, then FZX < 0 would mean that the

increase in smoking raises the marginal damage from illegal drug use. When

one of the two inputs is beneficial and the other harmful then the relevant

condition is FZX > 0, i.e., the increase in the amount of beneficial input

(e.g. jogging) would decrease the marginal damage of the harmful input (e.g.

smoking).

To summarize, to obtain an identified model in the case when some inputs

in the health production function are unobserved one can run the following

regression model:

H = F (X,Z(pC , pZ , I − pXX,X, ρ, τ), ρ)

≡ h(X, pC , pZ , I − pXX, ρ, τ)

(9)

As implied by economic theory, the regression function h(·) should contain all

of the observed health inputs, the prices of all the unobserved health inputs

and pure consumption goods, and the income the household has to allocate
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after it purchases the observed health inputs7. Theorem 1 and Corollary 1

describe conditions when estimated effect ∂h
∂X

is likely to be a lower bound

for the true marginal effect of the observed input X.

Unlike the attenuation bias one finds for measurement error problems

in empirical models, the attenuation bias we derive here follows solely from

economic theory. The bias arises from a researcher’s uncertainty about the

actual amount of the unobserved input Z used by the household. This theo-

retical result provides a bound when interpreting a correctly specified hybrid

production function when one does not include a relevant health input but

does account for all other relevant factors, including taste and productivity

shifters. It provides the theoretical underpinnings for the specification and

interpretation of the empirical hybrid health production function. Standard

controls for endogenous explanatory variables, like instrumental variables es-

timation, cannot eliminate theoretical biases of this type.

Note that our empirical specification differs from the ones suggested in

the literature. Todd and Wolpin (2003) argued that including income as a

proxy for omitted inputs is likely to confound the estimates of the effects of

7Since the theoretical hybrid production function depends upon unobserved tastes and
productivities (τ and ρ), in the empirical analysis all observed household inputs must be
treated as endogenous.

23



4.3 Health Inputs with Direct Utility Effects 4 BASIC MODEL

observed inputs. We argue, however, that a properly adjusted income mea-

sure should always be included in the regression for the estimated effects to

have a meaningful economic interpretation. Rosenzweig and Schultz (1983)

suggest dropping the prices of included inputs pX , but this also results in

a specification incompatible with economic theory unless one is willing to

believe quite restrictive forms for the demand function for input Z.

4.3 Health Inputs with Direct Utility Effects

So far we assumed that the observed input under consideration X has no

direct impact on utility. In the empirical analysis often one is concerned

with the inputs which are detrimental to health, FX < 0, but individuals

still consume them since they derive utility from them. In this section we

allow for the observed input to have a positive direct effect on utility while

having a (potentially negative) effect on health. For example, X could be

smoking or binge drinking.

An individual in this case would maximize the following utility function

U(C,X, F (X,Z; ρ); τ) (10)

24



4.3 Health Inputs with Direct Utility Effects 4 BASIC MODEL

subject to the same budget constrain as above. As before we are interested

in assessing the size of the bias in the estimation of the marginal effect of the

observed input X: ∂F
∂Z

dZ
dX

∣∣
I∗=I−pXX=const

.

As we show in Appendix 9.1 in this case the bias could be written as:

Bias = FZ
dZ
dX

= Bias1 +Bias2 =

=
UHF 2

ZFX

∆

[
∂
∂H

(
log UC

UH

)
− FZX

FZFX

]
+

UHF 2
Z

∆
∂
∂X

(
log UC

UH

) (11)

As discussed above, the first term Bias1 typically has the opposite sign to

FX . In the case when X is a “bad” input (FX < 0) this term will be positive

and, the estimated marginal effect would underestimate the true detrimental

impact of X or even cause it to appear to be a “good” input. However,

compared to the baseline case we have an additional term in the total bias

that relates to the relative substitutability of X with pure consumption goods

C and health H in the utility function: ∂
∂X

(
log UC

UH

)
. In general, the sign of

this term has to be assessed by the researcher on a case by case basis.

In the case of smoking, for example, the term ∂
∂X

(
log UC

UH

)
would be

negative when, as people smoke more, they value health H more (at the

margin) than other consumption goods C, keeping the levels of health and
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those consumption goods constant8. In this case the last term in the bias

will also be positive. The total bias will be positive for a bad input such

as smoking, and estimable effects would still provide a bound on the true

marginal effect. For the case of good input which has a direct effect on

utility, the reverse condition would be needed for the estimable effect to be

a bound. For example, as people exercise more they would need to value

health more relative to other consumption goods.

When this assumption is violated then the total bias might still be op-

posite in sign to FX if the contribution from this term does not dominate

Bias1. In this case the estimated upper (lower) bound for FX < 0 (FX > 0)

would be more precise. However, in general the sign of the total bias for

the estimable effect cannot be interpreted as a bound without incorporating

additional information.

In the case when both the observed and unobserved inputs have dual

impacts, there are two additional terms in the bias (see Appendix 9.1). These

relate to changes in substitutability between pure consumption goods C and

8i.e. when X increases we do not take into account its impact on H through production

function.
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the unobserved input Z as a consumption good (i.e. ignoring its impact on

utility through health production function) when the levels of health H and

observed input X change. In general, the signs of those terms have to be

assessed on a case by case basis. However, if the utility function is separable

in (X,H) and (C,Z), these additional bias terms would equal zero and the

above interpretations would hold.

4.4 Interpretation of Other Estimated Effects

Other effects measured by the regression (9) also have non-standard inter-

pretations. The estimable effect of I∗ measures the derivative of observed

health H with respect to I − pXX,

∂h

∂I∗
=
∂F

∂Z

dZ

dI∗
=
∂F

∂Z

∂Z

∂I∗
(12)

The effect of adjusted income I∗ is the combination of the marginal product

of missing input(s) and their (conditional on X) income effects. This effect

is not guaranteed to be positive. In fact, if missing inputs negatively affect

health (e.g. smoking) and are normal goods (conditionally on X) then the

estimated effect of I∗ might be negative.
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Interpretations of the impacts of the prices of other missing inputs can be

simply derived. For example, the effect of the price pZ of unobserved health

inputs Z would measure:

∂h

∂pZ
=
∂F

∂Z

∂Z

∂pZ
(13)

The effect of the price of unobserved non-health input C would measure

∂h

∂pC
=
∂F

∂Z

∂Z

∂pC
(14)

When there is more than one missing health input then those estimable effects

would measure the sum of marginal products of all the unobserved health

inputs each weighted by the price derivative of the conditional demand for it

with respect to the corresponding price.

To summarize, one cannot estimate the true marginal product of an ob-

served health input X when some essential health inputs are unobserved.

However, one can often impose some bounds using the approach we outlined

above as described in Theorem 1. If anything, it is crucial to include the

prices of omitted inputs and consumption goods in the regression model to

obtain an econometric specification consistent with economic theory. The

failure to adjust income properly and include it as a regressor in the hy-
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brid production function makes it nearly impossible to interpret estimated

effects and to assess how they might differ from marginal effects on health

production.

As an empirical matter, failing to adjust income properly, as in Rosen-

zweig and Schultz’s (1983) specification of the hybrid production function,

may be of less importance when spending on X is small. In this case I and I∗

are likely to be nearly identical. In the empirical analysis we present below

we do find that adjusting income for expenditures of observed health inputs

has a smaller effect than including all of the other relevant prices. In other

situations, however, this may not be the case. Both the theoretical analysis

and the empirical analysis indicate that one should control for a more com-

plete set of prices. These should include prices of pure consumption goods

as well as the prices of the unobserved inputs.

5 Extensions

5.1 Consumption of Similar Goods in the Household

Consider the problem when a particular health input is consumed by several

members of the household (such as caloric intake), and we want to analyze
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the marginal product of such an input on a health outcome. For example,

we might want to examine the impact of calorie consumption on a child’s

health. Assume that we observe the caloric intake for the child (XK) and for

the other household members (XA). We assume that the price of this input

will be the same for all household members, and let U(C,XA, F (XK , Z)) be

utility function of the household.

The household’s optimization problem is

maxU(C,XA, F (XK , Z))

s.t. pX(XK +XA) + pCC + pZZ = I

(15)

and we are interested in the marginal product of XK on child’s health:

∂F
∂XK

. A crucial feature of this formulation is the fact that the price of

X does not vary across the two components of the household’s total con-

sumption of X = XK + XA. Following the analysis above, the condi-

tional (on XK and on XA) demand function for the unobserved input Z

is Z = Z(pZ , pC , I − pX(XK +XA), XK , XA). To apply the previous logic it

is necessary to control not only for the consumption of the child but also for

the consumption of other household members, and one would need to control

for the potential endogeneity of both XK and XA. In this instance pX will
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not be a sufficient instrument as this price also determines both the XA and

XK consumptions. Additional instrumental variables that affect only XA or

only XK in the hybrid production function would be required. This might

be nearly impossible in most situations, as a valid instrument cannot be a

determinant for any of the other conditional demands.

Given such stringent data requirements, a seemingly natural approach

would be to treat XA as a missing input. In this instance the conditional

demand system would not condition on XA. The levels of C, Z, and XA

are jointly determined given adjusted income I − pXXK available to spend

on them at prices pC , pZ , and pX . The conditional demand function for the

unobserved health input Z will be:

Z = Z̃(pZ , pC , pX , I − pXXK , XK) (16)

Note that this conditional demand depends directly on pX as this price

determines the others’ consumption of X (XA). This implies the following

hybrid production function:

F (XK , Z̃(pZ , pC , pX , I − pXXK , XK) = h(pZ , pC , pX , I − pXXK , XK) (17)
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This equation, however, is non-identified as XK is a function of the other

variables included in the hybrid production function. As above, one can

estimate any effect for the XK by offsetting it through changes in the impacts

of the three prices and the adjusted income. When one has access only to

the data on the X consumption of the person whose health is affected by this

input and not the aggregate numbers for the household, then one cannot say

anything meaningful about the marginal product of the jointly consumed

good X.

There may, however, be some realistic and justifiable additional restric-

tions one can impose on the demands for XK and XA. Continuing the above

example, suppose we want to measure the impact of X on a child’s health

when X is the caloric intake of the child. If, as seems likely, children and

adults differ in the types of food products they consume9, then the price of

the caloric consumption will differ between children and adults within the

same household. In this case we can subdivide X into two related but dis-

tinct goods X ′K and X ′A representing consumptions of kids’ and adults’ food

9It is likely that children do not receive calories from consumption of alcohol and only

children consume baby food or milk.
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baskets respectively with differing prices pK and pA. In this case we can

obtain an identified model through the following hybrid production function:

F (X ′K , Z̃(pZ , pC , pA, I − pKX ′K , X ′K) = h(pZ , pC , pA, I − pKX ′K , X ′K) (18)

Since the price of X differs between children and adults, the corresponding

hybrid function will not be fundamentally under-identified, and one can use

the analysis from above to interpret the effects of X ′K on health.

5.2 Conditioning on Consumption of Non-health In-

puts.

A natural question in light of the discussion above is whether it is better to

control for the consumption of goods by other household members, XA, or

to ignore them in the estimation of the hybrid production function. This is

essentially the same question as whether one should control for the observable

part of the consumption vector C, which does not affect health production

function per se. In the Appendix section 9.3 we investigate this issue. Though

the general direction is ambiguous, one might be able to reduce the bias by

controlling for such inputs in some plausible cases. This would provide a

33



5.2 Conditioning on Consumption of Non-health Inputs.5 EXTENSIONS

more informative bound for the true marginal effect. Theorem 2 summarizes

this discussion:

Theorem 2. Assume that the observed health input X has no direct effect

on utility. Further assume that health H does not affect marginal rate of

substitution between two pure consumption goods C and W : ∂
∂H

(
log UW

UC

)
=

0. (This is true, when consumption goods C and W are weakly separable from

health in the utility function). Then controlling for W in the estimation of

the hybrid health production function would result in a smaller downward bias

for the estimated marginal product of observed health input X.

To see more intuitively the rationale behind this result, suppose we could

observe and control for all of the household’s consumptions of pure con-

sumption goods. Then, all of the remaining income in I∗ would be used

for expenditure on the unobserved input. A nonparametric specification of

the regression model would control exactly for Z = I∗/pZ , and there would

be no bias from the “omitted input” in the estimation of the effect of the

observed input X on health10. When we can control for only a subset of

the pure consumption goods, we are able to restrict somewhat the possible

10This is similar to an approach used in the industrial organization literature, e.g.,

Olley and Pakes(1996), where one conditions on investment demand to hold constant the

unobserved firm fixed effect when estimating production function parameters.
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levels for the expenditure on the unobserved input. And when the marginal

rate of substitution between the two pure consumption goods is unrelated to

the level of the health output (and consequently to the level of the observed

health input), the remaining budget set shrinks without a inducing a relative

shift between the two consumption goods that is related directly to health.

This allows one to obtain a tighter bound without changing the direction of

the bias.

Theorem 2 also provides a possible solution to the problem caused by the

attenuation type of bias discussed above. In particular, our analysis revealed

that the bias could potentially be strong enough so that estimated effect

might be opposite in sign to the true marginal product of observed input

X. Thus, in general one cannot rely on the signs of estimated effects to

infer whether a particular input is beneficial or adverse. However, one can

infer this direction of an input’s effect under the conditions of Theorem 2.

Namely, if there is a consumption good W which is observed and together

with C is weakly separable from health H, then one could estimate the effect

of observed input X with and without controls for W . Since the bias in the

latter case is larger in absolute value (and opposite in sign to FX) one can
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infer the sign of FX by simply comparing the estimated effects of X from the

two models. In particular, if the estimated effect of X increases when W is

added in the regression, this means that bias is negative and hence X is a

beneficial input.

6 Empirical Examples

We use two different data sets to demonstrate the importance of the primary

specification issues derived from the theoretical model. In particular, we

show that appropriately defined explanatory variables can lead to substan-

tively important changes in the estimated “effects” of the observable health

inputs. The first data set is cross sectional, and we use it to explore the

impacts of recent health inputs on a health stock measure. The second data

set allows us to examine changes in health status over time as a function

of recent health inputs. Both cross sectional and longitudinal analyses are

common in the health economics literature. In each data set we observe that

the theoretically indicated alterations of the empirical specifications substan-

tially change estimated effects. We discuss all estimated effects as bounds

on marginal effects, unlike nearly all of the existing literature in health eco-
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nomics.

6.1 BRFSS: Data Description

We use data on men aged 25 to 55 from Behavioral Risk Factor Surveillance

System (BRFSS) survey conducted by Center of Disease Control (CDC) for

the year 2008. This is a comprehensive dataset on health outcomes (physical

health, mental well being, bmi, disability, and the incidence of several dis-

eases) as well as possible health inputs such as visits to physicians, dentists,

eye exams, smoking, and alcohol consumption. We focus on prime aged mar-

ried white males who do not appear to suffer from debilitating illnesses that

might affect their ability to work. Our primary outcome variable is a self-

reported health measure. This dataset codes health status on a 1-5 scale with

one being excellent and 5 being poor. To define our health outcome variable,

we invert this scale so that higher values correspond to better health.

We consider three health inputs: dental services, alcohol consumption

and tobacco smoking. The dental services variable measures how recently a

person had his last dental cleaning (in years), with higher values coded to

correspond to more recent dental cleaning. We use the number of times a

person binge drinks per month (defined as the consumption of more than
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5 drinks on one occasion) as the measure of alcohol consumption. Tobacco

smoking is a categorical variable indicating whether a person smokes often,

occasionally or not at all. We assume a person who smokes occasionally

consumes 7.5 packs per month, whereas person who smokes often consumes

30 packs per month.

One limitation of this dataset is its information on income. The survey

only records each respondent’s income category (below $10,000; $10,000 to

$15,000; $15,000 to $20,000; $20,000 to $25,000; $25,000 to $35,000; $35,000

to $50,000; $50,000 to $75,000; and $75,000 or more). To simplify the anal-

ysis, we use this categorical variable to construct our income measure by

imputing for each individual the midpoint of his income category. This is a

major shortcoming of this dataset.

A second deficiency of this dataset is that it contains a stock health

measure, while it only provides information on relatively recent health inputs.

Theoretically, the health stock should depend on all previous health inputs,

but these are not available. The second dataset we examine allows us to look

at the more theoretically appropriate value added to the health stock. We

include this analysis of BRFSS data primarily because such types of analyses

do appear in the literature.
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We merge the BRFSS dataset with the region level data on prices of

dentists, beer, wine, and cigarette taxes. We also include prices of other

goods, such as apartment rents, and price indices for health care, groceries,

housing, utilities and energy, as indicated by the theoretical model. Table

1 contains summary statistics for all variables used in our analysis of the

BFRSS data.

6.2 BRFSS: Estimation Results

Following the theoretical results of the previous section, we consider a re-

gression model containing all three observed inputs in health production as

well as the total expenditure available for all other health inputs and goods

and the prices of omitted health inputs and other consumption goods.

Hi = α+ β1Dentali + β2Drinkingi + β3Smokingi + γIncome∗i + µpZi
(19)

Here Income∗i = Incomei−DrinkingiPDrinki−DentaliPDenti−SmokingiPCigsi

measures the income spent on all other goods except three health goods un-

der consideration. pZi
are the location specific prices of omitted health inputs

Z as well as consumption goods C. We include among those price indices
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for health care, groceries, housing, utilities, energy, apartment rent, and an

overall price index.11 We assume Incomei and all prices are exogenous.

Since health inputs as well as residual income (Income∗) might be en-

dogenous, in this analysis we estimate this regression by two-step feasible

GMM with Dentist Services, Alcohol, Smoking and Income∗ being instru-

mented by local beer, wine, and dentist prices, total (categorical) income,

and state level cigarette taxes. Note that the economic model implies that

the prices of the three included health inputs should be valid instruments

for these variables, while total income would be an instrument for Income∗.

The prices of commodities not appearing in the hybrid production function

are included as explanatory variables as required by economic theory12. We

11One cannot include all the relevant prices for lack of information. Non-varying prices

of omitted inputs do not present any problems. A non-varying price of an included input,

on the other hand, can present a severe problem. The constant price cannot be used as

an instrument to control for endogeneity of this input, and if it is unobserved one cannot

construct the appropriate Income∗ value leading to more severe interpretation issues.

12 Because the economic model implies that one should subtract expenditures on the

observed health inputs, pXiXi, from total income when defining residual income, we also

include all second order interactions of all prices, exogenous variables, and total income

in the set of instrumental variables to help capture the level of the observed health input

expenditures in the Income∗ term.
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also control for an individual’s age, age squared and dummies for four levels

of educational attainment (less than high school, high school, some college,

and college degree). Table 1 contains summary statistics for this data set.

The estimates of various forms for the hybrid health production func-

tion for the BRFSS data are in Table 2. The estimates in the first column

do not include the income measure or the prices for all of the other goods.

They do instrument for the possible endogeneity of the observed inputs as

discussed above. This “naive” baseline would suggest a considerable positive

effect of dental cleaning on subjective health evaluation, while alcohol and

smoking have negative effects. In the second column we modify this base-

line by including total household income in the regression. The impact of

dental cleaning drops by more than half, but is still positive and somewhat

statistically significant, while the effect of alcohol becomes quite negative

and significant. The “effect” of smoking becomes positive but insignificant.

In the third column we adjust income by expenditures on observed health

inputs, and the results barely change. This is likely to happen because of

the crude income measure in the BRFSS dataset. Finally, in column 4 of

Table 2 we include prices of other goods in the regression model. This is
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the only specification in Table 2 compatible with the economic model. The

estimated effect of dentist visits becomes indistinguishable from zero and is

quite small and negative. The effect of alcohol consumption remains neg-

ative. The smoking coefficient is positive but insignificant. The effect of

adjusted income Income∗ is somewhat large and statistically significant.

The estimates in Table 2 highlight the importance of using the economic

model as a guide for the specification of the regression model. The estimated

coefficients change dramatically after one includes all of the variables im-

plied by the correctly specified theoretical model. The variation in estimated

“effects” across the columns indicates that there are important unobserved

health inputs.

The effects one can estimate due to unobserved health inputs, however,

do not measure actual marginal effects. Our theoretical analysis indicates

that the estimated effects are likely to provide lower bounds for the true

effects. For dental cleaning, these negative lower bounds are not informative

as we would expect good dental hygiene (more recent dental cleaning) to

have a positive impact on health. Due to the statistical imprecision, we also

learn little from this regression about the effect of smoking (packs per month)

on self-reported health, unless one believes that smoking actually improves
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health. The lower bound on the detrimental effect of alcohol (binges per

month), however, could be quite informative. The true marginal impact of

alcohol on health is likely to be worse than the estimate found in column 4

of Table 2.

6.3 RLMS-HSE Analysis

A major problem with the above analysis is that the health outcome rep-

resents a lifetime of inputs, while we only look at recent ones. To examine

changes in health as a function of recent health inputs, we use data from

the Russian Longitudinal Monitoring Survey of Higher School of Economics

(RLMS-HSE). We focus on the years from 2000 to 2005 in our examination

of the model specification issues raised in the theoretical analysis. We use

a less subjective measure of health than in the BRFSS by focusing on the

change in a child’s height over time as a function of her nutrition, smoking

in the household, and a parent’s attention to the child, as measured by the

mother’s time spent not at work. We restrict our analysis to children aged

between 1 and 10, who live with mothers and are not suffering from any

chronic diseases or medical conditions (which may have permanent effects

on the child’s health). Table 3 contains summary statistics for all of the

43



6.3 RLMS-HSE Analysis 6 EMPIRICAL EXAMPLES

variables used in this part of the analysis.

In Table 4 we estimate the change in a child’s height from one year to the

next as a function of the three health inputs of interest: mother’s home time,

caloric intake, and smoking in the household. We estimate all equations by

two-step feasible GMM treating the three health inputs as well as (adjusted)

household income as endogenous. We use prices of cigarettes, prices of dif-

ferent foods (milk, eggs, bread, etc), price per calorie for the food basket

consumed by children (i.e. excluding alcohol), mother’s value of time13, and

household income net of mother’s contribution as instrumental variables. We

also include demographic controls such as: dummy variables for each year

of a child’s age; the number of adult males and adult females; the number

of children and teens in the household; mother’s age and age squared; and

dummies for the mother’s educational attainment14. To avoid the most egre-

13To avoid a measurement error problem we compute the mother’s value of time as the

previous period’s wage for those employed, or matched by region, year, and educational

attainment to the 33rd percentile of the female wage distribution for those not employed.

14We use dummy variables for 8 years of schooling or less (secondary schooling or less),

10 years of schooling (high school graduate), community college but no college, some

college, and a college degree.
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gious reporting errors we drop observations with height increasing by more

than 25cm or decreasing by more than 5cm in any 12 month period.

In specification 1 we do not control for prices of other consumption goods

omitted from the regression nor do we include any income measure. It is

the naive model that expresses health only as a function of observed inputs.

Specification 2 adds total household income. Specification 3 adds adjusted

household income net of spending on three health inputs included in the

regression15,16. Specification 4 uses the theoretically correct income measure

as well as prices of other consumption goods and the log of travel time to visit

a pediatrician from each household’s community as independent variables.

15As we argued in the theoretical model above one cannot include price of caloric intake

common to children and adults since then the model will be non identified, we use price of

caloric intake for basket of foods consumed by adults (i.e. including alcohol but excluding

milk) to adjust household income.

16Adjustment with respect to mother’s time at home is different from adjustment for

other goods. If we define Ī = Iw/o mom + wmom ∗ 18 ∗ 30 the full monthly income of the

household, where Iw/o mom is household income without mother’s contribution and wmom

mother’s value of time. Then household income net of “spending” on mother’s time at

home L will be Ī − wmomL = Iw/o mom + wmom ∗ (18 ∗ 30 − L) = I where I is observed

household income, including mother’s wage income.
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Moving from specifications 1, 2 or 3 to the more theoretically correct

specification 4, we see important changes in the estimates of the three health

production function “effects.” The effect of mother’s time spent at home

increases by over 20 percent. The point estimate implies a third of a cen-

timeter increase in height over the course of a year if the mother were to

work part-time instead of full-time (100 versus 200 hours per month), and

this larger “effect” actually represents a lower bound on the true marginal

product of the time spent at home by the mother. The estimated impact of

caloric intake also increases considerably. The preferred specification reveals

that an additional 1000 calories per day results in at least a 0.65 centime-

ter growth in height over the course of a year. The true marginal product

could be considerably higher, but because of missing inputs these data can

only provide a lower bound for the effect. Once we use a more appropriately

specified model, the estimated effect of smoking by adults in the household

becomes negative. This estimated bound is not small. Additional 100 packs

of cigarettes consumed per month in the household (about additional 3.3

packs per day) would lead to at least a half of a centimeter reduction in

growth over the course of a year. The ad hoc specifications fail to uncover

these important, large, and meaningful bounds for the magnitudes of the
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effects of health inputs on children’s growth.

7 Summary

This paper demonstrates the power of economic theory to help a researcher

specify empirical models of health production functions and interpret effects

estimated using these correctly specified hybrid production functions. Pro-

vided observed and unobserved health inputs are not strongly complemen-

tary, the theoretical analysis reveals that the estimated effect of an observed

productive input would actually be an estimate of a lower bound on the

marginal product of the observed health input. For a ”bad” observed input

(e.g., smoking), the estimated impact would provide a lower bound on its

true, marginal detrimental effect. In both situations, it is possible that the

estimable effect of an observed health input can have the opposite sign of its

true marginal impact. These bounds follow from theoretical ceteris paribus

derivations; they do not depend upon any assumptions about endogeneity of

inputs or the form of a statistical model.

If one has a priori knowledge about the direction of an input’s true

marginal effect, then an estimated effect might provide an estimate of an
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informative bound for the effect. But if one does not have this a priori

knowledge, then the estimate will likely provide no useful information about

the sign or the magnitude of the observable input’s true marginal effect. If

particular separability assumptions for the utility function are reasonable,

however, then one can sign the true marginal impact of an input and obtain

a more informative bound for its effect.

Our empirical analysis using a self-reported health measure and informa-

tion on smoking, dental visits and binge drinking using BRFSS data generally

support the implications of the theoretical analysis. Similarly the analysis

of children’s growth functions using data from the RLMS-HSE supports the

use of the empirical models derived from economic theory. The sensitivity

of the point estimates we obtain to the inclusion or the exclusion of the

prices of the ”unmeasured health inputs” and to the inclusion or exclusion of

the expenditure allocated to the excluded inputs suggests that the types of

theoretical issues we raise could have important substantive implications for

health policy research. Do note that we have only used fairly simple linear

specifications in our empirical analyses, and it is possible that better-specified

nonlinear models might not exhibit such sensitivity to the exclusion or the

inclusion of the variables indicated by economic theory.

48



7 SUMMARY

Recognizing that we almost never observe all of the relevant inputs to

a household production function has two key implications. First, economic

theory provides explicit guidance about the types of variables one needs to

incorporate in empirical analyses. Second, economic theory indicates that

researchers should not interpret estimated effects as point estimates of the

true marginal impacts of observed inputs. Under some plausible conditions,

however, the estimated impacts can be interpreted as informative bounds on

the actual marginal effects.
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9 APPENDIX.

9 Appendix.

9.1 Derivation of the bias

In this section of the appendix we derive an expression for the bias of the

estimated marginal effect of observed input X in the most general case when

both X and unobserved input Z have direct effects on utility. One can derive

biases in the case when X and/or Z are affecting only health as special cases

of this problem. The consumer’s problem (conditional on X) in this case can

be written as:

max
C,Z

U(C,X,Z, F (X,Z))

s.t. pCC + pZZ = I∗ = I − pXX
(20)

Optimality conditions for this problem are:

−pZ
pC
UC + (UHFZ + UZ) = 0 (21)

∆ ≡ p2Z
p2C
UCC − 2 pZ

pC
UCZ − 2 pZ

pC
UCHFZ+

+2UHZFZ + UHFZZ + UHHF
2
Z + UZZ ≤ 0

(22)

Consider varying the observed input X by infinitesimal amount dX. To
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assess the bias, we need to determine the sign of the change in the unobserved

level of input Z, dZ. Totally differentiating first order condition (21) we

obtain:

(− pZ
pC
UCC + UCHFZ + UCZ)dC+

+(− pZ
pC
UCZ − pZ

pC
UCHFZ + 2UHZFZ + UHHF

2
Z + UHFZZ + UZZ)dZ+

+(− pZ
pC
UCX − pZ

pC
UCHFX + UHXFZ + UHHFZFX + UHFZX + UZX + UZHFX)dX = 0

(23)

From the budget constraint dC can be expressed as a function of dZ:

dC = −pZ
pC
dZ (24)

Here we used the fact that combined expenditure on C and Z is held constant:

(I∗ = I − pXX = const). Substituting dC from (24) into the equation above

yields:

∆dZ =
(

pZ
pC
UCHFX − (UHHFZFX + UHFZX)

)
dX+

+( pZ
pC
UCX − UHXFZ − UHZFX − UZX)dX

(25)

where ∆ is the expression from second order condition above.
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The price ratio pZ
pC

can be expressed from first order condition (21) as:

pZ
pC

=
UHFZ + UZ

UC

(26)

Substituting the expression for the price ratio in equation (25) above we

obtain:

∆dZ =
(

UH

UC
UCHFXFZ − (UHHFZFX + UHFZX)

)
dX+

+(UHFZ

UC
UCX − UHXFZ + UZ

UC
UCHFX − UHZFX + UZ

UC
UCX − UZX)dX =

=
[
UHFZFX

(
UCH

UC
− UHH

UH
− FZX

FZFX

)
+ UHFZ

(
UCX

UC
− UHX

UH

)
+

+UZFX

(
UCH

UC
− UZH

UZ

)
+ UZ

(
UCX

UC
− UZX

UZ

)]
dX

(27)

Thus, the bias term Bias = FZ
dZ
dX

∣∣
I−pXX=const

can be expressed as the sum

of the following four terms:

Bias = Bias1 +Bias2 +Bias3 +Bias4 =

=
UHF 2

ZFX

∆

(
∂
∂H

(
log UC

UH

)
− FZX

FZFX

)
+

UHF 2
Z

∆
∂
∂X

(
log UC

UH

)
+

+UZFXFZ

∆
∂
∂H

(
log UC

UZ

)
+ UZFZ

∆
∂
∂X

(
log UC

UZ

) (28)

The first bias term Bias1 results from the presence of X and Z in the

production function. The second term Bias2 is present when X also affects
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utility function directly but Z is affecting only health production. Third

term Bias3 appears when Z has a direct impact on utility. And fourth term

is present when both X and Z have direct impacts on utility.

9.2 Technical Lemma

Lemma 1. If C is a normal good then ∂
∂H

(
log UC

UH

)
≥ 0.

Proof: Consider an arbitrary point (C,H). Set the ratio of prices pC
pH

equal to the ratio of marginal utilities UC

UH
at this point. Then this point will

be a solution to the individual utility maximization problem for income level

I = pCC + pHH at these prices.

Consider the following thought experiment: increase income I by some

dI and change the price of C by some dpC in such a way that the individual’s

choice of C does not change but the chosen level of H changes. Taking the

first differential of the demand functions for C and H yields:

0 = dC =
∂C

∂pC
dpC +

∂C

∂I
dI (29)

dH =
∂H

∂pC
dpC +

∂H

∂I
dI (30)

Solve for dI from equation (29) and substitute this into (30)
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dH

dpC
=
∂H

∂pC
− ∂H

∂I

∂C
∂pC
∂C
∂I

(31)

or, equivalently

dH

dpC
=
H

pC

[
εHC − ηH

εCC

ηC

]
(32)

where the ε’s are the (uncompensated) price elasticities of demand and η are

income elasticities.

From the Cournot aggregation condition, sHεHC +sCεCC +sC = 0, where

sC and sH are the budget shares of C and H, εHC = − sC
sH

(εCC + 1). Substi-

tuting this relation into equation (32) yields:

dH

dpC
=
H

pC

[
− sC
sH
− εCC

(
ηH
ηC

+
sC
sH

)]
(33)

Using the Engel aggregation condition, sHηH + sCηC = 1 yields:

dH

dpC
= − H

pCsH

[
sC +

εCC

ηC

]
= − Hε∗CC

pCsHηC
(34)

where ε∗CC = εCC + sCηC is compensated own price elasticity.

In the above derivation we kept C constant allowing H to vary, hence

∂
∂H

(
log UC

UH

)
= d

dH

(
log UC

UH

)
. Since the ratio of marginal utilities equals the
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price ratio at the optimal choice we obtain:

∂

∂H

(
log

UC

UH

)
=
d(pC/pH)

dH

pH
pC

=
dpC
dHpC

=
ηC
−ε∗CC

sH
H
. (35)

Since the own price compensated elasticity, ε∗CC , is negative, the sign of the

expression above is the same as sign of ηC . When C is a normal good, this

term is always positive.

�

9.3 Proof of Theorem 2.

In this Appendix section we investigate whether it is better to control for the

observable consumption of non-health production goods in order to minimize

the bias of the estimated marginal product of observed health inputs. For

simplicity consider first the case when the unobserved input Z has no direct

impact on utility.

In particular, we now assume that part of consumption C is observable.

Slightly abusing the notation let C be the consumption input which is not

observable and W be the consumption input which is observable. X is the
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observable health input, and Z is the unobservable health input. Consider

estimating the marginal impact of the observable health input X on H con-

trolling for the value of the observable non-health input W . The bias, as

before, can be inferred from:

dH

dX

∣∣∣∣
I∗=const,W=W ∗

=
∂F

∂X
+
∂F

∂Z

dZ

dX

∣∣∣∣
I∗=const,W=W ∗

(36)

We would like to analyze how the term ∂F
∂Z

dZ
dX

∣∣
I∗=const

changes depending

on whether or not one controls for W (with I∗ being different in those two

cases).

If one does not control for W , then as X changes both dZ and dW are

potentially non-zero. When we control for W then dW = 0. Without loss of

generality we consider the bias for an arbitrary dW and zero it out as needed.

Since neither X or Z affect utility directly, the individual’s problem in

this case can be written as:

max
C,Z,W

U(C,W,F (X,Z))

s.t. pCC + pWW + pZZ = I∗ ≡ I − pXX
(37)

To simplify the derivation normalize pC = 1. Then expressing C from the
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budget constraint and substituting into the objective we can equivalently

rewrite the consumer’s optimization problem as:

max
Z,W

V (Z,W,F (X,Z); I∗) ≡ max
Z,W

U(I∗ − pWW − pZZ,W,F (X,Z)) (38)

The first order conditions can be written as usual:

VW = 0

VZ + VHFZ = 0

(39)

The second order condition in this case requires that the following matrix of

second derivatives is negative semidefinite:

 VWW VWZ + VWHFZ

VWZ + VWHFZ VZZ + 2VHZFZ + VHHF
2
Z + VHFZZ

 ≤ 0 (40)

Consider changing the observable health input X by some amount dX

while keeping I∗, expenditure on other goods, constant. Totally differentiat-

ing first order conditions yields:

VWWdW + (VWZ + VWHFZ)dZ = −VWHFXdX (41)
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(VZZ + 2VZHFZ + VHHF
2
Z + VHFZZ)dZ + (VZW + VHWFZ)dW =

= −(VZHFX + VHHFXFZ + VHFZX)dX

(42)

The term in front of dZ in the previous equation is ∆22 ≤ 0 (i.e., this is the

(2, 2) element of the negative semidefinite matrix in (40)).

Expressing dW from (41) and substituting it into (42):

dW = −VWHFXdX + (VWZ + VWHFZ)dZ

VWW

(43)

We finally obtain

FZ
dZ
dX

= FZ

(VZW+VHWFZ )

VWW
VWHFX−(VZHFX+VHHFXFZ+VHFZX)

∆22−
(VZW+VHWFZ )2

VWW

(44)

When we do control for W then we have expression for the bias which

is similar to what we had before (modulus our new notation). In this case

regression of health on observable health input X would estimate:

dH

dX

∣∣∣∣
I∗=const,W=const

=
∂F

∂X
+
∂F

∂Z

dZ

dX

∣∣∣∣
I∗=const,W=const

, (45)

where dZ
dX

∣∣
I∗=const,W=const

could be derived using the same equations as above
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with dW = 0. In this case, we have

FZ
dZ
dX

= FZ
−(VZHFX+VHHFXFZ+VHFZX)

∆22

(46)

In order to estimate relative magnitudes of the bias one would need to

compare expressions (44) and (46).

In the case when we do not control for W the denominator in (44) is

smaller in absolute value than the denominator in (46):

∆22 <

(
∆22 −

(VZW + VHWFZ)2

VWW

)
< 017 (47)

This effect, as it works through the denominator, tends to amplify the bias

in the case when we do not control for W .

In order to understand total effect on the bias term we need to compare

the numerators as well. The term B1 ≡ −(VZHFX +VHHFXFZ +VHFZX)FZ

is contained in both expressions. Earlier we established that this term is

likely to be opposite in sign to FX (see Theorem 1 and Corollary 1).

In the case when we do not control for W we also have an additional term

17Note that second order conditions imply that: VWW∆22 − (VZW + VHWFZ)2 > 0

61



9.3 Proof of Theorem 2. 9 APPENDIX.

in the bias:

B2 ≡
(VZW + VHWFZ)

VWW

VWHFXFZ (48)

This term, however, has an indeterminate sign. To further analyze this term,

it is useful to return to the original function U . Using definition (38) we find:

VZ = −pZUC

VH = UH

VW = −pWUC + UW

(49)

First order conditions above can then be written then as:

−pWUC + UW = 0,−pZUC + UHFZ = 0 (50)

or

pW =
UW

UC

, pZ =
UHFZ

UC

(51)

Thus, we obtain:

VZW = pZpWUCC − pZUCW = UHUWFZ

UC

(
UCC

UC
− UCW

UW

)
=

= UHUWFZ

UC

∂
∂C

(
log UC

UW

) (52)
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VHW = −pWUCH + UWH = −UW

(
UCH

UC
− UWH

UW

)
=

= −UW
∂
∂H

(
log UC

UW

) (53)

Using these one can write the bias term B2 in equation (48) as:

B2 =
U2
WFXF 2

Z

VWW

∂
∂H

(
log UC

UW

) [
∂
∂H

(
log UC

UW

)
− UH

UC

∂
∂C

(
log UC

UW

)]
(54)

As before it is possible to show that ∂
∂C

(
log UW

UC

)
> 0 for a normal good

W , but the sign of the other term is indeterminate as well as the sign of the

whole term B2.

However, we can determine a sign in the following special case. Assume

that health does not affect the marginal rate of substitution between con-

sumption goods W and C: ∂
∂H

(
log UW

UC

)
= 0 (e.g. preferences are weakly

separable in health and non-health goods). Then B2 would vanish and the

total bias will be determined only by the common B1 > 0 term and the

denominators in (47). In this situation bias will be larger (and the bound

less precise) when one does not control for the observed part of consumption

W .The result is likely to hold also when ∂
∂H

(
log UW

UC

)
is sufficiently close to

zero.

The case when Z also has a direct impact on utility can be analyzed
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similarly. One should define V (Z,W,H; I∗) ≡ U(I∗− pZZ −PWW,Z,W,H)

and the derivation would go unchanged until the equation for the bias term

B2 in equation (48). The exact analogue of condition (54) is more involved

since, when Z has a direct impact on utility, as VZW has more complex form.

However, the formula for the derivative VHW will be unchanged (in terms of

partial derivatives of U), as will the first order condition with respect to W .

Hence, VHW (and hence B2) would vanish under the same condition as before,

namely, ∂
∂H

(
log UW

UC

)
= 0 and the total bias will again be larger in absolute

value in the case when one does not control for W . Consequently, when one

estimates a home production function, controlling for the chosen amount of

a pure consumption good can result in a smaller bias and a tighter bound

for the estimated marginal product of an observed input to the production

function when not all of the chosen inputs can be observed.
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Table 1. Summary Statistics for the BRFSS Sample.
Variable N-obs Mean st. dev. Min Max

Subsample of males ages 25-55
General Health 5534 -1.847 0.754 -4 -1
Dental Cleaning 5534 2.659 0.780 0 3
Alcohol 5534 0.828 2.773 0 30
Smoking 5534 0.204 0.576 0 2
Income (in $ 10,000) 5534 8.503 2.305 0.5 10
Income* (in $ 10,000) 5534 8.495 2.306 0.5 10
Age 5534 42.29 7.46 26 54
Education 5534 3.335 0.849 1 4
Price of dentist visit 5534 81.63 12.52 52.8 124.56
Cigarette Tax 5534 1.144 0.649 0.07 2.575
Beer price (6-pack) 5534 8.21 .477 6.89 10.18
Wine price 5534 6.982 1.020 4.82 10.95
Apartment Rent 5534 952 397 462 3475
Total Energy Costs 5534 189.35 44.43 113.53 328.81
Groceries 5534 102 9.196 86.3 166.5
Housing 5534 105 35.36 75.64 244.3
Utilities 5534 101.87 16.92 73.2 147.8
Price Index 5534 102.82 14.290 88.1 166.5
Health Care Price Index 5534 102.09 8.44 87.8 123.1
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Table 2. Estimates for BRFSS Married Males Sample.
(1) (2) (3) (4)

Dental Cleaning 0.449 0.188 0.188 -0.028
(0.091) (0.106) (0.106) (0.121)

Alcohol -0.001 -0.060 -0.059 -0.039
(0.033) (0.035) (0.035) (0.036)

Smoking -0.088 0.197 0.199 0.087
(0.150) (0.159) (0.159) (0.165)

Age -0.032 -0.039 -0.039 -0.044
(0.016) (0.015) (0.015) (0.015)

Age-squared/100 0.030 0.038 0.038 0.046
(0.019) (0.018) (0.018) (0.018)

Income 0.033
(0.008)

Income∗ 0.033 0.036
(0.008) (0.008)

Constant -2.643 -2.136 -2.136 -2.306
(0.416) (0.415) (0.415) (0.439)

Observations 5,534 5,534 5,534 5,534
UnderIdentification stat: 80.50 60.80 58.60 56.12
P-value 0.0797 0.555 0.149 0.470
J statistic 84.28 73.60 73.61 47.58
P-value 0.0380 0.149 0.634 0.751

The dependent variable in all regressions is self-reported health status. The sample in-

cludes white ”healthy” married males aged between 25 and 55 at the time of the survey.

Income∗ (in $10,000) is household income net of spending on the three health inputs

included in the regression. All equations are estimated by two-step feasible GMM with

Dental cleaning, Alcohol consumption, Smoking and Income∗ (where present) treated as

endogenous variables. Instruments are household imputed income, prices of dentist visits,

local tax on cigarettes, prices of beer and wine, as well as price indices for health care, gro-

ceries, housing, energy and their second order interactions. Specification (4) includes price

indices for health care, groceries, housing, utilities, and energy as independent variables.

All regressions control for individual’s age and age squared, dummies for educational at-

tainment. Underidentification test is based on Kleibergen-Paap rk LM statistic. Robust

standard errors are reported in parentheses.
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Table 3. Summary Statistics for RLMS-HSE.
VARIABLES mean sd min max

Child-Household Specific Variables
Child’s change in height (cm/year) 7.842 5.070 -5 25
Mother time at home (100’s hrs/month) 6.200 0.970 0.814 7.200
Caloric Intake (in 1000 per day) 1.522 0.563 0.246 4.933
Smoking in the HH (packs per month) 21.16 19.92 0 142.5
Income∗ (10K RUR) 0.542 0.527 -0.394 9.398
HH income w/o mother (10K RUR) 0.651 0.914 -0.429 15.08
Mother’s value of time 9.618 7.550 0.244 87.25
Mother’s Education 2.710 0.853 1 4
Mother’s Age 30.03 5.895 17 52
# (adult) males in the HH 1.063 0.597 0 5
# (adult) females in the HH 1.344 0.624 1 5
# children in the HH 0.921 0.735 0 5
# teens in the HH 0.802 0.888 0 6

Prices
Prices of pack of cigarettes 8.972 4.724 1.639 29.75
Price of calorie w/o milk 0.014 0.010 0.003 0.056
Price of calorie w/o Alcohol 0.014 0.010 0.003 0.052
Price of sugar (1Kg) 10.70 1.567 7.709 17.52
Price of kolbasa (1Kg) 40.60 11.42 21.07 81.97
Price of bread (1Kg) 8.071 2.502 2.727 22.31
Price of eggs (per 10) 11.79 2.683 4.942 24.79
Price of milk (per 1L) 6.352 2.163 2.120 17.67
Price of potatoes (per 1Kg) 3.732 1.207 0.988 7.438
Price of vodka (per 1L) 60.78 14.15 19.83 106.7
Price of utilities (per 1m2) 10.03 7.255 0.103 132.8
Pediatrician Availability 0.829 0.377 0 1
Log time to travel to pediatrician 0.591 1.319 0 5.011

Number of child×year observations is 3000. All nominal values are adjusted for inflation;

the base year is 2000. The mother’s value of time is computed as the mother’s average

hourly wage from the previous year if employed; if she did not work in the previous year we

use the 33rd percentile of the region, year, and educational class specific wage distribution

as the measure of her value of time. Income∗ is computed as full household income net

of spending on three health inputs under consideration: mother’s time at home, child’s

caloric intake and smoking by other household members.
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Table 4. RLMS-HSE: Effect of Mother’s Time at Home, HH Smoking and
Child’s Caloric Intake on Changes in Child’s Height.

(1) (2) (3) (4)
Mother’s time at home 0.287 0.301 0.297 0.349
(hrs per month /100) (0.197) (0.197) (0.197) (0.208)
Caloric Intake 0.422 0.581 0.580 0.647
(per day in 1000) (0.483) (0.504) (0.503) (0.533)
Smoking 0.016 0.019 0.018 -0.005
(packs per month) (0.011) (0.011) (0.011) (0.011)
Household Income -0.242
(in RUR10,000) (0.220)
Income∗ -0.255 -0.540
(in RUR10,000) (0.234) (0.394)
Observations 3,000 3,000 3,000 3,000
Underidentification stat: 104.7 90.98 91.33 78.72
P-value 0.155 0.670 0.441 0.577
J statistic 83.83 82.60 82.58 80.86
P-value 0.663 0.451 0.671 0.671

The dependent variable in all regressions is the annual change in a child’s height. The

sample includes all ”healthy” children aged between 1 and 10 at survey date. Income∗

(adjusted for inflation in 10,000 Rubles) is full household monthly income net of spending

on the three health inputs included in the regression. All specifications are estimated by

two-step feasible GMM with the health inputs and Income∗ treated as endogenous vari-

ables. Instruments include prices of different foods (sugar, alcohol, milk, bread, meat, eggs

etc), price of utilities, mother’s value of time, household income net of mother’s contri-

bution, and travel time to a pediatrician. All regressions include household demographic

controls (number of males, females, children and teens in the household), mother’s age,

age squared, dummies for mother’s educational attainment, dummies for child’s age. Spec-

ification (4) also includes as exogenous regressors prices of other goods (alcohol, utilities,

average cost of calorie excluding milk) dummy for pediatrician services availability in the

town, and travel time (in minutes) to the nearest pediatrician if none is present in town.

Underidentification test is based on Kleibergen-Paap rk LM statistic. Standard errors (in

parentheses) are clustered at the individual child level.
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