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Abstract

To understand the link between financial intermediation activities and the real econ-

omy, we put forward a general equilibrium model where agency frictions in the financial

sector affect the efficiency of capital reallocation across firms and generate aggregate

economic fluctuations. We develop a recursive policy iteration approach to fully char-

acterize the nonlinear equilibrium dynamics and the off-steady state crisis behavior.

In our model, adverse shocks to agency frictions exacerbate capital misallocation and

manifest themselves as variations in total factor productivity at the aggregate level.

Our model endogenous generate counter-cyclical volatility in aggregate time series and

counter-cyclical dispersion of marginal product of capital and asset returns in the cross-

section.
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I Introduction

The purpose of this paper is to study the mechanism through which financial intermediation

affects macroeconomic fluctuations and asset prices. We present a general equilibrium model

to link intermediation activities in the financial sector to capital reallocation across non-

financial firms in the real sector. We show that shocks originated from the financial sector

can account for a significant fraction of macroeconomic fluctuations.

Two main features distinguish our approach from the previous literature. The first is the

emphasis on capital reallocation across firms with heterogenous productivity. The second is

the recursive policy function iteration approach which allows us to obtain global solutions of

a general equilibrium model with occasionally binding incentive compatibility constraints.

We focus on a heterogenous firm setup for two reasons. In aggregate, the U.S. corporate

sector is almost never constrained: it typically has more cash flow than what is needed to

finance investment. As shown by Chari (2015), a typical feature of models with agency fric-

tions is that firms do not pay dividend whenever they are financially constrained. However,

the net dividend payment of the U.S. corporate sector as a whole is almost always positive,

and significantly so most of the time. To understand why some firms are constrained in

downturns while others are not, it is necessary to have a model with heterogenous firms.

From a quantitative point of view, models with capital reallocation allow financial fric-

tions to play a significant role in generating large economic fluctuations. In representative

firm models, financial frictions affect the efficiency of intertemporal investment. Previous

researchers (for example, Kocherlakota (2000)) have argued that this mechanism alone is

unlikely to cause large economic fluctuations because investment is only a small fraction of

the total capital stock of the economy.1 In contrast, recent study on capital misallocation,

for example, Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), found that large

efficiency gains can be achieved by improving capital misallocation, on the order of 30−50%.

We develop a recursive policy function iteration approach to fully account for the dy-

namics of the occasionally binding constraints of our model. A prominent feature of major

financial crisis is elevated volatility at the aggregate level and sudden increases in the cross-

sectional dispersions in prices and quantities. The majority of previous literature with finan-

cial frictions are solved using local approximation methods, which typically cannot capture

the time variation of volatility implied by the model. The recursive policy function iteration

1In standard RBC models, annual investment is about ten percent of capital stock and capital contributes
to roughly one third of total output. According this calculation, the maximum effect of investment on output
is about 3.3%.



method allows us to characterize the variation of the tightness of the incentive compatibility

constraints across time and across firms, which is the key feature of our model.

To formalize the link between financial intermediation and capital reallocation, we de-

velop a model of financial intermediation where firms are subject to idiosyncratic produc-

tivity shocks and credit transactions must be intermediated. Due to the heterogeneity in

productivity, reallocating capital across firms improves efficiency in production, but requires

high productivity firms to borrow from the rest of the economy. In addition, because of

the limited enforcement of lending contracts, the accumulation of intermediaries’ debt or

declines in their net worth increase their incentive to default and limit their borrowing ca-

pacity. These features of our model have two implications. In the time series, adverse shocks

to intermediary net worth weaken their borrowing capacity and slow down the formation of

new capital. In the cross section, intermediaries who finance for high productivity firms are

more likely to be affected, because they need to borrow more from the rest of the economy

and have a higher incentive to default. The later mechanism amplifies negative primitive

shocks by lowering the efficiency of the reallocation of the existing capital stock.

We consider two versions of our model in calibration: one with total factor productivity

(TFP) shocks and another with financial shocks. We calibrate the volatility of the primitive

shocks to match the volatility of output in the U.S. data and evaluate the quantitative

importance of financial frictions in both specifications. In our model with TFP shocks, the

amplification effect from agency frictions accounts for about 10% of the total volatility of

output and is fairly temporary. The magnitude of amplification is modest because of the

well-known difficulty for real business cycle (RBC) models to generate large volatilities in

asset prices. Because productivity shocks are not associated with significant variations in

asset prices and intermediary net worth, they induce only a limited amount of amplification

from financial frictions.

Motivated by the lack of volatility in asset prices in the model with TFP shocks and the

finding in the asset pricing literature that a large fraction of asset price variations can be at-

tributed to discount rate shocks, our second calibration models financial shocks as exogenous

variations in bank managers’ discount rate.2 Two features distinguish this model from the

one with TFP shocks: persistence and asymmetry. A temporary shock to banks’ net worth

lowers their borrowing capacity and reduces the efficiency of capital reallocation in the sub-

sequent period. Elevated capital misallocation depresses output and triggers another round

2This is much smaller than the variation in discount rates typically found in the asset pricing literature,
for example, Campbell and Shiller (1988), and more recently, Lettau and Ludvigson (forthcoming).
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of drop in bank net worth. This effect propagates over time and has a long-lasting impact on

future economic growth. In addition, negative shocks tighten banks’ financing constraints

and make the economy more vulnerable to future shocks, whereas positive shocks relax these

constraints and have a smaller impact on capital misallocation. In the extreme case, con-

tinued negative shocks deplete banking sector net worth, lower the borrowing capacity of all

banks to suboptimal levels, and send the economy into a financial crisis marked by height-

ened macroeconomic volatility, large and persistent drops in output and asset prices, and

sharp increases in interest rate spreads.

In our benchmark calibration, the standard deviation of banker’s discount rate is about

2.3% at the annual level. Nevertheless, the model matches well the macroeconomic moments

in the U.S. and produces a volatility of aggregate output of 3.6% from the capital reallocation

channel. More importantly, it endogenously generates a counter-cyclical volatility in the time

series of aggregate output and consumption, a counter-cyclical dispersion in the cross section

of firm output and stock returns, and a counter-cyclical efficiency of capital reallocation and

capital utilization as in the data.

Our paper belongs to the literature on macroeconomic models with a financial interme-

diary sector.3 The papers that are most related to our are Gertler and Kiyotaki (2010), He

and Krishnamurthy (2014), and Rampini and Viswanathan (2014). The nature of agency

frictions in our model is the same as that in Gertler and Kiyotaki (2010). Different from the

papers, we allow heterogeneity in firms’ productivity and evaluate the quantitative impor-

tance of the capital reallocation channel.

Several other papers also emphasize the importance of capital reallocation in understand-

ing credit market frictions. For example, Eisfeldt and Rampini (2006), Eisfeldt and Rampini

(2008), Shourideh and Zetlin-Jones (2012), Kurlat (2013), Chen and Song (2013), Fuchs

et al. (2013), Brunnermeier and Sannikov (2014), Chari (2014), Li and Whited (2014), and

Midrigan and Xu (2014). Eisfeldt and Rampini (2006) provide empirical evidence that the

amount of capital reallocation is procyclical and the benefit of capital reallocation is counter-

cyclical. They also present a model where the cost of capital reallocation is correlated with

TFP shocks to rationalize these facts. Eisfeldt and Rampini (2008), Kurlat (2013), Fuchs

3There is a vast literature on macro models with credit market frictions, which we do not attempt to
summarize here. A partial list includes Bernanke and Gertler (1989), Carlstrom and Fuerst (1997), Kiyotaki
and Moore (1997), Kiyotaki and Moore (2005), Bernanke et al. (1999), Krishnamurthy (2003), Kiyotaki
and Moore (2008), Mendoza (2010), Gertler and Karadi (2011), Jermann and Quadrini (2012), He and
Krishnamurthy (2012), He and Krishnamurthy (2013), Li (2013), and Bianchi and Bigio (2014). Quadrini
(2011) and Brunnermeier et al. (2012) provide comprehensive reviews of this literature.
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et al. (2013), and Li and Whited (2014) study adverse selection problems, while we focus on

limited enforcement of financial contracts. From the modeling perspective, we differ from the

above papers by explicitly allowing for a financial intermediary sector in our model and by

using empirical evidence on bank loans and interest rate spreads to discipline our calibration.

Quantitatively, we show that relatively small shocks to agency frictions are able to generate

quantitatively large macroeconomic fluctuations. Finally, none of the above papers link the

countercyclical volatility in aggregate time series to countercyclical dispersion in the cross

section in a unified general equilibrium framework.

The idea that shocks may originate directly from the financial sector and affect economic

activities is related to the setup of Jermann and Quadrini (2012). Different from Jermann

and Quadrini (2012), our paper focus on financial intermediation and capital reallocation

and their connections with the macroeconomy.

Our paper is also related to the literature in economics and finance that emphasize the

importance of counter-cyclical volatility in understanding the macroeconomy and asset mar-

kets. Many authors have documented a strong countercyclical relationship between real

activity and uncertainty as proxies by stock market volatility and/or dispersion in firm level

earnings and productivity, for example, Bloom (2009), Bloom et al. (2012), Bachmann et al.

(2013), and Jurado et al. (2015), among others. A large literature in asset pricing emphasizes

the importance of counter-cyclical volatility in understanding stock market returns, for ex-

ample Bansal and Yaron (2004), Bansal et al. (2012), and Campbell et al. (2013). Our model

generates countercyclical volatility as an endogenous equilibrium outcome even though the

primitive shocks are homoscedastic.

Our computational approach is related to recent development in using global methods

to solve macro models with financial frictions. Brunnermeier and Sannikov (2014), He and

Krishnamurthy (2012, 2014), and Maggiori (2013) use continuous time methods to obtain

global solutions. Their models all have a single state variable and equilibrium conditions

can be reduced to ordinary differential equations, whereas our model involves multiple state

variables in order to quantitatively capture a rich set of macroeconomic moments. Mendoza

and Smith (2006) study small open economies with margin requirements and use value

function iteration to solve their model. We use a policy function iteration approach which

greatly improves the numerical efficiency in our general equilibrium setup because it does not

involve multiple recursive operators and it uses first order conditions to reduce optimization

problems to solving nonlinear equations. Our method can potentially be applied to many

other models in this literature, which are often solved using local approximation methods.
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The rest of the paper is organized as follows. We provide a summary of some stylized facts

that motivate the development of our model in Section II. We describe the model setup in

Section III. In Section IV, we discuss the construction of the Markov equilibrium of our model

and the recursive policy function iteration approach. In Section V, we analyze a deterministic

version of our model to illustrate qualitatively the link between financial intermediation and

capital reallocation. We calibrate our model and evaluate its quantitative implications on

macroeconomic quantities and asset prices in Section VI. Section VII concludes.

II Stylized Facts

Below we present several stylized facts that motivate our interest in studying the link between

financial intermediation and capital reallocation. We first show that measured TFP is highly

correlated with measured efficiency of capital reallocation.

1. Measured total factor productivity (TFP) is highly correlated with a measure of the

efficiency of capital reallocation and the rate of capital utilization.4

In Figure 1, we plot the time series of log TFP (dashed line), measured efficiency of

capital reallocation (solid line) and log capital utilization rates (dash-dotted line) in

the U.S., where all series are HP filtered. We follow a similar procedure as Hsieh and

Klenow (2009) and measure capital misallocation by the variance of the cross-sectional

distribution of log marginal product of capital within narrowly defined industries (clas-

sified by the four-digit standard industry classification code) and translate this measure

into log TFP units.5 The measured efficiency of capital reallocation tracks the time

series log TFP remarkably closely, indicating that the efficiency of capital reallocation

may account for a significant fraction of variations in measured TFP. The same pattern

is true for capital utilization rates: economic downturns are typically also associated

with sharp declines in capital utilization rates.

2. The total volume of bank loans is procyclical. It is negatively correlated with measures

of volatility and capital misallocation.

4Capital under-utilization can be interpreted as a special form of misallocation.
5We use the formula in Hsieh and Klenow (2009) to translate the variance of log marginal product of

capital into a measure of the efficiency of capital reallocation. In Appendix A, we show that this is equivalent
to a first order approximation of the efficiency of capital reallocation measured in log TFP units. We detail
the data construction in Appendix B.
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The above fact is what motivates our theory of financial intermediation and its con-

nection with capital reallocation. We calculate the total volume of bank loans of the

non-financial corporate sector in the U.S. from the Flow of Funds Table. Total bank

loans are calculated as the difference between total corporate credits and corporate

bond issuance. The details of the data construction can be found in Appendix B.

We plot the annual changes in the total volume of bank loans and the GDP growth rate

of the U.S. economy in Figure 2. The shaded areas indicate NBER defined recessions.

It is clear that the total volume of bank loans is strongly procyclical. The correlation

between the two series is 0.42 at the annual level.

In Figure 3, we plot the annual changes in the total volume of bank loans and the

measured cross-sectional dispersion in the marginal product of capital from the COM-

PUSTAT data set. We provide the details of the construction of the dispersion measure

in Appendix B. Clearly, the innovations of the total volume of bank loans are strongly

negatively correlated with our measure of capital misallocation — the correlation of the

two series is −0.43 at the annual frequency. This is consistent with the key mechanism

of our model: when banks are constrained, the total volume of bank loans decreases,

and capital reallocation is less efficient.

We plot the annual changes in the total volume of bank loans and aggregate stock

market volatility in Figure 4. Stock market volatility is calculated by aggregating

realized variance of monthly returns. The correlation between the two time series is

about −0.25 at the annual level. We also plot the cross-sectional dispersion of firm

profit in Figure 5. It is clear that changes in the total volume of bank loans is strongly

negatively correlated with both measures of volatility.

The rest of the stylized facts are well-known. We therefore do not provide detailed

discussion here but refer to the relevant literature. The second fact is about the

business cycle properties of capital reallocation. This is documented in Eisfeldt and

Rampini (2006).

3. The amount of capital reallocation is procyclical and the cross-sectional dispersion of

marginal product of capital is countercyclical.

The third, fourth and fifth facts are about the cyclical properties of the volatility of

macroeconomic quantities and asset returns and are well-known in the macroeconomics

literature and the asset pricing literature, for example, Bloom (2009), Bansal et al.
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(2012) and Campbell et al. (2001).

4. The volatility of macroeconomic quantities, including consumption, investment, and

aggregate output is countercyclical.

5. The volatility of aggregate stock market return is also countercyclical. Equity premium

and interest rate spreads are countercyclical.

6. The volatility of idiosyncratic returns on the stock market is countercyclical.

In the following sections, we setup and analyze a general equilibrium model with financial

intermediation and capital reallocation to provide a theoretical and quantitative framework

to interpret the above facts.

III Model Setup

In this section, we describe a general equilibrium model with heterogenous firms and with

agency frictions in the financial intermediation sector.

A Non-financial Firms

There are three types of non-financial firms in our model, intermediate goods producers,

final goods producers and capital goods producers. Because non-financial firms do not make

intertemporal decisions in our model, we suppress the dependence of prices and quantities

on state variables in this subsection.

The specification of the production technology of intermediate goods and final goods

follows the standard monopolistic competition setup in the capital misallocation literature,

for example, Hsieh and Klenow (2009). Final goods are produced by a representative firm

on a perfectly competitive market using a continuum of intermediate inputs. We normalize

the price of final goods to one and write the profit maximization problem of the final goods

producer as:

max

{
Y −

∫

[0,1]

pjyjdj

}

Y =

[∫

[0,1]

y
η−1

η

j dj

] η
η−1

, (1)
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where pj and yj are the price and quantity of input j produced on island j, respectively. Y

stands for the total output of final goods. The parameter η is the elasticity of substitution

across input varieties. The constant return to scale technology and the fact that the final

goods market is perfectly competitive imply that final goods producers earn zero profit in

equilibrium. In this case, final goods producer’s demand function for input variety j can be

written as:

pj =
[yj
Y

]− 1

η

. (2)

There is continuum of monopolistically competitive intermediate goods producers indexed

by j ∈ [0, 1], each producing a different variety on a separate island.6 We use j as the index for

both the intermediate input and the island on which it is produced. The profit maximization

problem for the producer on island j is given by:

DF (j) = max {pjyj −MPKj · kj −MPL · lj}

subject to : pj = [yj/Y ]−
1

η

y (j) = Āajk
α
j l

1−α
j . (3)

Here, the production of variety j requires two factors, capital kj and labor lj . Ā is the aggre-

gate productivity common across all firms. aj is island j-specific idiosyncratic productivity

shock, which we assume to be i.i.d. over time. MPKj is the rental price of capital on island

j and MPL is the economy wide wage rate. Because our focus is on capital reallocation

across islands with different idiosyncratic productivity shocks, we allow the rental price of

capital to be island specific, but assume frictionless labor market across the whole economy.

We use DF (j) to denote the total profit of firm j, which is paid to households as dividend.

We assume, for simplicity, that there are only two possible realizations of idiosyncratic

productivity shocks, aH and aL. We denote

Pr ob (a = aH) = π; Pr ob (a = aL) = 1− π. (4)

We adopt a convenient normalization,

πa1−η
H + (1− π) a1−η

L = 1. (5)

6We use the terminology ”island” to emphasize that capital cannot move freely among producers of
different input varieties. The details of capital market frictions is introduced in Section C.
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As will become clear later, the above condition implies that the average idiosyncratic produc-

tivity is one and total output is given by the standard Cobb-Douglas production function,

ĀKαN1−α in the absence of misallocation.

In addition to the standard monopolistic competition setup, we specify a risk-free storage

technology, which endogenizes variable capital utilization in our model. More importantly,

it allows us to capture the effect of ”fly-to-safety” or ”fly-to-quality”: when financial in-

termediaries are constrained, volatility spikes, and capital moves into the risk-free storage

technology despite the high productivity of intermediate goods producers. We assume that

current period capital can be used for two purposes: producing output and storage. The

capital goods producers maximize profit by operating the following storage technology:

DK = max
KS

{G (KS, K)−QKS} , (6)

where KS is the total amount of current period capital used in the storage technology,

H (KS,K) is a concave and constant return to scale production technology. We use DK to

denote the profit of capital goods producers, which is paid back to household as dividend

and Q to denote the market price of capital.

We assume that capital depreciation at a constant rate δ if used for production. Therefore

the law of motion of next period capital is

K ′ = G (KS, K) + (1− δ)KU + I, (7)

where I is the total amount of new investment in the current period. Without loss of

generality, we denote u = Ku

K
and

G (KS, K) = g

(
KS

K

)
K

for some concave function g (·). Using the resource constraint,

KU +KS = K,

equation (7) can be simplified to:

K ′ = [g (1− u) + (1− δ) u]K + I.7 (8)

7It is more common in the literature to assume total depreciation to depend on u and write K ′ =
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B Household

There is a representative household with log preferences, and is endowed with one unit of

labor in every period which it supplies inelastically to firms. The representative household

owns the ultimate claims of all assets in the economy. To make the intermediation problem

non-trivial and to prevent the model from collapsing into a single representative agent setup,

as in Gertler and Kiyotaki (2010), we have assumed incomplete market between the house-

hold and the intermediary. That is, the only financial contract allowed between the household

and the financial intermediary is a risk-free deposit account. The household does not have

access to markets that trade aggregate state-contingent payoffs, but instead must delegate

its investment decisions in capital markets to financial intermediaries. The household starts

the current period with total amount of disposable wealth W , and decides the allocation of

wealth between consumption and investment in the risk-free account with banks.

We assume (and later verify) that the household’s utility maximization problem can be

written in a recursive fashion:

V (Z,W ) = max
C,Bf

lnC + βE [V (Z′,W ′)]

C +Bf = W

W ′ = BfRf (Z) +

∫
DF (j) (Z′) dj +

∫
DB (j) (Z′) dj +DK (Z′) +MPL (Z′) . (9)

In the above maximization problem, we assume that there exists a vector of Markov state

variables Z, the law of motion of which will be specified later, that completely summarizes

the history of the economy.8 Taking the equilibrium interest rate Rf (Z), the dividend

payments from intermediate goods producers, {DF (j) (Z′)}j∈[0,1], from the capital goods

producers, DK (Z′), and from the banks, {DB (j) (Z′)}j∈[0,1] as given, the household makes

its optimal consumption C and saving decisions Bf given its initial amount of disposable

wealth, W . Household income includes total savings in the bank account, BfRf (Z), total

dividends (monopolistic rents) from intermediate goods producers,
∫
DF (j) (Z′) dj, total

dividend payment from banks,
∫
DB (j) (Z′) dj, total dividend payment from capital goods

producers, DK (Z′), and total labor income, MPL (Z′).

(1− δ (u))K + I. Our parameterization implies that utilized capital depreciate at a constant rate, which
simplifies our numerical analysis. At the same time, it allows us to capiture the same dynamics as the
variable capital utilization literature.

8In another words, we will focus on Markov equilibria with state variable Z. We do not explicitly specify
Z here. We construct the Markov equilibrium with the state variable Z in Section IV of the paper.
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C Financial Intermediaries

There is one financial intermediary on each island.9 Financial intermediaries or bankers are

the only agents in the economy who have access to the capital markets.

Consider a bank who enters into a period with initial net worth N . It chooses the total

amount of borrowing from the household, Bf , amount of borrowing from peer banks, BI ,

and the total amount of capital stock for the next period K ′. Because there is no capital

adjustment cost, the price of capital is one, and banks’ budget constraint is:

K ′ = N +Bf +BI .
10 (10)

In our model, the total amount of capital for the next period, K ′ is determined at the

end of the current period before the realization of shocks of the next period. That is, we

assume one period time to plan as in standard RBC models. However, different from the

standard representative firm setup, capital can be reallocated across firms after idiosyncratic

productivity shocks are realized, which we describe in detail.

Figure 6 illustrates the time of events in period t and period t+ 1. At the end of period

t, the household has total disposable income W and the total net worth of the intermediary

sector is N . The household wealth is allocated between consumption in the current period,

C and a risk-free deposit with the banks, Bf . From the bank’s perspective, the total net

worth and the total consumer loans, Bf are used to purchase capital. At the end of period

t, a typical bank purchased K ′ amount of capital for period t + 1 production before the

realization of the productivity shocks in t + 1.

Period t + 1 is divided into four subperiods. In the first subperiod, the aggregate pro-

ductivity shock A′ and the idiosyncratic productivity shock, a′ are realized and the capital

reallocation market opens. Banks on the high (idiosyncratic) productivity islands have an

incentive to purchase more capital on the reallocation market and banks on the low produc-

tivity islands have an incentive to sell. Note that transactions on the capital reallocation

market must be done by issuing interbank credit, because at this point production has not

begun and banks have not received payment from firms yet. Production happens in the

second subperiod, and firms pay back the cost of capital to local banks at the end of the

9Because financial intermediaries on each island face competitive capital markets, one should interpret
our model as having a continuum of identical financial intermediaries on each island.

10With a slight abuse of notation, we use Bf as both the amount of saving of the household and the
amount of borrowing of the bank. We do so to save notation, because market clearing requires that the
demand and supply of bank loans must equal.
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second subperiod.

In the third subperiod, banks payback their interbank loans and household deposits.

Importantly, after banks receive payment from local firms and before they pay back loans to

creditors, banks have an opportunity to default. Upon default, bankers can abscond with a

fraction of their assets, and set up a new bank to operate on some other island.

In the last subperiod, bankers clear their interbank transactions and consumers receive

dividend payments from banks and firms, risk-free returns from bank deposits and make

their consumption and saving decisions. At this point, bank net worth is allowed to move

freely across islands.11

We now describe in detail the bank’s problem in the third subperiod. We use RAj (Z
′) to

denote the total amount of capital purchased on the reallocation market by intermediary j in

state Z′.12 Let Q (Z′) denote the price of capital on the capital reallocation market in state

Z′, and let Qj (Z
′) denote the price of capital on an island with idiosyncratic productivity

shock aj for j = H,L, in aggregate state Z′. Here we allow Q (Z′), QH (Z′) and QL (Z
′) to

be potentially different because limited commitment of financial contracts may prevent the

marginal product of capital from being equalized to the price of capital on the reallocation

market when the constraint is binding. We note that no arbitrage on the capital markets

within an island implies that

Qj (Z
′) = MPKj (Z

′) + 1− δ. (11)

The interpretation is that one unit of capital on island j produces an additional current period

output MPKj (Z
′) in the current period and depreciates at rate δ after production. In a

frictionless market the above condition and the fact Qj (Z
′) = Q (Z′) for all j guarantees

that the marginal product of capital must be equalized across all islands. In our model,

misallocation may happen in equilibrium due to limited enforcement of financial contracts.

11As in Gertler and Kiyotaki (2010), the assumption that bank net worth moves freely at the end of every
period is made for tractability. It implies that the expected return on all islands are equalized and therefore
the ratio of bank net worth to capital must be equalized across all islands. As a result, the decision problems
for banks on all islands are identical at the end of the last subperiod. This allows us to use the optimal
decision problem of the representative bank to construct the equilibrium. Without this assumption, bank
net worth depends on the history of the realization of idiosyncratic productivity shocks and the distribution
of bank net worth across islands becomes a state variable in the construction of Markov equilibria. In our
setup, the heterogeneity in the realization of idiosyncratic productivity shocks at the beginning of a period
motivates the need for capital reallocation. At the same time, the possibility of moving bank net worth
across islands at the end of a period avoids the need to keep track of the the distribution of bank net worth
across islands.

12We allow RA (Z′, a′) to be negative.
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The total net worth of intermediary j at the end of the next period after the repayment

of household loan and interbank borrowing is:

N ′
j = Qj (Z

′) [K ′ +RAj (Z
′)]−Q (Z′)RAj (Z

′)−Rf (Z)Bf − RI (Z)BI , (12)

where Qj (Z
′) [K ′ +RAj (Z

′)] is the total value of capital on island j, including the capital

purchased in the current period, K ′, and the capital obtained on the reallocation market,

RAj (Z
′). The intermediary also needs to pay back the cost of capital obtained on the reallo-

cation market, Q (Z′)RAj (Z
′), and one-period risk-free loans borrowed from the household

and other banks, Bf , and BI .

After banks receive payment from local firms and before they pay back loans to creditors,

banks have an opportunity to default. Upon default, bankers take away all of the capital

on the island, but they can only sell a fraction θ of them on the market and the remaining

fraction can be viewed as the deadweight loss associated with bankruptcy. Therefore, upon

default, the total receipt of bankers on island j is θQj (Z
′) [K ′ +RAj (Z

′)]. In addition,

similar to Gertler and Kiyotaki (2010), we assume that bankers have a better technology

to enforce contracts than households. This is captured by the parameter ω ∈ [0, θ]. The

interpretation is that in the event of default, a fraction ω of interbank borrowing can be

recovered. The case ω = 0 means banks are no better than households in enforcing contracts,

and ω = 1 corresponds to the case of a frictionless interbank market. Thus the amount of

assets bankers can abscond with upon default is:

θQj (Z
′) [K ′ +RAj (Z

′)]− ω [Q (Z)RAj (Z
′) +RI (Z)BI ] . (13)

The possibility of default implies that the contracting between borrowing and lending

banks must respect the following limited enforcement constraint:

N ′
j ≥ θQj (Z

′) [K ′ +RAj (Z
′)]− ω [Q (Z)RAj (Z

′) +RI (Z)BI ] , ∀ Z′ and ∀ j, (14)

where N ′ is given by equation (12). Inequality (14) is the incentive compatibility constraint

for banks. It implies that anticipating the possibility of default, lending banks will make

sure that the borrowing bankers do not have the incentive to default on loans in all possible

states of the world.

We assume that the representative household is divided into bankers and workers, and

there is perfect consumption insurance between bankers and workers within the household.
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Under this assumption, banks evaluate future cash flows using the “stochastic discount

factor”, M ′, implied by the marginal utility of the household.13 Let C (Z) denote the con-

sumption policy that is consistent with household optimality in subsection (B).14 Under the

assumption of log utility, the stochastic discount factor takes a simple form:

M ′ = β

(
C (Z′)

C (Z)

)−1

. (15)

As is standard in the dynamic agency literature, for example, DeMarzo and Sannikov

(2006) and DeMarzo and Fishman (2007), we assume that bank managers are less patient

than households and use Λ to denote the ratio of bankers’ discount rate relative to that of

the households. Equivalently, with probability 1 − Λ, bankers’ net worth is liquidated and

paid back to the household as dividends. With probability Λ, where Λ ∈ (0, 1) , bankers

survive to the next period. This assumption is a parsimonious way to capture the idea that

the managers of banks have a shorter investment horizon than the representative household

and is a necessary condition for agency frictions to persist in the long-run.

Because banks’ objective function is linear and the constraints (10), (12), and (14) are

homogenous, the value function of banks, taking equilibrium prices as given, must be linear

in bank net worth N . In addition, since bank net worth can be freely moved across islands

at the end of every period, the marginal value of bank networth must be equalized across all

islands at the end of every period. This feature of the model greatly simplifies our analysis,

because it implies that banks on different islands are just scaled versions of each other after

redistribution of bank net worth. We denote the value function of banks as µ (Z)N . A

typical bank maximizes:

µ (Z)N = max
Bf ,BI ,K ′,{RAj(Z′)}

Z′,j

E [M ′ {(1− Λ (Z′))N ′ + Λ (Z′)µ (Z′)N ′}|Z]

by choosing total capital stock for the next period, K ′, total borrowing from households, Bf ,

total borrowing from peer banks, BI , and a state-contingent plan for capital reallocation,

RAj (Z
′) for all possible realizations of Z′ and j, subject to constraints (10), (12), and (14).

13See Gertler and Kiyotaki (2010) for details.
14The policy functions of the dynamic programming problem have two state variables, which we can denote

as Ĉ (Z,W ). Rational expectation requires that C (Z) = Ĉ (Z,W) when W is interpreted as total wealth of
all households. In Section IV, we show that in our construction of the Markov equilibrium, W is a function
of Z: W = W (Z), and the rational expectation condition holds because the equilibrium consumption policy
function satisfies C (Z) = Ĉ (Z,W (Z)).
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In our model with financial shocks, we assume that the discount rate, Λ, follows a Markov

process. The macro-asset pricing literature found large discount rate variations in the data.

One way of interpreting our specification of financial shocks is that we explore the impli-

cations of discount rate variations on agency frictions. We show in our calibration that

relatively small variations of the discount rate, Λ, can be amplified by agency frictions and

generate large fluctuations in measured total factor productivity and output.

D Market Clearing

Because market clearing conditions have to hold in every period, we suppress the dependence

of all quantities on time and state variables in this section to save notation. We list the

resource constraints and market clearing conditions below.

First, the total amount of capital utilized on island j is K + RAj , for j = H,L. The

resource constraint requires that the amount of capital used for production on all islands

must sum up to uK, which is the total amount of utilized capital in the economy:

π (K +RAH) + (1− π) (K +RAL) = uK. (16)

Second, the total amount of interbank borrowing in the economy must be zero. Because

banks are ex ante identical before the realization of idiosyncratic productivity shocks, and

because interbank borrowing is determined before the realization of these shocks,

BI = 0. (17)

The possibility of interbank bank borrowing on the intertemporal bank loan market does

not affect allocation but determines the interbank borrowing rate, an object that can be

measured empirically and used to discipline our quantitative exercise.

Third, the total net worth of the banking sector equals the sum of bank net worth across

all islands:

N = πNH + (1− π)NL. (18)

Fourth, labor market clearing requires labor input lj, for j = H,L to satisfy

πlH + (1− π) lL = 1, (19)

because we assumed inelastic labor supply and normalized total labor endowment to one.
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Finally, market clearing for final goods requires that total consumption and investment

sum up to total output:

C +K = Y, (20)

where Y is the total output of final goods defined in equation (1).

Note that market clearing implies that the sum of the household’s disposable wealth, W

and the total net worth of the banking sector, N must equal to the total financial wealth

of the economy. We do not list this condition here because it is redundant given all other

market clearing conditions due to Walras’ law.

IV Construction of the Markov Equilibrium

A Markov equilibrium consists of i) a set of equilibrium prices and quantities as functions of

the state variable Z, and ii) the law of motion of the state variable Z, such that households

maximize utility, non-financial firms and financial intermediaries maximize their profit and

all markets clear. We follow the following procedure to construct the Markov equilibrium.

First, we assume, but do not explicitly specify, the existence of a vector of Markov state

variables Z, and derive a set of equilibrium conditions from optimality and market clearing

conditions. Second, we explicitly identify the state variables Z and use equilibrium condi-

tions to construct the law of motion of Z as well as the equilibrium functions (equilibrium

prices and allocations as functions of Z). Finally, we verify that given the construction of the

state variable Z, our proposed pricing functions and quantities constitute a Markov equilib-

rium. Because our construction of the Markov equilibrium is a recursive procedure, it leads

naturally to an iterative procedure to numerically solve the model. We describe our solution

method in subsection C.

We define the capital allocation ratio in our model as the ratio of capital employed on

high productivity islands relative to that on low productivity islands and denote it as φ:

φ =
K +RAH

K +RAL

. (21)

It is straightforward to show that the first best level of capital allocation ratio, which we will

denote as φ̂ is:

φ̂ =

(
aH
aL

)η−1

.

Intuitively, it is optimal to allocate more capital to high productivity islands and less to low
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productivity islands. The optimal capital allocation ratio is increasing in the elasticity of

substitution of output across varieties. The absence of reallocation implies RAH = RAL = 0

and φ = 1. In general, in our model, φ ∈
[
1, φ̂
]
and u ∈ [0, 1] summarizes the severity of

capital misallocation.

We make one more assumption on the aggregate productivity Ā. We assume Āt =

AtK
1−α
t , where At is a Markov process of exogenous productivity shocks. This specification

follows Frankel (1962) and Romer (1986) and is a parsimonious way to inject endogenous

long-run growth into the model. From a technical point of view, this allows us to explore

homogeneity and reduce one state variable in the construction of the Markov equilibrium.

In particular, equilibrium quantities are homogenous of degree one in K and equilibrium

prices do not depend on K. It is therefore convenient to work with normalized quantities.

We define:

c =
C

K
, i =

I

K
, n =

N

K
, bf =

Bf

K
. (22)

Using the above notation, equation (8) can be written as:

K ′

K
= g (1− u) + (1− δ) u+ i. (23)

The homogeneity property implies that, while K must be one of the state variables in the

construction of the Markov equilibrium, normalized equilibrium quantities do not depend on

K and only depend on z. We denote Z = (z, K), where z is a vector of state variables to be

specified later.

A Equilibrium Conditions

In this section, we analyze the optimality conditions of firms and banks. We provide an

aggregation result in Proposition 1, where we show that total output and marginal product

of capital can all be represented as functions of capital reallocation ratio, φ, and capital

utilization u. Our key result in this section is Proposition 2, which provides a characterization

of the nature of binding constraints as a function of state variables.

Product Market Optimality The product market in our model is the standard monopo-

listic competition setup (see for example, Meltiz 2003). The total output and the marginal

product of capital can be represented as functions of u and φ, which we summarize in the

following proposition.

Proposition 1 (Aggregation of the Product Market)
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The total output of the economy is given by

Y = Auf (φ)K,

where the function f :
[
1, φ̂
]
→ [0, 1] is defined as:

f (φ) =

(
πφ̂

1−ξ
φξ + 1− π

)α
ξ

(πφ+ 1− π)α
(
πφ̂+ 1− π

)α
ξ
−α

(24)

The marginal product of capital on low productivity islands, denoted MPKL, and the

marginal product of capital on high productivity island, denoted MPKH , can be written as:

MPKL (A, φ) = α

(
1−

1

η

)
Af (φ)

πφ+ 1− π

πφ̂
1−ξ

φξ + 1− π
, (25)

MPKH (A, φ) = MPKL (A, φ)

(
φ̂

φ

)1−ξ

, (26)

where the parameter ξ ∈ (0, 1) is defined as ξ = αη−α

αθ−α+1
.

Proof. See Appendix A.

Note that the function uf (φ) is a measure of misallocation. It is straightforward to show

that f is strictly increasing with f
(
φ̂
)
= 1. In general, f (φ) ≤ 1 and misallocation happens

when strict inequality holds. Variations in capital misallocation affect uf (φ) and act like

TFP shocks in our model.

The first order condition for capital goods producing firm implies: Q (z) = g′ (1− u (z)).

We use this condition to define Q as a function of u:

Q (u) = g′ (1− u) . (27)

Optimality of Banks’ Problem We first simplify the limited enforcement constraints

for banks. Combining equations (13) and (14), the limited enforcement constraint can be

written as:

(1− θ)QH (z′)K ′ − [(1− ω)Q (z′)− (1− θ)QH (z′)]RAH (z′) ≥ Rf (z)Bf (z) , (28)
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for banks on high productivity islands and

(1− θ)QL (z
′)K ′ − [(1− ω)Q (z′)− (1− θ)QL (z

′)]RAL (z
′) ≥ Rf (z)Bf (z) , (29)

for banks on low productivity islands. We observe that equation (16) and the definition of

φ and u jointly imply

RAH

K
=

uφ

πφ+ 1− π
− 1,

RAL

K
=

u

πφ+ 1− π
− 1. (30)

Note also that the no arbitrage condition (11) and equations (25, 26) on the marginal prod-

ucts of capital imply that QH (z) and QL (z) depend on state variables only through (A, φ).

With a slight abuse of notation, we define

QH (A, φ) = MPKH (A, φ) + 1− δ, (31)

QL (A, φ) = MPKL (A, φ) + 1− δ. (32)

If we divide both sides of equation (28) by K ′ and use equation (30), we can show that

QH (A, φ) must satisfy:

(1− θ)QH (A′, φ′)− [(1− ω)Q (u′)− (1− θ)QH (A′, φ′)]

(
u′φ′

πφ′ + 1− π
− 1

)
≥ s′, (33)

where we denote

s′ =
Rfbf

g (1− u) + (1− δ) u+ i
. (34)

Similarly, equation (29) implies that QL (A, φ) must satisfy:

(1− θ)QL (A
′, φ′)− [(1− ω)Q (u′)− (1− θ)QL (A

′, φ′)]

(
u′

πφ′ + 1− π
− 1

)
≥ s′. (35)

Let ζH and ζL denote the Lagrangian multipliers on the limited enforcement constraint

(14). The first order conditions with respect to RA (Z′) can be used to derive a relationship

between Lagrangian multipliers and the prices of capital on high and low productivity islands.
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We use this relationship to define:

ζH (A′, φ′, u′) =
π [QH (A′, φ′)−Q (u′)]

(1− ω)Q (u′)− (1− θ)QH (A′, φ′)
≥ 0, (36)

ζL (A
′, φ′, u′) =

(1− π) [QL (A
′, φ′)−Q (u′)]

(1− ω)Q (u′)− (1− θ)QL (A′, φ′)
≥ 0. (37)

Note that if both of the limited enforcement constraints (33) and (35) hold with equality,

then they jointly determine φ′ and u′ as functions of (A′, s′). If none of constraints (33) and

(35) is binding, then ζH (A′, φ′, u′) = ζL (A
′, φ′, u′) = 0 imply QH (A′, φ′) = QL (A

′, φ′) =

Q (u′). Again, φ′ and u′ can be determined as functions of (A′, s′). In general, equations (33),

(35), (36), (37) and the complementary slackness condition determine φ′ and u′ as functions

of (A′, s′), which we will denote as φ (A′, s′) and u (A′, s′). The following proposition builds

on this observation and characterizes the nature of the binding constraints.

Proposition 2 (Characterization of Binding Constraints)

There exist functions ŝ (A), s̄ (A) and s∗ (A), such that ŝ (A′) < s̄ (A′) < s∗ (A′)

1. If s′ ≤ ŝ (A′), then none of the limited commitment constraints bind, and φ (A′, s′) and

u (A′, s′) are determined by (36) and (37) in equality.

2. If ŝ (A′) < s′ ≤ s̄ (A′), then the limited commitment constraint for banks on high

productivity islands binds, and φ (A′, s′) and u (A′, s′) are determined by (34) in equality

and (37).

3. If s̄ (A′) < s′ ≤ s∗ (A′), then the limited commitment constraint for all banks bind, and

φ (A′, s′) and u (A′, s′) are determined by (34) and (35) in equality .

4. The cutoff levels, ŝ (A′) and s̄ (A′) are all increasing functions of A′.

Proof. See Appendix C.

The result of the above proposition is intuitive. s′ is the total amount of liability that

banks need to pay back to households (normalized by capital stock). When s′ is below ŝ (A′),

debt level is low enough and the limited enforcement constraints never bind. As debt level

increases, when ŝ (A′) < s′ ≤ s̄ (A′), the limited enforcement constraint bind only if the island

receives a high productivity shock. Efficiency of capital reallocation requires that banks on

high productivity islands borrow more than those on low productivity islands. Therefore,
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the limited enforcement constraint is more likely to bind for banks on high productivity

islands. In the region where s′ > s̄ (A′), the banking sector accumulated too much debt

and the limited enforcement constants bind for all realizations of idiosyncratic productivity

shocks. Note that the cutoff levels depends on next period aggregate productivity shock, A′.

According to the final part of the above proposition, both ŝ (A′) and s̄ (A′) are increasing

functions of A′; therefore, the limited enforcement constraints are more likely to bind in

states where aggregate productivity is low.

The above proposition has two important implications. First, in the cross-section, the

limited enforcement constraint is more likely to bind for intermediaries on high productivity

islands. This is the mechanism for misallocation in our model: when banks are constrained,

more productive projects cannot be financed and measured TFP drops.

Second, in time series, the limited enforcement constraint is more likely to bind when

bank net worth is low and/or when aggregate productivity drops. This is the amplification

mechanism in our model. Adverse shocks to TFP and bank net worth are amplified because

they tighten the limited enforcement constraints and exacerbate capital misallocation.

Other Optimality Conditions Given our definition of the Lagrangian multipliers in equa-

tions (36) and (37), we can use other first order conditions to characterize the equilibrium

policy functions. Here we use the property that equilibrium prices depend only on z but not

on K to simplify notation. First, the first order condition for households’ optimal invest-

ment decision, together with equations (8) and (20), leads to the usual intertemporal Euler

equation,

E [M (z, z′)]Rf (z) = 1, (38)

where M (z, z′) , the stochastic discount factor of households, satisfies:

M (z, z′) =
β [Au (z) f (φ (z))− i (z)]

c (z′) [g (1− u (z)) + (1− δ) u (z) + i (z)]
. (39)

Second, banks’ optimal choice for intertemporal investment implies

µ (z) = E
[
M̃ (z, z′) {1 + (1− ω) (ζH (A′, φ (z′) , u (z′)) + ζL (A

′, φ (z′) , u (z′)))}Q (u′)
]
.

(40)

where M̃ (z, z′) is defined as

M̃ (z, z′) = M (z, z′) {1− Λ′ + Λ′µ (z′)} . (41)
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Third, banks’ optimal choice for interbank loan implies

RI (z)

Rf (z)
=

Et

[
M̃ (z, z′) {1 + ζH (A′, φ (z′) , u (z′)) + ζL (A

′, φ (z′) , u (z′))}
]

Et

[
M̃ (z, z′) {1 + (1− ω) (ζH (A′, φ (z′) , u (z′)) + ζL (A

′, φ (z′) , u (z′)))}
] . (42)

Fourth, the envelope condition on banks’ optimization problem is

µ (z) = E
[
M̃ (z, z′) {1 + ζH (A′, φ (z′) , u (z′)) + ζL (A

′, φ (z′) , u (z′))}
]
Rf (z) . (43)

Finally, we note that the resource constraint requires

c (z) + i (z) = Au (z) f (φ (z)) . (44)

Note that the four unknown equilibrium functions, c (z), i (z), µ (z), and Rf (z) can be

determined by the four functional equations (38), (40), (43), and (44). Given the equilibrium

functions, c (z), i (z), µ (z), and Rf (z), interbank interest rate RI (z) can be determined by

equation (42).

B Construction of the Markov Equilibrium

Subject to some technical details, the four functional equations can be used to determine

the four equilibrium functions, {c (z) , i (z) , µ (z) , Rf (z)} once the law of motion of the

state variables are specified. Proposition 2 suggests that it is convenient to include s′ =
Rf bf

g(1−u)+(1−δ)u+i
to be one of the state variables. Motivated by this observation, we denote

x = (Λ, A) to be the vector of exogenous shocks. We conjecture and then verify that a

Markov equilibrium can be constructed with z = (x, s) as the state variables. In the rest of

this section, we detail the construction of the Markov equilibrium of our model as the fixed

point of an appropriate recursive operator.

Because x is an exogenous Markov process, we only need to specify the law of motion of

the endogenous state variable, s. Using the law of motion of bank net worth on high and

low productivity islands, equation (12), and the definition of total bank net worth, equation

(18), we can derive the law of motion of normalized bank net worth, n = N
K
:

n′ = Λ′

{
α

(
1−

1

η

)
A′u′f (φ′) + (1− u′)MPK (u′) + (1− δ)− s′

}
. (45)
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Divide both sides of the bank budget constraint (10) by K to obtain:

g (1− u) + (1− δ)u+ i = n + bf . (46)

By the definition of s, we have:

s′ =
Rfbf

g (1− u) + (1− δ)u+ i
=

g (1− u) + (1− δ)u+ i− n

g (1− u) + (1− δ)u+ i
Rf .

Now we can replace n in the above equation using equation (45) to obtain the law of motion

of s:

s′ = Rf (z)



1−

Λ
{
α
(
1− 1

η

)
Au (z) f (φ (z)) + (1− u (z))MPK (u (z)) + (1− δ)− s

}

g (1− u (z)) + (1− δ)u (z) + i (z)



 .

(47)

Our construction of the Markov equilibrium is formally summarized by the following propo-

sition:

Proposition 3 (Markov Equilibrium)

Suppose there exists a set of equilibrium functions, {c (z) , i (z) , µ (z) , Rf (z)}z such that

with the law of motion of s given by equation (47), {c (z) , i (z) , µ (z) , Rf (z)}z satisfy the

functional equations (38), (40), (43), and (44), then {c (z) , i (z) , µ (z) , Rf (z)}z constitutes

a Markov equilibrium.

Proof. See Appendix D.

C Recursive Policy Function Iteration

In this section, we describe an operator that maps the space of equilibrium functionals into

itself such that if a fixed point for the operator exists, it constitutes a Markov equilibrium

described in section B. There are potentially many such operators. Because the construction

of the operator leads naturally to iterative numerical procedures to compute the equilibrium

functionals, our construction is aimed toward numerical efficiency.

First, we observe that Proposition 2 allows us to determine the policy functions φ (z) and

u (z) without any iteration. Second, given an initial guess of next period consumption, c (z)

and the value of bank net worth, µ (z), we can use the intertemporal Euler equation (40)

to determine the current period consumption and investment policies and use the envelope
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condition (43) to determine the current period value of bank net worth. At the same time, we

need to verify that the policy functions and the law of motion of the state variable, equation

(47) are consistent with each other. Because both equations (40) and (43) are discounting

relationships, it is reasonable to expect that if we iterate this procedure, the policy functions,

c (z) and µ (z) will converge.

Note that our approach makes full use of the first order optimality conditions to improve

numerical efficiency. In fact, In Appendix E, we show that the iterative procedure boils

down to solving a nonlinear equation for each point in the state space in each step of the

iteration. Therefore, our computation algorithm is very similar to that used in a standard

RBC model with productivity shocks. Thanks to the simplification of Proposition 2, the

dependence of policy functions on the occasionally binding limited enforcement constraints

is fully determined before any iteration. Below are the details of our approach.

1. Use Proposition 2 to construct the policy functions φ (z) and u (z).

2. Start from an initial guess of the equilibrium functionals {c0 (z) , µ0 (z)}.

3. Given a set of equilibrium functionals, {cn (z) , µn (z)}, let c (z′) = cn (z′) and µ (z′) =

µn (z′) in the definition ofM (z, z′) and M̃ (z, z′) in equation (39) and (41), respectively.

For each z in the state space, solve the four unknows c (z), µ (z), i (z), Rf (z) from the

equations, (38), (40), (43), and (44), with s′ defined by (47).

This is a key step in our iterative procedure. It involves solving four nonlinear equations

for four unknowns for each point z in the state space. In appendix E we show that

the computation in this step can be reduced to solving a single nonlinear equation for

each point z in the state space.

4. Update the equilibrium functionals:

cn+1 (z) = c (z) , µn+1 (z) = µ (z) ,

where c (z) and µ (z) are the solutions obtained in step 3.

5. Iterate on step 3 and 4 until the error is smaller than a preset convergence criteria, ε:

sup
z

∣∣cn+1 (z)− cn (z)
∣∣+ sup

z

∣∣µn+1 (z)− µn (z)
∣∣ < ε.
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Finally, we note that although (x, s) is a convenient choice of state variable that simplifies

our construction of the equilibrium and allows for efficient numerical methods to solve the

model, any one-to-one function of (x, s) can be used as state variables as well. From an eco-

nomics point of view, it is more intuitive to use bank net worth as a state variable. Equation

(45) defines that mapping between (x, s) and (x, n). We will discuss the implications of our

model using (x, n) as the state variable in the rest of the paper.

V Deterministic Dyanmics

In this section, we use the policy functions of the deterministic version of our model to

illustrate the mechanism through which bank net worth affects capital misallocation and

economic fluctuations. There are no stochastic shocks to x in the deterministic model, and

all equilibrium prices and normalized quantities are functions of the normalized net worth

n.

A Output, Consumption and Investment

In Figure 7, we plot output (top panel), consumption (middle panel) and investment (bottom

panel) as functions of bank net worth n. In the figure, n̂ is the level of bank net worth

above which the limited enforcement constraints do not bind for any bank and there is no

capital misallocation (that is, n̂ is the level of net worth corresponds to the ŝ defined in

Proposition 2). Further increases in bank net worth n do not affect output, consumption or

investment because productivity is constant and capital reallocation stays at its first best

level. As n decreases towards n̄, only the limited commitment constraint for high productivity

islands, equation (28), binds. In this case, as n declines, capital misallocation between high

productivity and low productivity islands deteriorates but capital utilization is fully efficient.

As n drops below n̄, which is the level of net worth corresponding to s̄ defined in Proposition

2, the limited enforcement constraint for both islands bind, and output, consumption, and

investment drop sharply.

Figure 7 illustrates two key features of our model that continue to hold in the stochastic

version. First, total output increases with bank net worth. Note that even in the absence of

productivity shocks, when bank net worth is low, the limited commitment constraint (28)

and/or (29) binds and limits the efficiency of capital reallocation. As a result, output drops

even if factor inputs do not, as if the economy is hit by a negative productivity shock.
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Second, the limited commitment constraints are more likely to bind and capital reallo-

cation is less efficient when bank net worth is low. For n ≥ n̂, output does not depend on

bank net worth. In this region of the state space, our model behaves like the frictionless

RBC model. Productivity shocks (if any) are the only reason for output fluctuations. For

n̂ < n ≤ n̄, the limited enforcement constraint on high productivity islands starts to bind

and bank net worth affects aggregate output. In the stochastic version of our model, ampli-

fication occurs in this region. Negative productivity shocks not only lower output directly

through the production function, but also indirectly by reducing bank net worth and the

efficiency of capital reallocation. The state space where n < n̄ can be intuitively interpreted

as the “crisis region”, in which the limited enforcement constraints on both types of banks

bind. Capital is not only misallocated across high and low productivity firms, but also

under-utilized.

B Prices

In Figure 8, we plot the price of assets as functions of bank net worth. The top panel shows

the market price of capital on the reallocation markets, determined by the unconstrained

firms who equalize their marginal product of capital to its market price. As bank net worth

shrinks, the efficiency of capital reallocation deteriorates, and the marginal product of capital

of the unconstrained firms drops. At the same time, asset markets are depressed, as we show

in the second panel, where we plot the price of an asset that pays aggregate consumption as

a dividend.15 In our model bank net worth affect asset prices for two reasons. First, drops

in bank net worth affect the efficiency of real production, and as a result, firms cut dividend

payments. Second, banks are constrained, and are under pressure to sell. In equilibrium, the

market clearing condition implies that asset prices have to decline. In our stochastic model,

the two forces reinforce each other to generate large recessions and financial market crisis.

The fact that lower levels of net worth tighten banks’ borrowing constraint also manifests

itself on the interbank lending market. We plot the spread between the interbank interest

rate, calculated from equation (42), and the household deposit rate in the bottom panel of

Figure 8. Interest rate spread widens when the expected return on capital is high, household

deposit rate is low, and banks are constrained because of their low net worth. At the same

15The price to consumption claim is calculated as:

pc (z) =
g (1− ρ (z)) + (1− δ) ρ (z) + i (z)

µ (z)
E
[
M̃ (z, z′) {1 + (1− ω) (ζH (z′) + ζH (z′))} {pc (z

′) + c (z′)}
]
.
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time, banks are less constrained on the interbank market because peer banks have better

contract enforcement technologies. As a result, banks race to the interbank lending market

and drive up the interest rate, RI . This effect is particularly pronounced in the crisis region

where n < n̄, and all banks are constrained.

C Capital Reallocation

As shown in Eisfeldt and Rampini (2006), the amount of capital reallocation is procyclical

and the benefit to capital reallocation is countercyclical. Our model is consist with this fact.

We plot the dispersion in the marginal product of capital (top panel), the total amount of

capital reallocation (second panel), the percentage of capacity utilization (third panel), and

the marginal value of bank net worth (bottom panel) as functions of bank net worth in Figure

9. As shown in the top panel of the figure, in the region n ≥ n̂, capital reallocation is fully

efficient, and the marginal products of capital equalize across all islands. As bank net worth

decreases to n̄, the marginal products of capital on high and low productivity islands diverge,

but the allocation of capital between low productivity islands and the storage technology is

fully efficient. As bank net worth drops further, low productivity islands become constrained

as well, and capital “fly to safety”, i.e. they are invested in the risk-free storage technology

despite its low marginal product. Clearly, the benefit of capital reallocation increases as

bank net worth declines.

The divergence of the marginal product of capital is echoed by reductions in the total

amount of capital reallocation (second panel) and decreases in the capital utilization rate

(third panel). Again, drops in capital reallocation and capital utilization are much more

pronounced in the crisis region where the limited enforcement constraints bind for all banks.

Finally, we plot the marginal value of bank net worth in the bottom panel of the figure. By

the envelope condition (43), the more likely the bank will be constrained in the next period,

the higher is the marginal value of bank net worth today. As a result, the marginal value of

bank net worth is a decreasing function of n.

D Bank Leverage

We plot the total amount of bank debt (top panel) and bank leverage (middle panel) as a

function of bank net worth in Figure 10.

In Figure 11, we plot the next period net worth as a function of current period net worth

as the dotted line. The dotted line intersects the 45 degree line, which is the solid line in the
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figure, only once where its slope is below 45 degree, indicating there is a unique stationary

steady state in the model. Bank net worth converges to nSSE in the long run. The solid line

is very close to the 45 degree line, especially in the region where both banks are constrained,

indicating convergence to steady state is slow and shocks to bank net worth have persistent

effects.

In the deterministic model, the economy converges to the steady state nSSE with prob-

ability one and stays at the steady state afterwards. In a stochastic model, shocks to TFP

and/or discount rates constantly push the system away from the steady state and generate

nontrivial economic fluctuations. It is natural to expect the stochastic model to have the

following properties. First, negative shocks depress bank net worth and lower the efficiency

of capital reallocation. Second, volatility of the economy spikes in the crisis region because

output is much more sensitive to shocks that affect bank net worth in this region. Third,

capital “flies” to the risk-free storage technology and the interest rate spread widens in the

crisis region as the limited enforcement constraints bind for all banks. The stock market is

depressed not only because expected cash flow drops, but also because intermediaries are

constrained and under pressure to sell. We evaluate these effects quantitatively in the next

section.

VI Quantitative Results

In this section, we consider two specifications of our model, a specification with TFP shocks

only and a specification with shocks to agency frictions only, and evaluate quantitatively

the impact of financial frictions. In the model with TFP shocks only, productivity shocks

are the only source of primitive shocks and are amplified by financial frictions. Consistent

with previous literature (for example, Kocherlakota (2000) and Chen and Song (2013)),

we find financial frictions do amplify TFP shocks, but the effect is quantitatively small.

Amplification accounts for about 11% of the macroeconomic fluctuations in the model with

TFP shocks. In addition, the economy almost never runs into the crisis region where the

limited enforcement constraint binds for all banks, because TFP shocks do not generate large

enough variations in bank net worth.

Our preferred calibration is the model with financial shocks, or shocks to agency frictions.

In this specification of the model, we introduce stochastic shocks to bankers’ discount rate.

We show that relatively small shocks generate large fluctuations in capital misallocation

and can account for most of the macroeconomic fluctuations in the U.S. economy. We
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show that this model endogenously generates countercyclical volatility at the aggregate level

and countercyclical dispersion in the cross-section. In addition, this version of the model

captures several salient features of the recent financial crisis, such as spikes in macroeconomic

volatility, sharp drops in capital reallocation and capital utilization, and sudden increases in

interest rate spreads.

To facilitate comparison, we choose the same parameters, except the volatility of exoge-

nous shocks, for both specifications of our model. This approach guarantees that both the

model with productivity shocks and that with financial shocks have the same deterministic

steady state. We then calibrate the volatility of the exogenous shocks in both models to

match the volatility of aggregate output in the data and evaluate the model’s implications

on the dynamics of macroeconomic quantities and asset prices.

A Calibration

We calibrate our model at the quarterly frequency. The calibrated parameter values are listed

in Table 1. We choose the standard preference and technology parameters to be consistent

with the real business cycle literature. We set the quarterly discount rate β = 0.999 and the

quarterly depreciation rate δ = 2%. We choose capital share α = 0.333 and the elasticity of

substitution across varieties to be η = 4, which is consistent with the value used in Hsieh

and Klenow (2009).

The second group of technology parameters are specific to our model and we calibrate

them to jointly match relevant moments in the data. We first choose the model parameters,

except the volatility of exogenous shocks to match the first moment of various aspects of

the U.S. economy during the period of 1929-2010. We calibrate our model at the quarterly

frequency and simulate the model to compute annual moments. We choose the capital

storage technology to be of the CES form:

g (x) = a0 +
b0
ν
xν .

The parameters of the storage technology a0 and b0 jointly determine the steady-state total

capital depreciation rate and capital utilization rate. We set a0 = −0.0118 and b0 = 0.982 to

target a depreciation rate of 2% and a capital utilization rate of 81%, which is the average

capital utilization rate in our sample. We choose the elasticity parameter ν = 0.98 so that

the volatility of capital utilization rate in our model with financial shocks matches that in the
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data, 4.08% per year.16 We choose the rest of the six parameters, the ratio of productivity

across firms, aH
aL

, the fraction of high productivity firms, π, the average productivity, E [A],

the fraction of assets bankers can divert, θ, the recovery rate of interbank loans upon default,

ω, the mean of bankers’ discount rate, Λ, to match the following six moments in the data.

We choose aH
aL

=1.9402 and π =0.2578 to match the average capital reallocation rate of 57%

reported in Eisfeldt and Rampini (2006), and to set output by high productivity firms to

be one half.17 We choose E [A] = 0.1645 to match mean aggregate growth rate of 0.5%,

consistent with the calibration of Gertler and Kiyotaki (2010). We set banker discount rate

E [Λ] = 0.9612 to match investment-output ratio of 20%. We set θ = 0.3026 to yield a steady

leverage ratio of the banking sector of 3.67, consistent with Gertler and Kiyotaki (2010). We

set ω = 0.0772, so that the steady interbank interest rate spread in our model matches the

historical average of the TED spread (the spread between T-bills and the LIBOR) of 0.16%

per year.

In the model with productivity shocks, we calibrate lnA to be an i.i.d. process and set

the standard deviation process to match the volatility of aggregate output in the data. In the

model with the model with financial shocks, we set Λt =
exp{λt}

exp{λt}+exp{−λt}
. This specification

allows us to specify λt as an i.i.d. process and grantees that Λ is a valid discount factor for

all values of λt. We calibrate the standard deviation of the AR(1) process of λ to match the

volatility of output in the data.

B Impulse Response

To understand the different implications of TFP shocks and discount rate shocks on financial

frictions, we use the policy function iteration method introduced in Section IV to numeri-

cally solve the model. We then plot the impulse functions for shocks to lnA in Figure 12

and those for shocks to λ in Figure 13, where the solid lines indicate positive shocks and

connected dotted lines stand for negative shocks. To emphasize the endogenous persistence

generated from our model, we assume all shocks are purely transitory when plotting the

impulse response functions. For example, we inject a positive shock into lnA for one period,

16The elasticity ν is the only technology parameter that is pin down by a second moment in the data.
We choose ν so that the volatility of capital utilization matches our preferred model, which is the one with
financial shocks.

17The simplicity of our model does not allow us to match a rich set of moments TFPR dispersion in the
data. Hsieh and Klenow (2009) report that the ratio of the 75th to 25th percentiles of TFPR is 1.7 and
that of the 90th to 10th percentiles is 3.3 in the U.S. in 1997. The ratio of the high productivity to low
productivity in our model, aH/aL is within this range.
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and assume that lnA returns to its steady state value immediately after that, even though

lnA is autocorrelated in our calibration.

We make several observations. First, shocks to λ have much more persistent effects

than shocks to productivity A, even though both shocks occur for one period and return to

steady state immediately afterwards. Immediately after a positive productivity shock, bank

net worth increases; however, the increase in current period net worth is accompanied by an

increase in debt (bf ) of a similar magnitude, this is because high productivity triggers high

consumption and high investment at the same time, and as a result, banks must borrow

more to finance the additional investment. Because productivity returns to steady state

immediately, so does return to capital. In this case, the initial increase in bank net worth

is offset by the increases in interest payment. In fact, as we see in the impulse response

functions, banks’ own net worth, after service to debt holders, drops below steady state.

Therefore, TFP shocks do affect bank net worth; however, the effect completely disappears

after one period.

The model with λ shocks are completely different in this respect, because increases in bank

net worth are accompanied by a change in bank debt in the opposite direction, and the two

effects reinforce each other, generating long-lasting impact on the economy. An increase in

banker’s discount rate reduces dividend payment and increases bank net worth immediately.

Because the increase in net worth is not accompanied by increases in productivity, the

income effect raises consumption immediately and investment drops due to the resource

constraint. As a result, banks borrow less from the households. This effect relaxes the limited

enforcement constraint going forward, improves capital reallocation, boosts production, and

generates a new round of increase in bank net worth. As a result, the initial shock to bank net

worth creates a self-reinforcing loop and generates extremely persistent impact. Eventually,

it dies off and all quantities converge to steady state. However, the effect is so persistent,

that the system is still far from convergence after twenty quarters.

Second, the effect of productivity shocks is largely symmetric: positive and negative

shocks in productivity result in changes in quantities and prices of similar magnitude. Qual-

itatively, as we have seen in the policy functions in the deterministic case, negative shocks

to net worth have larger impact on capital misallocation than positive ones, especially in the

“crisis” region. Quantitatively, however, productivity shocks induce very modest changes in

bank net worth due to the offsetting effect of bank debt. Although asymmetry and counter-

cyclical volatility are present in this case, they are quantitatively small.

In contrast, the asymmetry in the impulse responses of quantity and prices with respect
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to shocks to agency frictions is apparent in Figure 13. A positive shock to λ relaxes the

limited enforcement constraint and reduces the effect of future shocks. A negative shock to

λ tightens the limited enforcement constraint, making the system more sensitive to additional

disturbances. As a result, negative shocks are amplified and positive shocks are dampened,

leading to endogenous counter-cyclical volatility in our model.

Third, a positive productivity shock is associated with an improvement in capital utiliza-

tion (i.e., increases in u) but a deterioration in capital reallocation (i.e., drops in φ). Upon

impact, increases in A attract more capital from the storage technology into the productive

sector and raises capital utilization rate, u. However, more capital goes into the low pro-

ductivity firms because limited enforcement constraint for them is not binding. As a result,

the efficiency of capital reallocation among productive firms deteriorates even though more

capital is deployed in the productive sector. Overall, the efficiency of capital reallocation as

measured by uf (φ) improves but the effect is quantitatively small. Because bank net worth

quickly drops back to the steady state level, so does the efficiency in capital reallocation.

A positive innovation in financial shocks, on the other hand, improves the efficiency of

capital reallocation and capital utilization at the same time. The two effects reinforce each

other, leading to pronounced and persistent changes in total output. At the same time, the

Lagrangian multipliers on the limited enforcement constraints shrink and interbank interest

spread declines.

C Simulation

To understand the quantitative implications of the model, we simulate the model for 800

quarters and discard the first 400 quarters, aggregate the quarterly quantities in the re-

maining part of the simulation into annual quantities, and compute moments for annualized

quantities. We report moments of macroeconomic quantities in the data and in our models in

Table 2. Both specifications of our model are calibrated to match the mean, the volatility of

output growth, and the average level of interest rate spread in the data. All other moments

are endogenously generated from the model. Both versions of our model are consistent with

the basic features of the data in terms of the relatively low volatility of consumption growth,

the high volatility of investment, and the comovement between consumption and investment.

The level of risk-free interest is too high in both versions of the model — this is the risk-free

rate puzzle in production economies, which we do not attempt to address in this paper.18

18Ai et al. (2013) show that this issue can be resolved by using a recursive utility with high intertemporal
elasticity of substitution.
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Consistent with the data, both versions of our model produce fairly mild volatility of the

interbank interest rate spread.

Our model with financial shocks produces a strong countercyclical volatility in aggre-

gate time series, while the model with TFP shocks does not. In Table 2, the notation

Corr[∆lnY, V ol(∆lnY )] stands for the correlation between current period output growth

and the realized variance of future output growth. For each year, we compute the realized

variance of future output growth in the data as the realized variance of the growth rates of

quarterly industrial production during the next two years. In the model, we compute it as

the realized variance of output growth for the next eight quarters in our simulation. As in the

data, the correlation between output growth and realized variance of future output growth

is strongly negative in our model with financial shocks. However, the same correlation is

negligible in the model with TFP shocks. This phenomenon is also evident in the impulse

functions we plot for shocks to lnA (Figure 12) and shocks to λ (Figure 13). As we explain

previously, symmetric shocks in lnA produce roughly symmetric responses in total output,

consumption and investment, as in standard neoclassical models, while negative shocks to λ

produce a significantly larger effect on total output than positive shocks.

Note that the measured log TFP in our model equals ln Āt + ln utf (φt), where the

component ln utf (φt) depends on the efficiency of capital reallocation. In the last row

of Table 2, we report the fraction of the realized variance of TFP growth that comes from

variations in capital misallocation in out models:

V ar
[
ln
(
ut+1f

(
φt+1

))
− ln (utf (φt))

]

V ar
[
ln Āt+1 − ln Āt + ln

(
ut+1f

(
φt+1

))
− ln (utf (φt))

] .

In the model with TFP shocks, the efficiency of capital reallocation accounts for 11% of

total variation in TFP. Therefore, amplification is present in this version of the model, but

is quantitatively small. In the model with financial shocks only, the efficiency of capital

reallocation accounts for virtually all of the macroeconomic fluctuations.

We document the statistics related to the quantity and benefit of capital reallocation in

Table 3. Both versions of our model are consistent with the empirical evidence of procycli-

cal capital reallocation and procyclical capital utilization. However, consistent with small

magnitude of amplification, the variations in capital reallocation and capital utilization in

the model with TFP shocks are much smaller compared to the data and compared to our

model with financial shocks. In addition, in the model with TFP shocks, the cross-sectional

dispersion of the marginal product of capital is positively correlated with measured TFP,
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while this correlation is negative both in our model with financial shocks and in the data

(see also the empirical evidence in Eisfeldt and Rampini (2006)). The reason that TFP

shocks generate procyclical benefit of capital reallocation is that positive TFP shocks move

more capital from the risk-free storage technology to the productive sector, but most of the

capital goes to the less productive firms whose limited enforcement constraint does not bind.

As a result, although positive TFP shocks improve capital utilization, they also elevate the

cross-sectional dispersion of the marginal product of capital, as shown in Figure 12.

To further understand the implications of our model on volatility dynamics and economic

recessions, we report the moments of macroeconomic quantities and interest rate spreads in

the data and those in our model for recession periods and for non-recession periods separately.

For simplicity, we use a “rule of thumb” classification and define recession as two consecutive

quarters of declines in real GDP both in the data and in the model. Our definition yields

very similar results as the NBER definition of recession, and results in about 20% of the

sample being classified as recession both in the data and the model simulation.

Clearly, the volatility of consumption and output are strongly countercyclical in our

model, as in the data. Interestingly, there is no significant difference between the volatility

of investment in recession periods and that in non-recession periods both in the data and

in our model. Spikes in the volatility of output do not lead to significant increases in the

volatility of investment in our model, because shocks to λ are stationary. In recessions, bank

net worth is low and expected return is high. Negative shocks to bank net worth reduces

total output, but they also raise expected return. The two effects offset each other and do

not lead to significant increases in the volatility of investment. Overall, our model with

financial shocks is consistent with the pattern of capital utilization and interest rate spread

in the data. In recessions, the level of capital utilization drops, but the volatility of capital

utilization rates rises. The spread between interbank lending rate and household deposit rate

widens, and so does the volatility of the spread. All the above features are the endogenous

outcomes of the financial frictions in the model.

VII Conclusion

We presented a general equilibrium model with financial intermediary and capital realloca-

tion. Our model emphasizes the role of financial intermediary in reallocating capital across

firms with heterogenous productivity. We show that shocks to financial frictions alone may

account for a large fraction of the fluctuations of measured TFP and aggregate output.
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Our calibrated model is consistent with the salient features of business cycle variations in

macroeconomic quantities and asset prices. In particular, our model successfully generates

countercyclical volatility in aggregate consumption and output, and countercyclical disper-

sion in the cross-section.

An important next step is to infer or impute shocks to financial frictions from the data

and investigate whether our model can account for the realized variations in macroeconomic

quantities and asset prices once these shocks are fed into the model. One possible way is to

infer financial frictions from the dispersion in the marginal product of capital in the data.

The close link between the dispersion measure and TFP in Figure 1 suggests that our model

holds promises. A stronger discipline may be imposed on the model if we can infer shocks

to θ directly from banks’ balance sheet variables. We leave these for future research.
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VIII Appendix

A Misallocation and Aggregation on the Product Market

Aggregation

We first derive an aggregation result that is similar to Hsieh and Klenow (2009) and

Hopenhayn and Neumeyer (2008). In fact, the product market of our model is a special case

of Hsieh and Klenow (2009) and Hopenhayn and Neumeyer (2008) without labor market

distortions.

Consider the maximization problem in equation (3); first order conditions with respect

to k (j) and l (j) imply:

(1− α)

(
1−

1

η

)
pjyj = MPL · lj (48)

α

(
1−

1

η

)
pjyj = MPKj · kj . (49)

Together, the above imply:
kj
lj

=
MPL

MPKj

α

1− α
. (50)

To save notation, we denote Aj = Aa (j) in this section. Note also, total output of firm

j can be written as:

yj = Ajk
α
j l

1−α
j = Aj

[
kj
lj

]α
lj (51)

= Aj

[
lj
kj

]1−α

kj. (52)

Using equations (50) and (51), we can write lj as a function of yj:

lj =
yj
Aj

[
αMPL

(1− α)MPKj

]−α

. (53)

Similarly, equations (50) and (52) together implies

kj =
yj
Aj

[
αMPL

(1− α)MPKj

]1−α

. (54)

Using the demand function pj =
[ yj
Y

]− 1

η , we can replace yj in the above equations by p−η
j Y ,
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and integrate across all j, we have:

K̄ =

∫
p−η
j

Aj

[
1

MPKj

]1−α

dj

[
αMPL

1− α

]1−α

Y (55)

L̄ =

∫
p−η
j

Aj

[
1

MPKj

]−α

dj

[
αMPL

1− α

]−α

Y, (56)

where K̄ and L̄ stands for the total capital and total labor employed for production, respec-

tively. Together, equations (55) and (56) imply

Y =
K̄αL̄1−α

[∫ p
−η
j

Aj

[
1

MPKj

]1−α

dj

]α [∫ p
−η
j

Aj

[
1

MPKj

]−α

dj

]1−α
. (57)

We can express pj in equation (57) by functions of productivity and prices. Note that

equations (48) and (49) imply

MPKj · kj +MPL · lj =

(
1−

1

η

)
pjyj. (58)

Using equations (53) and (54), we have:

MPKj · kj +MPL · lj =
yj
Aj

[
MPL

(1− α)

]1−α [
MPKj

α

]α
. (59)

Combining (58) and (59), we have:

pj =
η

η − 1

1

Aj

[
MPL

(1− α)

]1−α [
MPKj

α

]α
. (60)

Note that the normalization of price we choose in (2) implies
∫
pjdj = 1. Integrating equation

(60) over j, we have:

η

η − 1

[
MPL

(1− α)

]1−α

=

{∫
1

Aj

[
MPKj

α

]α
dj

}−1

. (61)
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Together, equations (60) and (61) imply

pj =

1
Aj

[
MPKj

α

]α

∫
1
Aj

[
MPKj

α

]α
dj
. (62)

Replacing pj in equation (57) with equation (62), and using Aj = A1−αa (j), we can write

Y = TFPK̄αL̄1−α, where

TFP = A

{∫ ( aj
MPKα

j

)η−1

di

} η
η−1

+α−1

{∫ ( aj
MPKα

j

)η−1
1

MPKj
di

}α . (63)

Under the assumption (??), it is straightforward to show that TFP = A if MPKj = MPK

for all j. We define

EF =

{∫ ( aj
MPKα

j

)η−1

di

} η
η−1

+α−1

{∫ ( aj
MPKα

j

)η−1
1

MPKj
di

}α (64)

to be the efficiency measure of capital reallocation. Under the assumption lnαj and lnMPKj

are jointly normally distributed, we can show that

lnEF = −
1

2
[α (η − 1) + 1]ασ2, (65)

where σ2 is the cross-sectional variance of marginal product of capital. Note also, equation

(65) is approximately true for arbitrary distributions as long as the deviation of lnαj and

lnMPKj from there mean is small. Therefore, equation (65) can be viewed as a first order

Taylor approximation that maps the cross-sectional variance of marginal product of capital

into TFP losses due to misallocation.

Proof of Proposition 1

In the special case where aj takes on only two values, aH and aL as in equation (21), we

define φ = KH

KL
to be the ratio of capital employed on islands with high productivity shock

with respect to that employed on islands with low productivity shock, as in equation (21).

Note that

MPKj = αAaj

(
lj
kj

)1−α

; MPL = (1− a)Aaj

(
kj
lj

)α

.
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Note that because labor market is perfectly mobile, MPL must equalize across all islands.

Using the labor market clearing condition, equation (19) and assumption (5), we can prove

conditions (25) and (26). Using there conditions to replace MPKj in equation (64), the

efficiency measure in equation (64) can be written as equation (24). This completes the

proof of Proposition 1.

B Data Construction

B.1 Misallocation and TFP

In Figure 1, we plot the measure of capital misallocation and total factor productivity. We

measure the cross-sectional dispersion of TFPR following Hsieh and Klenow (2009). In the

context of our model, equation (49) implies

MPKj = α

(
1−

1

η

)
pjyj
kj

.

Following Chen and Song (2013), we measure MPKj by the ratio of Operating Income before

Depreciation (OIBDP) to one-year-lag net Plant, Property and Equipment (PPENT). As

in Hsieh and Klenow (2009), we focus on the manufacturing sector and compute the cross-

sectional dispersion measure within narrowly defined industries (as classified by the 4-digit

standard industry classification code). Specifically, for firm j in industry i, we compute

MPKi,j

MPKi

=
α
(
1− 1

η

)
pi,jyi,j
ki,j

α
(
1− 1

η

)
pjyj
kj

=

pi,jyi,j
ki,j
pjyj
kj

,

where
pjyj
kj

is measured at the industry level. We then compute the variance of
MPKi,j

MPKi
for

each year. This is our empirical measure of σ2 in equation (65). We use the first order

approximation in equation (65) to construct the time series of the misallocation measure,

which is the solid line in Figure 1. The measure of total factor productivity is directly taken

from the published TFP series on the Federal Reserve Bank of St Louis website. Both series

are HP filtered.
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B.2 Total Volume of Bank Loans

We measure the total volume of bank loans of non-financial corporate sector through the

aggregate balance sheet of nonfinancial corporate business (Table B.102) as reported in

the U.S. Flow of Funds Table. In particular, the bank loan is calculated as the difference

between total credit market liability (Line 23) and corporate bond (Line 26). Under this

construction, bank loans consist of the following credit market liability items: commercial

paper (Line 24), municipal securities (Line 25), depository institution loans (Line 27), other

loans and advances (Line 28) and mortgages (Line 29).

C Characterization of Binding Constraints

We first introduce some notations. We define the function Q̂ (·) and u (·) as:

Q̂ (A) = α

(
1−

1

η

)
A + 1− δ,

and

u (Q) = 1−

(
b0
Q

) 1

1−ν

.

Intuitively, Q̂ (A) is the price of capital in the first best case, which is the sum of the marginal

product of capital in the first best case, and the value of capital after depreciation. The

function u (·) is the inverse function of g′ (·). That is, u (Q) is the optimal capital utilization

rate that satisfies the first order condition of capital goods producer’s optimization problem

in (6) with the price of capital given by Q. Using the above notation, the cutoff value ŝ (A)

in Proposition 2 is given by:

ŝ (A) =
Q̂ (A)

πφ̂+ 1− π

{[
(1− ω)− (θ − ω)u

(
Q̂ (A)

)]
φ̂− (1− ω) (1− π)

(
φ̂− 1

)}
.

Let φ̄ (A) be the unique solution to the following equation on φ:

MPKL (A, φ)
[
(1− ω) (φ− 1)− (1− θ)

(
φ̂
1−ξ

φξ − 1
)]

+ (1− δ) (θ − ω) (φ− 1) = 0.
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Define the function D1 (A, φ) as

D1 (A, φ) =
MPKL (A, φ)

πφ+ 1− π

{
(1− θ) uL (A, φ) φ̂

1−ξ
φξ − (1− ω) [(φ− 1) (1− π)− φ (1− uL (A, φ))]

}

+
1− δ

πφ+ 1− π
{(1− θ) uL (A, φ)φ− (1− ω) [(φ− 1) (1− π)− φ (1− uL (A, φ))]} ,

where we denote uL (A, φ) = u (MPKL (A, φ) + 1− δ) to simplify notation. The cutoff value

s̄ (A) in Proposition 2 is given by:

s̄ (A) = D1

(
A, φ̄ (A)

)
.

Finally, we define the functions Q (A, φ) and D2 (A, φ) as

Q (A, φ) = (1− δ) +
1

1− ω

[
(1− θ)MPKL (A, φ)

φ̂
1−ξ

φξ − 1

φ− 1
− (θ − ω) (1− δ)

]
,

D2 (A, φ) = (1− θ) [MPKL (A, φ) + 1− δ]

− [(1− ω)Q (A, φ)− (1− θ) (MPKL (A, φ) + 1− δ)]

(
u (Q (A, φ))

πφ+ 1− π
− 1

)
.

Let φ∗ (A) be the solution to the equation on φ

(1− θ) [MPKL (A, φ) + 1− δ] + [(1− ω)Q (A, φ)− (1− θ) (MPKL (A, φ) + 1− δ)] = 0.

The cutoff value s∗ (A) in Proposition 2 is given by:

s∗ (A) = D2 (A, φ
∗ (A)) .

The following lemma provides details of the policy functions φ (x′, s′), u (x′, s′) and the

prices of capital QH (x′, s′), QL (x
′, s′), and Q (x′, s′) in the state space.

Lemma 1 The optimal policy functions, φ (x′, s′), u (x′, s′) and the prices of capital QH (x′, s′),

QL (x
′, s′), and Q (x′, s′) are given by the following.

1. For all (x′, s′) such that s′ < ŝ (A′), the following prices and quantities jointly satisfy
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the equilibrium conditions with ζH () = ξL () = 0.

φ (x′, s′) = φ̂

QH (x′, s′) = QL (x
′s′) = Q (x′, s′) = Q̂ (A′) ,

u (x′, s′) = u
(
Q̂ (A′)

)
.

2. For all (x′, s′) such that ŝ (A) ≤ s′ < s̄ (A′), the following prices and quantities jointly

satisfy the equilibrium conditions with ζH () > 0 and ξL () = 0.

(a) The policy φ (x′, s′) is implicitly defined by the solution to the following equation:

D1 (A
′, φ) = s′.

(b) The equilibrium prices of capital are given by:

QH (x′, s′) = MPKH (A′, φ (x′, s′)) + 1− δ,

QL (x
′, s′) = Q (x′, s′) = MPKL (A

′, φ (x′, s′)) + 1− δ.

(c) The policy function u (x′, s′) is given by:

u (x′, s′) = uL (A
′, φ (x′, s′)) .

3. For all (x′, s′) such that s̄ (A) ≤ s′ ≤ s∗ (A′), the following prices and quantities jointly

satisfy the equilibrium conditions with ζH () > 0 and ξL () = 0.

(a) The policy φ (x′, s′) is implicitly defined by the solution to the following equation:

D2 (A
′, φ) = s′

(b) The equilibrium prices of capital are given by:

QH (x′, s′) = MPKH (A′, φ (x′, s′)) + 1− δ

QL (x
′, s′) = MPKL (A

′, φ (x′, s′)) + 1− δ

Q (x′, s′) = Q (A′, φ (x′, s′)) .
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(c) The policy function u (x′, s′) is given by:

u (x′, s′) = 1−

(
b0

Q (x′, s′)

) 1

1−ν

.

Proof. Substituting equations (31) and (32) into two limited commitment constraints (34)

and (35), we write the two limited commitment constraints as:

(1− θ) [MPKH (A′, φ′) + (1− δ)]

−

[
(1− ω)MPK (u′)

− (1− θ)MPKH (A′, φ′) + (θ − ω) (1− δ)

](
u′φ′

πφ′ + (1− π)
− 1

)
≥ s′, (66)

(1− θ) [MPKL (A
′, φ′) + (1− δ)] (67)

−

[
(1− ω)MPK (u′)

− (1− θ)MPKL (A
′, φ′) + (θ − ω) (1− δ)

](
u′

πφ′ + (1− π)
− 1

)
≥ s′. (68)

Similarly we substitute equations (31) and (32) into Lagrangian multipliers (36) and (37),

and define:

ζH(A
′, φ′, u′) =

π [MPKH (A′, φ′)−MPK (u′)]

[(1− ω)MPK (u′)− (1− θ)MPKH (A′, φ′)] + (θ − ω) (1− δ)
, (69)

ζL(A
′, φ′, u′) =

(1− π) [MPKL (A
′, φ′)−MPK (u′)]

[(1− ω)MPK (u′)− (1− θ)MPKL (A′, φ′)] + (θ − ω) (1− δ)
. (70)

The Kuhn-Tucker conditions imply:

ζH(A
′, φ′, u′) ≥ 0, > 0 =⇒ (66) holds with =, (71)

ζL(A
′, φ′, u′) ≥ 0, , > 0 =⇒ (68) holds with = . (72)

Note the policy functions φ (A, s) and u (A, s) are determined by conditions (66), (68), (71)

and (72). To simplify notation, here and after in this section, we use current period state
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variable Z instead of Z ′. We also define the LHS of constraint (68) as a function of (A, φ, u):

Ψ (A, φ, u) = (1− θ) [MPKH (A, φ) + (1− δ)]

−{(1− ω)MPK (u)− (1− θ)MPKH (A, φ) + (θ − ω) (1− δ)}

(
uφ

πφ+ (1− π)
− 1

)
.

To study the nature of the binding constraint, it is convenient to define ∆ as:

∆ (A, φ, u) = (1− θ)MPKL (A, φ)− (1− θ)φMPKH (A, φ)

+ (1− ω) (φ− 1)MPK (u) + (θ − ω) (φ− 1) (1− δ) .

Throughout, we maintain the assumption θ > ω. Note that we have three cases:

• Only constraint (66) binds =⇒ ∆ > 0.

• Both constraints (68) and (68) binds =⇒ ∆ = 0.

• Only constraint (68) binds =⇒ ∆ < 0.

First best case, no constraint binds: We define

ŝ (A) = Ψ
(
A, φ̂, u

(
Q̂ (A)

))
.

and simplify the expression as

Ψ
(
A, φ̂, u

(
Q̂ (A)

))
=

Q̂ (A)

πφ̂+ 1− π

{
[(1− ω)− (θ − ω) û (A)] φ̂− (1− ω) (1− π)

(
φ̂− 1

)}
.

Claim 1 If s ≤ ŝ (A) then the optimal policy is given by:

φ (A, s) = φ̂, u (A, s) = u
(
Q̂ (A)

)
. (73)

Proof. We need to show that (66), (68), (71) and (72) are satisfied with above choices of

the Lagrangian multipliers. Under the proposed policies and prices, the LHS of (66) is

Ψ
(
A, φ̂, u

(
Q̂ (A)

))
= ŝ (A) ≥ s.
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Also,

∆ = (1− θ)MPKL (A, φ)− (1− θ)φMPKH (A, φ) + (1− ω) (φ− 1)MPK (u)

= (θ − ω) (φ− 1)MPKH (A, s) > 0

Therefore, both (66) and (68) are satisfied. Finally, note that (73) implies thatMPKH (A, φ (A, s)) =

MPKL (A, φ (A, s)) = MPK (A, s) = α
(
1− 1

η

)
A, and therefore ξH (A, s) = ξL (A, s) =

0. As a result, the Kuhn-Tucker conditions (71) and (72) are satisfied with ξH (A, s) =

ξL (A, s) = 0.

Only the constraint on high productivity islands binds: Define uL (A, φ) as

uL (A, φ) = 1−

(
b0

MPKL (A, φ) + 1− δ

) 1

1−ν

.19

Let φ̄ (A) be the unique solution to

∆ (A, φ, uL (A, φ)) = 0,

and let s̄ (A) be

s̄ (A) = Ψ
(
A, φ̄ (A) , uL

(
A, φ̄ (A)

))
.

Given the definition of uL (A, φ), we can show that

Ψ (A, φ, uL (A, φ))

=
MPKL (A, φ)

πφ+ 1− π

{
(1− θ)uL (A, φ) φ̂

1−ξ
φξ − (1− ω) [(φ− 1) (1− π)− φ (1− uL (A, φ))]

}

+
1− δ

πφ+ 1− π
{(1− θ) uL (A, φ)φ− (1− ω) [(φ− 1) (1− π)− φ (1− uL (A, φ))]} ,

∆(A, φ, uL (A, φ)) = MPKL (A, φ)
[
(1− ω) (φ− 1)− (1− θ)

(
φ̂
1−ξ

φξ − 1
)]

+(1− δ) (θ − ω) (φ− 1) .

Using the above expressions, we can prove that Ψ (A, φ, uL (A, φ)) is strictly decreasing in

φ and ∆ (A, φ, uL (A, φ)) is strictly increasing functions of φ. As a result, i) φ ≥ φ̄ (A)

if and only if ∆ (A, φ, uL (A, φ)) ≥ 0; ii) φ ≥ φ̄ (A) if and only if Ψ (A, φ, uL (A, φ)) ≤

Ψ
(
A, φ̄ (A) , uL

(
A, φ̄ (A)

))
.

19That is, uL (A, φ) = u (MPKL (A, φ) + 1− δ).
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Claim 2 If ŝ (A) ≤ s ≤ s̄ (A) then the optimal policy φ (A, s) is implicitly defined by the

unique solution to

Ψ (A, φ, uL (A, φ)) = s. (74)

Given φ (A, s), the optimal policy u (A, s) is given by

u (A, s) = uL (A, φ (A, s)) . (75)

Proof. First, by construction, Ψ (A, φ, uL (A, φ)) = s and (66) holds with equality. Also,

the assumption that s ≤ s̄ (A) implies φ ≥ φ̄ (A) and ∆(A, φ, uL (A, φ)) ≥ 0; therefore,

(68) is satisfied. Finally, condition (75) implies MPK (A, s) = MPKL (A, φ (A, s)) and

ξL (A, s) = 0; therefore, the Kuhn-Tucker condition (72) is satisfied.

Both constraints bind: Define

s∗ (A) = max
φ,u

Ψ (A, φ, u)|∆(A,φ,u)=0 . (76)

Claim 3 If s∗ (A) ≤ s < s̄ (A) then the optimal policy {φ (A, s) , u (A, s)} are jointly deter-

mined by:

Ψ (A, φ, u) = s, ∆(A, φ, u) = 0. (77)

Proof. Clearly, by construction, both (66) and (68) holds with equality. Also, we can show

that u (φ, s) < uL (A, φ (A, s)); therefore, MPK (A, s) < MPKH (A, φ (A, s)) , MPKL (A, φ (A, s))

and ξH (A, s), ξL (A, s) > 0. As a result, the Kuhn-Tucker conditions (71) and (72) are sat-

isfied.

Note that we can simplify further by using ∆ (A, φ, u) = 0 to define Q (A, φ) as the price

of capital such that ∆ (A, φ, u) = 0:

Q (A, φ) = (1− δ) +
1

1− ω

[
(1− θ)MPKL (A, φ)

φ̂
1−ξ

φξ − 1

φ− 1
− (θ − ω) (1− δ)

]
.

With this notation, we can substitute u and write Ψ (A, φ, u) as

Ψ (A, φ, u (Q (A, φ))) = (1− θ) [MPKL (A, φ) + 1− δ]

− [(1− ω)Q (A, φ)− (1− θ) (MPKL (A, φ) + 1− δ)]

(
u (Q (A, φ))

πφ+ 1− π
− 1

)
.
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Equation (77) becomes Ψ (A, φ, u (Q (A, φ))) = s, and (76) becomes

s∗ (A) = max
φ

Ψ (A, φ, u (Q (A, φ))) .

D Construction of the Markov Equilibrium

We first use the result of Appendix C to construct the policy functions φ (A, s) and u (A, s)

and the associated prices and Lagrangian multipliers. We then characterize other equilibrium

conditions. The FOC (40) and (43) imply:

E
[
M̃ ′ {1 + ζH (A′, s′) + ζL (A

′, s′)}
]
Rf (Z) = E

[
M̃ ′ {1 + (1− ω) [ζH (A′, s′) + ζL (A

′, s′)]}Q (A′, s′)
]
.

(78)

Suppose we start with an initial guess of policy functions of normalized consumption and

marginal value of net worth, c (A′, s′) and µ (x′, s′), the SDF can be written as:

M (Z,Z ′) = β
C (Z)

C (Z ′)
=

β [Auf (φ)− i]

c (A′, s′)

K

K ′
=

β [m (A, s)− i]

c (A′, s′) [1− δ (A, s) + i]
,

where we denote

m (A, s) = Au (A, s) f (φ (A, s)) ,

1− δ (A, s) = h (1− u (A, s)) + (1− δ)u (A, s) .

Because the risk-free interest rate Rf (Z) satisfies

Rf (Z) =
1

E [M (Z,Z ′)|Z]
, (79)

we have:

Rf (Z) =
1

E
[

β[m(A,s)−i]
c(A′,s′)[1−δ(A,s)+i]

] , (80)
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thus the LHS of equation (78) is now written as:

E
[

β[m(A,s)−i]
c(A′,s′)[1−δ(A,s)+i]

{(1− Λ′) + Λ′µ (x′, s′)} {1 + ζH (A′, s′) + ζL (A
′, s′)}

]

E
[

β[m(A,s)−i]
c(A′,s′)[1−δ(A,s)+i]

]

=
E
[
{(1−Λ′)+Λ′µ(x′,s′)}

c(A′,s′)
{1 + ζH (A′, s′) + ζL (A

′, s′)}
]

E
[

1
c(A′,s′)

] .

The RHS of equation (78) is

E

[
β [m (A, s)− i] {(1− Λ′) + Λ′µ (x′, s′)}

c (A′, s′) [1− δ (A, s) + i]
{1 + (1− ω) [ζH (A′, s′) + ζL (A

′, s′)]}Q (A′, s′)

]

Therefore, equation (78) is can be written as:

E

[
β [m (A, s)− i] {(1− Λ′) + Λ′µ (x′, s′)}

c (A′, s′) [1− δ (A, s) + i]
{1 + (1− ω) [ζH (A′, s′) + ζL (A

′, s′)]}Q (A′, s′)

]

=
E
[
{(1−Λ′)+Λ′µ(x′,s′)}

c(A′,s′)
{1 + ζH (A′, s′) + ζL (A

′, s′)}
]

E
[

1
c(A′,s′)

] , (81)

or

m (A, s)− i

[1− δ (A, s) + i]
=

E
[
{(1−Λ′)+Λ′µ(x′,s′)}

c(A′,s′)
{1 + ζH (A′, s′) + ζL (A

′, s′)}
]

βE
[
{(1−Λ′)+Λ′µ(x′,s′)}

c(A′,s′)
{1 + (1− ω) [ζH (A′, s′) + ζL (A

′, s′)]}Q (A′, s′)
]
× E

[
1

c(A′,s′)

] .

(82)

Next we describe the law of motion of the state variable. Let N denote the aggregate

net worth of the banking sector in the current period, N ′
H , and N ′

L denote the total net

worth of the bank in the next period in the case of high productivity and low productivity,

respectively. Because only a fraction Λ of the banks survive to the next period, total bank

net worth in the period, N ′ is:

N ′ = Λ′ {πN ′
H + (1− π)N ′

L} .
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Using equation (12),

πN ′
H + (1− π)N ′

L = πQH (Z ′) [K ′ +RAH (Z ′)] + (1− π)QL (Z
′) [K ′ +RAL (Z

′)]

−Q(Z ′) [πRAH (Z ′) + (1− π)RAL (Z
′)]−Rf (Z)Bf (83)

Denoting K ′
H = K ′ + RAH (Z ′) and K ′

L = K ′ + RAL (Z
′), and using πMPKH (Z ′)K ′

H +

(1− π)MPKL (Z
′)K ′

L = α
(
1− 1

η

)
Y ′, together with πK ′

H + (1− π)K ′
L = u′K ′, we write

the first two terms of the above equation as

πQH (Z ′)K ′
H + (1− π)QL (Z

′)K ′
L

= πMPKH (Z ′)K ′
H + (1− π)MPKL (Z

′)K ′
L + (1− δ) [πK ′

H + (1− π)K ′
L] .

= α

(
1−

1

η

)
Y ′ + (1− δ) u′K ′. (84)

By the resource constraint (16), we have πRAH (Z ′) + (1− π)RAL (Z
′) = (u′ − 1)K ′. In

addition, Q (Z ′) = MPK (Z ′)K ′ + (1− δ) , we can combine the first three terms in (83) as:

πQH (Z ′)K ′
H + (1− π)QL (Z

′)K ′
L −Q(Z ′) [πRAH (Z ′) + (1− π)RAL (Z

′)]

= α

(
1−

1

η

)
Y ′ + (1− δ)u′K ′ −Q (Z ′) (u′ − 1)K ′ (85)

= α

(
1−

1

η

)
Y ′ + (1− u′)MPK (Z ′)K ′ + (1− δ)K ′. (86)

Therefore, (83) can be written as:

πN ′
H + (1− π)N ′

L = α

(
1−

1

η

)
Y ′ + (1− u′)MPK (Z ′)K ′ + (1− δ)K ′ − Rf (Z)Bf .

We have:

N ′ = Λ′

[
α

(
1−

1

η

)
Y ′ + (1− u′)MPK (Z ′)K ′ + (1− δ)K ′ − Rf (Z)Bf

]
. (87)

Next we derive the law of motion for state variable s. Using banks’ budget constraint

(10), we derive

s′ =
Rf (Z)Bf

K ′
=

Rf (Z) (K
′ −N)

K ′
= Rf (Z)

[
1−

N

K ′

]
= Rf (Z)

K

K ′

[
K ′

K
−

N

K

]
. (88)
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We can express all the terms on the RHS of equation (87) as functions of the state variables

(A, s):

Y = Am (A, s)K, u = u (A, s) , Rf (Z−1)Bf,−1 = sK.

Therefore, we can express N
K

as a function of the state variable (A, s):

N

K
= Λ

[
α

(
1−

1

η

)
Am (A, s) + (1− u (A, s))MPK (A, s) + (1− δ)− s

]
(89)

Now we can combine equations (88) and (89) and use (80) to derive the law of motion of the

state variable s:

s′ =

{
[1− δ (A, s) + i]− Λ

[
α
(
1− 1

η

)
Am (A, s) + (1− u (A, s))MPK (A, s) + (1− δ)− s

]}

β [m (A, s)− i]E
[

1
c(A′,s′)

]

(90)

Now we can combined equations (82) and (90) to solve for the two unknowns, i and s′.

E Computation Details

E.1 Recursive policy function iteration approach

We use the result of Appendix C to construct the policy functions φ (A, s) and u (A, s) and

the associated prices and Lagrangian multipliers. Let {cn (x, s) , µn (x, s)} be an initial guess

of an equilibrium functional. Use equations (82) and (90) to construct the policy function

i (A, s) and law of motion s′ (A, s). This involves for each (A, s) solving the two nonlinear

equations (82) and (90). Use the envelop condition (43) and the resource constraint to

update {cn (x, s) , µn (x, s)}:

µn+1 (x, s) =
E
[

{(1−Λ′)+Λ′µn(x′,s′)}
cn(x′,s′)

{1 + ζH (A′, s′) + ζL (A
′, s′)}

∣∣∣x
]

E
[

1
cn(x′,s′)

∣∣∣ x
] ,

cn+1 (x, s) = m (A, s)− i (x, s) .

We then iterate until convergence.
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E.2 Solving for the deterministic steady state equilibrium (SSE)

We first consider the deterministic SSE assuming that the SSE is in case 2, that is, only one

constraint in binding.

1. Using equation (36) to define ξH as function of φ:

ζH(φ) =

πMPKL (A, φ)

[(
φ̂

φ

)1−ξ

− 1

]

(θ − ω) [MPKL (A, φ) + (1− δ)]
. (91)

2. Given ξ (φ), equation (82) can be used to define investment as a function φ:

1− δ + i =
1 + (1− ω) ξH (φ)

1 + ξ (φ)
[MPKL (A, φ) + 1− δ] . (92)

Note that here, we are using the fact that δ (A, s) = δ in the steady state.

3. We can now use the law of motion of s to express SSE s as a function of φ:

(β − Λ) s = (1− δ) (1− Λ)+i (φ)−Λ

{
α

(
1−

1

η

)
AuL (A, φ) f (φ) + (1− uL (A, φ))MPKL (A, φ)

}
.

4. Finally, we use (74) to solve for the SSE φ:

s (φ) =
MPKL (A, φ)

πφ+ 1− π

{
(1− θ)uL (A, φ) φ̂

1−ξ
φξ − (1− ω) [(φ− 1) (1− π)− φ (1− uL (A, φ))]

}

+
1− δ

πφ+ 1− π
{(1− θ) uL (A, φ)φ− (1− ω) [(φ− 1) (1− π)− φ (1− uL (A, φ))]} .

After solving the SSE level of φ, we can derive all other SSE quantities using equilibrium

conditions. Note that in the above calculation, if we assume SSE levels of depreciation rate

δsse and capital utilization rate, usse, the steady state is determined as a function of the

following five primitive parameters of the model: Asse, φ̂, θ, ω, and Λsse.

E.3 Setting moments

1. Given a SSE capital depreciation δ = 0.02, we can use the growth rate to set investment-

to-capital ratio:

groDATA = 1− δDATA + iDATA.
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Note that we have used a moment to set an endogenous variable, not a parameter.

However, equations (91) and (92) jointly put a restriction on other parameter val-

ues with this choice of i: i (φ) = iDATA, where φ is a function of the parameters(
Asse, φ̂, θ, ω, π

)
from equations (91) and (92).

2. Note that SSE capital reallocation-to-investment ratio is

RA

I

∣∣∣∣
DATA

=
π [(1− π) (φ− 1) + (1− usse)φ]

(πφ+ 1− π) i
.

the ratio of output from high relative to low productivity firms is

πTRH

(1− π) TRL

∣∣∣∣
DATA

=
π

1− π
φ̂
1−ξ

φξ.

Note that SSE φ is a function of parameters of the model,
(
Asse, φ̂, θ, ω,Λsse, π

)
.

Therefore, by setting RA
I

= 57.3% and πTRH

(1−π)TRL
= 1, we have two more conditions

to put restrictions on the parameters (assuming a steady-state usse).

3. Given uDATA, and given iDATA, the investment-to-output ratio is:

I

Y

∣∣∣∣
DATA

=
iDATA

Auf (φ)
.

Note that φ is a function of all parameter values of the model. This constitutes another

equation that can be used to set parameter values of the model.

4. Bank leverage is another moment in the data that we can use to set parameters values

of the model.

Leverage =
1− δsse + i

n
=

1− δsse + i

n

Note that s′ =
RfBf

K ′
= Rf

K ′−N
K ′

= Rf

(
1− n

1−δsse+i

)
. Therefore, n

1−δsse+i
= 1 − s′

Rf
.

Using Rf = 1−δsse+i
β

, we have

Leverage = 1 +
βs

1− δsse + i− βs
.
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5. Also the SSE interbank interest rate is given by:

RI = MPKL (A, φ) + 1− δ.

Therefore, the interbank interest spread is:

spread = ln

(
1− δ + i

β

)
− ln (MPKL (A, φ) + 1− δ) .
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Figure 1: Log TFP and Capital Misallocation Measured in Log TFP Units

Log TFP, Capital Utilization and Misallocation Measured in Log TFP Units
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Figure 1 plots the time series of total factor productivity (dashed line) in the U.S. and the measure

of capital misallocation (solid line) in the period 1963-2012. The construction of the misallocation

measure follows Hsieh and Klenow (2009). We provide the details of the construction in Appendix

B. We use the first order Taylor expansion in equation (65) to translate the misallocation measure

into log TFP units. Both series are HP filtered.
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Figure 2: Business Cycle Variations of the Total Volume of Bank Loan
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Figure 2 plots the business cycle variations of the total volume of bank loans for all non-financial

firms in the US corporate sector. The solid line is the changes in the total volume of bank loans

and the dashed line is GDP growth. Shaded areas stand for NBER classified recessions.

55



Figure 3: Total Volume of Bank Loan and Capital Misallocation
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Figure 3 plots the net increases in the total volume of bank loan and our measure of capital

misallocation constructed from COMPUSTAT firms during the period 1958-2012.
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Figure 4: Total Volume of Bank Loan and Aggregate Volatility
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Figure 4 plots the net increases in the total volume of bank loan and stock market volatility in the

U.S. during the period 1958-2012.
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Figure 5: Total Volume of Bank Loan and Idiosyncratic Volatility
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Figure 5 plots the net increases in the total volume of bank loan and the cross-sectional dispersion

of firm profit for COMPUSTAT firms.
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Figure 6: Timing of Events

Figure 6 illustrates the timing of event from period t to period t+ 1 in the infinite horizon model.
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Figure 7: Macroeconomic Quantities and Bank Net Worth
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Figure 7 plots the normalized output (top panel), normalized consumption (middle panel) and the

normalized investment (bottom panel) as functions of bank net worth. n̂ is the cutoff value of bank

net worth below which the limited enforcement constraints start to bind for some banks, and n̄ is

the cutoff value below which the limited commitment constraint bind for all banks.
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Figure 8: Asset Prices and Bank Net Worth
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Figure 8 plots the price of capital on the reallocation market (top panel), the price of consumption

claim (middle panel), and the spread between the interbank lending rate and the household deposit

rate (bottom panel) as functions of bank net worth. n̂ is the cutoff value of bank net worth below

which the limited enforcement constraints start to bind for some banks, and n̄ is the cutoff value

below which the limited commitment constraints bind for all banks.
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Figure 9: Capital Reallocation and Bank Net Worth
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Figure 9 plots the marginal product of capital (top panel), total amount of capital reallocation

(second panel), rate of capital utilization (third panel), and the marginal value of bank net worth

(bottom panel) as functions of bank net worth. In the top panel, the solid line is marginal product

of capital on high productivity islands, the dotted line is that on low productivity islands, and the

dashed line is the marginal product of capital in the risk-free storage technology.
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Figure 10: Leverage and Bank Net Worth
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Figure 10 plots the normalized bank debt (top panel), bank leverage (middle panel) and next period

net worth (bottom panel) as functions of current period net worth.
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Figure 11: Dynamics of Bank Net Worth
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Figure 11 plots next period net worth as a function of current bank net worth (dotted line) and

the 45 degree line (solid line). The intersection is the steady state level of bank net worth (nSSE).
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Figure 12: Impulse Responses to Productivity Shocks
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Figure 12 plots the impulse response functions of quantities and prices with respect to a positive

innovation in productivity shocks (solid line) and those with respect to a negative innovation in

productivity shocks (connected dotted line). We assume shocks are purely transitory and all impulse

responses are plotted as deviations from the steady state.
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Figure 13: Impulse Responses to Financial Shocks
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Figure 13 plots the impulse response functions of quantities and prices with respect to a positive

innovation in discount rate shocks (solid line) and those with respect to a negative innovation

in discount rate shocks (connected dotted line). We assume shocks are purely transitory and all

impulse responses are plotted as deviations from the steady state.
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Table 1: Calibrated Parameters and Targeted Moments (quarterly)

Parameter Value Targeted Moment Data
β discount rate 0.999 ——– −
α capital share 0.333 Kydland and Prescott (1982) −
η

η−1
markup 1.25 Hsieh and Klenow (2009) −

δ depreciation 2.4% Kydland and Prescott (1982) −
aH
aL

productivity 1.9402 mean capital reallocation 57.23%

π prob. of aH 0.2578 output by high prod. firms 50%
E [A] agg. productivity 0.1645 mean aggregate growth rate 0.5%
Λ banker discount rate 0.9612 investment-output ratio 20%
θ banker outside option 0.3026 bank leverage 3.67
ω interbank friction 0.0423 mean TED spread 0.16%
a0 storage technology −0.0118 average capital utilization 81%
b0 storage technology 0.9819 average depreciation 2%
ν storage technology 0.98 — —-

Table 1 lists the parameter values we use in our model and the macroeconomic moments used to calibrate

these parameter values.
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Table 2: Macroeconomic Moments

Moments Data TFP Shocks Financial Shocks
E [∆ lnY ] 1.8% 1.85% 1.77%
V ol [∆ lnY ] 3.49% 3.40% 3.57%
V ol [∆ lnC] 2.53% 2.45% 1.81%
V ol [∆ ln I] 13.51% 7.13% 20.42%
Corr [∆ lnC,∆ ln I] 39.7% 92% 28.6%
AC [∆ lnC] 49% 0.45% 50%
E [lnRf ] 0.86% 4.76% 4%
V ol [lnRf ] 0.97% 0.53% 1.73%
E [RI ]−E [Rf ] 0.64% 0.74% 0.93%
V ol [lnRI − lnRf ] 0.88% 0.04% 0.48%
Corr [∆ lnY, V ar (∆ lnY )] −0.15 -0.03 −0.44
V ar [∆uf (φ)] /V ar [∆TFP ] − 11% 96%

Table 2 documents moments of macroeconomic quantities and interest rates in the U.S. (1930-2009),

those generated by our model with TFP shocks, and those generated by our model with financial shocks.

Corr [∆ lnY, V ar (∆ lnY )] stands for the correlation of output growth and the variance of future output

growth. The latter is calculated as the realized variance of quarterly output growth for the next two years.

V ar [∆uf (φ)] /V ar [∆TFP ] stands for the fraction of variance in output that can be accounted for by

changes in the efficiency of capital reallocation.
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Table 3: Capital Reallocation and Capital Utilization

Moments Data TFP Shocks Financial Shocks
E [RA/I] 25% 41% 33%
E [V ar (lnMPK)] 70% 5.13% 5.10%
V ol [V ar (lnMPK)] /E [V ar (lnMPK)] 24% 3.1% 32.3%
E [u] 80% 79.7% 78.3%
V ol [u] 4.08% 1.50% 4.04%

Corr
[
∆ ln T̃ FP ,∆ lnRA

]
0.24 0.64 0.32

Corr
[
∆ ln T̃ FP , V ar (lnMPK)

]
−0.14 0.37 −0.48

Corr
[
∆ ln T̃ FP , ln u

]
0.30 0.96 0.91

Table 3 documents the moments of capital reallocation and capital utilization in the data, and those generated

by our models. Our construction of capital reallocation series follows Eisfeldt and Rampini (2006). Details

of the calculation of the cross-section dispersion in log marginal product of capital (lnMPK) can be found

in Appendix A of the paper. The capacity utilization rate (u) is published by Federal Reserve Bank of St.

Louis.
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Table 4: Crisis Dynamics

Moments Non-Recession Periods Recession Periods
Data Model Data Model

V ol [∆ lnY ] 3.53% 3.2% 4.18% 5.96%
V ol [∆ lnC] 2.32% 1.28% 3.42% 2.28%
V ol [∆ ln I] 9.07% 14.08% 9.86% 13.92%
E [u] 81.1% 81.12% 78.41% 73.23%
V ol [u] 3.87% 2.87% 5.27% 4.8%
E [lnRI − lnRf ] 0.56% 0.84% 0.98% 1.62%
V ol [lnRI − lnRf ] 0.36% 0.17% 0.59% 0.23%

Table 4 documents the first and second moments of macroeconomic quantities and interest rates in recession

and non-recession periods in the data and in our model with financial shocks. Both in the model and in the

data, recession is classified as two consecutive quarters of decline in real GDP.
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