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Abstract

In the past two decades, there has been a large increase in cross-border holdings of financial
assets, making currency movements important sources of capital gains and losses. In this con-
text, monetary policy can enhance risk-sharing across countries by influencing exchange rates.
Furthermore, the strength of this channel depends on the portfolio the country holds, giving
rise to a potential rationale for capital controls. To shed light on these issues, I study an open
economy model with nominal rigidities, incomplete markets, and assets denominated in home
and foreign currency. I develop an approximation method that allows me to characterize the
optimal policy explicitly. I show that optimal monetary policy is a weighted average of an
inflation target and an insurance target and characterize the optimal weight sharply. Perhaps
surprisingly, as insurance considerations become more important, home-currency positions be-
come larger, and the excess-return volatility of home-currency assets actually decreases, rather
than increases as one would expect with fixed ad hoc portfolios. In addition, I find that private
portfolio decisions in small open economies are approximately efficient so that differential capi-
tal controls on foreign- vs. home-currency assets are not called for by the approximate solution.
In my baseline calibration, the welfare gains from the optimal policy are 1.5 times larger than
those from inflation-targeting.
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1 Introduction

The size of international balance sheets has increased dramatically in the past two decades (Lane
and Milesi-Ferretti, 2007). A recent literature has argued that this financial integration has signifi-
cant implications for the dynamics of a country’s net foreign asset position, as movements in asset
prices create sizeable capital gains and losses. Today, these valuation effects are often of comparable
magnitude to current-account fluctuations (Gourinchas and Rey, 2013; Lane and Milesi-Ferretti,
2007; Tille and van Wincoop, 2010). The goal of this paper is to study the implications of financial
integration for optimal monetary policy and capital controls.

The analysis is motivated by two observations. The first observation is that monetary policy
and capital controls can be used to influence exchange rate movements, which are one of the most
important sources of asset price fluctuations in open economies (Lane and Shambaugh, 2010b).
For example, tightening monetary policy and taxing savings typically leads to a stronger currency,
increasing the real value of home-currency bonds. Thus, by increasing the returns of the country’s
international portfolio in bad times, and decreasing them in good times, central bank policies can
improve the hedging properties of the portfolio; that is, they can play an insurance role.1

The second observation is that the country’s international portfolio is a key determinant of the
strength of the insurance channel. When agents have sizeable positions in home-currency bonds,
exchange rate movements can be very powerful as a means of completing markets. This has two
implications. First, there is a two-way feedback between monetary policy and portfolio choice, as
positions depend on agents’ expectations of monetary policy. Second, capital controls taxing the
composition of international portfolios may be desirable, as agents do not internalize the effect
of their portfolio choice on the ability of the central bank to provide insurance. Indeed, the pres-
ence of incomplete markets and nominal rigidities guarantees this will be the case (Geanokoplos
and Polemarchakis, 1986, Farhi and Werning, 2016). However, there is little guidance as to how
important these taxes may be.

The main contribution of this paper is to characterize optimal monetary policy and capital
controls in a model that allows for the previous considerations. From an economic standpoint, this
requires: (i) extending the typical open economy macroeconomic model used for optimal policy
analysis, where either markets are complete and there is no insurance role, or there is a single asset
and there is no role for portfolio choice;2 and (ii) developing new tools to study optimal policy
in these richer environments, where the standard linear-quadratic framework cannot immediately
be applied due to the indeterminacy of the portfolio at the steady state. To this end, I extend a
canonical open economy model by allowing the home country to trade multiple assets with the
rest-of-the-world. I assume these assets are insufficient to span the whole state space (i.e., markets

1It is well-understood that monetary policy can play an insurance role in environments with incomplete markets via
terms-of-trade manipulation (Obstfeld and Rogoff, 2002, Corsetti, Dedola and Leduc, 2010). I assume the terms-of-trade
are exogenous to focus on the role of gross positions, which is less well-understood.

2An important exception is the work of Benigno (2009a), Benigno (2009b), and Senay and Sutherland (2017). There
are important differences with these papers, which I discuss in detail at the end of this section.
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are incomplete) and the return of some of these assets depends on monetary policy. I overcome
the indeterminacy of the steady-state portfolio by showing how the perturbation approach in Judd
and Guu (2001) employed in positive analysis can be used to extend the linear-quadratic normative
framework in Benigno and Woodford (2012).3 Using this new approximation method, I provide a
sharp characterization of the solution and comparative statics.

The main results in this paper arise from the interaction between exchange rate management
and international portfolio choice. To illustrate the forces at play in the simplest possible way, I
start with a two-period open economy model where agents have an endowment of tradable goods
and produce nontradable goods. In the first period, agents only trade financial assets. In the sec-
ond period, the state of the world is realized, agents produce, honor their financial obligations, and
consume. The model has two key ingredients. First, like in the canonical model, there are nominal
rigidities (price stickiness). This ingredient gives rise to the traditional demand-management role
for monetary policy, concerned with undoing the distortions associated with price stickiness. The
second ingredient is the availability of home- and foreign-currency bonds that can be traded inter-
nationally.4 This ingredient gives rise to the insurance channel discussed above, and a nontrivial
portfolio problem.

In this environment, I study the problem of a planner that maximizes the utility of home house-
holds under commitment.5 She has two set of tools: monetary policy and capital controls. Mone-
tary policy is a state-contingent exchange rate rule. Capital controls are taxes on financial assets.
Since there is no consumption in the first-period, this baseline model is essentially static so there is
a single portfolio tax. In the dynamic model I discuss later, capital controls also include a savings
tax.

My approximation method allows me to get closed form solutions for the optimal monetary
policy, portfolio, and capital controls. These solutions are valid for small disturbances around the
nonstochastic steady state. Monetary policy is characterized to first-order, the portfolio is charac-
terized at the steady state (“zero-order”), and the portfolio tax is characterized to second-order.

In terms of monetary policy, I show that the optimal policy is a weighted average of two targets:
a demand-management target and an insurance target. The former is the exchange rate that would
be required to attain a zero output gap and no price dispersion. The latter is the exchange rate that
would be required to replicate the transfer the planner would desire under complete markets. For
example, if the home country experiences a negative endowment shock and has home-currency
debt, the insurance target would imply a depreciation. The optimal weight depends on the out-
standing portfolio. When positions are large in absolute value, providing insurance is cheap: only

3The approach is also related to the perturbation approach in Devereux and Sutherland (2011) and Tille and van
Wincoop (2010), who use it to characterize the competitive equilibrium. I extend the analysis to optimal policy problems.

4In Appendix B.3, I consider a general asset structure with an arbitrary number of assets that are allowed to load
arbitrarily on endogenous variables and shocks. All the results go through in this richer environment.

5In Appendix B.1, I study the problem from the point of view of a supranational authority that takes into account
foreigners’ welfare. I show that this increases the importance of the insurance motive, leading to more levered portfolios
and a lower volatility of the exchange rate.
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a small exchange rate movement is needed to replicate the desired transfer. By the same token,
restoring production efficiency could be very costly, since the required exchange rate movement
would create a large transfer of wealth that may be undesirable. As a result, the optimal weight on
the insurance target increases with the size of the position. This captures a form of fear-of-floating
due to currency mismatches.6

In terms of the portfolio, I show that its optimal sensitivity to the value of the home-currency
is higher when the insurance motive is more relevant. This is a direct consequence of the fact that
a larger position reduces the cost of providing insurance ex post and makes it harder to correct
production inefficiencies, as discussed above. The relative importance of the insurance motive de-
pends on both structural characteristics of the economy, such as risk aversion and the degree of
price flexibility, and the stochastic properties of the shocks. For example, shocks to the terms-of-
trade typically matter relatively more for the insurance motive compared to nontradable produc-
tivity shocks. If the former are more frequent, positions will be larger.

One perhaps surprising implication of the interaction between monetary policy and portfolio
choice is that the optimal degree of exchange-rate volatility actually decreases with the insurance
motive. By contrast, if the portfolio is constrained, volatility increases when insurance considera-
tions are more important. To understand this result, consider first the case with a fixed portfolio.
For the reasons described above, an increase in the importance of the insurance motive dampens
the response aimed at correcting production inefficiencies but exacerbates exchange rate move-
ments to provide insurance. If the constrained portfolio is optimal, this composition effect leads to
higher exchange rate volatility. When the portfolios are endogenous, there is an opposing force:
the insurance motive also induces a larger position, which not only lowers the incentives to correct
production inefficiencies even further, but also decreases the required exchange rate movement
to provide insurance. This last force dominates if home has home-currency liabilities, which is
typically the case in the data.

In terms of capital controls, the model provides two potential rationales for taxing portfolios.
First, if the foreign demand of home-currency bonds is not perfectly elastic there is a terms-of-
trade externality: Agents overinsure on their own, so the planner finds it optimal to put a tax that
pushes positions towards zero.7 More interestingly, there is another motive related to the presence
of incomplete markets and nominal rigidities. To isolate this second motive, suppose the foreign
demand for home-currency bonds is perfectly elastic (i.e., a small open economy). In this environ-
ment, Farhi and Werning (2016) show that taxes are desirable to correct pecuniary and aggregate-
demand externalities. Perhaps surprisingly, I show that taxes are zero in the approximate solution,

6In this paper, the relevant measure of the mismatches is the foreign-currency value of home-currency debt, differ-
ent from the standard fear-of-floating, which refers to home-currency value of foreign-currency debt as in Lane and
Shambaugh (2010a) and Bénétrix, Lane and Shambaugh (2015). The latter does not lead per se to a deviation from price
stability in my model, which features a representative agent, exogenous terms-of-trade, and no borrowing constraints
(unlike the work by Caballero and Krishnamurthy (2004) and Ottonello (2015), among others).

7The planner can manipulate the intratemporal price of consumption across states, i.e., the stochastic discount factor.
The logic is the same as in Costinot, Lorenzoni and Werning (2014), except it manifests across states rather than time.
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i.e., they are at most third-order. In other words, private portfolio decisions are approximately
efficient. The key observation behind this result is that eliminating production inefficiencies in
this economy is feasible, i.e., there is divine coincidence: output gaps and price dispersion can be
closed simultaneously. As a result, the economy only experiences booms and recessions because
the planner is trying to provide insurance. Formally, this implies that output gaps are, to first-
order, proportional to social marginal utility. Furthermore, the wedge between social and private
marginal utility is proportional to the output gap. These observations imply that social and pri-
vate marginal utilities are proportional to one another, which is enough to establish the asymptotic
optimality of the private portfolio decision as risk vanishes.

I then study a dynamic version of this economy. This extension serves three goals. First, I
study the robustness of the results and show that they all generalize. The only qualification is that,
if home-currency bonds are long-lived, results on volatility hold for the excess-return of the bond,
rather than the exchange rate. Second, I characterize new features of the solution. Unlike the static
model, where the planner had a single possibility to engineer an excess return (i.e., creating an
output gap), now the planner has more options: she can promise either current or future output
gaps and inflation and may try to manipulate tradable consumption over time. The planner then
solves a cost-minimization problem among these tools. I show that capital controls on the total
size of capital flows are desirable, although their composition is still efficient. In other words, the
planner wants to tax financial assets, but not differentially so.8 I also show their effectiveness is
higher when bonds have a shorter duration. Indeed, if home-currency bonds are perpetuities and
prices are perfectly rigid, optimal savings taxes are exactly zero. Third, I introduce ingredients
that are important for the quantitative exercise. Of particular relevance are two shocks that play
a key role in the calibrated model: (i) world-interest-rate shocks, which create a large demand for
insurance, and (ii) liquidity shocks on home-currency bonds, which introduce noise in the return
of the home-currency bond.

To conclude, I explore the quantitative implications of the optimal policy for monetary pol-
icy, observed portfolios, capital controls, and welfare. I compare it to the benchmark demand-
management policy (strict inflation-targeting). I calibrate the model to Canada, a prototype small
open economy. I find that the optimal policy increases external home-currency debt from 16% to
23%, which translates into an ex post weight on the insurance target of 8%.9 This changes the
variance decomposition of the excess-returns of home-currency bonds: the contribution of liq-
uidity shocks decreases from around 80% to 70%, with a mirror increase in the contribution of
interest-rate shocks. This, however, does not translate into noticeable changes in overall volatility.
Concerning capital controls, I find a limited role for savings taxes and an important role for portfo-
lio taxes, due to the limited size of the foreign-investor base in home-currency bond markets. This

8There are two main rationales for savings taxes. First, they can be used to move the exchange rate without creating
an output gap. Second, they correct the misvaluation of tradable goods during booms and recessions.

9This result is sensitive to the cost of inflation. Reducing the average duration of prices from a year to three quarters
leads to an insurance weight of 25%.
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also implies a high value of cooperation, as I show in Section 5. Regarding welfare, I compute the
gain in consumption-equivalents of moving from an economy without home-currency bonds to an
economy with home-currency bonds and flexible prices (the first-best). Then, I compute how much
of these welfare gains are achieved by each policy. I find that, while inflation-targeting attains 12%
of the benefits, the optimal policy attains 17% - almost 1.5 times as much. Portfolio endogeneity
is quantitatively important for this result: gains would only be 15% if home-currency debt were
fixed at the calibrated value (15%).

Related literature This paper contributes to a large literature exploring deviations of optimal
monetary policy from inflation-targeting in open economies, surveyed by Corsetti, Dedola and
Leduc (2010). In particular, my analysis is related to the idea that, in incomplete markets, mone-
tary policy plays an insurance role (Obstfeld and Rogoff, 2002; Corsetti, Dedola and Leduc, 2010).
However, in most of the literature, insurance is improved via terms-of-trade manipulation and
not through asset positions; formally, the solution is typically approximated around a symmetric
steady state with a zero net-foreign-asset position. I abstract from this insurance channel by focus-
ing on a small open economy that faces exogenous terms-of-trade. Instead, the insurance role in
this paper is linked to the size of gross positions and is, therefore, closest to the work of Benigno
(2009a), Benigno (2009b), and Senay and Sutherland (2017).10 The first two papers study opti-
mal monetary policy in a New Keynesian open economy model with home- and foreign-currency
bonds. Importantly, in those papers the steady-state portfolio is exogenous. By contrast, in the
present paper the portfolio is endogenous, which is key for my results. Senay and Sutherland
(2017) present a rich two-country New Keynesian open economy model with two nominal bonds
and equities in firms from both countries. They allow portfolios to be endogenous, but they do
not study fully optimal policy. Instead, they focus on a limited set of policy rules, and optimize
numerically over the parameters of such rule. By contrast, I study fully optimal monetary policy
and characterize it analytically. None of these papers study capital controls.11

Farhi and Werning (2016) develop a general theory for the joint problem of optimal monetary
policy and macroprudential policy and provide several applied examples. In one of their appli-
cations, they discuss a static small-open economy with home- and foreign-currency debt. They
note that there is generally a trade-off between insurance and demand-management and provide
a formula for portfolio taxes, pointing out that they are generally nonzero. My analysis and results
confirms these observations, but also provides a sharper characterization of both monetary policy
and macroprudential policy in this context. Indeed, using my approximation, I am able to show
precisely how monetary policy is a weighted average of two targets, characterize the weight and
the debt positions, and, somewhat surprisingly, show that while portfolio taxes are generally non-

10Devereux and Sutherland (2008) also stress the role of gross portfolio positions. However, they focus on a case
where the optimal policy can replicate complete markets, so inflation-targeting is still optimal.

11Chang and Velasco (2006) also present an open economy model with home and foreign-currency bonds but they
only compare two extreme exchange rate regimes (inflation-targeting and a fixed exchange rate).
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zero, they are zero in an approximate sense around the steady state. My paper also extends the
study of these issues to a dynamic setting to provide a quantitative analysis.

Another strand of literature studies monetary policy and portfolio choice between nominal and
real debt in environments without commitment. In a seminal paper, Bohn (1988) demonstrates the
optimality of issuing nominal debt to minimize distortionary taxation, despite the inflationary
incentives created by lack of commitment. Bohn (1990) argues that foreign-currency debt may
lower home-currency debt issuance, since unlike indexed debt it may have some desirable hedging
properties. More recently, motivated by the increase in the share of government debt issued in
home-currency in emerging markets during the past twenty years, a recent literature has revisited
the trade-off between incentives (due to lack of commitment) and insurance in home-currency-
bond issuance; see Du, Pflueger and Schreger (2017), Engel and Park (2017), and Ottonello and
Perez (2017).12 The present paper has a more normative focus and studies optimal monetary policy,
assuming full commitment, as well as optimal capital controls, which these papers abstract from.
This leads to two key results about optimal policy—lower volatility of the exchange rate and zero
portfolio taxes, up to second-order—that have no counterparts in previous studies.

My paper is also related to a closed-economy literature that studies the potential of monetary
policy to complete markets with nominal assets in environments with commitment; see Schmitt-
Grohe and Uribe (2004), Siu (2006), Lustig, Sleet and Yeltekin (2008) and Sheedy (2014). In these
papers, a similar trade-off between demand-management and insurance emerges, but insurance
takes place between the government and the private sector, or between borrowers and savers. In
addition, my analysis emphasizes the role of exchange rate movements, and the portfolio decision
between home- and foreign-currency bonds, which is absent from these studies.

From a methodological perspective, this paper makes a contribution to the recent literature on
portfolio choice within dynamic stochastic general equilibrium models (Devereux and Sutherland,
2011; Evans and Hnatkovska, 2012; Tille and van Wincoop, 2010). These papers are positive, aim-
ing to approximate the competitive equilibrium given a policy rule. I extend these methods to
tackle normative questions. Following the same steps in Benigno and Woodford (2012), I derive an
approximate problem around an arbitrary steady-state portfolio that is linear-quadratic in all the
remaining endogenous variables. Then, I use the perturbation approach in Judd and Guu (2001)
on the first-order conditions of the nonlinear planning problem and show they coincide with the
first-order conditions of the approximate problem, including the first-order conditions with respect

12Du, Pflueger and Schreger (2017) document that governments in countries where the home-currency bond has
worse hedging properties issue a larger share of their debt in home-currency. They show that the interaction between
limited commitment and risk-averse foreigners can rationalize their empirical findings. Engel and Park (2017) study an
endowment small-open-economy model in which the government can borrow in both home- and foreign-currency sub-
ject to two commitment frictions: strategic default and debasement. They show that a higher cost of inflation leads to
endogenously looser limits to borrowing in home-currency and that this can account for the surge in home-currency bor-
rowing in recent decades. Ottonello and Perez (2017) study a small open economy model with tradable and nontradable
goods where the government does not default but cannot commit to future policy. They show that lack of commitment
can rationalize the currency-composition of government debt and the procyclicality of home-currency-debt shares for a
sample of emerging markets.
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to the steady-state portfolio.13 The validity of the procedure depends on the availability of taxes.
Otherwise, one needs an additional quadratic constraint.

Layout The paper is organized as follows. In Section 2, I present a static version of the model
and derive the planning problem. In Section 3, I characterize the optimal policy in this setting.
In Section 4, I extend the model to a dynamic setting and characterize the optimal policy in this
context. In Section 5, I calibrate the model and explore the quantitative importance of the chan-
nels emphasized in the paper. Section 6 concludes. Appendix A contains all proofs and detailed
derivations, Appendix B contains some additional extensions of the model, and Appendix C con-
tains additional sensitivity exercises for the quantitative section.

2 Static model

In this section, I present a two-period version of the model. Henceforth, I refer to this version of the
model as “static” because agents only trade financial assets in the first period. Section 2.1 presents
the setup. Section 2.2 presents the planning problem and discusses the main trade-offs the planner
faces. The optimal policy is analyzed in Section 3.

2.1 Set up

There are two periods, 0 and 1. At t = 0, agents trade financial assets. At t = 1, the state of
the world is realized, agents produce, honor their financial obligations, and consume. There are
two final goods (tradables and nontradables), and a continuum of varieties of intermediate inputs,
which are used to produce nontradables.

Home households There is a continuum of households in the home country, maximizing a stan-
dard utility function

Eu(CTs, CNs, Ls; ξs) (1)

where CTs is tradable consumption, CNs is nontradable consumption, Ls is labor, and ξs is a vector
of shocks. The function u is assumed increasing and strictly concave in consumption and leisure
(−L).

Agents have access to two assets in period 0: a bond with a fixed payment in home-currency B
and a bond with a fixed payment in foreign currency B∗. Since there is no consumption at t = 0, it
is without loss of generality to normalize the exchange rate at t = 0 and the return of the foreign
currency asset R∗ to 1. I denote the return of the home-currency asset R. The budget constraint at
t = 0 is

(1 + τB)B + B∗ = T0,

13Du, Pflueger and Schreger (2017) employ an alternative route in the context of their application based on the ap-
proximation method of Campbell and Viceira (2002).
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where τB is an ad-valorem tax on home bonds and T0 is a lump-sum transfer from the central bank.
I assume positions are bounded by a large constant K̄, i.e., |B| ≤ K̄.

At t = 1, agents receive a tradable endowment YT(ξs), which can be interpreted as the product
of tradable output and the terms-of-trade as in Mendoza (1995). They also work, collect profits,
honor their financial obligations, and consume both goods. The budget-constraint at t = 1 is

EsCTs + PNsCNs = EsYT(ξs) + (1 + τL)WsLs + ΠNs + ΠIs + RB + EsB∗ + Ts

where Es is the nominal exchange rate, PNs is the price of nontradables, Ws is the nominal wage,
τL is a labor subsidy, ΠNs and ΠIs are profits from nontradable and intermediate good producers,
respectively, and Ts are lump-sum transfers from the central bank. I use the convention that a
higher exchange rate means a more depreciated currency and normalize the international price of
the tradable good to 1. Optimization over labor and tradable and nontradable consumption yields

uN(s)/uT(s) = PNs/Es. (2)

(−uL(s))/uT(s) = (1 + τL)Ws/Es. (3)

where uN(s), uT(s), and uL(s) are the first-derivatives with respect to nontradables, tradables, and
labor, respectively. Asset optimization yields a no arbitrage condition,

E
[
((1 + τB)

−1RE−1
s − 1)uT(s)

]
= 0. (4)

Nominal rigidities I introduce nominal rigidities in the form of sticky prices in the production
of nontradable intermediate goods. There is a continuum of varieties i ∈ [0, 1], which can be
aggregated into a composite YI that can be used for production,

YIs = (
∫ 1

0
YIs(i)

η−1
η di)

η
η−1 . (5)

Production of the intermediate input is linear in labor,

YIs(i) = Ls(i). (6)

In each product market i prices are set by a monopolistically competitive firm who faces a demand
given by

YIs(i) = (PIs(i)/PIs)
−ηYIs. (7)

A share φ of firms has their nominal price fixed at P̄I and supply any amount of output that is
required, while a share 1− φ can optimize its price state by state.14 Firms that are able to optimize

14I could allow the former group to set the average price. This would only complicate the exposition, without chang-
ing the results. In the dynamic model of section 4 I show all the results are robust to standard Calvo price-setting.
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set a constant mark-up over the marginal cost (the wage),

PIs(i) =
η

η − 1
Ws. (8)

Combining (3) and (8), one can write the ideal intermediate input price index PIs as

PIs =

(
φP̄1−η

I + (1− φ)(
η

η − 1
1

1 + τL

−uL(s)
uT(s)

)1−ηE1−η
s

) 1
1−η

. (9)

Foreign households A measure m ∈ R+ ∪∞ of foreign households may participate in home-
currency asset markets. Each household is endowed with {Y∗(ξs)} units of the tradable good.
Using asset market clearing conditions, this leads to a no-arbitrage condition given by

E

[
(RE−1

s − 1)u∗′(Y∗(ξs)−
1
m
(RE−1

s − 1)B)
]
= 0. (10)

When m = ∞, the small open economy takes the stochastic discount factor as given. In this case, I
say there is perfect financial integration in home-currency markets. When m < ∞, there is limited
participation and the home economy has market power in home-currency bond markets. Alter-
natively, one may interpret the case m < ∞ as a large economy whose actions affect the world’s
stochastic discount factor.

Final production Firms have access to an increasing and concave production function F(YIs; ξs).
They maximize profits, which are given by Π = PNsF(YIs; ξs)− PIsYIs. Firm optimization implies

PNsFY(YIs; ξs) = PIs. (11)

where FY is the derivative with respect to intermediate inputs.

Central bank The central bank in the economy has three tools: monetary policy, capital con-
trols, and the labor subsidy. Monetary policy is a state-contingent exchange rate policy rule {Es}s.
Since some prices are fixed in home currency, this instrument allows the central bank to determine
the equilibrium price of intermediate inputs in foreign-currency, which in turn affects the level of
employment.15 Capital controls in this model are represented by the portfolio tax τB. This instru-
ment allows the central bank to effectively control the balance sheet of the country vis-a-vis the

15I could have also stated monetary policy as a money-supply rule. I follow the literature and consider a cashless
economy, avoiding an explicit modelling of money demand. This allows me to focus on the demand-management
motive, which is more relevant for most economies due to low inflation.
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rest-of-the-world.16 The proceeds are then rebated to home households through lump-sum taxes,

T0 = τBB. (12)

Finally, the labor subsidy allows the planner to obtain production efficiency at the steady-state.
These subsidies are also rebated lump-sum to households,17

τLWsLs + Ts = 0. (13)

The monetary authority announces the monetary and tax policies at the beginning of time,
before agents engage in bond trading, and is assumed to be perfectly credible.

Goods and labor market clearing Replacing profits, labor income and the t = 0 budget con-
straint into the t = 1 budget constraint, I obtain

CTs = YTs + (RE−1
s − 1)B. (14)

The market clearing condition for nontradables and labor are given by

CNs = F(Y I
s , ξs) (15)

Ls =
∫ 1

0
Ls(i)di (16)

Next, I formally define a competitive equilibrium in this economy.

Definition 1. Given a policy {EsτB, T0, τL, Ts}, an allocation{CTs, CNs, Ls, Ls(i), Ys(i), Y I
s , B} together

with prices {PNs, PIs, PIs(i), Ws} and a home-currency bond return R is a competitive equilibrium
if and only if they solve (2)-(16).

2.2 Planning problem

The planner in the economy is the central bank, who chooses a state-contingent exchange rate and
capital controls to maximize the utility of home households. To simplify the exposition, we set
τL = 1

η−1 , which is optimal at the steady state (i.e., when ξs ≡ 0), and do not discuss it any further
as part of the policy mix.18 Next, I simplify the problem to obtain a reduced set of implementabil-
ity conditions that describe the set of equilibria that can be attained through different policies

16Equivalently, I could have the government be the only one allowed to borrow in foreign markets in home-currency
bonds, which reflects the situation is many emerging economies (Du and Schreger (2015)). However, capital controls
may still be desirable in these countries to control positions in other assets that are traded by the private sector and are
exposed to the stance of monetary policy, such as equity and foreign direct investment (see Appendix B.3).

17Note that assuming the central bank balances its budget period-by-period is without loss of generality, since agents
have access to the same set of assets (i.e., there is Ricardian equivalence).

18Given that there is price dispersion, optimizing over τL would introduce an additional constraint. This is without
loss of generality for the approximate solution discussed in Section 3.
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{Es, T0, τB}. Given CTs and Es, one can find {CNs, Ls, Ls(i), YIs(i), Ys, Ws, PIs(i), PIs, PNs} that solve
(2), (3), (5) - (9), (11), (15) and (16).19 Furthermore, the planner may use τB to satisfy (4) and T0 to
satisfy (12). Using these observations, I obtain the following implementability result.

Lemma 1. An allocation for tradable consumption {CTs}, an exchange rate policy {Es}, a home-currency
position B and a home-currency bond return R form part of an equilibrium if and only if they solve (10) and
(14).

As in Farhi and Werning (2016), I define the following indirect utility function:

V(CTs, Es; ξs) = max
{CNs,Ls,Ls(i),YIs(i),Ys,Ws,PIs(i),PIs,PNs}

u(CTs, CNs,
∫ 1

0
Ls(i)di; ξs) (17)

subject to(2), (3), (5)− (9), (11), (15), and (16)

Using this definition, the planner’s problem can be formulated as follows.

Problem 1. The planner’s problem is to choose {CTs, Es, B} to maximize

EV(CTs, Es; ξs)

subject to

CTs = YT(ξs) + (RE−1
s − 1)B

E

[
(RE−1

s − 1)u∗′(Y∗(ξs)−
1
m
(RE−1

s − 1)B)
]
= 0

Before tackling this problem, it is useful to study a simpler benchmark with complete markets.

Problem 2. When markets are complete, the planner’s problem is to choose {Ts, Es} to maximize

EV(YT(ξs) + Ts, Es; ξs)

subject to

E

[
Tsu∗′(Y∗(ξs)−

1
m
Ts)

]
= 0

Under complete markets the transfer of wealth in each state of the world Ts is decoupled from
monetary policy Es. This implies the exchange-rate has a single role in this economy: closing the
output gap and ensuring there is no price dispersion. This is the traditional demand-management
role of monetary policy. Regarding transfers, the solution replicates the laissez-faire competitive
equilibrium with flexible prices when m = ∞. When m < ∞, the solution is not the laissez-faire

19This system of equations can be reduced state by state to a system of two equations in (Y f lex
Is , Y f ix

Is ), which I assume
has at least one solution. The latter can be guaranteed in a neighborhood of the steady state using the implicit function
theorem.
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competitive equilibrium due to the presence of terms-of-trade externalities. Although the country
is a price-taker in tradable good markets, it can influence the stochastic-discount-factor of the for-
eigners that participate in home-bond markets (i.e., the state prices). The solution follows from a
reinterpretation of the results in Costinot, Lorenzoni and Werning (2014) across states instead of
over time: The planner wants the state price to be high when it is relatively rich. This implies she
wants foreigners to be relatively poor in those states, i.e., she wants less than full insurance. In
Section 3.4 we provide an explicit solution for the tax, which reflects this motive.

The key difference between the complete-markets benchmark and the full problem is that in
the latter the exchange rate {Es} and the transfers {Ts} are linked by the relationship Ts = (RE−1

s −
1)B. As a result, the exchange rate plays an additional insurance role, given by the desire to replicate
some transfers {Ts}. When prices are flexible, the planner can perfectly replicate the transfers from
the complete markets solution since the exchange rate plays no demand-management role. When
prices are sticky, there is a trade-off between both objectives of monetary policy. In the solution,
the planner balances both forces so many states of the world feature nonzero output gaps and
deviations from the complete markets transfer. Thus, portfolio taxes are generically nonzero even
if m = ∞: the presence of ex post output gaps and pecuniary externalities due to incomplete
markets implies agents fail to internalize the proper value of a unit of tradable goods (Farhi and
Werning (2016)).

3 Optimal Policy

In this section, I study the optimal policy in the static model. I start with a brief description of the
solution method in Section 3.1, which may be skipped without loss of continuity. I then present the
main theoretical results. First, I characterize the optimal monetary policy and the optimal portfolio
(Section 3.2). Second, I derive the implications for exchange rate volatility (Section 3.3). Beyond
being interesting in its own right, this result illustrates the importance of portfolio endogeneity.
Third, I characterize the optimal capital controls, i.e., the optimal portfolio tax (Section 3.4). Section
3.5 concludes with a simple example that illustrates the results.

Appendix B contains extensions of the model. Appendix B.1 revisits the problem from the point
of view of a supranational authority that internalizes the effect of the optimal policy on foreigners’
welfare. Appendix B.2 considers an environment with equity on nontradable firms, instead of a
nominal asset. This alternative asset structure illustrates the differences between a nominal asset
and a real asset with returns that are sensitive to monetary policy. Appendix B.3 generalizes all the
results in this section to an environment with a multiple assets that load arbitrarily on endogenous
variables and shocks. Appendix B.5 presents the problem without capital controls. Proofs for the
results in the main text can be found in Appendix A.
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3.1 An approximation for small risks

The standard linear-quadratic framework (Benigno and Woodford (2012)) cannot be used in en-
vironments with portfolio choice. The problem is that at the riskless steady-state all assets are
perfect substitutes, which makes the portfolio indeterminate and prevents the application of the
implicit function theorem. However, it is well-known that a perturbation approach can still be
used to find approximate solutions to the first-order conditions (Judd and Guu (2001); Devereux
and Sutherland (2011); Tille and van Wincoop (2010)). These approaches rely either on a bifurca-
tion theorem, or on a higher-order approximation of the no-arbitrage equations.20 In this paper,
I show that deriving a linear-quadratic approximation around an arbitrary steady-state portfo-
lio, and then maximizing over the approximation point, is correct when the planner has access
to a portfolio tax, which is the case in the current setting.21 Formally, the first-order conditions
of the approximate problem coincide with the result of the perturbation approach in Judd and
Guu (2001) to the original nonlinear first-order conditions. The main added benefit of using the
linear-quadratic framework rather than just a perturbation approach is that it allows one not only
to check locally the second-order conditions, but also to pick the best local solution when there is
more than one. This is important because the solution of equilibrium objects such as the exchange
rate is typically nonlinear in the steady-state portfolio, which in turn implies there are multiple
portfolios that satisfy the first-order conditions. I prove a more general version of this result that
holds in a dynamic setting with forward and backward-looking constraints and multiple assets, as
in Benigno and Woodford (2012), in my companion paper (Fanelli (2017)).

Let ε denote the amount of risk in the economy, i.e., ξs = εus where us is a random variable
with compact support. I am interested in the limit ε → 0. The next lemma provides a “purely
quadratic” second-order expansion of the objective function around a steady state with some arbi-
trary steady-state portfolio B̄. This expression is obtained by combining a second-order expansion
of the objective, the budget constraint, and the foreign Euler equation.22 Lowercase letters denote
log-deviations from the steady state.

Lemma 2. When ε→ 0,

EV({es, B̄}) = −k0E[
1
2
(B̄es + Ts)

2 +
1
2

χ((1 + µB̄)es − edm
s (0))2] + t.i.p. + O(ε3) (18)

where k0 > 0, χ ≥ 0 and µ are constants, and t.i.p. stands for “terms independent of policy”. Ts is the
transfer of tradable goods the planner would desire if prices were flexible and edm

s (0) is the exchange rate that
would close the output gap if B̄ = 0. The objects edm

s (0), Ts, k0, µ and χ are specified in appendix A.1.1.

20Both approaches are equivalent to the order of approximation I work in this paper.
21Without a tax, the problem has two degrees of indeterminacy at the steady state: the Lagrange multiplier on the

home no-arbitrage condition and the portfolio. This implies that one needs to consider an additional quadratic con-
straint in the approximate problem (see Appendix B.5).

22It is important to remember not to drop terms that involve only the steady-state portfolio and no other endogenous
variables; i.e., terms one would call “independent of policy” in the original Benigno and Woodford (2012) setup.
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The next result shows that the solution to this problem yields a bifurcation point for the port-
folio and a local linear approximation to the behavior of all remaining endogenous variables and
is, thus, equivalent to a perturbation approach. Importantly, this result relies on the availability of
the portfolio tax. Without it, one would need to add an additional quadratic constraint.23

Proposition 1. (LQ equivalence to perturbation) Suppose u, u∗ and F are locally analytic functions around
the steady state.24 Then, maximizing (18) with respect to ({es} and B̄) yields a linear approximation of a
solution to the first-order conditions of problem 1 around (B̄, ε = 0) for {es} and a bifurcation point of the
system B̄.

Remark 1. The term ∂B
∂ε in the welfare loss function V is irrelevant for welfare to second-order.

One important feature of the loss function derived in lemma 2 is that being able to change the
portfolio as risk increases does not matter for welfare to a second-order of approximation - a result
pointed out by Samuelson (1970) in the context of a standard portfolio problem. Intuitively, this is
a consequence of the fact that assets are perfect substitutes not only in the steady state, but also to
first-order, since agents behave as if they were risk neutral. This implies that one does not need to
know how the portfolio varies with risk to characterize the optimal exchange rate to first-order. It
also implies one can only pin down the steady-state portfolio to this order of approximation.

3.2 Optimal monetary policy and optimal portfolio

In this section, I characterize the optimal monetary policy and the optimal portfolio. I do so in two
steps. First, I solve the inner problem (i.e., the solution conditional on a steady-state portfolio) in
Section 3.2.1. Second, I use the results from the inner problem to solve the outer problem (i.e., the
optimal portfolio) in Section 3.2.2.

3.2.1 The inner problem: Optimal monetary policy conditional on a portfolio

In this log-linear framework, the two objectives of monetary policy discussed in section 2.2 (insur-
ance and demand-management) can be described by exchange-rate targets. The insurance target
ein

s replicates the desired transfers of tradable goods Ts,

ein
s (B̄) = − 1

B̄
Ts + O(ε2)

while the demand-management target edm
s (B̄) closes the output gap (and price dispersion),

edm
s (B̄) =

1
1 + µB̄

edm
s (0) + O(ε2). (19)

23See Appendix B.5 for an example where the additional constraint is needed.
24By analytic I mean they are infinitely differentiable, and their infinite Taylor expansion coincides with the actual

function in a neighborhood of the approximation point. This is required to apply the bifurcation theorem in Judd and
Guu (2001).
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Note that to compute the solution to the approximate problem, one only needs the first-order
behavior of Ts and edm

s (0). These are complicated linear functions of the shocks, explicitly solved
for in appendix A.1.1. In Section 3.5, I present an example where they take a simple form.

One important feature of these exchange-rate targets is that they depend on the outstanding
portfolio. Consider first the insurance target. Any exchange rate movement of size ε creates a
transfer of tradable goods of −εB̄. Thus, a more sizeable position requires a smaller exchange rate
movement to replicate a desired transfer. Next, consider the demand-management target. The
key parameter in this case is µ, which captures the effect of wealth on the demand-management
exchange rate: When agents have an additional wealth of ε, the exchange rate must move µε to
restore production efficiency. Typically µ < 0,25 which implies home-currency debt dampens
exchange rate volatility under demand-management targeting. To see this, suppose the exchange
rate would depreciate if B̄ = 0, i.e., edm

s (0) > 0. When home agents are holding home currency
debt (B̄ < 0), the depreciation makes them richer. This typically leads to an increase in nontradable
demand, which mitigates the required depreciation to restore production efficiency. The opposite
is true if home agents are holding home-currency assets.26

Proposition 2. (Optimal monetary policy) Consider an economy with small risks, i.e., ε→ 0. Then,

eop
s (B̄) =

χ

χ + f (B̄)2 edm
s (B̄) +

f (B̄)2

χ + f (B̄)2 ein
s (B̄) + O(ε2). (20)

where f (B̄) = B̄
1+µB̄ . The parameter χ satisfies the following properties:

1. (Price flexibility) If a marginal exchange rate depreciation leads to a positive output gap,26 then there
exists φ̄ ∈ (0, 1] such that for φ < φ̄ χ increases with φ while for φ > φ̄ χ decreases with φ. When φ = 0,
χ = 0. Furthermore, χ is increasing and φ̄ is weakly decreasing in the elasticity of substitution across
varieties η when φ > 0.

2. (Risk aversion) It is decreasing in the planner’s absolute risk-aversion to movements in tradable-good
consumption γ̃ (computed in Appendix A.1.1), increasing in the measure of foreigners m, and, provided
m < ∞, decreasing in absolute foreign risk aversion γ∗.

Proposition 2 shows that the optimal monetary policy conditional on the portfolio is a weighted
average of both exchange rate targets. The weight has two main components: an exogenous one,
controlled by the parameter χ, and an endogenous one f (B), which depends on the portfolio. First,
consider the exogenous component χ. One of its key determinants is the degree of price flexibility.
When more firms optimize their price (i.e., when φ decreases), there are two opposing effects. On
the one hand, more firms are able to reduce any production inefficiencies that an exchange rate
movement may create, i.e., the sensitivity of the output gap to monetary policy decreases. On the
other hand, higher flexibility increases price dispersion if most firms cannot adjust their prices.

25If u is Greenwood–Hercowitz–Huffman (GHH) or separable in labor, and the composite between tradables and
nontradables is CES, µ ≤ 0 and devaluations are expansionary.

26As long as Bµ > −1. A sufficient condition for this case is provided in proposition 3.
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Proposition 2 shows the first force dominates when price flexibility is high (i.e., χ decreases with
price flexibility) while the latter sometimes dominates when price flexibility is low (high φ). The
second region is more likely to exist when the elasticity of substitution across varieties is high,
since this increases the cost of price dispersion. This result on price flexibility relies on the fact that
the asset with returns that depend on monetary policy is a nominal asset. In Appendix B.2, I study
a case where agents may sell equity in nontradable firms, instead of nominal bonds. Expression
(20) still holds, but χ now increases with price flexibility. The intuition is simple: when prices are
completely flexible, the return on equity is independent from monetary policy. It is only because
there are nominal rigidities that the planner may manipulate the return on equity.

The second natural determinant of χ is risk aversion. As one would expect, if the home econ-
omy is more risk-averse to movements in tradable goods, the planner should place a larger weight
on the insurance motive. This is captured by a parameter γ̃, computed in Appendix A.1.1, which
depends not only on overall risk-aversion but also on the ability of the economy to substitute a
lack of tradable goods with nontradable consumption and production. More interestingly, when
foreign capital becomes more scarce (m is lower or foreign risk aversion γ∗ is higher), the planner
realizes that any additional volatility in the excess returns of home-currency bonds is penalized
by foreigners with a lower relative price on the country’s liabilities. As a result, the planner is less
willing to let the exchange rate float freely to accommodate any changes in aggregate demand and,
instead, prefers to dampen exchange rate volatility.

Corollary 1. The weight on insurance ω(B̄) = f (B̄)2/(χ + f (B̄)2) increases with the size of the portfolio
if and only if B < −µ−1.

The other key determinant of the weight is the outstanding portfolio, which is endogenous.
Consider first the case where the output gap is independent from tradable consumption (µ = 0).
When positions are small, providing insurance is very costly: any given transfer requires large
movements in the exchange rate, which may significantly distort production efficiency. Con-
versely, attempting to use the exchange rate to close output gaps and achieve no price dispersion
when positions are large generates sizeable transfers of tradable goods, which may be undesirable
from an insurance perspective. In sum, the optimal weight on the insurance motive increases with
the size of the position.

When µ 6= 0, the size of the position is not conceptually the most adequate measure of sensitiv-
ity to monetary policy. To see why that is, suppose the planner was willing to create a “deviation”
consisting of a 1% depreciation with respect to the demand-management target. If B < 0, such
a deviation would also make agents richer. As discussed above, this would in turn appreciate
the demand-management target, implying that the actual exchange rate movement, and resulting
transfer, would be smaller than 1%. Indeed, the transfer would be B̄(1 + µB̄)−1%. This notion of
“sensitivity to monetary policy” is robust to other asset market structures. In Appendix B.3 I show
that with multiple assets that load arbitrarily on endogenous variables and shocks, one may still
define a sufficient statistic that plays the same role of f (B̄).
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In Section 4 I show equation (20) generalizes to the dynamic model. Thus, once I have cali-
brated that model in Section 5, I can compute the weights in proposition 2 to measure the impor-
tance of the insurance motive vis-a-vis the demand-management motive in the data.

3.2.2 The outer problem: Optimal portfolio

The exchange rate targets depend on the outstanding portfolio. Choosing the portfolio optimally
gives the planner a tool to mitigate the trade-off between insurance and demand-management as
much as possible. Indeed, the linearity of the model implies that the planner could perfectly align
the targets if there were a single shock by choosing:

f (B̄) =
B̄

1 + µB̄
= −

σT edm
s (0)

σ2
edm

s (0)

= − Ts

edm
s (0)

.

The sensitivity of the portfolio to monetary policy f (B̄) depends on the size of the required transfer,
and its sign depends on the covariance. As long as µ is not strong enough when the covariance
between e and T is positive (so that B̄ < −µ−1), one may derive similar implications for the actual
portfolio. Note that in this case, markets are “locally complete”, i.e., the planner replicates the
desired transfers to first-order. This is no longer the case when markets are locally incomplete.
The next lemma solves the optimal portfolio in closed-form for the general case.

Lemma 3. (Optimal policy portfolio) The optimal portfolio is given by

Bop = −1
2

σ2
T − χσ2

edm(0) − 2χµσT edm(0) +
√
(σ2
T − χσ2

edm(0))
2 + 4χ(σT edm(0))

2

(1− µ2χ)σT edm(0) + µ(σ2
T − χσ2

edm(0))
(21)

Using the solution for the optimal portfolio, the next proposition derives comparative statics
results.

Proposition 3. Suppose that either µσT edm(0) > 0 or µσT edm(0) < 0 and the following holds,

(1− µ2χ)σT edm(0) + µ(σ2
T − χσ2

edm(0)) > 0. (22)

Then, under the optimal policy Bop satisfies Bop < −µ−1, and:
(i) positions become larger (in absolute value) when the insurance motive becomes more important (i.e.,

when σ2
T /σ2

edm(0) increases or χ decreases)
(ii) a decrease in the covariance between the insurance and the demand-management targets - |σT edm(0)|/σ2

edm(0)
- makes positions smaller (in absolute value) if and only if the demand-management motive is more impor-
tant than the insurance motive, i.e., if χσ2

edm(0) > σ2
T . Conversely, i.e., if χσ2

edm(0) < σ2
T , it makes positions

larger (in absolute value)
(iii) positions have the opposite sign of σT edm(0);
(iv) positions become smaller (in absolute value) when m decreases
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If condition (22) does not hold, the result still holds in terms of the “sensitivity to monetary policy”, i.e.,
f (Bop) =

Bop
1+µBop

.

Proposition 3 shows how the planner resolves the trade-off when there are multiple shocks.
The main result is that the sensitivity of the portfolio to monetary policy, which typically maps to a
larger position,27 increases with the importance of insurance considerations. Thus, if the economy
faces shocks that create relatively large insurance needs (σ2

T /σ2
edm(0)), or creating transfers is not

very costly (low χ), gross positions are large (part i). This reflects that a more sizeable position
reduces the cost of providing insurance ex post but increases the cost of using the exchange rate
for demand-management. Furthermore, when correlation is imperfect the planner must prioritize
one objective (part ii): a lower correlation pushes the planner towards larger positions (if insurance
dominates) or smaller ones (if demand-management dominates). The alignment of the targets is
reflected by part (iii): if the economy needs insurance when the exchange rate is weak (σT edm(0) >

0), then she borrows in home-currency (B < 0). Finally, part (iv) shows that when there is a small
foreign-investor base in home-currency markets, the planner avoids large positions, which are
very expensive.

Replacing the optimal portfolio in (20) completes the characterization of the optimal monetary
policy. Using the full solution, the next corollary provides some comparative statics.

Corollary 2. The optimal insurance weight ω(Bop) increases with the importance of the insurance motive
(i.e., when σ2

T /σ2
edm(0) increases or χ decreases). It also increases with the measure of foreigners (m).

A smaller χ leads to a larger insurance weight overall, since it leads to both a larger insurance
weight conditional on the portfolio (proposition 2), and a larger portfolio (proposition 3). This
suggests that portfolio endogeneity may be important quantitatively, as it amplifies the effect of
structural features that affect χ, such as price flexibility and risk-aversion. Furthermore, in contrast
to economies without a portfolio problem, risks now matter to first-order for the optimal monetary
policy through their effect on the portfolio. For example, if shocks create a large demand for insur-
ance, positions are sizeable, and the ex post weight on the insurance target increases. Finally, note
that considering the portfolio endogeneity is also key to get the right sign for some comparative
statics. For example, while a smaller measure of foreigners leads to a larger weight on insurance
for a fixed portfolio, insurance is less important once the portfolio adjusts. This last result is also
useful to think about the cooperative solution. In Appendix B.1, I show that the solution under
cooperation is isomorphic to the decentralized solution with twice as many foreigners. Thus, an
immediate implication of corollary 2 is that cooperation increases the size of the portfolio and the
weight on the insurance motive.

27The mapping from the sensitivity of monetary policy f (B̄) to actual portfolios B̄ depends qualititatively on whether
the condition (22) holds. The “reversal” case may only arise if the feedback effect µ is strong, the correlation between
edm

s (0) and Ts is small and negative, and shocks create a large demand for insurance. This case is especially unlikely to
arise in the dynamic model, where the feedback effect µ is significantly weaker (see Section 4).
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3.3 Implications for exchange rate volatility

It is often argued that using nominal assets to complete markets would imply excessive volatility
in nominal quantities (Siu (2006)). In this section, I show that while this intuition is justified in an
environment with exogenous portfolios, optimal portfolio choice may endogenously lead to envi-
ronments with high leverage and low volatility in nominal quantities. To clarify the importance of
portfolio endogeneity, I compare the baseline economy to an economy in which the planner cannot
optimize its position because it is already at its upper bound, i.e., |B̄| = K̄.

Proposition 4. (Optimal exchange rate volatility). Consider an economy with small risks (ε→ 0).
(i) Suppose the portfolio decision is constrained and, as a result, is unresponsive to marginal changes in

risks or parameter values (i.e., |B̄| = K̄). Furthermore, assume B̄µ > −1. Then, exchange rate volatility
σ2

e /σ2
edm(0) increases with the importance of the insurance motive (i.e., χ decreases or σ2

T /σ2
edm(0) increases,

keeping σT edm(0)constant)
(ii) Suppose µB̄ ≥ 0 and the optimum B̄ is interior. Then, exchange rate volatility σ2

e /σ2
edm(0) decreases

with the importance of the insurance motive (i.e., χ decreases or σ2
T /σ2

edm(0) increases, keeping σT edm(0)

constant). If µB̄ < 0, the result is ambiguous.

There are two main forces at play that shape the optimal degree of exchange rate volatility.
First, there is a composition effect conditional on the portfolio. When the importance of insurance
increases, the planner responds by increasing exchange rate volatility after shocks that create a
demand for insurance. This is the standard channel considered in the closed-economy literature,
which naturally leads to the conclusion that nominal quantities should become volatile. On the
other hand, the planner exhibits more “fear-of-floating”: afraid of the transfers of wealth a freely-
floating exchange-rate regime may create, she decides to dampen exchange rate volatility. This
effect is typically absent in the closed-economy literature, where a constant inflation rate is taken
as the benchmark for proper demand management. Despite these two opposing effects, part (i) of
proposition 4 establishes that overall exchange rate volatility increases if the portfolio is not locally
endogenous, i.e., if it is constrained at the current level B̄.28

Second, there is a novel effect through the portfolio. Consider first the case with µ = 0. When
insurance becomes more important, the planner chooses higher leverage. This implies that smaller
exchange rate movements create larger transfers, which both lower the cost of providing insurance
and increase the cost of letting the exchange rate float to stabilize aggregate demand. This force
tends to lower exchange rate volatility. When µ < 0 and B̄ < 0, depreciations coincide with pos-
itive transfers, which dampens the volatility of the demand-management target, adding another
force towards lower overall volatility. In contrast, if B̄ > 0, depreciations coincide with negative

28For the result with respect to χ it is important that the portfolio is optimal (subject to the bound), and that it is in the
“regular” region where wealth effects have a limited strength (B̄µ > −1). If the portfolio were entirely suboptimal this
may not be true. For example, if there were only nontradable productivity shocks in the context of the example economy
of section 3.5 and B 6= 0, volatility would decrease with the importance of insurance since only the dampening effect is
present.
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transfers, which increase the volatility of the demand-management target. Part (ii) of proposition
4 states that as long as the feedback through µ is not destabilizing (i.e., µB̄ ≤ 0), the dampening
effect through the portfolio is strong enough to overturn the composition effect described above.

3.4 Optimal capital controls

The previous sections have shown that portfolio choice endogeneity is key to alleviate the trade-
offs involved in monetary policy design. A natural question is whether the private sector on its
own would pick the right portfolio. Farhi and Werning (2016) showed that the answer is nega-
tive: Since there is imperfect stabilization of aggregate demand in some states of the world, and
pecuniary externalities due to incomplete markets, agents do not properly internalize the value of
a unit of tradable goods, which in turn implies they choose the wrong portfolio. The next proposi-
tion provides a qualification in the context of the present model.

Proposition 5. (Asymptotic portfolio taxes) Consider an economy with small risks (ε→ 0). Then, optimal
portfolio taxes τB are given by

τB = γ∗ssm
−1B̄Ee2

s + O(ε3). (23)

When m→ ∞, the only externalities in the economy are aggregate demand externalities (due to
nominal rigidities) and pecuniary externalities (due to incomplete markets). Proposition 5 shows
that in this case taxes are asymptotically of third-order. In other words, portfolio decisions are
asymptotically efficient. What is the intuition behind this result? Even to first-order, private
marginal utility and social marginal utility differ in every state. Indeed, in this environment, one
can show that the gap between the social and the private marginal utility is proportional to the
output gap, as agents do not internalize the effect of their choice on the planner’s ability to create
insurance. The key observation is that output gaps are themselves deviations generated with the
sole intent and purpose of creating insurance. In other words, output gaps are proportional to
social marginal utility under the optimal policy. As a result, private marginal utility and social
marginal utility are proportional to one another and, since the planner sets the covariance of the
exchange rate and social marginal utility to zero, the covariance of the exchange rate and private
marginal utility is also zero. The key assumption that makes this result hold is the fact that divine
coincidence holds in this model: If the planner wanted to she could always close the output gap and
price dispersion at the same time. In contrast, if there were more than one output gap (i.e., an ex-
port and domestic sector), or there were markup shocks, taxes would be nonzero to second-order.
This last effect, however, is unrelated to market incompleteness per se: In those environments the
planner would like to put portfolio taxes even with complete markets. Furthermore, the result
is not driven by the simple asset market structure with two bonds (I show it generalizes to much
more general environments in Appendix B.3) nor by the absence of dynamics (I show it generalizes
to a dynamic setting in Section 4).29 The only difference in those complicated environments is that

29It also generalizes to a multi-asset dynamic model (see Appendix B.4).
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(b) Tradable endowment shock

Figure 1: Exchange rate response after a positive nontradable productivity shock (panel a) and a positive endowment
shock (panel b) under a demand-management policy (solid-blue line), an insurance policy (dashed-red), the optimal
policy when prices are relatively flexible φ = 0.1 (dotted-dashed-yellow), and the optimal policy when prices are rela-
tively rigid φ = 0.9 (dotted-purple line) for different home-currency positions. I set α = 0.55, ψ = 1, η = 6, γ∗ = 1, and
m = ∞.

there are more wedges between private and social marginal utility (i.e., in addition to the output
gap). However, the value of each wedge is proportional to the value of the insurance they create
(to first-order). As a result, they are all proportional to social marginal utility and the result, once
again, follows. Note that the fact that portfolio decisions are asymptotically efficient does not mean
savings decisions are, as I will show in Section 4.

As discussed in Section 2.2, the model has an additional rationale for taxes when m < ∞.
In this case, the home economy behaves as a monopolist in its home-currency bond market and
has an incentive to distort the stochastic discount factor to increase its price. This implies taxing
home-currency debt if B̄ < 0 or taxing home-currency assets if B̄ > 0. By curbing the demand of
home agents, the planner manages to increase the value of the country’s international investment
position. Unlike aggregate demand externalities, which increase the size of the pie, this motive is
clearly mercantilistic, i.e., it implies a redistribution from foreigners to home agents. In Appendix
B.1, I show that this tax would be zero in the cooperative solution. Finally, note that this motive is
also unrelated to market incompleteness, as discussed in Section 2.2.

3.5 An example

I illustrate the results of the previous section with a simple example. I set u = ln(Cα
TsC

1−α
Ns −

1−α
1+ψ L1+ψ

s ) and F = ZsYIs, where Zs is a productivity shock. The parameter α is an index of open-
ness in this economy and I calibrate steady state values accordingly: YTss = α and Zss = 1− α. Be-
yond standard productivity shocks, the example economy is also affected by endowment shocks
{YTs}, which capture in reduced form innovations to the “terms-of-trade” of a country, i.e., shocks
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to the world prices of the country’s exports. These shocks are often considered as one of the key
drivers of business cycles in open economies (Fernández, Schmitt-Grohé and Uribe (2017)). In the
quantitative model in Section 5 I also consider other shocks that have been stressed by the litera-
ture, such as interest-rate shocks and shocks to the uncovered interest rate parity (UIP) condition.
To make the figures, I set α = 0.55, ψ = 2, η = 6, and m = ∞.

3.5.1 Optimal monetary policy and optimal portfolio

Inner problem I begin by computing the exchange rate targets. Figure 1 shows the response of
the economy after a positive nontradable productivity shock (left panel) and a positive endow-
ment shock (right panel). Consider first the insurance target (dashed-red line). A simplifying
feature of this parametrization is that in equilibrium agents want to consume the same amount of
tradables regardless of their consumption of nontradables.30 As a result, the planner does not de-
sire any transfer of tradables after Z shocks. In contrast, because they are risk-averse, home agents
dislike volatility in their tradable consumption. Hence, when the endowment is low, the planner
depreciates if home agents have home-currrency debt and viceversa,

Ts = −
α

1 + 2m−1γ̃−1γ∗
yTs + O(ε2)⇒ein

s (B̄) = (
α

1 + 2m−1γ̃−1γ∗
)

1
B̄

yTs + O(ε2) (24)

where γ̃ = 1/α, which is absolute risk aversion in the tradable good. Away from unitary elasticity
between tradable and nontradables, γ̃ would depend on the elasticity of substitution, increasing
with the degree of complementarity.

Next, consider the demand-management target (solid-blue line) and suppose B̄ = 0. Under
flexible prices, a positive nontradable productivity shock would require an increase in employ-
ment and a decrease in the foreign-currency price of intermediate inputs. To replicate this price
movement, the planner needs to depreciate the exchange rate. When B̄ 6= 0, this is not the end of
the story: the depreciation triggers a negative transfer of tradables (if B̄ > 0). Agents would then
be more poor, which implies that replicating the flexible price allocation requires a further depre-
ciation of the currency. In other words, B̄ > 0 triggers a destabilizing wealth effect. Conversely,
when B̄ < 0, this wealth effect is stabilizing. This effect is captured by µ,

µ = −1
α

ψ

ψ + α
.

Its strength depends on openness (a more open economy faces a smaller proportional change in
tradable consumption), and on the disutility of labor (if it were linear then increasing production
would not require higher intermediate input prices). Note that, since an endowment shock is in
fact a wealth transfer, its effect on the demand-management target is also given by µ. In sum, the

30This case is usually studied with separable utility. It can be shown that with the proposed steady state parametriza-
tion the result is also true for the Greenwood–Hercowitz–Huffman (GHH) utility I specified.
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demand-management target is given by

edm
s (B̄) =

1

1− 1
α

ψ
ψ+α B̄

(
1− α

ψ + α
zs −

ψ

ψ + α
yTs) + O(ε2) (25)

To complete the characterization of the inner problem, I now compute the insurance weight
ω(B̄) described in Section 3.2.1. To do so, I first need to compute the parameter χ,

χ =
1

1 + 2m−1γ̃−1γ∗
αφ(1− α)(α + ψ)(φ + (α + ψ)(1− φ)η)

(α + ψ + (1− α− ψ)φ)2 ,

which is monotonic in φ if η < 2 and hump-shaped otherwise with a critical threshold of φ̄ =
(α+ψ)η

(1+α+ψ)η−2 . Furthermore, note that χ becomes zero when the economy is completely closed or open
(α ∈ {0, 1}). Since I assumed production in the tradable sector was not affected by the price rigidity,
the output gap becomes irrelevant when α = 1. On the other hand, when α → 0 exchange rate
movements create transfers which, in proportion to the steady state level of tradable consumption,
are very large. Note this does not imply the insurance weight goes to 1 under the optimal policy,
since desired transfers also scale with openness so the portfolio is also affected. Figure 1 computes
the optimal exchange rate conditional on a portfolio B̄ for a case relatively flexible (φ = 0.1, dotted-
dashed-yellow line) and relatively sticky (φ = 0.9, dotted-purple line) prices. As expected from
proposition 2, the optimal policy lies closer to the demand-management target when positions are
closer to zero and when the country issues home-currency debt, due to the endogenous feedback
effect through µ. Note that in the depicted example, the “low” φ policy is sufficiently low such that
high price flexibility actually implies a larger weight on the insurance motive.

Outer problem To find the optimal portfolio, I need to compute the covariance structure of the
targets in an economy without home bonds. This yields,

σ2
T = (

α

1 + m−1γ̃−1γ∗
)2σ2

y

σ2
edm(0) =

1
(ψ + α)2 ((1− α)2σ2

z + ψ2σ2
y − (1− α)ψσyz)

σT edm(0) =
1

ψ + α

1
1 + 2m−1γ̃−1γ∗

(ψασ2
y − α(1− α)σyz).

First, consider the case of uncorrelated shocks (σyz = 0). Panel (a) in Figure 2 illustrates how
the optimal portfolio (x axis) varies as I increase the standard deviation of y from 0% to 10% (y
axis) while keeping the volatility of nontradable productivity shocks at 10%.31 I consider the cases
with perfect integration in home-currency-bond markets (m = ∞, red and blue lines) and with

31Note that the volatility level only matters for the nonlinear model; for the approximation only relative volatilies
matter. I present the values of the portfolios to assess the accuracy of the approximation, but the value themselves do
not have a meaningful interpretation since this static model is too stylized to take to the data. For a quantitative analysis,
see section 5.
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Figure 2: Optimal portfolio. On the left, I plot the optimal portfolio as I vary the volatility of tradable endowment
shocks from 0 to 10% with the volatility of nontradable productivity shocks fixed at 10% in the approximated model
(dotted lines) and in the original nonlinear model (solid lines) when m = ∞ (blue and red) and when m = 1 (green
and black). On the right, I fix σy = 2.5% and σz = 10% and vary the covariance between y and z from −1 to 1 in the
approximated model (dotted lines) and the original nonlinear model (solid lines) when the share of firms optimizing is
φ = 0.1 (blue and red) and φ = 0.9 (green and black).

limited participation (m = 1, green and black lines). Since the exchange rate depreciates when the
economy has a low endowment of tradables (σT edm(0) > 0), the planner chooses a short position
in home-currency bonds. The larger the endowment shocks, the shorter the position. This allows
the planner to provide insurance more cheaply, i.e., by using smaller exchange rate movements.
On the other hand, a smaller home-currency market (low m) induces the planner to choose smaller
positions and insure less overall to avoid paying a large premium on its debt. In either case, the
approximation (red and black dotted lines) is very close to the true solution in this model (blue
and green lines).32

Next, suppose y and z are correlated. When they are perfectly negatively correlated, the ex-
change rate depreciates when the tradable endowment is low. Thus, the optimal portfolio is short
home-currency bonds. In contrast, when they are perfectly positively correlated, there are op-
posing effects on the exchange rate. I assume y shocks are four times less volatile than z shocks
(σy = 2.5%), which implies the exchange rate depreciates when the tradable endowment is high.
As a result, the optimal portfolio is long home-currency bonds. When correlation is imperfect, the
response of the optimal portfolio depends on the relative importance of the insurance vis-a-vis the
demand-management motive. Figure 2 shows how the optimal portfolio varies as I increase the
correlation between y and z shocks from −1 to 1 in a case with low flexibility (φ = 0.9, green and
black lines) and in a case of high flexibility (φ = 0.1, red and blue lines). To make the plot easier

32I observe the largest difference when the model yields large positions, since the objective function then becomes
very flat. Even then, the difference is small; the approximation yields B = −1.92 vs B = −1.89 in the nonlinear model.
I found similar results for other parameter values.
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Figure 3: Exchange rate volatility. I decompose the total standard deviation of the exchange rate (solid-blue line) into
the contribution of y shocks (red-dashed line) and z shocks (dotted-yellow line) as the parameter χ varies. Shocks are
uncorrelated. On the left, the portflio is constrained at some level K̄, which is suboptimally low for the plotted values
χ. On the right, the portfolio is at its optimal value. The standard deviation is in percentage points. These figures were
computed using the approximation. Results are very similar in the nonlinear model.

to interpret, I show the implied correlation between the desired transfers T and the demand-
management exchange rate edm(0) in the y axis rather than the correlation between fundamentals
(they are one-to-one in the example). When flexibility is low (red and blue lines), the parametriza-
tion lies in the region where the demand-management objective dominates (χσ2

edm(0) > σ2
T ) and the

planner decides to reduce leverage. In contrast, when flexibility is high (green and black lines), the
parametrization lies in the region where the insurance objective dominates (χσ2

edm(0) < σ2
T ), and

the planner increases leverage to reduce the cost of providing insurance.33

3.5.2 Implications for exchange rate volatility

Figure 3 illustrates how exchange rate volatility changes with the importance of insurance (χ) in
the example economy (I keep σz = 10% and σy = 2.5%). In panel (a), I keep the portfolio fixed at a
level that would be optimal with the highest plotted χ (≈ 20). This case illustrates the composition
effect: when the planner places a higher weight on the insurance target, it dampens the response
after nontradable productivity shocks (dotted-yellow line) and takes a more active stance against
endowment shocks (dashed-red line). Overall volatility (solid-blue line) increases, driven by the
large response to endowment shocks. Panel (b) plots the response when the portfolio decision
is unconstrained. Nontradable productivity shocks are now dampened even further, due to the

33When the correlation becomes zero, the problem becomes bang-bang. When demand-management dominates, the
planner prefers to remain in autarky (B̄ = 0). In contrast, when insurance dominates the planner chooses the other
corner, which is given by B̄ = −µ−1. More rigorously, I approach this value as the correlation goes to 0, since when
B̄ = µ−1, the equilibrium is only well-defined if the exchange rate is fixed. Furthermore, when correlation is low and
positive, the economy is in a “reversal” region not covered by proposition 2 and B̄ > −µ−1, which in turn implies
demand-management responses change signs.
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Figure 4: Optimal tax on home-currency assets (τB) as a function of risk (ε) using the approximation (dashed-red line)
and the nonlinear model (solid-blue line). Both quantities are expressed in percentage points. On the left panel, I set
m = 0 while on the right panel I set m = 1. I set σy = ε/4 and σz = ε.

larger portfolio. For endowment shocks, the effect is now ambiguous: Since the portfolio is larger,
smaller exchange-rate movements are necessary to achieve the same amount of insurance and, in
addition, the demand-management target becomes more stable. In this parametrization, I find a
hump-shaped response, with volatility due to y shocks increasing when portfolios are relatively
small and decreasing thereafter. Furthermore, since µB̄ ≥ 0, overall volatility decreases with the
strength of the insurance motive.

3.5.3 Optimal capital controls

Figure 4 plots the optimal tax in the example economy when there is perfect integration (m = ∞)
and when there is limited participation (m = 1). I keep the covariance structure as in the previous
section and vary the overall amount of risk ε in the economy from 0 to 20%. I compare the full
nonlinear solution (solid-blue line) with the approximated solution (dashed-red line) given by
equation (23). When ε → 0, the tax becomes zero in every case, since assets are perfect substitutes
in the limit. When m = ∞, the approximation predicts a zero tax while the nonlinear model
predicts a very small subsidy in home current assets. In contrast, when m = 1, the implied subsidy
is two orders of magnitude larger.34 Finally, note that the approximation tracks very closely the
true nonlinear solution.

34 The underlying portfolio is B̄ = −0.6.
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4 Dynamic model

In this section, I generalize the model to a dynamic setting. I present the model in Section 4.1.
Section 4.2 characterizes the optimal policy and is divided into two parts. Section 4.2.1 establishes
the robustness of all the results in terms of the excess returns of home-currency bonds. Section
4.2.2 studies the implementation of these excess returns in terms of monetary policy and savings
taxes, which allows me to deliver new results. Appendix B.4 shows the robustness of the results in
an extension with multiple assets that load on endogenous variables and shocks.

4.1 Setup

Home agents solve

max E−1{
∞

∑
t=0

βtu(CTt, CNt, Lt; ξt)} (26)

subject to

CTt + E−1
t PNtCNt + (1 + τ∗t )NFAt + τB

t Bt = YTt + E−1
t ΠIt + E−1

t ΠNt + (1 + τL)WtLt (27)

+ R∗t−1NFAt−1 + RRtBt−1 + Tt

where NFAt = B∗t + Bt is the net foreign asset position of the country (with both asset positions
measured in foreign currency), τ∗t is a savings tax, and RRt are the realized excess returns of the
home-currency bond. I allow home-currency bonds to have a long duration by assuming they
pay an initial coupon of δ units of home currency that decays at rate 1− δ, as in Hatchondo and
Martinez (2009). Excess returns on home-currency bonds are given by

RRt = {(1 + ψt−1)Rt−1(δE−1
t Et−1 + (1− δ)E−1

t Et−1R−1
t )− R∗t−1}

where ψ is a shock to the liquidity service of home-currency bonds, similar to Lahiri and Végh
(2003).35 This shock introduces noise in the return of home-currency bonds, and is meant to capture
in reduced form disturbances to the arbitrage between bonds in the spirit of portfolio balance
models a la Kouri (1976). It will play an important role in the quantitative section, where they will
allow the model to match the volatility of the nominal exchange rate. I assume these shocks are
symmetric across agents, i.e., they do not reflect heterogeneous beliefs.36 Furthermore, note that
while this shock is, indeed, an uncovered interest rate parity (UIP) shock, it is different from the
traditional one considered in the literature with a single foreign-currency bond (see, for example,
Kollmann (2001)), which is captured in the framework by an interest-rate shock R∗t . Crucially, the
R∗t shock affects the savings decision while the ψt shock affects the portfolio decision.

35Equivalently, I could have introduced a taste shock on the holdings of home bonds in the utility function (with a
normalization such that taste shocks are still symmetric across agents).

36 The framework cannot accommodate first-order differences in beliefs, since then positions would become un-
bounded as ε→ 0.
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I assume foreign agents that access home-currency bond markets are marginally indifferent
between saving and consuming if they do not participate,

u∗′(Y∗t ) = β∗R∗t Etu∗′(Y∗t+1), (28)

where R∗ is unaffected by the decision of participating foreigners.37 Optimization yields the no-
arbitrage condition,

Et−1RRtu′(Y∗t + R∗t−1B f ∗
t−1 − B f ∗

t − RRtm−1Bt−1) = 0

where B f ∗ is the savings decision of foreigners participating in home-currency markets.
Finally, staggered price-setting is modeled by making the identity of the 1 − φ share of re-

optimizing firms stochastic (i.e., Calvo price-setting). The rest of the model is the same as before.

4.2 Optimal policy

4.2.1 Characterization in terms of excess returns

The key economic quantity to characterize the optimal policy with long bonds is the realized excess
return of home-currency bonds. This is not a property of the dynamic model per se; rather, it is
a consequence of breaking the perfect correlation between excess returns and contemporaneous
exchange rate movements that arises with short-bonds.38 Define, by analogy to the static model,
the demand-management target as the excess return that is consistent with a zero output gap and
no savings taxes,

rrdm
t (B̄t−1) =

1
1 + µB̄t−1

rrdm
t (0) + O(ε2), (29)

where rrdm
t (0) is the excess return in an economy without home-currency bonds but with foreign-

currency bonds. Similarly, define the insurance excess return as the one that creates the transfer of
goods the planner would desire if prices were flexible (Tt),

rrin
t (B̄t−1) =

1
B̄t−1
Tt + O(ε2). (30)

The next lemma shows that welfare can still be written as a function of deviations from these two
targets.

Lemma 4. In the limit ε → 0, the optimal excess returns of home-currency bonds at t and the optimal

37For this reason, the case with m < ∞ can no longer be interpreted as a large economy. Relaxing this assumption
would imply the economy has an additional terms-of-trade manipulation motive as it would try to influence the world
interest rate in its favor, exactly as in Costinot, Lorenzoni and Werning (2014).

38In Appendix B.2, I show an example in the context of the static model. In that example, agents can trade equity in
the nontradable sector. There, too, the important economic quantity is the realized excess return.
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portfolio at t− 1 solve

W = max
{rrt,B̄t−1}

−k0Et−1{
1
2

B̄2
t−1(rrt − rrin

t (B̄t−1))
2 +

1
2

χ(1 + µB̄t−1)
2(rrt − rrdm

t (B̄t−1))
2}

+ t.i.p. + O(ε3) (31)

The objects rrdm
t (0), Tt, k0, µ and χ are specified in Appendix A.2.

Lemma 4 shows that the problem of finding the optimal first-order behavior of the excess return
of home-currency bonds and the steady-state optimal portfolio is essentially a static problem that
is isomorphic to the one in Section 3, stated in terms of the excess returns of home-currency bonds,
rather than the exchange rate. The portfolio problem is separable over time: future portfolios
do not affect the path of expected variables to first-order. This implies that it is without loss of
generality to shut-down uncertainty from t + 1 onwards (a manifestation of certainty equivalence)
to study the optimal distribution of endogenous variables at t and the portfolio chosen at t− 1.

Lemma 4 immediately implies that the following results from Section 4.2 generalize to the dy-
namic environment: (i) the optimal excess returns are a weighted average of the targets implied by
the two motives - equations (29) and (30), (ii) the optimal portfolio satisfies an equation analogous
to (21), and, (iii) the volatility of excess returns decreases with the importance of insurance if the
portfolio is endogenous but it increases if it is exogenous (when µB̄ ≥ 0). Furthermore, proposition
3.4 shows the optimal portfolio tax result also generalizes to the dynamic model. In other words,
no portfolio taxes are necessary in the absence of terms-of-trade manipulation (m = ∞), or with
cooperation. The intuition is the same as before: excess return deviations are proportional to the
value of insurance.39

Proposition 6. Propositions 2, 3, and 4 generalize to the dynamic environment in terms of excess returns
rrs (the static model is a special case after using rrs = −es). The portfolio tax formula generalizes to40

τBt = (1− β)γ∗ssm
−1BEt−1rr2

t + O(ε3).

Finally, note that while the reduced form representation is the same, χ is now a more compli-
cated object. Whereas in the static model there is a single way of creating an excess return, in the
dynamic model the planner has more tools, such as promises of future exchange rate movements.
χ now contains the information on how to choose among the many instruments the planner has
to deliver any given excess returns rrt at a minimum cost, a problem I study in Section 4.2.2. An-
other important difference with the static model is that now agents only consume a share 1− β

39In Appendix B.4 I show that all these results also generalize to an economy with one asset sensitive to monetary
policy and multiple exogenous assets. If there are multiple assets that are sensitive to monetary policy, I can show that
portfolio taxes are still zero if m = ∞ and monetary policy also has a similar weighted average representation. However,
unlike the static model, the portfolio can no longer be solved in closed form and propositions 3 and 4 do not seem to
carry over. A simple algorithm is provided to solve this case.

40The 1− β reflects the fact that foreigners can also borrow in their own currency, smoothing bad shocks. If they lived
for only period, then the formula would hold with a 1 instead of 1− β, exactly the same as in the static model.
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of any additional transfer. This has two important consequences. First, the wealth effect on the
demand-management target is now much weaker: µ is now multiplied by β−1(1− β). Second, it
significantly reduces the impact of a transfer on marginal utility. This is clearly seen in the extreme
with rigid prices (φ = 1) and short-bonds. In this case, χ is divided by β−1(1− β). Naturally, to
the extent that shocks may be close to permanent, insurance desirability (T ) also increases, which
offsets the smaller effect of a transfer by increasing the size of the desired transfer and the optimal
portfolio.

Remark 2. The feedback effect from transfers to equilibrium demand-management exchange rates
is much weaker: µdynamic = β−1(1− β)µstatic. In addition, if prices are rigid φ = 1 and bonds are
short, χdynamic = β(1− β)−1χstatic.41

4.2.2 Implementation of excess returns

In this section, I study the “continuation” problem, which involves finding the optimal value of
endogenous variables at t and the path for expected endogenous variables from t + 1 onwards
after the state of the world at t is realized. In other words, I take the promised excess return rr0 as
given and ask: What is the optimal path that delivers this excess return? By certainty equivalence,
this is a deterministic problem. The answer to this question pins down the cost of replicating rr0,
i.e., it pins down χ. I first describe the optimal path for monetary policy and then the implications
for the path of savings taxes.

Monetary Policy The implementation in terms of monetary policy is now more complicated: the
planner needs to specify a full path for the exchange rate.42 To streamline the discussion, consider
the response of the economy after an innovation at time t = 0 and suppose the economy was
at a steady-state at −1. Combining the firms’ first-order condition and consumers’ demand for
nontradables I obtain:

∆et = πIt + β(1− β)−1µ∆cTt + k′eξ∆ξt + kex∆xt + O(ε2) (32)

where xt is the output gap, πIt is intermediate-input inflation, and kex and k′eξ are constants (k′eξ

is a vector). To find the demand-management exchange rate target, set xt = πIt = 0 and plug
in the solution for cTt (from the consumer’s Euler and the budget constraint). This yields a path
{edm

t (B̄)}. By contrast, the insurance exchange target consistent with rrin
0 is not uniquely defined if

bonds are long. Indeed, any {∆et} path that satisfies

βrrin
0 = −e0 −

∞

∑
t=1

βt(1− δ)t(∆et + r∗t−1 + ψt−1) + O(ε2)

41If I had a share φ of “flexible” firms and the rest setting prices one period in advance, then this result would be still
hold with short bonds.

42Since the trilemma holds in the economy, monetary policy can also be restated in terms of an interest rate path and
a long-run level of the exchange rate.
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is admissible, as long as one can find a path {xt, πIt, cTt} that satisfies equation (32), the budget
constraint, a transversality condition for bonds, and the dynamic Phillips curve

πIt = κxt + βEtπIt+1 + O(ε2)

where κ > 0 is a constant. Among these many potential paths, I define the insurance exchange
rate target as the path {ein

t } that delivers rrin
0 at the minimum cost. This implies that, to find

such path, the planner needs to solve a cost-minimization problem, choosing the optimal paths of
{cTt, xt, πIt, et} that minimize consumption distortions and production inefficiency. To characterize
the solution to this problem it will be convenient to define the costly exchange rate deviations {ẽt}
associated with an exchange rate path {et} and an excess return rr0 as:

ẽt(B) = et(B)− {edm
t (0) + µB̄rr0}.

Whenever ẽ 6= 0, the planner must either distort consumption (i.e., put a savings tax) or production
(i.e., have a nonzero output gap). Naturally, the demand-management policy has no deviations:
ẽdm

t ≡ 0. In contrast, when B̄rrdm
0 6= T0, the planner needs to create deviations (ẽt 6= 0) to provide

the desired insurance. The next proposition characterizes the optimal behavior of these deviations.

Proposition 7. (Optimal monetary policy II) Let ẽt(B) = et(B) − {edm
t (0) + µB̄rr0} denote the costly

exchange rate deviations.
1. If prices are rigid, then:

ẽt = −k̄e1(1− δ)t{(1 + µB̄)rr0 − rrdm
0 (0)}+ k̄e2{(1 + µB̄)rr0 − rrdm

0 (0)}+ O(ε2)

where k̄e1 > 0 and k̄e2 ≥ 0. Furthermore, sign(ẽ0) = sign(−{(1 + µB̄)rr0 − rrdm
0 (0)}). If µ = 0, then

k̄e2 = 0.
2. Suppose kex > 0 (expansionary devaluations) and suppose inflation is relatively more costly than

the output gap: κλπkex − λx > 0, where λx and λπ are the costs of (squared) output gaps and inflation,
respectively.43 If bonds are short, then:

∆ẽt = P(kex)Rt−1
π {(1 + µB̄)rr0 − rrdm

0 (0)}+ O(ε2) ∀t ≥ 2

∆ẽ1 = k̄e3{(1 + µB̄)rr0 − rrdm
0 (0)}+ O(ε2)

ẽ0 = −k̄e4{(1 + µB̄)rr0 − rrdm
0 (0)}+ O(ε2)

where Rπ is the optimal decay rate of inflation, k̄e3 > 0 and k̄e4 > 0 are constants andP(kex) is a continuous
and monotonic function of kex with P(0) > 0 and limkex→∞ P(kex) < 0.

3. In either of the cases above, setting rr0 = rrin
0 yields the deviations corresponding to the insurance

43If u is GHH or separable, the composite between tradables and nontradable is CES, and F = YαF
Is , then kex =

αF
1−αF+ρ−1αF

> 0 so devaluations are expansionary.
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target. Furthermore, once the targets have been defined, the optimal exchange rate has the same weighted
average representation as before (even when δ < 1 and φ < 1), i.e.,

eop
t =

B̄2

χ(1 + µB̄)2 + B̄2 ein
t (B) +

χ(1 + µB̄)2

χ(1 + µB̄)2 + B̄2 edm
t (B̄) + O(ε2)

Proposition 7 shows that the optimal exchange rate has the same weighted average represen-
tation as excess returns if one defines the insurance target as the one that minimizes the cost of
providing the transfer. More interestingly, it characterizes the deviations {ẽt} in two special cases:
with rigid intermediate-input prices, and with short bonds. When prices are rigid, the planner
spreads the adjustment in proportion to the amount of debt maturing in each period: If she wants
to deliver a positive excess return, she creates a persistent overvaluation of the exchange rate,
which decays at the same rate as bonds if µ = 0. If µ < 0 the planner brings consumption forward,
which implies the exchange rate eventually settles at a more depreciated level. In other words,
the exchange rate appreciates on impact and then slowly returns back to its demand-management
level (given the new long-run net foreign asset position). When bonds are short, the contempo-
raneous exchange rate is immediately determined by the desire to create an excess return. When
devaluations are expansionary, the planner induces a recession and deflation today, followed by a
boom and inflation tomorrow.44 This immediately implies an appreciation at t = 0 followed by a
depreciation at t = 1. After t = 1, the boom and inflation slowly subside, with opposing implica-
tions on the exchange rate path. Thus, depending on the sensitivity of the output gap to exchange
rate movements, the t = 1 exchange rate may overshoot (if kex is large) or converge monotonically
(if kex is small) to its new long-run level. While the general case can also be written in closed form,
it is easy to see from these examples how a variety of cases may arise.

Savings taxes Proposition 8 characterizes savings taxes in the cases with either rigid prices or
short bonds.

Proposition 8. (Savings taxes) Suppose the planner wants to create an excess return of rr0 at t = 0 and
suppose there are no further shocks. Then:

1. If prices are rigid (φ = 1), savings taxes decay at rate 1− δ

τB∗t = −K̄0(δ)(δµ− K̄1k−1
ex kux)(1− δ)t{(1 + µB̄)rr0 − rrdm

0 (0)} (33)

where K̄0 > 0, K̄1 > 0 are constants, kux captures the reaction of private marginal utility to the output gap
(kux > 0 implies agents overvalue tradable goods in booms).45 When δ = 0, K̄0(δ) = 0.

44The latter depends on inflation being relatively more costly than the output gap. (Otherwise the planner may
promise deflation in the continuation, see Appendix A.2.4)

45If u is GHH, the composite between tradables and nontradable is CES, and F = YαF
Is , then kux = 1−α

ρ > 0. If u is

separable, kux = (γ− ρ−1)(1− α)αF, so it depends on whether tradables and nontradables are Edgeworth complements
or substitutes (i.e., if γρ > 1, they are substitutes and kux > 0).

33



2. If bonds are short (δ = 1), then saving taxes from t ≥ 1 are given by

τB∗t = −k̄1kuxRt−1
π π1

where Rπ is the optimal decay rate of inflation after t = 1 and k̄1 > 0. At t = 0,

τB∗0 = −k̄2µ{(1 + β−1(1− β)kec)rr0 − rrdm
0 (0)}+ kux∆x1

where k̄2 > 0. If kex > 0 and κλπkex − λx > 0, then ∆x1 > 0 and π1 > 0.

Like the exchange rate, savings taxes decay at the same rate as bonds when prices are rigid.
However, since savings taxes are only useful to the extent that the adjustment is unevenly split
across periods, the level of the tax is very small if debt is very long. Indeed, if debt is a perpetu-
ity, the optimal tax is zero. The two terms inside the first parenthesis in equation (33) reflect the
two reasons why savings taxes are useful. The first term reflects that when µ 6= 0 manipulating
tradable consumption allows the planner to move the exchange rate at no cost in terms of pro-
duction efficiency. For example, suppose the planner wants to create a positive excess return on
home-currency bonds. Then, if µ < 0, the planner taxes savings, which boosts consumption and
appreciates the exchange rate. The second term reflects that agents do not value tradable goods
properly. Although state-by-state this valuation mistake is proportional to the value of insurance
if m = ∞ and, hence, no portfolio taxes are required, the strength of the externality varies across
periods. If agents undervalue tradable goods in recessions (kux > 0), the planner has an incentive
to boost savings in booms and tax them in recessions. In the example discussed above, where the
planner creates a persistent yet declining overvaluation, the planner has an additional incentive to
tax savings.

With staggered prices and short bonds, the only incentive to tax savings after t = 1 is the
aggregate demand externality. Consider the case with kex > 0 and suppose the planner wants to
increase the return on home assets. Recall from the earlier discussion this induced a recession at
t = 0 followed by a boom from t = 1 onwards. When agents undervalue tradables in recessions
(kux > 0), the planner wants to tax savings at t = 0 and subsidize them at t = 1 to correct the
aggregate demand externality. Furthermore, at t = 0 she also wants to tax savings to increase
consumption, which has the added benefit of appreciating the exchange rate (if µ < 0).

5 Quantitative Analysis

In this section, I evaluate the quantitative importance of the theoretical results presented in Sections
3 and 4. It is divided into three parts. Section 5.1 briefly describes the calibration strategy. Section
5.2 presents the implications of the optimal policy for the statistics that played a key role in the
analysis and welfare. As a benchmark, I also present the results under a demand-management-
targeting policy, which is equivalent to strict (intermediate-input) inflation targeting. Section 5.3
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Table 1: Parameter values and shocks

Parameter Description Value Parameter Description Value

A. Structural parameters

β Discount factor 0.99 φ Probability of not adjusting prices 0.75
γ Home risk aversion 2 η Elasticity of substitution (varieties) 6
γ∗ Foreign risk aversion 2 δ Bond depreciation 0.042
α Tradable share 0.55 m Measure of foreigners 0.18
ν−1 Frisch elasticity 0.5 φπ Reaction to CPI inflation 1.5
ρ Elasticity of substitution (T/NT) 0.74 ρi Smoothing coefficient 0.84

B. Shocks

σz Productivity s.d. 0.47% ρψ Liquidity service persistence 0.79
σp∗ Terms-of-trade s.d. 0.2% corr(εz

t , ε
p∗
t ) Correlation: z and p∗ 0.26

σr∗ World interest-rate s.d. 0.23% corr(εz
t , εr∗

t ) Correlation: z and r∗ −0.13
σy∗ Foreigners’ output s.d. 0.53% corr(εz

t , ε
y∗
t ) Correlation: z and y∗ 0.41

σψ Liquidity service s.d. 0.92% corr(εp∗
t , εr∗

t ) Correlation : p∗ and r∗ −0.51
ρz Productivity persistence 0.81 corr(εp∗

t , ε
y∗
t ) Correlation: p∗ and y∗ 0.36

ρp∗ Terms-of-trade persistence 0.74 corr(εr∗
t , ε

y∗
t ) Correlation: r∗ and y∗ −0.15

ρr∗ World interest-rate persistence 0.87 corr(εψ
t , εx

t ) Correlation: ψ and others 0
ρy∗ World output persistence 0.88

studies the sensitivity of the results to the presence of liquidity shocks and the cost of inflation,
and shows that they play an important role.

Appendix C provides additional sensitivity analysis and shows how the results change when
savings taxes are not available.46

5.1 Calibration

Table 1 lists the parameter values and stochastic processes used in the baseline calibration. A
period in the model is one quarter. Flow utility is assumed to take a standard separable form,47

u =
1

1− γ
C1−γ

t − 1− α

1 + ν
N1+ν

t

Ct = (α
1
ρ C

ρ−1
ρ

Tt + (1− α)
1
ρ C

ρ−1
ρ

Nt )
ρ

ρ−1 .

I adopt standard values for the discount factor (0.99), risk aversion (2), and the Frisch elasticity of
labor supply ( 1

2 ). For simplicity, I assume nontradable production is linear in intermediate inputs
and set the elasticity of substitution between tradable and nontradable goods at ρ = 0.74, following
Mendoza (1992), who estimates it in a sample of 13 industrial countries. I assume that intermediate

46I provide additional sensitivity exercises with respect to the elasticity of substitution between tradable and nontrad-
able goods, risk-aversion, the degree of openness, the duration of home-currency bonds, and the discount factor.

47I also explored the predictions of a model with GHH utility, as in Section 3. Results with respect to the outcomes
of interest are similar but the performance worsens in other dimensions: it predicts too high consumption and output
volatility.
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good producers do not reoptimize each period with probability 0.75, and set the elasticity across
varieties η to 6, as in Gali and Monacelli (2005). For the remaining parameters and stochastic
processes, I use data from Canada, which I take as a prototype small open economy. I assume that
the monetary authority follows a simple Taylor rule,

it = (1− ρi)(β−1 − 1) + ρiit−1 + (1− ρi)φππt

where πt is CPI inflation, φπ = 1.5 - a standard value - and ρi = 0.84, which is the estimated per-
sistence of the 3-month Canadian treasury bill rate over the sample period 1997:1-2016:4. I classify
as nontradable sectors those with a very low export share: construction and services related to real
estate services, public administration, education, health services and professional and scientific
services. This leads to a share of tradables in output (α) of 55%. Furthermore, the net foreign asset
position is balanced (i.e, NFAss = 0).

I assume productivity shocks are perfectly correlated across sectors due to lack of reliable data
on sectoral output at a quarterly frequency (i.e., YTt = Zt and YNt = ZtYIt). I also allow for terms-
of-trade shocks, implying total tradable income is P∗t YTt (leaving the foreign-currency price of
imports fixed at 1). In order to calibrate the stochastic properties of the exogenous driving forces, I
fit AR(1) processes to (log) labor productivity (z), the (log) terms of trade in Canada (p∗), (log) U.S.
real seasonally-adjusted output (y∗) and the U.S. 3 month treasury bill rate deflated by the U.S. CPI
(r∗), using quarterly HP-filtered data (except for r∗) over the sample period 1997:1-2016:4.48 As is
well known, calibrating these shocks alone would predict too little exchange rate volatility. For this
reason, I add an AR(1) liquidity shock ψt which, as explained in the previous section, adds noise
to the return of holding home-currency bonds. I calibrate it to match the exchange rate volatility in
the period (σ∆e = 0.036), while keeping the persistence of the 3-month Canadian treasury bill rate
unaffected. This yields σψ = 0.0092 and ρψ = 0.79. This shock also moves the model closer to the
data in other respects, generating a negative Fama coefficient and a low R2 in a Fama regression.
I pick the measure of intermediaries m to match the size of home-currency debt liabilities in 2012
(−15%), the last year I have access to data from Bénétrix, Lane and Shambaugh (2015). Finally,
since I lack data on the duration of home-currency external debt, I choose δ to match a duration
of 4.85 years, which corresponds to the average duration of Canadian government debt between
1997 and 2010.49
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Table 2: Results in baseline model.

Calibrated
Taylor rule

Demand
Management

Optimal Optimal:
fixed B

Optimal:
Cooperation

A. Home-currency bond positions and excess returns

ω 0% 7.75% 3.57% 22.1%
B̄ −15.0% −16.0% −22.8% −15.0% −58.0%
σ(rr):total 6.12% 3.79% 3.72% 3.82% 3.42%
σ(rr) : r∗ 2.75% 1.58% 1.99% 1.91% 2.26%
σ(rr) : ψ 5.72% 3.44% 3.15% 3.32% 2.56%
σ(rr) : y∗ 0% 0% 0.35% 0.24% 0.70%

B. Policy instruments

τB/risk premium −81.1% −104% 0%
σ(τ∗) 0% 0.03% 0.02% 0.06%
σ(e): total 3.59% 1.48% 1.60% 1.58% 1.70%
σ(e) : r∗ 1.85% 1.48% 1.60% 1.59% 1.64%
σ(e) : ψ 3.34% 0.06% 0.19% 0.11% 0.49%
σ(e) : y∗ 0% 0% 0.15% 0.10% 0.29%

C. Welfare gains (% of first-best)

Gains 11.9% 16.9% 15.0% 41.3%

Note: In column 4, the portfolio is fixed at −15% while the remaining columns it is optimally chosen by the planner.
The portfolio is normalized by annual gdp. Every other variable is expressed in quarterly units. The portfolio tax τB is
normalized by the second-order risk-premium on home-currency bonds, which is positive. Welfare gains are measured
by how much of the welfare gap between the first-best (a model with flexible prices) and an economy without home

bonds (B̄ = 0) economy is achieved by each policy: wel f (policy)−wel f are(B̄=0)
wel f are( f irstbest)−wel f are(B̄=0)%.

5.2 Baseline model

5.2.1 Implications for key statistics

In this section, I explore the importance of the theoretical results presented in the previous sec-
tions. The first result stated that optimal monetary policy is a weighted average of a demand-
management target and an insurance target. The first row in panel A of Table 2 shows that the
planner places a nontrivial weight on the insurance motive of around 8% (column 3), although
demand-management is still the most important consideration for monetary policy. The second
result stated that the optimal portfolio is larger under the optimal policy than under demand-
management. Despite the modest weight on the insurance motive, row 2 in Table 2 shows the
portfolio is indeed significantly more sizeable: home-currency debt under the optimal policy is
23%, compared to only 16% under demand-management targeting (column 2). The third result

48Note that the autocovariance of y∗ is irrelevant in the model; what matters is the interest rate. Implicitly, in writing
equation (28) I am assuming there are discount factor shocks {β∗t } that make the foreign Euler equation hold.

49The data is from OECD statistics and the series was discontinued after 2010. In a sample of emerging markets, Du
and Schreger (2015) report an average McCauley duration of home-currency government debt held by foreigners of 5
years.
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stated that excess returns are less volatile under the optimal policy. While true, this result does
not seem to be quantitatively relevant (row 3). This, however, masks an important composition
effect. Rows 4-6 compute the volatility of excess returns driven by interest-rate r∗ (row 4), liquidity
service ψ (row 5), and world output y∗ (row 6) shocks.50 The optimal policy shifts the volatility: it
smooths the response after ψ shocks and increases it after interest-rate r∗ and y∗ shocks. Lowering
the exposure to ψ shocks, which are essentially noise for agents, allows them to take large positions
at a low cost. This increases the effectiveness of policy after the shocks that create the majority of
the demand for insurance: interest-rate shocks (for home agents) and world output shocks (for
foreigners).

Panel B shows the implications for the policy instruments. Consider first the portfolio tax τB

(row 1). Since home agents hold home-currency debt, theory implies that the planner should put
a subsidy on home-currency assets (i.e., τB < 0). In fact, the subsidy is quantitatively relevant:
It is even larger than the steady-state risk-premium.51 This large subsidy reflects that the model
predicts a low penetration of foreigners into home-currency bond markets to match the observed
portfolios. Next, consider saving taxes τ∗ (row 2). These taxes are very small, with a standard
deviation of around 3 basis points. In fact, I show in Appendix C that solving the optimal policy
without the savings taxes yields quantitatively very similar results.52

One recurring theme in this paper is that the endogeneity of portfolios matters. To illustrate
this, column 4 in Table 2 presents the results if the portfolio were fixed at the calibrated 15% of
home-currency debt over GDP. In this case, the policy deviates noticeably less from demand-
management. Indeed, the weight on the insurance target is more than halved.

Finally, column 5 in Table 2 shows the results from the point of view of a supranational author-
ity. Theory indicates that when there is limited foreign participation in home-currency markets
(i.e., with m < ∞) coordination increases the importance of the insurance motive, since the coop-
erative planner internalizes the hedging benefits accrued to foreigners (see Appendix B.1). Given
that the model requires very limited foreign access to home-currency bond markets to match ob-
served positions, the difference between the decentralized and the cooperative solution is substan-
tial: the weight on the insurance target and the portfolio increase by almost a factor of three, which
in turn imply a noticeable decrease in the volatility of home-currency excess returns.

5.2.2 Welfare gains

How effective is the optimal policy in completing markets? To answer this question, I compute
the welfare gains (in consumption equivalents) of moving from an economy without bonds to
an economy with these bonds and flexible prices (i.e., the first best). I then compute what share

50The remaining shocks explain a tiny amount of the volatility. Furthermore, note that since shocks are correlated this
is not a strict variance decomposition.

51The risk premium is a second-order phenomenon, like the portfolio tax.
52This result is explained by the long calibrated duration of the bonds. In Appendix C I show that savings taxes are

important when bonds have a duration of one year.
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Table 3: Sensitivity analysis

Baseline ψt ≡ 0 η = 11 φ = .8 φ = 2/3

B̄: Demand-management −16.0% −10.1% −16.0% −15.6% −16.5%
B̄: Optimal Policy −22.8% −10.8% −19.6% −19.4% −34.4%
ω 7.75% 14.8% 3.60% 4.1% 24.5%
Welfare: Demand-management 11.9% 67.7% 11.9% 12.2% 11.5%
Welfare: Optimal Policy 16.9% 72.2% 14.5% 15.2% 23.6%

Note: Column (2) turns off ψ shocks, column (3) increases the elasticity of substitution across varieties, and columns (4)
and (5) change the frequency of price adjustment. In every case except (2), m and σψ are re-calibrated to match the ex-
change volatility and a portfolio of−15% over annual GDP. In (2), only m is re-calibrated to match the portfolio. Welfare
gains are measured as the steady-state-consumption-equivalent gains under such a policy with respect to the demand-
management B̄ = 0 economy as a share of the total potential gains under the first-best: wel f (policy)−wel f are(B̄=0)

wel f are( f irstbest)−wel f are(B̄=0)%.

of these gains are attained in the economy with sticky prices under different policies. Panel C
shows the results. The optimal policy improves significantly over the demand-management policy,
attaining 17% instead of 12%, a gain almost 1.5 times as large.53 Portfolio endogeneity is again
quantitatively important for this result: If the portfolio were fixed at 15%, gains would only be
15%. Finally, the cooperative solution attains a much larger share of the gains, reflecting the limited
participation of foreigners in home-currency markets.

5.3 Sensitivity analysis

5.3.1 No liquidity shocks

In this section, I turn off liquidity shocks and recalibrate the measure of foreigners to match ob-
served portfolios. Column 2 in Table 3 shows the results. Column 1 reproduces the results in the
baseline model to facilitate the comparison. The most important difference is that the trade-off
between demand-management and insurance is significantly weakened. This can be seen by com-
puting the correlation between the desired transfers (T ) and the excess-returns when B̄ = 0. While
the correlation is−0.35 with liquidity shocks, without them the correlation is much higher at−0.82
(not shown in table). One reason why the exchange rate targets are so correlated is that the model
significantly underestimates the volatility of exchange rates under the calibrated Taylor rule, with
the remainder tightly linked to fundamentals.54 The high correlation implies that portfolios under
demand-management targeting and the optimal policy are very close to one another, differing by
less than a percentage point. By the same token, the demand-management policy already achieves
67.7% of the potential gains of completing markets, with the optimal policy only increasing this
number to 72.2%.

53The absolute size of the gains is tiny: the first-best gains are only 0.067% steady-state consumption equivalents. This
is a manifestation of the well-known fact that the welfare gains from completing markets in standard macroeconomic
models are very small (Lucas (1987)), which is exacerbated in this context by limited participation by foreigners.

54Exchange rate volatility in this model is essentially explained by r∗.
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Although policies are on average similar, the insurance weight is actually higher (15%) since
foreign participation in home-currency markets is even more restricted, which implies the planner
is now heavily penalized with a low home-bond price if excess returns are volatile. To understand
why this is the case, note that given that the model underpredicts the volatility of excess returns
in the absence of liquidity shocks, agents would like to choose a very large position if there were
perfect intermediation (m = ∞). As a result, very limited foreign participation in home-currency
markets is necessary to match the observed portfolios. Although the planner would be willing to
dampen returns in order to lower costs, the very high correlation implies this trade-off hardly ever
materializes: the demand-management target and the insurance target are often aligned.

5.3.2 Cost of inflation

Next, I explore the sensitivity of the results to the cost of inflation. First, I lower the mark-up in
intermediate inputs to 10% (η = 11), which increases the cost of price dispersion. Column 3 in
Table 3 shows the results. Clearly, this parameter is important for the quantitative results. Dou-
bling the equilibrium mark-up of intermediate good producers essentially halves the importance
of insurance, as measured by its implications for the portfolio, the weight, and welfare.

Second, I vary the share of firms that are able to update their prices. The results suggest this is
also a critical parameter to determine the relative importance of the insurance motive. Assuming
that firms update their prices on average every 3 quarters implies the portfolio more than dou-
bles in size compared to demand-management targeting, implying an insurance weight of almost
25%. The planner is also able to attain a much larger share of the welfare gains of completing mar-
kets. Conversely, assuming firms update their prices every 5 quarters halves the importance of the
insurance motive.

6 Conclusion

I developed a framework to study optimal monetary policy and capital controls in open economies
with incomplete markets and portfolio choice. I presented three main results. First, I showed that
monetary policy can be described by an exchange rate rule that is a weighted average of two tar-
gets: a demand-management/inflation target, concerned with the traditional role of “undoing”
nominal rigidities, and an insurance target, which is the exchange rate that would be required to
replicate the transfer the planner would desire under complete markets. Second, I showed that po-
sitions in home-currency become larger when insurance considerations are more important, which
in turn leads to a higher ex post weight on the insurance target. To lower the cost of such large
positions, the planner strongly dampens the volatility of the exchange rate when insurance is not
needed (an example of “fear-of-floating”). Perhaps surprisingly, when portfolios are endogenous
this effect is so strong that overall volatility under the optimal policy is lower than under inflation-
targeting. By contrast, with constrained portfolios the effect is weaker and overall volatility would
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actually be higher than under inflation-targeting, illustrating the importance of modeling portfo-
lio choice. Finally, I showed that in a small open economy portfolio decisions are approximately
efficient despite the presence of aggregate demand externalities (due to nominal rigidities) and
pecuniary externalities (due to incomplete markets), so no capital controls on the composition of
capital flows are necessary in the approximate solution.

In this paper, I focused on the trade-off between insurance and demand-management, abstract-
ing from other relevant macroeconomic forces. However, the methodology I develop is widely
applicable and can be used to explore optimal policy in other environments with portfolio choice
and incomplete markets. It is also simple computationally, even with multiple assets (see Ap-
pendix B.4), so it could be applied to richer macroeconomic models than the one presented in this
paper. Doing so could deliver new interesting results on capital controls, as well as a reappraisal
of the quantitative importance of the insurance channel of monetary policy.
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A Appendix: Proofs and derivations

A.1 Proofs for section 3

A.1.1 Lemma 2

First, I derive a log-linear approximation to the output gap in this economy. Second, I derive an
equation linking the exchange rate to the output gap, tradable consumption and shocks. Third,
I compute the static Phillips curve linking the output gap and intermediate-input prices. Finally,
I derive a second-order approximation to welfare around the riskless steady state (B̄, ε = 0). I
use undercapitalized letters for log deviations from the steady state for all variables except B. I
use B̄ to denote the steady-state value of the home-currency position and Bε to denote ∂B

∂ε . For
simplicity, I only consider the following shocks: a tradable endowment shock {YTs}, a nontradable
productivity shock {Zs}, a general taste shock {ιs} that premultiplies flow utility, and a shock to
foreigners’ endowment {Y∗Ts}.

Output gap I compute the output gap between the actual output and the output that would arise
if prices were flexible, conditional on having the same level of tradable consumption. First, I need
to compute the level of employment at the flexible price allocation l f lex

s , which solves uN FY + uL =
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0 (set φ = 0 in equation (9)). Let Z denote the shock to the final nontradable production function,
i.e F(Y I

s , Zs). To a first-order approximation,

Lssl
f lex
s = − FYuNN FZ + uN FYZ + uNLFZ

F2
YuNN + 2FYuNL + uN FYY + uLL

Zsszs −
FYuTN + uTL

F2
YuNN + 2FYuNL + uN FYY + uLL

CTsscTs.

Define the output gap as xs = F−1FY(yIs− y f lex
Is ) and let ∆ ≡

∫ 1
0 (

PIs(i)
PIs

)−ηdi− 1 denote intermediate
input price dispersion deviations. Since production at the steady state is efficient, ∆ is 0 to first-
order. Thus,

xs =
F−1FY

F2
YuNN + 2FYuNL + uN FYY + uLL

{(F2
YuNN + 2FYuNL + uN FYY + uLL)Lssls (34)

+ (FYuNN FZ + uN FYZ + uLN FZ)Zsszs + (FYuTN + uTL)CTsscTs}

Exchange rate sensitivity to the output gap Log-linearizing the equation

uN(CTs, F(YIs, Zs), Ls)FY(YIs, Zs)/uT(CTs, F(YIs, Zs), Ls) = PIs/Es,

which comes from the first-order condition of nontradable good producers and consumer opti-
mization, yields

φ̃cCTsscTs + φ̃zZsszs + φ̃l Lssls = pIs − es

where

φ̃c = u−1
N uTN − u−1

T uTT

φ̃z = u−1
N uNN FZ + F−1

Y FYZ − u−1
T uTN FZ

φ̃l = −u−1
T uTN FY − u−1

T uTL + u−1
N uNN FY + u−1

N uNL + F−1
Y FYY

Or, in terms of the output gap,

es = pi
s + kecCTsscTs + kezZsszs + kexxs (35)

where

kex = −FF−1
Y φ̃l

kec = −φ̃c + φ̃l
FYuTN + uTL

F2
YuNN + 2FYuNL + uN FYY + uLL

kez = −φ̃z + φ̃l
FYuNN FZ + uN FYZ + uLN FZ

F2
YuNN + 2FYuNL + uN FYY + uLL

In general, kex > 0, kec < 0, kez > 0, although it depends on the application (and, more generally,
on the source of nominal rigidities).
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Static Phillips curve Let P f lex
Is denote the price of firms who optimize. To first-order,

p f lex
Is = es − u−1

T uTTCTsscTs − u−1
T uTN(FY Lssls + FZZsszs)− u−1

T uTLLssls (36)

+ u−1
L uTLCTsscTs + u−1

L uNL(FY Lssls + FZZsszs) + u−1
L uLLLssls

Log-linearizing (9),

pIs =
1− φ

φ
(p f lex

Is − pIs) (37)

Using (36) and (35), I obtain
pIt = κxt (38)

where

κ =
1− φ

φ
λxF−1u−1

N > 0

λx = −F2
YuNN + FYuNL + uN FYY + uNLFY + uLL

F−2F2
Y

> 0

Welfare loss around (B̄,0) Following steps analogous to those in Gali and Monacelli (2005), I find
that to second-order price-dispersion deviations (∆) are given by

∆s =
η

2
[φ(−pIs)

2 + (1− φ)(p f lex
Is − pIs)

2] + O(ε3).

Using (37), I can rewrite this as

∆s =
η

2
φ

1− φ
p2

Is + O(ε3). (39)

To simplify, I assume taste shocks take the form exp(ιs)u(CTs, CNs, Ls). Using (39), I find that a
second-order approximation to the utility flow yields

us = uTCTsscTs +
1
2
(uTTC2

Tss + uTCTss)c2
Ts + uTN FZZsszscTs + (uTN FY + uTL)CTssLsscTsls + ιsuTCsscTs

+ (uN FYZ + uNN FYFZ + uNLFZ)ZssLsszsls +
1
2
(uN FYY + uNN F2

Y + 2uNLFY + uLL)L2
ssl

2
s (40)

+ uLLss
η

2
φ

1− φ
p2

Is + t.i.p. + O(ε3)

Define:

λπ ≡ −uLLssη
φ

1− φ
> 0

V11 ≡ uTT − F2F−2
Y λ−1

x (FYuTN + uTL)
2 < 0

V1Z ≡ uTN FZ − F2F−2
Y λ−1

x (FYuNN FZ + uN FYZ + uNLFZ)(FYuTN + uTL).

Then, using (34) I can rewrite welfare as

us = uTCTsscTs + ιsuTCTsscTs +
1
2
(V11C2

Tss + uTCTss)c2
Ts + V1ZZsszscTs −

1
2

λxx2
s −

1
2

λπ p2
Is + t.i.p. + O(ε3)
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A second-order approximation to the budget constraint yields

CTsscTs +
1
2

CTssc2
Ts = YTssys +

1
2

YTssy2
s + B̄(r− es) +

1
2

B̄(r− es)
2 + (r− es)Bε + O(ε3)

A first-order approximation of the foreign Euler equation yields

E(r− es) + O(ε2) = 0

while a second-order approximation yields

E(r− es) +
1
2

E(r− es)
2 −Eγ∗ss(r− es)(y∗s −

1
m

B̄(r− es)) + O(ε3) = 0,

where I assumed Y∗Tss = 1. Noting that I only need the know the first order behavior of r −
es to compute (r − es)Bε and that Bε is determined ex ante, I get E(r − es)Bε = 0 so this term
vanishes from the approximated welfare function. Combining the second-order approximation
to the budget constraint with the second-order approximation to the foreign Euler equation (58) I
obtain

EV = E[uT B̄(r− es)γ
∗
ssy
∗
s − uT(γ

∗
ss/m)B̄2(r− es)

2 + uT ιsCsscTs

+
1
2

V11C2
Tssc

2
Ts + V1ZZssCTsszscTs −

1
2

λxx2
s −

1
2

λπ p2
Is] + t.i.p. + O(ε3)

Note that in the absence of shocks, es = 0. Since shocks are mean zero, I obtain using the for-
eign Euler that r = 0. Thus, using a first-order approximation to the budget constraint and to the
foreigners’ Euler equation, the previous expression simplifies to

EV = E[uT B̄esγ
∗
ssy
∗
s − uT(γ

∗
ss/m)B̄2e2

s +
1
2

V11(YTssys − B̄es)
2 (41)

+ (V1ZZsszs + uT ιs)(YTssys − B̄es)−
1
2

λxx2
s −

1
2

λπ p2
Is] + t.i.p. + O(ε3)

Define the “desired transfer” Ts as

Ts =
1

1− 2m−1uTV−1
11 γ∗ss

{−YTssys −V−1
11 V1ZZsszs −V−1

11 uT ιs + V−1
11 uTγ∗ssy

∗
s }.

Then, I can rewrite (41) as

EV = E[
1
2
(1− 2m−1V−1

11 γ∗ss)V11(B̄es + Ts)
2 − 1

2
λxx2

s −
1
2

λπ p2
Is] + O(ε3) + t.i.p. (42)

Next, I define the “demand-management” exchange rate edm
s (B), which closes the output gap with

no price dispersion efficiency-loss when the portfolio is B̄,

edm
s =

1
1 + kecB̄

(kecYTssys + kezZsszs).

This implies

es − em
s (B̄) =

1
1 + kecB̄

(kexxs + pIs)
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Using this relationship, the static Phillips curve (38) and the exchange rate function (35), I can
rewrite (42) as

EV = E[
1
2
(1− 2uTm−1V−1

11 γ∗ss)V11(B̄es +Ts)
2− 1

2
(1+ kecB̄)2(

λx + κ2λπ

(κ + kex)2 )(es− em
Bs)

2]+ t.i.p.+O(ε3)

Defining

ein
s (B̄) = − 1

B̄
Ts

γ̃ss = −u−1
T V11 > 0

χ =
u−1

T
γ̃ss + 2m−1γ∗ss

(
λx + κ2λπ

(κ + kex)2 ) > 0

k0 = uT(γ̃ss + 2m−1γ∗ss) > 0

I obtain the expression (18) in lemma 2.

A.1.2 Proposition 1

I first find a perturbation of the first-order conditions using a bifurcation theorem. Then, I de-
rive our linear quadratic approximation and show it implies the same FOC for B̄. Equivalence
conditional on B̄ is a well-known result so I do not prove it (Benigno and Woodford (2012)).

I show a more general version of the result here. To define a useful class of problems, I isolate
some endogenous variables from the rest: the excess return on an asset rrj

s ∈ RS, its expected
return Rj ∈ R+ and the portfolio θ ∈ RJ+1, where j indexes the asset with 0 being a reference
asset. The root of the indeterminacy at the steady state comes from two conditions, which I will
assume hold in our problem: First, I assume the portfolio by itself has no direct effect on utility
or the constraints: its only effect is indirect through the transfers it creates rr′sθ. Second, there is a
no-arbitrage constraint on each asset that implies that in the steady state rrj

s = 0 ∀j, s. Let π denote
the objective function, F denote other constraints on the problem, X j denote the determinants of
the equilibrium excess returns of asset j and M determine the stochastic discount factor of the
agent that prices the asset. All functions are assumed to be locally analytic, which is necessary to
apply the bifurcation theorem in Judd and Guu (2001). The class of problems I consider take the
following form:

max Eπ(ys, rr′sθ, ξs) subject to
F(ys, ξs, rr′sθ) = 0

RjX j(ys, ξs, Ts)− X0(ys, ξs, rr′sθ)− rrj
s = 0 ∀j

E0rrj
s M(ys, ξs, rrsθ) = 0 ∀j.

where ys are other endogenous variables, and ξs are shocks,

ξs = εus

where {us} is a random variable with compact support. For example, in our problem above, π =
ιsV(CTs, E−1

s ), ys = {CTs, E−1
s }, ξs = {ιs, Zs, Ys, Y∗s },θ = B, X0 = 1, X1 = E−1

s , F = YTs − CTs + Brrs,
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M = u′∗(Y∗s − Brrs). Naturally, I could also have written the problem including more equilibrium
objects and more constraints F.

Let λk
s denote the multiplier on constraint Fk, µθ denote the multiplier on the definition of

excess returns, and ϕθ denote the multiplier on the no-arbitrage conditions. Following Benigno
and Woodford (2012), I derive the following quadratic expansion to the objective with respect to ε
around an arbitrary steady-state portfolio θ0

E0π(ys, ξs, rrsθ) =
1
2

E0 ∑ λk
s{ỹ′sDyyF · ỹs + 2ξ̃ ′sDyξ F · ỹs + 2θ0r̃rsDyT F · ỹs (43)

+ 2θ0r̃rsDξT F · ξ̃s + θ′0r̃rsDT T F · r̃r′sθ0}

+
1
2

θ0ϕE0{r̃rsDy M · ỹs + r̃rsDξ M · ξ̃s + 2θ0r̃rsDT M · r̃r′s}

+
1
2

E0{ỹ′sDyyπ · ỹs + 2ξ̃ ′sDyξπ · ỹs + 2θ′0r̃rsDyT π · ỹs

+ 2θ′0r̃rsDξT π · ξ̃s + θ′0r̃rsDT T · π · r̃r′sθ0}+ t.i.p. + O(ε3)

and a linear approximation to the constraints,

DyF · ỹs + Dξ F · ξ̃s + θ′0DT Fr̃rs = O(ε2) (44)

E0r̃rj
s = O(ε2) (45)

RjDyX · ỹ + RjDξ̃ X · ξ̃s + θ
j
0RjDT X · r̃rj

s − r̃rj
s = O(ε2) (46)

where x̃ = x − x̄ with bars denoting steady-state values. In the context of our particular model,
applying this procedure and substituting in the constraints yields (18). The next theorem states that
solving this problem yields a correct linear-quadratic approximation, in the sense that it yields a
linear-approximation to optimal policy in terms of (ys, R, rrs) and a bifurcation point θ0. To prove
the result, I show that using the first-order conditions of the nonlinear problem and then using a
bifurcation theorem yields the same answer.

Using bifurcation theorem The problem is

max E0π(ys, ξs, rrsθ)

subject to:

F(ys, ξs, rrsθ) = 0
RX(ys, ξs, rrsθ)− 1− rrs = 0

E0rrsg(ys, ξs, rrsθ) = 0

Let ϕθ denote the multiplier on the last equation and µsθ denote the mulitplier on the second
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equation. The FOC yield

Dyπ(ys, ξs, rrsθ) + λ′sDyF(ys, ξs, rrsθ) + θϕrrsDyg(ys, ξs, rrsθ)

−RµsDyX(ys, ξs, rrsθ) = 0
E0θµsX(ys, ξs, rrsθ) = 0

{DT π(ys, ξs, rrsθ) + λ′sDT F(ys, ξs, rrsθ) + θϕrrsDT g(ys, ξs, rrsθ)

+RθµsDT X(ys, ξs, rrsθ)}+ µs + ϕg(ys, ξs, rrsθ) = 0
F(ys, ξs, rrsθ) = 0

rrs − (RX(ys, ξs, rrsθ)− 1) = 0
E0rrsg(ys, ξs, rrsθ) = 0

E0[rr′s{DT π(ys, ξs, rrsθ) + λ′sDT F(ys, ξs, rrsθ) + RθµsDT X
+ϕθrrsDT g(ys, ξs, rrsθ)}] = 0

Clearly at the steady state rr = 0 and µ = 0. This implies that at the steady state,

{DT π(ys, ξs, rrsθ) + λ′sDT F(ys, ξs, rrsθ)} = −ϕg(ys, ξs, rrsθ).

I can rewrite the last equation as

E0[rr′s{DT π(ys, ξs, rrsθ)+λ′sDT F(ys, ξs, rrsθ)+ ϕθrrsDT g(ys, ξs, rrsθ)+RθµsrrsDT X+ ϕg(ys, ξs, rrsθ)}] = 0.

Furthermore, I can apply the IFT on the first five equations to obtain ys(θ, ε), x(θ, ε), rrs(θ, ε),
λ(θ, ε), ϕ(θ, ε). It is easy to check the first derivative of these objects with respect to θ is zero (i.e.
the steady state values of the other variables does not depend on θ).

Let

H(θ, ε) ≡ E0[rrs{DT π(ys(θ, ε), ξs(ε), rrs(θ, ε)θ) + λ′s(θ, ε)DT F(ys(θ, ε), ξs(ε), rrs(θ, ε)θ)

+ ϕ(θ, ε)θrrs(θ, ε)DT g(ys(θ, ε), ξs(ε), rrs(θ, ε)θ)

+ θR(θ, ε)µs(θ, ε)DT X + ϕ(θ, ε)g(ys(θ, ε), ξs(ε), rrs(θ, ε)θ)}]

First, I show there is a singularity. Note:

∂H
∂θ

= E0(
∂rrs

∂θ
){DT π + λ′sDT F + ϕθrrsDT g + RθµsDT X + ϕg}

+ rrs{(DT y + λ′sDT yF + ϕθrrsDT yg + RθµsDT yX + ϕDyg)
∂y
∂θ

+ θµsDT yX
∂R
∂θ

+ (θDT T + θλ′sDT T F + ϕθ2rrsDT T g + ϕθDT g + θRµsDT T X + θϕDT g)
∂rrs

∂θ

+
∂λ′s
∂θ

DT F + ϕrrsDT g + µsrrsDT X + (rrsDT g + g)
∂ϕ

∂θ
+ RDT X

∂µs

∂θ
}

Ignoring terms preceded by {DT π + λ′sDT F + ϕθrrsDT g + RθµsrrsDT X + ϕg}, µs and rrs,
which will be zero anyway at the steady state. and using that the derivatives wrt θ are also zero,
this immediately yields ∂2 H

∂θ∂ε = 0 so I have a singularity.
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I use the “dividing by ε trick” to solve the singularity,

Ĥ(θ, ε) =

{
H(θ,ε)

ε if ε 6= 0
∂H
∂ε if ε = 0

}

Since H(θ, 0) = 0 ∀θ, H = εĤ. Then I can rewrite the old FOC equation as

E0Ĥ(θ, ε) = 0.

To solve this, I use the following bifurcation theorem in Judd and Guu (2001),

Theorem 1. (Bifurcation Theorem). Suppose H : R×R → R, H is analytic for (x, ε) in a neighborhood
of (x0, 0), and H(x, 0) = 0 ∀x ∈ R. Furthermore, suppose that

Hx(x0, 0) = 0 = Hε(x0, 0), Hxε 6= 0.

Then (x0, 0) is a bifurcation point and there is an open neighborhood N of (x0, 0) and a function h(ε),
h(ε) 6= 0 for ε 6= 0, such that h is analytic and H(h(ε), ε) = 0 for (h(ε), ε) ∈ N .

Let’s check the conditions for the bifurcation theorem. First, note that to compute ∂Ĥ
∂B at ε = 0,

I need to compute ∂2 H
∂ε∂B , which I already showed is zero. In addition, it is clear that if I take another

derivative wrt ε the answer will not be zero. I just need to find the new bifurcation points, which I
find by solving ∂Ĥ

∂ε |0 = ∂2 H
∂ε2 |0:

∂H
∂ε

= E0(
∂rrs

∂ε
){DT π + λ′sDT F + ϕθrrsDT g + RθµsDT X + ϕg}

+ rrs{(DT y + λ′sDT yF + ϕθrrsDT yg + RθµsDT yX + ϕDyg)
∂y
∂ε

+ µsDT yX
∂R
∂ε

+ (DT ξ + λ′sDT ξ F + ϕθrrsDT ξ g + RθµsDT ξ X + ϕDξ g)
∂ξ

∂ε

+ θ(DT T + λ′sDT T F + ϕθrrsDT T g + ϕDT g + θRµsDT T X + ϕDT g)
∂rrs

∂ε

+ DT F
∂λ′s
∂ε

+ (rrsDT g + g)
∂ϕ

∂ε
+ RDT X

∂µs

∂ε
}

Ignoring the terms preceded by rrs and {DT π + λ′sDT F + ϕθrrsDT g + ϕg} which are zero at the
steady state, I compute ∂2 H

∂ε2 ,

∂2H
∂ε2 = 2E0[

∂rrs

∂ε
{(DT y + λ′sDT yF + ϕθrrsDT yg + RθµsDT yX + ϕDyg)

∂y
∂ε

+ µsDT yX
∂R
∂ε

+ (DT ξ + λ′sDT ξ F + ϕθrrsDT ξ g + RθµsDT ξ X + ϕDξ g)
∂ξ

∂ε

+ θ(DT T + λ′sDT T F + ϕθrrsDT T g + ϕDT g + RµsDT X + θRµsDT T X + ϕDT g)
∂rrs

∂ε

+ DT F
∂λ′s
∂ε

+ (rrsDT g + g)
∂ϕ

∂ε
+ RDT X

∂µs

∂ε
}
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Noting that rrs = 0 and µs = 0 at the steady state,

∂2H
∂ε2 = 2E0[

∂rrs

∂ε
{(DT y + λ′sDT yF + ϕDyg)

∂y
∂ε

+ (DT ξ + λ′sDT ξ F + ϕDξ g)
∂ξ

∂ε

+ θ(DT T + λ′sDT T F + 2ϕDT g)
∂rrs

∂ε

+ DT F
∂λ′s
∂ε

+ g
∂ϕ

∂ε
+ RDT X

∂µs

∂ε
}

Welfare expansion approach Starting with the objective function,

E0π(ys, ξs, rrsθ) = π̄ + E0{Dyπ · ỹs + Dξπ · ξ̃s + θDT · π · r̃rs + rrsDT π · θ̃

+
1
2

E0{ỹ′sDyyπ · ỹs + 2ξ̃ ′sDyξπ · ỹs + 2θr̃rsDyT π · ỹs + 2rrs θ̃DyT · ỹs

+ ξ̃ ′sDξπ · ξ̃s + 2θr̃rsDξT π · ξ̃s + 2rrs θ̃DT · πDξT π · ξ̃s

+ θ2r̃rsDT T · π · r̃rs + 2θ̃DT · π · r̃rs + θ̃rrsDT T · π · rrs θ̃}+ O(ε3)

Using that rrs = 0,

E0π(ys, ξs, rrsθ) = E0{Dyπ · ỹs + θDT · π · r̃rs

+
1
2

E0{ỹ′sDyyπ · ỹs + 2ξ̃ ′sDyξπ · ỹs + 2θr̃rsDyT π · ỹs

+ 2θr̃rsDξT π · ξ̃s + θ2r̃rsDT T · π · r̃rs + 2θ̃DT · π · r̃rs}+ O(ε3) + tip

Next, I approximate the F constraints,

E0F(ys, ξs, rrsθ) = E0{DyF · ỹs + Dξ F · ξ̃s + θDT F · r̃rs

+
1
2

E0{ỹ′sDyyF · ỹs + 2ξ̃ ′sDyξ F · ỹs + 2θr̃rsDyT F · ỹs

+ ξ̃ ′sDξ F · ξ̃s + 2θr̃rsDξT F · ξ̃s

+ θ2r̃rsDT T F · r̃rs + 2θ̃DT F · r̃rs}+ O(ε3)

and the g constraint,

E0rrsg(ys, ξs, rrsθ) = E0{g(ys, ξs, rrsθ)r̃rs + E0{r̃rsDyg · ỹs + r̃rsDξ g · ξ̃s + θr̃rsDT g · r̃rs}+ O(ε3)

Recall that at the steady state,

Dyπ(ys, ξs, rrsθ) + λ′sDyF(ys, ξs, rrsθ) = 0
DT π(ys, ξs, rrsθ) + λ′sDT F(ys, ξs, rrsθ) + ϕg(ys, ξs, rrsθ) = 0

Then,
Dyπ · ỹs + θDT · π · r̃rs = −λ′sDyF · ỹs − θDT π · r̃rs − θλ′sDT F · r̃rs − θϕg · r̃rs

Using this I can get rid of the linear terms,
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E0π(ys, ξs, rrsθ) =
1
2

E0 ∑ λk
s{ỹ′sDyyF · ỹs + 2ξ̃ ′sDyξ F · ỹs + 2θr̃rsDyT F · ỹs

+ ξ̃ ′sDξ F · ξ̃s + 2θr̃rsDξT F · ξ̃s

+ θ2r̃rsDT T F · r̃rs + 2θ̃DT F · r̃rs}

+
1
2

θϕE0{r̃rsDyg · ỹs + r̃rsDξ g · ξ̃s + 2θr̃rsDT g · r̃rs}

+
1
2

E0{ỹ′sDyyπ · ỹs + 2ξ̃ ′sDyξπ · ỹs + 2θr̃rsDyT π · ỹs

+ 2θr̃rsDξT π · ξ̃s + θ2r̃rsDT T · π · r̃rs + 2θ̃DT · π · r̃rs}+ tip

Using the g constraint to first order yields Er̃rs = 0 and since θ̃ is predetermined,

E0π(ys, ξs, rrsθ) =
1
2

E0 ∑ λk
s{ỹ′sDyyF · ỹs + 2ξ̃ ′sDyξ F · ỹs + 2θr̃rsDyT F · ỹs

+ 2θr̃rsDξT F · ξ̃s

+ θ2r̃rsDT T F · r̃rs}

+
1
2

θϕE0{r̃rsDyg · ỹs + r̃rsDξ g · ξ̃s + 2θr̃rsDT g · r̃rs}

+
1
2

E0{ỹ′sDyyπ · ỹs + 2ξ̃ ′sDyξπ · ỹs + 2θr̃rsDyT π · ỹs

+ 2θr̃rsDξT π · ξ̃s + θ2r̃rsDT T · π · r̃rs}+ tip

The objective is to maximize this then subject to the first-order constraints,

DyF · ỹs + Dξ F · ξ̃s + θDT Fr̃rs = 0
E0r̃rs = 0

RDyX · ỹ + RDξ̃ X · ξ + θRDT X · r̃rs − r̃rs = 0

The FOC wrt θ yields

FOC = E0[∑ λk
s{r̃rsDξT F · ξ̃s + θr̃rsDT T F · r̃rs + r̃rsDyT F · ỹs}

+ ϕ{r̃rsDyg · ỹs + r̃rsDξ g · ξ̃s + 2θr̃rsDT g · r̃rs}
+ {r̃rsDyT π · ỹs + r̃rsDξT π · ξ̃s + θr̃rsDT T · π · r̃rs}
+ λ̃sDT F · r̃rs + µ̃sDT X · r̃rs}]

Rearranging,

FOC =E0r̃rs{(DyT π + ∑ λ
j
sDyT Fk + Dyg) · ỹs

+ (DξT π + ∑ λ
j
sDξT Fk + Dξ g) · ξ̃s

+ θ(∑ λk
s DT T F + 2ϕDT g + DT T · π + λ̃sDT F + Rµ̃sDT X)r̃rs},

which coincides with the other method.
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A.1.3 Proposition 2

Differentiating the expression in equation (18) with respect to es yields

B̄(B̄es + Ts) + χ(1 + B̄µ)((1 + B̄µ)es − es(0)) = 0

In terms of ein
s (B) and edm

s (B),

(B̄2 + χ(1 + B̄µ)2)es − B̄2ein
s (B̄)− χ(1 + B̄µ)2edm

s (B̄) = 0.

Rearranging yields the desired expression.
To show part (i), note

κ2λπ = k̃0η
1− φ

φ

κ = k̃1
1− φ

φ

for some positive constants k̃0 and k̃1. This allows us to write

χ = k′(
λx + k̃0ηφ̃

(k̃1φ̃ + kex)2
)

for some positive constant k′. Differentiating χ with respect to φ̃,

χ =
k′

(k̃1φ̃ + kex)3
(−2k̃1(λx + k̃0ηφ̃) + k̃0η(k̃1φ̃ + kex))

Since depreciations are assumed expansionary, kex > 0, the derivative is positive iff

−2k̃1(λx + k̃0ηφ̃) + k̃0η(k̃1φ̃ + kex) ≥ 0

Solving,

φ̃ ≤ k̃0kexη − 2k̃1λx

k̃1k̃0η
.

This immediately translates into a threshold in terms of φ̄ such that χ is increasing in φ if φ ≤ φ̄.
Since φ̃ increases with η, φ̄ decreases with η. For φ̄ to be meaningful, I need φ̄ < 1 or

φ̃ > 0⇔η>k̃−1
0 k−1

ex 2k̃1λx.

Part (ii) follows from differentiating χ with respect to m, γ∗ and γ̃.
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A.1.4 Lemma 3

LetW(B) = V(B; {eop
s (B)}) where eop

s (B) is the optimal exchange rate policy. Replacing the opti-
mal exchange rate inside EV and simplifying, we obtain

W(B̄) =
1
2

k0

χ(1 + µB̄)2 + B̄2 {(1 + µB̄)2χ2σ2
edm(0) + B̄2σ2

T − 2B̄χ(1 + µB̄)σT edm(0)}+ t.i.p. + O(ε3)

(47)
The first derivative with respect to B̄ yields

∂W(B)
∂B̄

=
k0χ

(χ(1 + µB̄)2 + B̄2)
2 {(σT edm(0) + µ(σ2

T − χσ2
edm(0) − χµσT edm(0))))B2 (48)

+ (σ2
T − χσ2

edm(0) − 2χµσT edm(0))B− χσT edm(0)}

Solving the quadratic and picking the local maximum yields the result.

A.1.5 Proposition 3

It is convenient to prove these results to work directly with the expression in equation (48). For
expositional reasons, I prove part (iii) first together with the remark that Bopµ > −1.

(iii + B < −µ−1) First, doing algebra it can be shown that the determinant of the quadratic
inside the bracket is given by (σ2

T − χσ2
edm(0))

2 + 4χσ2
T edm(0) > 0.

I prove the case of µ < 0. The case µ > 0 is analogous. I need to consider several subcases.
Consider first the case σT edm(0) > 0. If σ−2

edm(0)σ
2
T < χ + (χµ − µ−1)σ−2

edm(0)σT edm(0), the quadratic

is convex. Since the intercept is negative, this implies Bop < 0. Next, suppose σ−2
edm(0)σ

2
T > χ +

(χµ − µ−1)σ−2
edm(0)σT edm(0). Since µ < 0, σ−2

edm(0)σ
2
T > χ + 2χµσ−2

edm(0)σT edm(0). Thus, the quadratic is
concave and increasing at B = 0. Since the intercept is negative, this implies Bop > 0. I call this the
“reversal” case since sign(σT edm(0)) = sign(Bop). The condition in (22) rules this case out.

Next, consider the case σT edm(0) < 0. If σ−2
edm(0)σ

2
T > χ + (χµ − µ−1)σ−2

edm(0)σT edm(0), then the

quadratic is concave. Since the intercept is positive, this implies Bop > 0. Next, suppose σ−2
edm(0)σ

2
T <

χ + (χµ − µ−1)σ−2
edm(0)σT edm(0). Since σT edm(0) < 0 and µ < 0, σ−2

edm(0)σ
2
T < χ + 2χµσ−2

edm(0)σT edm(0).
Thus, the quadratic is convex and decreasing at B = 0. Since the intercept is positive, Bop > 0.
Note there is no “reversal” case when sign(µ) = sign(σT edm(0)).

Finally, I show that 1 + µBop > 0 under the condition in (22). I prove the case of µ < 0; the
case µ > 0 is analogous. I only need to show this for the case σT edm(0) < 0, since Bop < 0 in the
admissible range for σT edm(0) > 0 under the condition in (22). Evaluating (48) at B = −µ−1 yields

W ′(−µ−1) = (−V11)χµ2σT edm(0) < 0

Since the intercept is positive, it follows that Bop ∈ (0,−µ−1).
(i) I apply the implicit function theorem. Note:

∂B
∂σ2
T σ−2

edm(0)

∝
(µBop + 1)Bop

(−W ′′(B))

Since under the condition in (22), sign(−σT edm(0)) = sign(B) and 1+ µBop > 0, |Bop| increases with
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σ2
T σ−2

edm(0).
With respect to χ,

∂B
∂χ

∝
−(1 + µBop)Bop + (1 + µBop)2σT edm(0)

(−W ′′(B))
.

Since under the condition in (22), sign(−σT ∞eB=0) = sign(B) and 1+ µBop > 0, |Bop| decreases with
χ.

(ii) By the implicit function theorem, and given the condition in (22) I can write

∂|B|
∂|σT edm(0)|

∝ −
(1 + µBop)|Bop|
(−W ′′(B))

(σ−2
edm(0)σ

2
T − χ)

Thus |Bop| increases (decreases) with |σT edm(0)| if σ−2
edm(0)σ

2
T < (>)χ.

(iv) Define

T ∞
s = (1 + 2m−1γ̃−1γ∗ss)Ts,

χ∞ = (1 + 2m−1γ̃−1γ∗ss)χ,

Then

W ′(B) ∝ {((1 + 2m−1γ̃−1γ∗ss)σT ∞edm(0) + µ(σ2
T ∞ − (1 + 2m−1γ̃−1γ∗ss)χ

∞σ2
edm(0) − (χ∞µσT ∞edm(0))))B2

op

+ (σ2
T ∞ − (1 + 2m−1γ̃−1γ∗ss)χ

∞σ2
edm(0) − 2χ∞µσT ∞edm(0))B− χ∞σT ∞edm(0)}

Then, using the implicit function theorem and

∂B
∂m

∝
−σT ∞edm(0)B

2
op + (1 + Bopµ)Bopχ∞

s σ2
edm(0)

(−W ′′(Bop))

Since under the condition in (22), sign(−σT ∞edm(0)) = sign(Bop) and 1 + µBop > 0, ∂B
∂m decreases

with m if Bop < 0 and increases with m when Bop > 0.
Finally, we show that if the condition in equation (22) does not hold, the result still holds in

terms of the sensitivity f (B̄). To see this, note that welfare can be written as

W( f (B̄)) =
1
2

k0

χ + f (B̄)2 {χ
2σ2

edm(0) + f (B̄)2σ2
T − 2 f (B̄)χσT edm(0)}+ t.i.p. + O(ε3) (49)

This is isomorphic to the previous problem with µ = 0, which satisfies the condition in (22).

A.1.6 Corollary 1

The weight clearly decreases with χ conditional on f (B̄). Furthermore, proposition 3 implies f (B̄)
decreases with χ and increases with σ2

T /σ2
edm(0) and ω increases in f (B̄). These observations imme-

diately imply the first two results.
The last observation regarding m requires more work. Using χ = h(m)χ∞ as in the proof of

proposition 3, one may write the insurance weight as

ω =
h(m)−1 f (B)2

h(m)−1 f (B)2 + χ∞ =
B̃2

B̃2 + χ∞
,
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where B̃ = (
√

h(m))−1 f (B). Using T = h(m)T ∞, the first derivative with respect to the sensitivity
f (B) yields

∂W( f (B))
∂ f (B)

=
k0χh(m)2

(χ + f (B)2)2 {σT ∞edm(0)B̃
2 + (h(m)

1
2 σ2
T − h(m)−

1
2 χ∞σ2

edm(0))B̃− χ∞σT ∞edm(0)}

Thus,
∂W( f (B))

∂m
=

1
2

h′(m)B̃{h(m)−
1
2 σ2
T + 3χ∞σ2

edm(0)}.

Recall h′(m) > 0, so by the implicit function theorem: ∂B̃
∂m > 0 if B̃ > 0 and ∂B̃

∂m < 0 if B̃ < 0. Thus,
∂ω
∂m > 0.

A.1.7 Proposition 4

i. Using (20), I see that the variance of the optimal exchange rate is given by

σ2
e =

1
(χ(1 + µBop)2 + B2

op)
2 (χ

2(1 + µBop)
4σ2

edm(Bop)
+ B2

opσ2
T − 2Bopχ(1 + µBop)

2σT edm(Bop)).

Note that edm(Bop) is the exchange rate policy under a demand-management policy if agents are
holding B̄ = Bop (rather than the optimal portfolio corresponding to the demand-management
policy B̄ = Bdm). Using that edm(B̄) = (1 + µB̄)−1edm(0), I can rewrite this as

σ2
e /σ2

edm(0) =
1

(χ(1 + µBop)2 + B2
op)

2 (χ
2(1+µBop)

2 + B2
op(σ

2
T /σ2

edm(0))− 2Bopχ(1+µBop)(σT edm(0)/σ2
edm(0)))

Clearly, if Bop = K̄, an increase in σ2
T /σ2

eB=0
leads to higher volatility, σ2

e /σ2
edm(0).

The derivative with respect to χ yields

σ2
e

σ2
edm(0)

= −
2Bop(1 + µBop)

(χ(1 + µBop)2 + B2
op)

3 {B
2
op(σT edm(0)/σ2

edm(0)) + Bop(1 + µBop)((σ
2
T /σ2

edm(0))− χ)

− χ(1 + µBop)
2(σT edm(0)/σ2

edm(0))}

Since Bop is optimal it must be that if Bop is positive, the term in brackets is positive and, conversely,
if Bop is negative, the term in brackets is negative (it has the same sign as the FOC). Under the
condition in (22), 1 + µBop > 0 , so σ2

e /σ2
edm(0) decreases with χ.

ii and iii) In an interior optimum,

B2
opσT edm(0) + Bop(1 + µBop)(σ

2
T /σ2

edm(0) − χ)− χ(1 + µBop)
2(σT edm(0)/σ2

edm(0)) = 0

(1 + µBop)2

(χ(1 + µBop)2 + B2
op)

2 (χ
2(1 + µBop)

2 + B2
op(σ

2
T /σ2

edm(0))− 2Bopχ(1 + µBop)(σT edm(0)/σ2
edm(0))) = σ2

e /σ2
edm(Bop)
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One can rewrite this as

(
Bop

1 + µBop
)2σT edm(0) +

Bop

1 + µBop
(σ2
T /σ2

edm(0) − χ)− χ(σT edm(0)/σ2
edm(0)) = 0

1
(χ + (1 + µBop)−2B2

op)
2 (χ

2 + (
Bop

1 + µBop
)2(σ2

T /σ2
edm(0))− 2

Bop

1 + µBop
χ(σT edm(0)/σ2

edm(0))) = σ2
e /σ2

edm(Bop)

Letting B̃ = f (B) = (1 + µB)−1B, one may rewrite this as

σT edm(0)

σ2
edm(0)

B̃2 + (
σ2
T

σ2
edm(0)

− χ)B̃−
σT edm(0)

σ2
edm(0)

= 0

1
(χ + B̃2)2

(χ2 + B̃2 σ2
T

σ2
edm(0)

− 2χB̃
σT edm(0)

σ2
edm(0)

) = σ2
e /σ2

edm(Bop)

It can be verified using Mathematica that plugging in the correct root from the first equation into

the second equation and computing the derivative with respect to σ2
T

σ2
edm(0)

and χ yields

∂
σ2

e

σ2
edm(Bop)

/∂
σ2
T

σ2
edm(0)

= −
(

σ2
T

σ2
edm(0)

+ χ)(
σT edm(0)

σ2
edm(0)

)2

(
(

σ2
T

σ2
edm(0)

)2 − 2 σ2
T

σ2
edm(0)

χ + 4(
σT edm(0)

σ2
edm(0)

)2χ + χ2

)3/2 < 0, (50)

and

∂
σ2

e

σ2
edm(Bop)

/∂χ =
2(

σ2
T σ2

edm(0)
σT edm(0)

− 1)(
(

σ2
T

σ2
edm(0)

)2 − 2 σ2
T

σ2
edm(0)

χ + 4(
σT edm(0)

σ2
edm(0)

)2χ + χ2

)3/2 > 0, (51)

Finally, note:

σ2
e

σ2
edm(0)

=
σ2

e

σ2
edm(Bop)

σ2
edm(Bop)

σ2
edm(0)

=
σ2

e

σ2
edm(Bop)

(
1

1 + µBop
)2.

I know the first term decreases by the results in (50) and (51). In addition, I know that Bop becomes
larger in absolute value with a larger importance of the insurance motive (↑ σ2

T /σ2
edm(0) or ↓ χ).

Thus, if µBop is nonnegative, a larger portfolio |Bop|makes the second term weakly smaller, which
in turn shows that overall volatility strictly decreases. In contrast, if µBop < 0 the effect on volatility
is ambiguous.

A.1.8 Proposition 5

I start by deriving an approximation to the consumers’ Euler equation. Expanding the first-order
condition of the consumer with respect to tradable consumption yields

uT ιs + uTTCTsscTs + uTN FZZsszs + (uTN FY + uTL)Lssls = uTλs + O(ε2),
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where λs is the first-order expansion of the multiplier on the budget constraint. Rewriting this in
terms of the output gap,

uT ιs + V11CTsscTs + V1ZZsszs + uT ιs + FF−1
Y (uTN FY + uTL)xs = uTλs + O(ε2) (52)

Next, note that to first-order τB must be zero. Otherwise, portfolio positions would become un-
bounded. Expanding the no-arbitrage condition of home agents to second order,

E[r− es + (r− es)
2 + λs(r− es)] = τB + O(ε3)

and expanding the no-arbitrage condition of foreigners to second-order,

E[(r− es) + (r− es)
2 − γ∗ss(y

∗
s −

1
m

B̄(r− es))(r− es)] + O(ε3) = 0

where I used C∗ss = Y∗ss = 1. Then,

E[(λs + γ∗ssy
∗
s −m−1B̄(r− es))(r− es)] = τB + O(ε3). (53)

For future reference, note that the planner’s objective can be rewritten as

EV({es, B̄}) = −k′0E[
1
2
(B̄es +T ∞

s )2 +
1
2

χ∞((1+µB̄)es− edm
s (0))2−uTγ∗ssm

−1V−1
11 B̄2e2

s ]+ t.i.p+O(ε3)

where I used the definitions of T ∞
s and χ∞ given in the proof of part (iv) of proposition 3.

Next, note that equation (52) can be rewritten as

−V11(B̄es + T ∞
s ) + FF−1

Y (uTN FY + uTL)xs = uT(λs + γ∗ssy
∗
s ) + O(ε2)

Using (35),

xs = k−1
ex (1 + µB̄){es − (1 + µB̄)−1edm

s (0)}+ O(ε2)

I can write

−V11(B̄es + T ∞
s ) + k̃{(1 + µB̄)es − edm

s (0)} = uT(λs + γ∗ssy
∗
s ) + O(ε2)

for some constant k̃. I also know that the planner picks es to solve

−B̄V11(B̄es + T ∞
s ) + 2m−1γ∗ssrrsB̄2 + (1 + µB̄)V11χ∞

s ((1 + µB̄)es − es(0)) = O(ε2)

Then,

k̃′
(
−V11(B̄es + T ∞

s )− 2uTm−1γ∗ssesB̄
)
= uT(λs + γ∗ssy

∗
s − 2m−1γ∗ssesB̄) + O(ε2)

The planners’ FOC implies

Ees{V11(B̄es − Ts) + 2m−1γ∗ssB̄es} = O(ε3)

Thus,
Ees(λs + γ∗ssy

∗
s − 2m−1γ∗ssesB̄) = O(ε3)
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Comparing this to equation (53) implies the result.

A.2 Proofs for section 4

I first present some preliminary computations required for the proofs in Section A.2.1. I then use
the results to prove lemma 4 in Section A.2.2, both for the case with savings taxes covered in the
main text, and the case without them, which I discuss in Appendix C. Section A.2.3 presents the
generalization of the results in the static model (proposition 6). Section A.2.4 proves the exchange
rate result (proposition 7) and Section 8 proves the results for savings taxes (proposition 8)

A.2.1 Model solution and preliminary computations

First, I derive the Phillips curve. Second, I derive a second-order approximation to the welfare
loss around the riskless steady state around some portfolio {Bt, ε = 0}. Note that given a path
{Bt} - I have a standard linear-quadratic problem, which I can solve using the certainty equivalent
property. Third, I solved the relaxed (continuation) problem under flexible prices. Fourth, I show
how this relaxed problem allows me to write the welfare function in a familiar form. Fifth, I will
rewrite the bond-pricing equation in a way that makes it easier to solve the planning problem.
Sixth, I derive the excess returns of home-currency bonds in a savings-only (B = 0) economy.

Deriving the Phillips’ curve The FOC with respect to PIt(i) for intermediate-good producer i
yields

Et

∞

∑
s=0

(βφ)sιsYIt+s

{
E−1

s uTt+s(1− η)(
PIt(i)
PIt+s

)−η − η(1− τ)PIt(i)−1(
PIt(i)
PIt+s

)−ηuLt+s

}
= 0

Et

∞

∑
s=0

(βφ)sιsuTt+s(
PIt(i)
PIt+s

)−ηYIt+s

{
PIt(i)
Et+s

+
uLt+s

uTt+s

}
= 0

Log-linearizing around steady state and rearranging,

p∗It − (1− βφ){et − u−1
T uTTYTsscTt − u−1

T uTN(FY Lsslt + FZZsszt)− u−1
T uTLLsslt

+u−1
L uTLCTsscTt + u−1

L uNL(FY Lsslt + FZZsszt) + u−1
L uLLLsslt}+ βφEt p∗It+1 = 0 (54)

where p∗It is the wage optimizers at t set. The evolution of the aggregate intermediate-input price
index is given by

PIt = [φP1−η
It−1 + (1− φ)P∗1−η

It ]1/(1−η)

Log-linearize around zero (intermediate-input-price) inflation,

πIt =
1− φ

φ
(p∗It − pIt)

Replacing in (54),

πIt =
1− φ

φ
(1− βφ)(et − pIt − u−1

T uTTYTsscTt − u−1
T uTN(FY Lsslt + FZZsszt)− u−1

T uTLLsslt

+ u−1
L uTLYTsscTt + u−1

L uNL(FY Lsslt + FZZsszt) + u−1
L uLLLssnt+s) + βEtπIt+1 (55)
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The firms’ FOC is now given by

kecCTsscTt + kezZsszt + kexxt = et − pIt.

Replacing in (55) and simplifying,

πIt = κxt + βEtπIt+1

where
κ =

1− φ

φ
(1− βφ)λxF−1u−1

N > 0.

Welfare loss around steady-state path {Bt} Proceeding as in the static model and using the result
in Woodford (2003) (ch.6),

∑ βtVari( p̂It(i)) =
φ

(1− φ)(1− βφ) ∑ βtπ2
It

where p̂It(i) = pIt(i)− pIt, I obtain

U = E0 ∑ βt{uTCTsscTt +
1
2
(V11C2

Tss − uTCTss)c2
Tt + (V1ZZsszt + uTξt)CsscTt (56)

− 1
2

λxx2
t −

1
2

λππ2
It}+ t.i.p. + O(ε3)

where
λπ ≡ −

ηφ

(1− βφ)(1− φ)
uL.

The constants V11, V1Z, uT and λx are the same as in the static model.
A second-order approximation to the budget constraint - equation (27) - yields

CTsscTt +
1
2

CTssc2
Tt + b∗t − (β−1b∗t−1 + β−1B∗ssr

∗
t−1 +

1
2

β−1B∗ssr
∗2
t−1 + β−1b∗t−1r∗t−1) =

YTssyTt +
1
2

YTssy2
Tt + B̄t−1rrt + Bεt−1rrt + O(ε3). (57)

A second order approximation to the foreign no-arbitrage condition yields

Et−1{rrt − γ∗ssrrt(y∗t + β−1b∗ f
t−1 − b∗ f

t −
1
m

B̄rrt) + O(ε3) = 0,

Furthermore, since for foreigners r∗ and y∗ shocks are exactly compensated by β∗ shocks, they
always save a constant share of their income,

b∗ f
t = b∗ f

t−1 − βm−1B̄t−1rrt,

where I used that at the steady state β = β∗. Let x̃t = xt − Et−1xt denote the innovation for a
generic variable x. Then,

Et−1{rrt − γ∗ssrrt(ỹ∗t −
1− β

m
B̄t−1rrt) + O(ε3) = 0, (58)
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Combining (57) and (58), and replacing in (56),

U = E0[∑ βt{β−1uTb∗t−1 − b∗t ) + uT B̄t−1rrtγ
∗
ssỹ
∗
t − uT B̄2

t−1
1− β

m
γ∗ssrr2

t + uT β−1b∗t−1r∗t−1

+
1
2

V11Y2
Tssc

2
Tt + (V1ZZsszt + uTξt)CTsscTt −

1
2

λxx2
t −

1
2

λππ2
It}] + t.i.p. + O(ε3)

Using the transversality condition for bonds,

U = β−1uTb∗−1 + E0[∑ βt{uT B̄t−1rrBtγ
∗
ssỹ
∗
t − uT B̄2

t−1
1− β

m
γ∗ssrr2

t + uT β−1b∗t−1r∗t−1

+
1
2

V11Y2
Tssc

2
t + (V1ZZssYTsszt + uTξt)cTt −

1
2

λxx2
t −

1
2

λππ2
It}] + t.i.p. + O(ε3)

This is already purely quadratic. Using a first-order approximation to the budget constraint,

U = uTb∗t−1 + E0[∑ βt{uT B̄t−1rrtγ
∗
ssỹ
∗
t − uT B̄2

t−1
1− β

m
γ∗ssrr2

t + uT β−1b∗t−1r∗t−1

+
1
2

V11(YTssyt + B̄t−1rrt + β−1B∗ssr
∗
t−1 − b∗t + β−1b∗t−1)

2

+ (V1ZZsszt + uTξt)(YTssyt + B̄t−1rrt + β−1B∗ssr
∗
t−1 − b∗t + β−1b∗t−1)−

1
2

λxx2
t −

1
2

λππ2
It}] + t.i.p. + O(ε3)

(59)

The approximate problem (given {B̄t}) is to maximize (59) subject to

κxt + βEtπIt+1 = πIt

β−1(rt−1 − ∆et − β(1− δ)rt − r∗t−1) = rrt

By the certainty equivalent property (conditional on {B̄t}), it is without loss of generality to
consider the case in which the economy is at a steady state at t = −1, receives a shock at t = 0 and
no further shocks from t = 1 onwards. In other words, from t ≥ 1 onwards the second equation is
a bond pricing equation,

rt−1 = ∆et + β(1− δ)rt − r∗t−1.

A relaxed problem: Flexible prices Consider the relaxed problem

WR1 = max
{b̂∗t }∞

t=0

[uT B̄rr0γ∗ssỹ
∗
0 − uTB2

t−1
1− β

m
γ∗ssrr2

0

+
1
2

V11(YTssy0 + B̄rr0 − b∗0)
2 + (uT ι0 + V1ZZssz0)(YTssy0 + B̄rr0 − b∗0)]

+
∞

∑
t=1

βt{1
2

V11(YTssyt + β−1B∗ssr
∗
t−1 − b∗t + β−1b∗t−1)

2 + uTb∗t r∗t

+ (V1ZZsszt + uT ιt)(YTssyt + β−1B∗ssr
∗
t−1 − b∗t + β−1b∗t−1)}+ t.i.p. + O(ε3)

with B̄ and rr0 given. Note that this is the problem the planner would solve if prices were flexible.
For t ≥ 1, the FOC with respect to b∗t yields

kξξt+1 + V11b∗Rt+1 = (1 + β−1)V11b∗Rt − β−1b∗t−1 + kL·ξξt
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where

kξ = [−V11YTss,−V1ZZss,−V11β−1ρ−1
r∗ B∗ss,−uT, 0]

kL·ξ = [−V11YTss,−V1ZZss,−V11β−1ρ−1
r∗ B∗ss + uT,−uT, 0]

and ξ = [yT, z, r∗, ι, ψ]. Assuming shocks follow an VAR1, ξt+1 = Vξξt, with the world interest rate
following an AR1 for simplicity. The solution is given by

b∗Rt = b∗Rt−1 − β(kLξ − kξV ξ)(Idim(ξ) − βV ξ)
−1V−1

11 ξt

At t = 0,

uTr∗0 −V11(βB̄rr0 + YTssy0 − b∗0)−V1ZZssz0 − uT ι0

+V11(YTssy1 + ρ−1
r∗ β−1B∗ssr

∗
1 − b∗1 + β−1b∗0) + V1ZZssz1 + uT ι1 = 0,

i.e., the same except that β−1(ρ−1
r∗ B∗ssr∗0) is missing. Since ρ−1

r∗ B∗ssr∗0enters like b∗−1, I get

b∗R0 = βB̄rr0 − ρ−1
r∗ B∗ssr

∗
0 − β(kLξ − kξV ξ)(Idim(ξ) − βV ξ)

−1V−1
11 ξ0

If all shocks are AR1 with no cross-lag terms,

b∗R0 = βB̄rr0 +
β(1− ρz)

(1− βρz)

V1Z

V11
Zssz0 +

β(1− ρξ)

(1− βρξ)

uT

V11
ι0 +

β(1− ρy)

(1− βρy)
YTssy0 −

β

1− βρq

uT

V11
r∗0 −

1− β

1− βρr∗
B∗ssr

∗
0 .

(60)

Back to the original problem Let b∗dm
0 (0) denote the optimum in a savings-only economy (demand-

management with no savings taxes), and b̃0 = b∗0 − b∗R0 = b∗0 − b∗0(0)− βB̄rr0. Using the solution
for b∗dm

0 (0) and imposing a transversality condition on {b̃t}, I can rewrite the welfare loss function
as

U =
1
2
(1− β)V11(B̄rr0 − T0)

2 +
1
2

V11b̃∗20 −
1
2

λxx2
0 −

1
2

λππ2
I0

+ ∑ βt{−1
2

λxx2
t −

1
2

λππ2
It + V11(−b̃t + β−1b̃t−1)

2}+ t.i.p. + O(ε3)

where

T0 = − 1
1− β

1
1− 2m−1uTV−1

11 γ∗ss
{YTssỹ0 + V−1

11 V1ZZss z̃0 + V−1
11 uT ι̃0 + V−1

11 uTγ∗ssỹ
∗
0 − b∗0(0)}

If all shocks are AR1, then after replacing b∗0(0) we obtain

T0 = − 1
1− β

1
1− 2m−1uTV−1

11 γ∗ss
{ 1− β

1− βρy
YTssỹ0 +

1− β

1− βρz
V−1

11 V1ZZss z̃0 +
1− β

1− βρξ
V−1

11 uT ι̃0

+ V−1
11 uTγ∗ssỹ

∗
0 +

β

1− βρr
V−1

11 uT r̃∗0 +
1− β

1− βρr∗
B∗ssr̃

∗
0}

Note this is the transfer that would be required to complete markets, starting from an economy
that has access to the foreign bond B∗. I wrote it in terms of the innovations x̃ to emphasize that I
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only obtained the levels because I assumed the economy was at the steady state at t = −1; what
requires insurance between −1 and 0 is obviously only the innovations.

Rewriting bond pricing constraint After replacing the exchange rate depreciation using equa-
tion (35), the bond-pricing constraint (t ≥ 1) and excess returns constraint (t = 0) are given by

β−1(−kexx0 − πI0 − kezZssz0 − kec(YTssy0 + B̄rr0 − b∗0)− β(1− δ)r0) = rr0

kex∆xt + πIt + kezZss∆zt + kec∆cTt + β(1− δ)rt + r∗t−1 − ψt−1 = rt−1

Note the second equation at t = 1 becomes

kex∆x1 +πI1 + kezZss∆z1 + kec(∆y1 + β−1b∗0 − B̄rr0 + β−1B∗ssr
∗
0 − b1 + b0)+ β(1− δ)r1 + r∗0 −ψ0 = r0

and for t ≥ 2,

kex∆xt +πIt + kezZss∆zt− kec(∆yTt + β−1∆b∗t−1 + β−1B∗ss∆r∗t−1−∆b∗t )+ β(1− δ)rt + r∗t−1−ψt−1 = rt

Making b̃ appear and writing in terms of the savings-only economy (using b∗dm
t (0) = bR

t − βB̄rr0)

β−1(−kexx0 − πI0 − kezZssz0 − kec(YTssy0 + (1− β)B̄rr0 − b̃∗0 − b∗dm
0 (0))− β(1− δ)r0) = rr0 (61)

kex∆x1 + πI1 + kezZss∆z1 + kec(∆y1 + β−1(b̃∗0 + b∗dm
0 (0))+

β−1B∗ssr
∗
0 − (b̃1 − b̃0)− (b∗dm

1 (0)− b∗dm
0 (0)) + β(1− δ)r1 + r∗0 − ψ0 = r0 (62)

kex∆xt + πIt + kezZss∆zt − kec(∆yTt + β−1(∆b̃∗t−1 + ∆b∗dm
t−1 (0))+

β−1B∗ss∆r∗t−1 − (∆b̃∗t + ∆b∗dm
t (0))) + β(1− δ)rt + r∗t−1 − ψt−1 = rt−1 (63)

Next let rrdm
0 (0) and {rdm

t (0)} solve

β−1(−kezZssz0 − kec(YTssy0 − b∗dm
0 (0))− β(1− δ)r0) = rrdm

0 (0)

kezZss∆z1 + kec(∆y1 + β−1b∗dm
0 (0) + β−1B∗ssr

∗
0 − (b∗dm

1 (0)− b∗dm
0 (0)) + β(1− δ)rdm

1 (0) + r∗0 − ψ0 = rdm
0 (0)

kezZss∆zt − kec(∆yTt + β−1∆b∗dm
t−1 (0) + β−1B∗ss∆r∗t−1 − ∆b∗dm

t (0)) + β(1− δ)rdm
t (0) + r∗t−1 − ψt−1 = rdm

t−1(0)

Then, I can rewrite (61)-(63) as

β−1(−kexx0 − πI0 + kecb̃∗0 − β(1− δ)(r0 − rdm
0 (0))) = (1 + β−1(1− β)kec)rr0 − rrdm

0 (0)

kex∆x1 + πI1 + kec(β−1b̃∗0 − (b̃1 − b̃0)) + β(1− δ)(r1 − rdm
1 (0)) = r0 − rdm

0 (0)

kex∆xt + πIt − kec(β−1∆b̃∗t−1 − ∆b̃∗t ) + β(1− δ)(rt − rdm
t (0)) = rt−1 − rdm

t−1(0)

Defining

r̃0 = r0 − rdm
0 (0) + kexx0 − β−1kecb̃∗0

r̃t = rt − rdm
t (0) + kexxt − β−1kec∆b̃t
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I get

β−1(−(1− β(1− δ))kexx0 − πI0 − δkecb̃∗0 − β(1− δ)r̃0) = (1 + β−1(1− β)kec)rr0 − rrdm
0 (0)

kex(1− β(1− δ))xt + πIt + β(1− δ)r̃t − δkec∆b̃∗t = r̃t−1

Rewriting Euler equation constraint (for the case without capital controls) The Euler equation
is given by

FF−1
Y (uTN FY + uTL)∆xt+1 + V11CTss∆cTt+1 + uT∆ιt+1 + V1ZZss∆zt+1 − r∗t = 0

Using the budget constraint,

FF−1
Y (uTN FY + uTL)∆x1 + V11(YTss∆y1 + β−1B∗ssr

∗
0 + β−1b∗0 + B̄rr0 − ∆b∗1)
+uT∆ι1 + V1ZZss∆z1 − r∗0 = 0

FF−1
Y (uTN FY + uTL)∆xt+1 + V11(YTss∆yt+1 + β−1B∗ss∆r∗t + β−1∆b∗t+1 − ∆b∗t )

+uT∆ιt+1 + V1ZZss∆zt+1 − r∗t = 0 ∀t≥1

The relaxed bR defined above solves

V11(YTss∆y1 + β−1B∗ssr
∗
0 − ∆bR

1 + β−1bR
0 + rr0) + uT∆ι1 + V1ZZss∆z1 − r∗0 = 0

V11(YTss∆yt+1 + β−1B∗ss∆r∗t+s − ∆bR
t+s+1 + β−1bR

t+s) + uT∆ι1 + V1ZZss∆z1 − r∗t+s = 0 ∀s ≥ 1.

The reason this is true is, essentially, that if prices were flexible no capital controls would be re-
quired. Substracting,

FF−1
Y (uTN FY + uTL)∆x1 + V11(−∆b̃∗1 + β−1b̃∗0) = 0

FF−1
Y (uTN FY + uTL)∆xt+1 + V11(−∆b̃∗t+1 + β−1∆b̃∗t ) = 0 ∀s ≥ 1

Implied excess returns on home-currency bonds in B̄ = 0 economy Solving forward,

βrr0(0) =
(

kB
ξ − β(1− δ)kB

L·ξ

) (
Idim(ξ) − β(1− δ)Vξ

)−1
ξ̃0 + kecρ−1

r∗ β−1B∗ssr̃
∗
0

+ kecb∗dm
0 (0) + kecβ(1− δ)((kLξ − kξV ξ)V−1

11 (Idim(ξ) − β(1− δ)Vξ))
−1ξ̃0

where

kB
ξ = [−kecYTss,−kezZss,−kecρ−1

r∗ β−1B∗ss]

kB
L·ξ = [−kecYTss,−kezZss,−kecρ−1

r∗ β−1B∗ss + 1, 1]
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A.2.2 Lemma 4

With capital controls If capital controls are available, the problem is

Wt≥1 = max
{b̃t,xt,πt}

{1
2

(1− β)V11

1− 2m−1uTV−1
11 γ∗ss

(B̄rr0 − Ts)
2 +

1
2

V11b̃2
0 −

1
2

λxx2
0 −

1
2

λππ2
I0

+ ∑ βt{−1
2

λxx2
t −

1
2

λππ2
It +

1
2

V11(−b̃t + β−1b̃t−1)
2}+ t.i.p. + O(ε3)

s.t.

κxt + βπIt+1 = πIt

β−1(−(1− β(1− δ))kexx0 − πI0 + δkecb̃∗0 − β(1− δ)r̃0) = (1 + β−1(1− β)kec)rr0 − rrdm
0 (0)

(1− β(1− δ))kexxt + πIt − δkec(b̃t − b̃t−1) + β(1− δ)r̃t = r̃t−1.

I will first solve the problem from t ≥ 1 onwards,

Wt≥1 = max ∑ βt{−1
2

λxx2
t −

1
2

λππ2
It +

1
2

V11(−b̃t + β−1b̃t−1)
2}+ t.i.p. + O(ε3)

s.t.

κxt+s + βπIt+s+1 = πIt+s

(1− β(1− δ))kexxt+s − δkec(b̃t − b̃t−1) + πIt+s + β(1− δ)r̃t+s = r̃t+s−1

where b̃∗0 , r̃0 and πI1 are given. Let φ1t denote the multiplier on the first constraint and φ2t denote
the multiplier on the second constraint. FOC:

−λxxt =− κφ1t + kex(1− β(1− δ))φ2t

λππIt+1 + φ1t+1 + φ2t+1 =φ1t

(1− δ)φ2t =φ2t+1

V11b̃t+1 + βkecδφ2t+1 =(1 + β−1)V11b̃t −V11β−1b̃t−1 + δφ2t

plus the constraints. There are two unit roots inside the unit circle, a unit root root and three
outside, which reflects that the bond position has a unit root. I pick φ11, φ21 and b̃∗1 to kill the
exploding roots. Finally, I write

Wt≥1 =
1
2

Wππ2
I1 +

1
2

Wr r̃2
0 +

1
2

Wbb̃2
0 + WrππI1r̃0 + Wrbr̃0b̃0 + WbππI1b̃0

and compute these constants by using the envelope theorem and then matching coefficients. It
can be shown that Wbπ = Wrb = 0 and Wb = β−2V11(1− β). This reflects that whether bonds are
initially higher or lower, they do not make it more or less costly to satisfy the constraint since they
have a unit root. The planner does use, however, deviations to lower the cost of the promise (by
tilting b̃ path). The remaining constants are explicit but very complicated.55

I can then use these expressions as the continuation values at t = 0. The problem at t = 0 is

55I find them using the symbolic toolbox in MATLAB.
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given by

W = max{1
2

(1− β)V11

1− 2m−1uTV−1
11 γ∗ss

(B̄rr0 − T )2 +
1
2

V11b̃∗20 −
1
2

λxx2
0 −

1
2

λππ2
I0

+
1
2

βWbb̃∗20 +
1
2

βWππ2
I1 + βWπrπI1r̃0 +

1
2

βWr r̃2
0}+ t.i.p. + O(ε3)

s.t.

κx0 + βπI1 = πI0

−(1− β(1− δ))kexx0 − πI0 + δkecb̃∗0 − β(1− δ)r̃0 = β{(1 + kecβ−1(1− β)B̄)rr0 − rrdm
0 (0)}

The FOC are

−λxx0 + κφ10 − (1− β(1− δ)kexφ20 = 0
−λππI0 − φ10 − φ20 = 0

WπππI1 + Wπr r̃0 + φ10 = 0
WπrπI1 + Wrr r̃0 + (1− δ)φ20 = 0

(V11 + βWbb)b̃0 + δkecφ20 = 0

plus the constraints. This is just a linear system that is easy to solve. Note that the multiplier
on the second constraint contains the information on how costly it is to deviate from a demand-
management policy. Solving and using the envelope theorem, I may write

W = {1
2

(1− β)V11

1− 2m−1uTV−1
11 γ∗ss

(B̄rr0−T )2− 1
2

β2φ̃((1+ kecβ−1(1− β)B̄)rr0− rrdm
0 (0))2}+ t.i.p.+O(ε3)

Thus, defining χ = − 1−2m−1uTV−1
11 γ∗ss

(1−β)V11
β2φ̃ > 0 and µ = β−1kec(1− β), I can write the welfare function

as desired,

W =
(1− β)V11

1− 2m−1uTV−1
11 γ∗ss

{1
2
(B̄rr0 − T )2 +

1
2

χ((1 + µB̄)rr0 − rrdm
0 (0))2 + t.i.p. + O(ε3)

Without savings taxes (with portfolio taxes) Let c̃t = β−1b̃t − b̃t−1. I have

W = max{1
2

(1− β)V11

1− 2m−1uTV−1
11 γ∗ss

(B̄rr0 − T )2 +
1
2

V11b̃2
0 −

1
2

λxx2
0 −

1
2

λππ2
I0

+ ∑ βt{−1
2

λxx2
t −

1
2

λππ2
It +

1
2

V11c̃2
Tt}+ t.i.p. + O(ε3)
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s.t.

κxt + βπIt+1 = πIt

β−1(−kexx0 − πI0 − kec c̃Tt + β(1− δ)(r0 − rdm
0 (0)) = (1 + µB̄)rr0 − rrdm

0 (0)

kex∆xt + πIt + kec∆c̃Tt + β(1− δ)(rt − rdm
t (0)) = (rt−1 − rdm

t−1(0))
kux∆xt+1 + kuc∆c̃Tt+1 = 0

where

kux ≡ FF−1
Y (uTN FY + uTL)

kuc ≡ V11CTss.

Note the last constraint implies
kuc c̃Tt + kuxxt = ν ∀t

where ν is a choice variable. Using this insight, I rewrite the problem as

W = max{1
2

(1− β)V11

1− 2m−1uTV−1
11 γ∗ss

(B̄rr0 − T )2 +
1
2

V11b̃2
0 −

1
2

λxx2
0 −

1
2

λππ2
I0

+ ∑ βt{−1
2

λxx2
t −

1
2

λππ2
It +

1
2

V11k−2
uc (ν− kuxxt)

2}+ t.i.p. + O(ε3)

s.t.

κxt + βπIt+1 = πIt

β−1(−(kex − keck−1
uc kux)x0 − πI0 − keck−1

uc ν− β(1− δ)(r0 − rdm
0 (0))) = (1 + µB̄)rr0 − rrdm

0 (0)

(kex − keck−1
uc kux)∆xt + πIt + β(1− δ)(rt − rdm

t (0)) = rt−1 − rdm
t−1(0)

Next define r̃t = rt − rdm
t (0)− (kex − keck−1

uc kux)xt. Thus,

κxt + βπIt+1 = πIt

β−1(−(1− β(1− δ))(kex − keck−1
uc kux)x0 − πI0 − keck−1

uc ν− β(1− δ)r̃0) = (1 + µB̄)rr0 − rrdm
0 (0)

(1− β(1− δ))(kex − keck−1
uc kux)xt + πIt + β(1− δ)r̃t = r̃t−1

The continuation problem is given by

Wt≥1 = max{∑ βt{−1
2

λxx2
t −

1
2

λππ2
It +

1
2

V11k−2
uc (ν− kuxxt)

2}+ t.i.p. + O(ε3)

s.t.

κxt + βπIt+1 = πIt

(1− β(1− δ))(kex − keck−1
uc kux)xt + πIt + β(1− δ)r̃t = r̃t−1

νt+1 = νt
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with (πIt, r̃t−1, νt) given. The FOC yield

−(λx −V11k−2
uc k2

ux)xt −V11k−2
uc kuxνt + κφ1t − (1− β(1− δ))(kex + keck−1

uc kux)φ2t = 0
λππIt+1 + φ1t − φ1t+1 − φ2t+1 = 0

(1− δ)φ2t − φ2t+1 = 0

I solve by picking (φ10, φ20) to kill the exploding roots. Finally, I write

Wt≥1 =
1
2

Wππ(πI1)
2 + WπνπI1ν +

1
2

Wννν2.

To find these constants, let st = [πt; νt] and write xt = [xt; πIt; νt] = k[πIt; r̃t−1; νt] and st+1 = Vsst.

s′1Wt≥1s1 = ∑ βts′1(V
t
s )
′k′AwkVt

s s1

where Aw is a negative definite matrix that represents the previous loss function. Solving,

vec(Wt≥1) = (I − β(Vs)
′ ⊗ (Vs)

′)−1vec(k′Awk).

Next, note that using the relation

bt = β−1b∗t−1 + k−1
uc kuxxt − k−1

uc νt

I find b∗0 that is consistent with the promised π0, ν0 and the transversality condition. To do so, write
this as a system,

[bt; πIt+1; r̃t; νt+1] = K[b∗t−1; πIt; r̃t−1; νt].

and find b∗0 to kill the exploding root. This yields

b∗0 = kbr r̃0 + kbνν1 + kbππI1.

At t = 0,

W = max{1
2

(1− β)V11

1− 2m−1uTV−1
11 γ∗ss

(B̄rr0 − T )2 +
1
2

V11b̃2
0 −

1
2

λxx2
0 −

1
2

λππ2
I0

+
1
2

βWπππ2
I1 + βWπrπI1r̃0 + βWπνπI1ν +

1
2

βWrr r̃2
0 + βWrνr̃0ν +

1
2

βWννν2 + t.i.p. + O(ε3)

s.t.

κx0 + βπI1 = πI0

β−1{−(1− β(1− δ))(kex − keck−1
uc kux)x0 − πI0 − keck−1

uc ν− β(1− δ)r̃0} = (1 + µB̄)rr0 − rrdm
0 (0)

−kucb̃0 + kuxx0 = ν

kbr r̃0 + kbνν1 + kbππI1 = b∗0
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FOC,

−λxx0 + κφ1 − (1− β(1− δ))(kex − keck−1
uc kux)φ2 + kuxφ3 = 0
−λππI0 − φ1 − φ2 = 0

WπππI1 + Wπr r̃0 + Wπνν + φ1 + kbπφ4 = 0
WπrπI1 + Wrr r̃0 + Wrνν + (1− δ)φ2 + kbqφ4 = 0

WπνπI1 + Wrνr̃0 + Wννν− β−1keck−1
uc φ2 − β−1φ3 + kbνφ4 = 0

V11b̃0 − kucφ3 − β−1φ4 = 0

This is just a linear system that is easy to solve. Note that the multiplier on the second constraint
contains the information on how costly it is to deviate from a demand-management policy. Solving
and using the envelope theorem, I may write

W = {1
2
(1− β)V11(B̄rr0 − T )2 − 1

2
β2φ̃((1 + kecβ−1(1− β)B̄)rr0 − rrdm

0 (0))2}+ t.i.p. + O(ε3)

Thus, defining χ = − 1−2m−1uTV−1
11 γ∗ss

(1−β)V11
β2φ̃ > 0 and µ = β−1kec(1− β), I can write the welfare function

as desired,

W =
(1− β)V11

1− 2m−1uTV−1
11 γ∗ss

E{1
2
(B̄rr0 − T )2 +

1
2

χ((1 + µB̄)rr0 − rrdm
0 (0))2 + t.i.p. + O(ε3)

Note the only difference is that the muliplier φ̃ will now be larger because it is a more restricted
problem.

A.2.3 Proposition 6

Propositions 2 and 4 are trivial given Lemma 4. Next, I prove the generalization of proposition 5.
Combining the home and foreign Eulers to second order,

E[(λ0 + γ∗ssy
∗
0 − (1− β)m−1B̄rr0)rr0] = τB + O(ε3). (64)

where λ0 is still the multiplier on the budget constraint.
In the dynamic model private marginal utility still satisfies

uT ι0 + V11CTsscT0 + V1ZZssz0 + FF−1
Y (uTN FY + uTL)x0 = uTλ0 + O(ε2)

Using the budget constraint,

uT ι0 + V11(YTssy0 + B̄rr0 − b∗0) + V1ZZssz0 + FF−1
Y (uTN FY + uTL)x0 = uTλ0 + O(ε2)

Using the solution from the “relaxed” problem discussed above, I can rewrite this as

uT ι0 + V11(YTssy0 + (1− β)B̄rr0 − b∗R0 )−V11b̃0 + FF−1
Y (uTN FY + uTL)x0 = uTλ0 + O(ε2),

Using the solution for b∗R0 , I obtain,

(1− β)V11(B̄rr0 − T ∞
0 )−V11b̃0 + FF−1

Y (uTN FY + uTL)x0 = uTλ0 + uTγ∗ssy
∗
0 + O(ε2)
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Regardless of whether there are capital controls or not, I know from solving the problem in propo-
sition 4, that I can write

b̃0 = k̃b{(1 + µB̄)rrs − rrdm
s (0)}+ O(ε2)

x0 = k̃x{(1 + µB̄)rrs − rrdm
s (0)}+ O(ε2)

for some constants k̃b and k̃x, so

(1− β)V11(B̄rr0 − T ∞
0 ) + k̃rr{(1 + µB̄)rrs − rrdm

s (0)} = uTλ0 + uTγ∗ssy
∗
0 + O(ε2)

for some constant k̃rr. I also know that the planner picks rrs to solve

−B̄V11(B̄rrs − T ∞
s ) + 2m−1γ∗ssrrsB̄2 + (1 + µB̄)V11χ∞

s ((1 + µB̄)es − es(0)) = O(ε2)

Then,

k̃′
(
−V11(B̄es + T ∞

s )− 2uTm−1γ∗ssesB̄
)
= uT(λs + γ∗ssy

∗
s − 2(1− β)m−1γ∗ssrrsB̄) + O(ε2)

for some constant k̃′. The planners’ FOC implies

Errs{V11(B̄es − Ts) + 2m−1γ∗ssB̄rrs} = O(ε3)

so
τB = (1− β)m−1γ∗ssB̄Err2

0 + O(ε3).

Note that if foreigners were “short-lived” the 1− β would vanish. In that case, their Euler equation
would look exactly the same as in the static model. The fact that they can save lowers their risk
aversion by (1− β)−1.

A.2.4 Proposition 7

Rigid prices and long bonds With rigid prices, the continuation problem is:

W = max
{b̃t,xt,πIt}

{1
2

(1− β)V11

1− 2m−1u1V−1
11 γ∗ss

(B̄rr0 − Ts)
2 +

1
2

V11b̃2
0 −

1
2

λxx2
0

+ ∑ βt{−1
2

λxx2
t +

1
2

V11(−b̃t + β−1b̃t−1)
2}+ t.i.p. + O(ε3)

s.t.

β−1(−(1− β(1− δ))kexx0 + δkecb̃∗0 − β(1− δ)r̃0) = (1 + β−1(1− β)kec)rr0 − rrdm
0 (0)

(1− β(1− δ))kexxt − δkec(b̃t − b̃t−1) + β(1− δ)r̃t = r̃t−1.

From t ≥ 1 onwards,

W = max
{b̃t,xt,πt}

{∑ βt{−1
2

λxx2
t +

1
2

V11(−b̃t + β−1b̃t−1)
2}+ t.i.p. + O(ε3)
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The solution is

b̃t = b̃t−1 − βδkecV−1
11 K̄0r̃t−1

φ1 = K̄0r̃t−1

xt = −λ−1
x (1− β(1− δ))kexK̄0r̃t−1

r̃t = (1− δ)r̃t−1

where

K̄0 = k−2
ex λx

(1− β(1− δ)2)

(1− β(1− δ))2 − λxk−2
ex V−1

11 βδ2k2
ec

> 0.

Since there is no inflation, one may write, for t ≥ 1

ẽt = kexxt + kec(β−1b̃t−1 − b̃t) + O(ε2)

Replacing,

ẽt = (λ−1
x k2

ex − k2
ecV
−1
11 )(1− β(1− δ))K̄0r̃t−1 + (1− β)k2

ecV
−1
11 K̄0r̃0.

Noting the problem at t = 0 is the same with rr0 − 1
1+µB̄ rrdm

0 (0) instead of −r̃0,

ẽt = −(λ−1
x k2

ex − k2
ecV
−1
11 )(1− β(1− δ))K̄0(1− δ)t{(1 + µB̄)rr0 − rrdm

0 (0)}
− (1− β)k2

ecV
−1
11 K̄0{(1 + µB̄)rr0 − rrdm

0 (0)}.

Defining k̄e1 = (λ−1
x k2

ex − k2
ecV
−1
11 )(1− β(1− δ))K̄0 > 0 and k̄e2 = −(1− β)k2

ecV
−1
11 K̄0 ≥ 0. Note

µ = 0 if and only if kec = 0. Finally, note at t = 0, ẽt can be rewritten as

ẽ0 = −(λ−1
x kex(1− β(1− δ))− βδk2

ecV
−1
11 )K̄0{(1 + µB̄)rr0 − rrdm

0 (0)}+ O(ε2),

so ẽ0 has the same sign as −{(1 + µB̄)rr0 − rrdm
0 (0)}.

Calvo and short bonds The problem is

W = max
{b̃t,xt,πt}

{1
2

(1− β)V11

1− 2m−1u1V−1
11 γ∗ss

(B̄rr0 − Ts)
2 +

1
2

V11b̃2
0 −

1
2

λxx2
0 −

1
2

λππ2
I0

+ ∑ βt{−1
2

λxx2
t −

1
2

λππ2
It +

1
2

V11(−b̃t + β−1b̃t−1)
2}+ t.i.p. + O(ε3)

s.t.

β−1(−kexx0 + kecb̃∗0) = (1 + β−1(1− β)kec)rr0 − rrdm
0 (0)

βπIt+1 + κxt = πIt

The continuation problem is a standard disinflation problem (clearly b̃t = b̃t−1 is the solution
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for savings part):

Wt≥1 = ∑ βt{−1
2

λxx2
t −

1
2

λππ2
It}+ t.i.p. + O(ε3)

s.t.

βπIt+1 + κxt = πIt

Solving this,

xt = κλ−1
x φ̃πIt

πt+1 =
1
β
(1− κ2λ−1

x φ̃)πIt

Note 1− κ2λ−1
x φ̃0 < β. Thus, from t ≥ 2 onwards,

∆ẽt = πIt + kex∆xt

= P(kex)πIt−1.

where
P(kex) = (1− kexκλ−1

x φ̃)
1
β
(1− κ2λ−1

x φ̃) + kexκλ−1
x φ̃

This is clearly increasing in kex with P(0) = 1 and P(∞) < 0.
The problem at 0 is given by

W = max
{b̃t,xt,πt}

{1
2

(1− β)V11

1− 2m−1u1V−1
11 γ∗ss

(B̄rr0−Ts)
2 +

1
2

β−1V11b̃2
0−

1
2

λxx2
0−

1
2

λππ2
I0−

1
2

βφ̃π2
I1}+ t.i.p.+O(ε3)

s.t.

βπI1 + κx0 = πI0

(−kexx0 − πI0 + kecb̃∗0) = β{(1 + β−1(1− β)kec)rr0 − rrdm
0 (0)}

Let ν denote the multiplier on the promise-keeping constraint (i.e., the second one). The solution
is:

πI1 = φ̃−1 κλ−1
x kex − λ−1

π

βφ̃−1 + κ2λ−1
x + λ−1

π

ν0

x0 = − κλ−1
π + kex(βφ̃−1 + λ−1

π )

λx(βφ̃−1 + κ2λ−1
x + λ−1

π )
ν0

πI0 = − (κλ−1
x kex + βφ̃−1 + κ2λ−1

x )

λπ(βφ̃−1 + κ2λ−1
x + λ−1

π )
ν0

Note at t = 0, if ν > 0, I get x0 < 0 and πI0 < 0 unambiguously when kex > 0. This implies ẽ0 < 0.
Depending on how large kex is, the continuation may feature inflation o deflation.

At t = 1,
∆ẽ1 = πI1 + kex∆x1
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If kex is large, πI1 > 0 and x1 > 0. Thus, ∆ẽ1 > 0. If kex is small, πI0 < 0 and x1 < 0.

A.2.5 Proposition 8

Rigid prices and long bonds Savings taxes from t ≥ 1, are

τB∗t = −V11(∆b̃t+1 − ∆b̃t) + kux∆xt+1

= −βδkecK̄0(∆r̃t)− kuxλ−1
x (1− β(1− δ))kexK̄0(∆r̃t)

= (βδkec − λ−1
x kux(1− β(1− δ))kex)K̄0δr̃t−1

Thus, it decays at rate 1− δ. Since, r̃t = (1− δ)r̃t−1,

τB∗t = (1− δ)tτB1

At t = 0 it’s the same (there’s no asymmetry). Thus,

τB∗0 = −K̄0βδ(βδkec − kexkuxλ−1
x ){(1 + µ)rr0 − rrdm

0 (0)}

Since K̄0 < 0, and usually kex > 0, kux > 0, kec < 0, it has the opposite sign of {(1 + µ)rr0 −
rrdm

0 (0)}, i.e, if she creates a positive excess return, she taxes savings.

Calvo pricing and short bonds Savings tax (t ≥ 1):

kux∆xt+1 = τB∗t

kux(
1
β
(1− κ2λ−1

x φ̃)− 1)πIt = τB∗t

So, if the economy is experiencing disinflation (πIt > 0), ∆x < 0 and τB∗ < 0 (subsidize savings).
At t = 0, the savings tax is given by

τB∗ = V11b̃∗0 + kux∆xt+1

and
b̃∗0 = −βV−1

11 ν0kec,

which has the same sign as µ.

B Appendix: Extensions

B.1 Cooperation

In the previous sections, the utility of the home household was the relevant welfare metric. As a
result, the planner found it optimal to manipulate the stochastic discount factor of the foreigners
that participate in home-currency bond markets to redistribute wealth to home agents. In this
section, I revisit the optimal policy from the point of view of a supranational authority, which
would also consider foreigners’ welfare. More specifically, the welfare metric is now

E
(

λHu(CTs, CNs, Ls, ξs) + mλFu∗(C∗Ts, ξs)
)
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where λH and λF are fixed at their steady state values, implying the supranational authority does
not seek to redistribute wealth ex ante.

Proposition 9. (Cooperation) Let χnc(m) and T nc(m) denote the parameter χ and the desired transfers in
the noncooperative solution when the measure of foreigners is m. Then, in the cooperative solution,

χcoop(m) = χnc(2m)

T coop(m) = T nc(2m).

In other words, it is as if the model had twice the number of foreigners. Furthermore, the optimal capital
control (i.e., the portfolio tax) is zero to second-order,

τB = O(ε3).

Proposition 9 shows the connection with the decentralized solution. Since the planner now
internalizes the benefits of insuring foreigners, she will desire larger transfers T . In addition, since
she realizes that the additional risk-premium from insurance increases foreigners welfare, she will
be less afraid to allow the exchange rate to float given a position B, so χ increases. Noting that
the cooperative solution is analogous to increasing m, proposition 3 and corollary 2 immediately
imply that positions |B| and the insurance weight ω are larger in the cooperative solution. Finally,
since the global planner is not trying to redistribute wealth in expectation, there is no need for
capital controls.

Corollary 3. Under the same conditions as in proposition 3, the portfolio |B| and the insurance weight ω
are larger under cooperation (if m < ∞).

B.1.1 Proof of Proposition B.1

I prove the result for the static model to simplify the exposition, but it is immediate that the result
extends to the dynamic model. Expanding the welfare loss function, we obtain the following new
term,

new term = λFm
(

u∗1C∗c∗s +
1
2

u∗11C∗2c∗2s + u∗1C∗ssc
∗2
s

)
+ O(ε3)

A second-order approximation to foreigners’ budget constraint yields

C∗c∗s + u∗1Cc∗2s = Y∗ssy
∗
s +

1
2

Y∗2ss y∗2s −m−1B̄rrs −m−1B̄2rr2
s −m−1Bεrrs

Replacing,

Enew term = muTE

(
Y∗ssy

∗
s +

1
2

Y∗2ss y∗2s −m−1B̄rrs −m−1B̄2rr2
s −

1
2

γ∗ssC
∗2
ss c∗2s

)
+ O(ε3)

where γ∗ss ≡ −u∗−1
1 u∗11. Using a first-order approximation of foreigners’ budget constraint to get

rid of c∗2s ,

Enew term = uTE

(
−B̄rrs − B̄2rr2

s + γ∗ssY
∗
ssy
∗
s B̄rrs −

1
2

γ∗ssm
−1B̄2rr2

s

)
+ O(ε3)
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Thus, the new welfare loss function is given by

EV = E[uT B̄(r− es)γ
∗
ssy
∗
s −

1
2

uT(γ
∗
ss/m)B̄2(r− es)

2 + uT ιsCsscTs

+
1
2

V11C2
Tssc

2
Ts + V1ZZssCTsszscTs −

1
2

λxx2
s −

1
2

λπ p2
Is] + t.i.p. + O(ε3)

The only difference is the 1
2 in front of the term uT(γ

∗
ss/m)B̄2(r− es)2. Thus, the model is isomor-

phic to a model with having twice as many foreigners in the decentralized solution. There is one
difference, however: the private utility still has the original m. It follows immediately from the
proof of propositions 5 and 6 that τB = O(ε3) regardless of m.

B.2 Model with equity in nontradables

In this Appendix, I consider an extension of the example economy in Section (3.5) that allows for
non-unitary elasticity of substitution between tradables and nontradables, as well as decreasing
returns to scale in nontradable production:

u(s) = ln((α
1
ρ C

ρ−1
ρ

Ts + (1− α)
1
ρ C

ρ−1
ρ

Ns )
ρ

ρ−1 − 1− α

1 + ψ
N1+ψ

s )

F = ZsY
αF
Is

Dividends on nontradable firms are then given by,

Ds = (1− αF)E−1
s PNsZsY

αF
Is

To a first-order approximation,

divs = (1− ρ−1)xs + (zs + αFy f lex
Is + p∗ f lex

Ns )

The elasticity of substitution is the key parameter governing the dependence of equity on mone-
tary policy. On the one hand, a depreciation boosts employment, which increases profits. On the
other hand, it also increases the supply of nontradables goods, depressing their price. If tradables
and nontradables are complements, the price decreases significantly, and profits (in foreign cur-
rency) decrease, as in Ottonello (2015). If they are substitutes, the opposite is true: profits increase
with a depreciation. In the knife-edge of ρ = 1, equity is independent from monetary policy and
thus, absent nominal bonds, the optimal policy would be demand-management (i.e., inflation tar-
geting). Note that, given that countries are short their own equity, and typically are debtors in
home-currency, the total exposure will be larger with ρ < 1 since in that case, the return on both
assets moves in the same direction with monetary policy.

Replacing the flexible price allocation y f lex
Is ,

divs = (1− ρ−1)xs +
1

αFα + ρ(ψ + 1− αF)
{(ρ− 1)(ψ + 1)zs + (αFα + (ψ + 1− αF))cTs}

A similar argument that the one given for monetary policy explains that the effect of zs on profits
depends on ρ. Regardless of ρ, higher tradable consumption pushes up demand for nontradable
goods, unambiguously increasing profits.
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Assume the return on equity is the dividend plus noise,

rreq
s = divs + νs

and write
rreq

s = keq
rrxxs − µeqcTs + keq

rrξξs

where ξs = [zs, νs] collects the shocks.56

The welfare function is still given by

EV = E0[
1
2
(1− 2m−1V−1

11 γ∗ss)V11(B̄eqrreq + Ts)
2 − 1

2
(λx + λπκ2)x2

s ] + O(ε3) + t.i.p. (65)

Replacing,

EV = −k0E0[
1
2
(Brrs − Ts)

2 + χ(1 + µeqB)2(rrs −
1

1 + µeqB
rrdm

s (0))2] + O(ε3) + t.i.p.

where

χ =
λx + κ2λπ

k2
rrxV11

=
λx + κ2λπ

(1− ρ−1)2V11
.

Using that κ = k̃( 1−φ
φ ) for some positive constant k̃ > 0, it is immediate that price flexibility

decreases the ability of monetary policy to provide insurance when the economy features real
assets (indeed, χ → ∞ when φ → 0). By contrast, with nominal bonds, we had krrx = −kex − κ.
The κ2 in the denominator that appears in that case is what formally drives the difference in the
results. The next remark summarizes this “real-asset” case.

Remark 3. In an economy where no asset loads on nominal quantities, i.e., in an economy with
only real assets, higher price flexibility decreases the importance of the insurance motive (i.e., χ
increases).

B.3 General asset structure: Static model

The reader may wonder at this point whether the results are driven by the very special asset struc-
ture considered in the previous sections. To address this concern, I now consider a general asset
structure. To save notation, I assume there is still a risk-free asset in foreign-currency with a return
normalized to one. Let Θ ∈ RN denote the remaining N assets in the economy. I allow these assets’
returns to depend on any of the equilibrium variables and the shocks. After log-linearizing, the
excess-return can be written in reduced form as

rrs = krrxxs − µcTs + krrξξs + O(ε2)

where krrx, µ ∈ RN and krrξ ∈ RN+S. I assume N < S so that markets are still locally incomplete.
Premultiplying by Θ′, assuming Θ′krrx 6= 0, and solving yields

xs =
1 + Θ′µ
Θ′krrx

(Θ′rrs −
Θ′

1 + Θ′µ
rrdm

s (0)). (66)

56Noise is introduced to prevent the planner from approximating the first-best arbitrarily closely when ρ = 1.
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Although there are many assets, the planner still has a single way of deviating from demand-
management - by creating output gaps. This suggests this economy will still have a “sufficient
statistic” for the sensitivity to monetary policy. Indeed, this sufficient statistic is given by

B ≡ Θ′krrx

1 + Θ′µ
. (67)

Lemma 5. Suppose B 6= 0.57 Then, the objective function can be written as

EV(es, Θ) = −k0E0[
1
2
(Θ′rrs − Ts)

2 +
1
2

χB−2(Θ′rrs −
Θ′

1 + Θ′µ
rrB

s (0))
2] + t.i.p + O(ε3)

Taking the first-order condition with respect to r̄rs = Θ′rrs, I find that the total return of the
portfolio is still a weighted average of the “demand-management” target and the “insurance tar-
get”,

r̄rs =
B2

B2 + χ
(Θ′r̄rs)

in +
χ

χ + B2 (Θ
′r̄rs)

dm + O(ε2) (68)

where

(Θ′r̄rs)
in = Ts

(Θ′r̄rs)
dm =

1
1 + Θ′µ

Θ′rrs(0)

and rrs(0) is the return in financial autarky. Replacing back, I obtain

EV(es, Θ̃, B) = −1
2

k0χ

B2 + χ
E0[Ts

2 + (Θ̃′rrdm
s (0))2 − 2TsΘ̃′rrdm

s (0)] + t.i.p. + O(ε3) (69)

where Θ̃′ ≡ (1 + µ′Θ)−1Θ′ is a convenient rotation to cancel out the wealth effect.

Proposition 10. The optimal portfolio Θ̃ conditional on some sensitivity to monetary policy B is given by

Θ̃ = kΘ0 + kΘBB + O(ε) (70)

where

kΘ0 =
(

Σ−1
rrdm(0) − Σ−1

rrdm(0)krrx(k′rrxΣ−1
rrdm(0)krrx)

−1k′rrxΣ−1
rrdm(0)

)
σrrdm(0)T

kΘB = Σ−1
rrdm(0)krrx(k′rrxΣ−1

rrdm(0)krrx)
−1.

Note that the necessary transfer may now be smaller than before: Even without any exposure
to monetary policy, the planner may choose the portfolio to diversify away some risk. For example,
if she can sell claims to the tradable endowment, then she does not need to use monetary policy,
which is a costly source of insurance, against these shocks. This is captured by kΘ0. Furthermore,
even if assets are uncorrelated with the desired transfers, they may still be useful to hedge the
“undesirable transfers” created by the nominal asset. This last effect is captured by kΘB. Define the

57If B = 0, then feasibility implies Θ′rrs − Θ′
1+Θ′µ rrB

s (0). Thus, this objective function is continuous in B at B = 0.
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realized excess-return of the portfolio that is sensitive to monetary policy as

rrB
s = k′ΘBrrs. (71)

Then, (68) can be expressed in a more familiar form,

rrB
s =

B2

B2 + χ
rrB,in

s +
χ

χ + B2 rrB,dm
s (72)

with

rrB,in
s = B−1(Ts − k′Θ0rrs(0))

rrB,dm
ss = k′ΘBrrdm

s (0)

Note that the linearity of the model implies all endogenous variables are weighted averages of their
target values. In other words, the exchange rate is also a weighted average,

eB
s =

B2

B2 + χ
eB,in

s +
χ

χ + B2 eB,dm
s .

Replacing (70),

W(B) =
1
2

k0

B2 + χ
E0[B2σ2

T̃ + χ2σ2
rrB(0) + 2BχσT̃ rrB(0)] + t.i.p. + O(ε3) (73)

where T̃s = Ts − k′Θ0rrdm
s (0). It is immediate from (72) and (73) that propositions 3 and 4 hold in

this environment in terms of the exposure to monetary policy and volatility of the returns that are
sensitive to it. If there is a single “exposed” asset, then it is immediate that the volatility of the
excess-returns of such an asset, which may be called “home-currency” asset, is lower under the
optimal policy. Finally, I show that the generality of the asset markets still does not justify a tax if
m < ∞ or countries cooperate. Even though incomplete markets introduce pecuniary externalities,
these are still proportional to the value of social utility asset-by-asset under the optimal policy,
implying portfolio taxes are still not required.

Proposition 11. Propositions 3 and 4 hold in terms of the “sensitivity” to monetary policy B defined in
(67) and its return defined in (71). In addition, if m = ∞ or countries cooperate, the optimal capital controls
policy is

τ j = O(ε3) ∀j.

B.3.1 Proof of lemma 5

Following the same steps as in the proof of lemma 2 I obtain,

EV = E[
1
2

V11(Θ̄′rrs − Ts)
2 − 1

2
λ̃xx2

s ] + t.i.p. + O(ε3)

where λ̃x = λx + κ−2λπ. Using equations (66) and (67) and replacing I obtain the desired expres-
sion.
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B.3.2 Proof of lemma 10

To prove this one needs to maximize (69) subject to B = k′rrxΘ̃. The FOC yields,

ΣrrΘ̃− σrrT − λkrrx = 0

k′rrxΘ̃ = B

Solving this using a formula for the inverse of a block matrix yields the desired result.

B.3.3 Proof of proposition 11

I prove here the result on taxes. The remainder follow from the isomorphism of equations (72) and
(73). To prove the no-tax result, take a few steps back and note that the planner maximizes

U = E0[uT ∑
j

Θ̄jrrj
sγ
∗
ssy
∗
s + uT ιsCsscTs +

1
2

V11C2
ssc

2
Ts + V1ZZssYsszscTs −

1
2

λ̃xx2
s ] + t.i.p. + O(ε3)

subject to

cTs = yTs + Θ̄′r̄rs

rrj
s = kj

rrxxs − µj(cTs − cTs(0)) + kj
rrξξs

The FOC yield

uT ιs + V11CsscTs + V1ZZssYsszs + ∑
j

kj
rrcλ

j
rrs = u1λs

uTΘj(λs + γ∗ssy
∗
s ) = λ

j
rrs

λ̃xxs = ∑ kj
rrxλ

j
rrs

Errj
s(λs + γ∗ssy

∗
s ) = 0

Recall that private marginal utility is given by

uT ιs + V11CsscTs + V1ZZssYsszs + kuxxs = u1λ
priv
s

Note here the two sources of externalities: ∑j kj
rrcλ

j
rr captures pecuniary externalities due to incom-

plete markets,58 while kuxxs captures the aggregate-demand externality due to nominal rigidities.
However: (i) the second FOC implies the pecuniary externality is proportional to the social value
of insurance asset-by-asset; (ii) the aggregate demand externality is purely endogenous and is
thus only there to relax pecuniary externalities. (i) and (ii) together imply that the strength of
the externalities must be related to their social value λs + γ∗ssy∗s . Thus, optimality of the portfolio
implies

Errj
sxs = 0∀j

Errj
sλ

j
rr = 0, ∀j

58They were still there in the two asset case, but they did not show up because I had directly substituted out con-
sumption.
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which in turn implies
Errj

s(λ
priv
s + γ∗ssy

∗
s ) = 0∀j

so τ j = O(ε3) ∀j.

B.4 General asset structure: Dynamic model

In this section, I study an economy with multiple assets. Noting the “relaxed” continuation prob-
lem is the same as before, I obtain:

W = max
{b̃t,xt,πt}

{1
2

(1− β)V11

1− 2m−1u1V−1
11 γ∗ss

(Θ̄′rr0 − Ts)
2 +

1
2

V11b̃2
0 −

1
2

λxx2
0 −

1
2

λππ2
I0 (74)

+ ∑ βt{−1
2

λxx2
t −

1
2

λππ2
It +

1
2

V11(−b̃t + β−1b̃t−1)
2}+ t.i.p. + O(ε3)

I divide assets into two classes: “nominal” assets, which have a stationary price in home-currency
such as a nominal bond, and “real” assets, which have a stationary price in foreign-currency. I rule
out “mixed” assets, which would not have a stationary price in either currency. For tractability, I
assume dividends of asset j decay at rate δj ≤ 1. For simplicity, I assume there is a risk-free asset
in foreign currency, although this is not necessary.

The return on real assets is assumed to satisfy

rj
t−1 = (1− β(1− δj))

(
kj

rrxxt + kj
rrccTt + kj

rrξξt

)
+ kj

rrππIt + β(1− δj)rj
t − r∗t−1.

For these assets, define

r̃j
t = rj

t + kj
rrc{(1− β)Θ̄′rr0 + β−1(1− β)b̃t} − rj,dm

0 (0).

Then,

β−1
{
(1− β(1− δj))kj

rrxx0 + kj
rrππI0 − δjkj

rrcb̃∗0 − β(1− δj)r̃j
0

}
= rrj

0 − β−1(1− β)kj
rrc(Θ′rr0)− rrj,dm

0 (0)

−(1− β(1− δj))kj
rrxxt + kj

rrππIt + δjkj
rrc∆b̃∗t + β(1− δj)r̃j

t = r̃j
t−1

The return on nominal assets is assumed to satisfy

rj
t−1 = ∆et + β(1− δj)rj

t − ψ
j
t−1 − r∗t−1.

Define like before,

r̃j
0 = rj

0 − rj,dm
0 (0) + kexx0 − β−1kecb̃∗0

r̃j
t = rj

t − rj,dm
t (0) + kexxt − β−1kec∆b̃t

where rdm
0 (0) is again the return when the agent only holds risk-free short foreign-currency bonds

B∗. Then,

β−1
{
−(1− β(1− δj))kexx0 − πI0 − δkecb̃∗0 − β(1− δ)r̃0

}
= rrj

0 + β−1(1− β)kec(Θ̄′rr0)− rrj,dm
0 (0)

kex(1− β(1− δj))xt + πIt − δkec∆b̃∗t + β(1− δ)r̃t = r̃t−1
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Define krrx = −kex, krrπ = −1, krrc = −kec for nominal assets. Note that, within real assets, there
are two classes of assets: those sensitive to monetary policy and savings taxes (i.e., either kj

rrc 6= 0,
kj

rrx 6= 0, or kj
rrc 6= 0) and those that are not (kj

rrc = kj
rrx = kj

rrc = 0). All nominal assets are clearly
sensitive. Let J1 denote the set of “sensitive” assets, and J2 denote the set of “insensitive” assets.
For all j ∈ J2, it must be that r̃j

t = 0.
The next proposition shows that taxes are still zero in this environment. However, unless there

is only one asset sensitive to monetary policy (i.e., #J1 = 1), there is no longer one “sufficient
statistic” so propositions (3) and (4) do not carry over. While the solution is not explicit when
#J1 > 1, the solution solves a polynomial ensuring all possible candidates are taken into account,
providing an algorithm for this case.

Proposition 12. Let ΘJ1 denote the positions in assets in J1 (i.e., sensitive to monetary policy) and ΘJ2

denote the positions in assets in J2 (i..e, insensitive to monetary policy). Furthermore, let ΣJi denote the
excess-returns of assets in Ji in a savings-only economy, ΣJ1 J2 their covariance, and ΣJT the covariance with
the desired transfers. Also, define

Θ̃′ ≡ Θ′(IJ1×J1 + µΘ′J1)−1.

The optimal weight on the insurance motive is

ω =
Θ̃J1′χ−1Θ̃J1

1 + Θ̃J1′χ−1Θ̃J1

where χ is now a symmetric positive definite matrix #J1 × #J1. The optimal portfolio on assets that are
insensitive to monetary policy ΘJ2 is given by:

Θ̃J2 = −Σ−1
J2

Σ′J2 J1
Θ̃J1 + Σ−1

J2
Σ′T J2

.

The optimal portfolio on assets that are sensitive to monetary policy Θ̃J1 solves

W = −1
2

k0

1 + Θ̃J1′χ−1Θ̃J1
[σ̃2
T + Θ̃J1′Σ̃J1 Θ̃J1 − 2Σ̃T J1 Θ̃J1 ] + t.i.p + O(ε3)

where χ is now a symmetric positive definite matrix #J1 × #J1 and

σ̃2
T = σ2

T − ΣT J2 Σ−1
J1

Σ′T J2

Σ̃J1 = ΣJ1 − ΣJ1 J2 Σ−1
J2

Σ′J1 J2

Σ̃T J1 = ΣT J1 − ΣT J2 Σ−1
J1

Σ′J1 J2
.

If there is only one asset sensitive to monetary policy (i.e., if #J1 = 1), then propositions (3) and (4) carry
over to this environment. Regardless of #J1, if m = ∞ optimal portfolio taxes are given by

τ j = O(ε3).

82



B.4.1 Proof & algorithm for solving Θ̃

The continuation problem is to maximize (74) subject to

κxt + βπIt+1 = πIt

β−1
{
(1− β(1− δj))kj

rrxx0 + kj
rrππI0 − δjkj

rrcb̃∗0 − β(1− δj)r̃j
0

}
= rrj

0 − β−1(1− β)kj
rrc(Θ′rr0)− rrj,dm

0 (0)∀j ∈ J1

−(1− β(1− δj))kj
rrxxt + δjkj

rrc∆b̃∗t + β(1− δj)r̃j
t = r̃j

t−1∀j ∈ J1

I solve this problem the same way as before. First, I take the t ≥ 1 problem with b̃∗0 , r̃0 and πIt
taken as given. Then, I use the solution to solve the t = 0 problem.

W = −1
2

k0(Θ̄′rr0−Ts)
2− 1

2
(rr J1

0 + µΘ′rr0− rr J1,dm
0 (0))′χ(rr J1

0 + µΘ′rr0− rr J1dm
0 (0)) + t.i.p +O(ε3)

where χ is now a J1 × J1 symmetric positive-definite matrix and µ = −β−1(1− β)kJ1
rrc. This can be

rewritten as

W = −1
2

k0

{
(Θ̄′rr0 − Ts)

2 + (rr J1
0 − r̃r J1

0 )
′(I + µΘJ1′)′χ(I + µΘJ1′)(rr J1

0 − r̃r J1
0 )
}
+ t.i.p + O(ε3)

where
r̃r J1

0 = (I + µΘJ1′)−1(−µΘJ2′rr J2
0 + rr J1,dm

0 (0)).

where I assume (I + µΘJ1′)−1 is invertible, which is necessary for the equilibrium to be well-
defined. (This is equivalent to B 6= −µ−1 in the two-asset model). Next, we choose rr J1

0 to minimize
this expression subject to Θ′rr0 = T̄. Let ν0 denote the multiplier. The FOC yields

(I + µΘJ1′)′χ(I + µΘJ1′)(rr J1
0 − r̃r J1

0 ) + ν0ΘJ1 = 0

Solving for the multiplier,

ν0 = − 1
Θ̃J1′χ−1Θ̃J1

(ΘJ1rr J1
0 − Θ̃J1′rr J1,dm

0 (0) + µΘ̃J2′rr J2
0 )

so

(I + µΘ′J1)(rr J1
0 − r̃r J1

0 ) =
χ−1Θ̃J1

Θ̃J1′χ−1Θ̃J1
(ΘJ1rr J1

0 − Θ̃J1′rr J1,dm
0 (0) + µΘ̃J2′rr J2

0 )

Replacing in the objective and simplifying,

W = −1
2

k0

{
(T̄ − Ts)

2 +
1

Θ̃J1′χ−1Θ̃J1
(T̄ − Θ̃′rrdm

0 (0))2
}
+ t.i.p + O(ε3)

The FOC with respect to T̄ yields

T̄ =
Θ̃J1′χ−1Θ̃J1

1 + Θ̃J1′χ−1Θ̃J1
Ts +

1
1 + Θ̃J1′χ−1Θ̃J1

Θ̃′rrdm
0 (0).

Note that using the same arguments as in the two-asset dynamic model, we see that every endoge-
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nous variable can be written as a weighted average, i.e.,

et =
Θ̃J1′χ−1Θ̃J1

1 + Θ̃J1′χ−1Θ̃J1
ein

t +
1

1 + Θ̃J1′χ−1Θ̃J1
edm

t

where once again ein
t is the one that minimizes the cost. The deviation can be computed from the

paths for xt and πIt computed above:

ẽin
t = ein

t − {edm
t (0) + kecTs}.

Replacing back,

W = −1
2

k0χ

Θ̃J1′χ−1Θ̃J1 + χ
E0[T 2

s + (rrdm
s (0)′Θ̃)2 − Tsrrdm

s (0)′Θ̃] + t.i.p. + O(ε3)

Solving for the optimal “insensitive” assets yields

Θ̃J2 = −Σ−1
J2

Σ′J2 J1
Θ̃J1 + Σ−1

J2
Σ′T J2

.

Replacing back,

W = −1
2

k0χ

Θ̃J1′χ−1Θ̃J1 + χ
[σ̃2
T + Θ̃J1′Σ̃J1 Θ̃J1 − 2Σ̃T J1 Θ̃J1 ] + t.i.p + O(ε3)

where

σ̃2
T = σ2

T − ΣT J2 Σ−1
J1

Σ′T J2

Σ̃J1 = ΣJ1 − ΣJ1 J2 Σ−1
J2

Σ′J1 J2

Σ̃T J1 = ΣT J1 − ΣT J2 Σ−1
J1

Σ′J1 J2
.

This does not have a closed-form solution if #J1 > 1. However, there are finite solutions that
can be compared. To see this, define B2 = Θ̃J1′χ−1Θ̃J1 and solve the problem conditional on a
“sensitivity” B. This yields

Σ̃J1 Θ̃J1 − Σ̃T J1 − λχ−1Θ̃J1 = 0

Θ̃J1′χ−1Θ̃J1 = B2.

Solve for Θ̃,
Θ̃J1′ = (Σ̃J1 − λχ−1)−1Σ̃T J1

and replace to obtain an equation in λ,

Σ̃′T J1
(Σ̃J1 − λχ−1)−1χ−1(Σ̃J1 − λχ−1)−1Σ̃T J1 = B2.

Note this can be written as
P1(λ)

(P2(λ))2 = B2

where P1(λ) is a polynomial of degree (#(J1)− 1)2 and P2(λ) is a polynomial degree #(J1). Thus,
there are at most max{(#J1 − 1)2, #J1} solutions which need to be checked. Using this and then
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maximizing over B2 one can compute the optimal portfolios. Unfortunately, Θ̃ is nonlinear in B if
#J1 > 1, so propositions (3) and (4) do not carry over.

No portfolio tax Next, I show that the result on taxes does carry over. I have:

W = max{1
2
(1− β)V11(Θ′rr0 − T )2 +

1
2

V11b̃2
0 −

1
2

λxx2
0 −

1
2

λππ2
I0

+ ∑
t≥1

βt{−1
2

λxx2
t −

1
2

λππ2
It +

1
2

V11c̃2
Tt}+ t.i.p. + O(ε3)

s.t.

κxt + βπIt+1 = πIt

β−1(krrxx0 + krrππI0 + krrc c̃Tt + β(1− δ)(r0 − rdm
0 (0)) = rrj

0 + kj
rrcΘ′rr0 − rrdm

0 (0)

kex∆xt + πIt + kec∆c̃Tt + β(1− δ)(rt − rdm
t (0)) = (rt−1 − rdm

t−1(0))

The first-order condition with respect Θj yields

Errj
0

(
V11(Θ′rr0 − Ts) + ∑

m∈J1

km
rrcφm

)
= 0.

The first-order condition with respect to rrj yields

φj + Θj ∑
m∈J1

km
rrcφm = −ΘjV11(Θ′rr0 − T ).

Note:

φj + Θj ∑
m∈J1

km
rrcφm = −ΘjV11(Θ′rr0 − T )

kj
rrcφj + kj

rrcΘj ∑
m∈J1

km
rrcφm = −kj

rrcΘjV11(Θ′rr0 − T )

∑
m∈J1

kj
rrcφj + ∑

m∈J1

kj
rrcΘj ∑

m∈J1

km
rrcφm = − ∑

m∈J1

kj
rrcΘjV11(Θ′rr0 − T )

∑
m∈J1

km
rrcφm = − ∑m∈J1

kj
rrcΘj

1 + ∑m∈J1
kj

rrcΘj
V11(Θ′rr0 − T )

Thus,
1

1 + ∑ kj
rrcΘj

Errj
0

(
Θ′rr0 − T

)
= 0.

Recalling that

rr J1
0 + µΘ′rr0 − rr J1,dm

0 (0) ∝ Θ′rr0 − Θ̃′rrdm
0 (0) ∝ Θ′rr0 − T
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implies that the two sources of externalities introduced by the planner are once more proportional
to the value of insurance,

xt ∝ Θ′rr0 − T
b̃t ∝ Θ′rr0 − T

so the result still follows.

B.5 No capital controls

I will show how the results change in the static model. Clearly, the availability of portfolio taxes
only matters when m < ∞. The dynamic model can be solved analogously (the continuation
problem is the same). Without capital controls, one needs to keep track of the home no-arbitrage
equation. Proceeding as in the proof of proposition 5, one obtains

E
[

B̄es

(
(B̄es + T priv

s ) + kuxχ((1 + µB̄)es − edm
s (0))

)]
= O(ε3) (75)

where

T priv
s =

1− u1V−1
11 2 γ∗ss

m

1− u1V−1
11

γ∗ss
m

Ts = k̃(m)Ts

is the transfer desired by home agents.
The problem without portfolio taxes is to maximize

EV({es, B̄}) = −k0E[
1
2
(B̄es + Ts)

2 +
1
2

χ((1 + µB̄)es − edm
s (0))2] + t.i.p. + O(ε3) (76)

subject to (75), which is an additional quadratic constraint. Ignoring this constraint would lead to
a solution B̄ that is not feasible as ε → 0. Formally, one may see that the multiplier on the Home
no-Arbitrage condition is also indeterminate at the steady state. The planner’s FOC with respect to
the portfolio and the home-no arbitrage condition are the two set of conditions that together allow
one to pin down these values at the steady state. Let η̄ denote the multiplier. The Lagrangian is
given by,

EV({es, B̄}) = −k0E[
1
2
(B̄es + Ts)

2 +
1
2

χ((1 + µB̄)es − edm
s (0))2

− η̄B̄es

(
(B̄es + k̃(m)Ts) + kuxχ((1 + µB̄)es − edm

s (0))
)
] + t.i.p. + O(ε3)

Conditional on the multiplier η̄ and the position B̄, one may still write the optimal exchange rate
as a weighted average,

es =
(1 + 2η̄)B̄2

(1 + 2η̄)B̄2 +
(

1 + 2 η̄B̄
1+µB̄ kux

)
χ

ein
s (η̄, B̄) +

(
1 + 2 η̄B̄

1+µB̄ kux

)
χ

(1 + 2η̄)B̄2 +
(

1 + 2 η̄B̄
1+µB̄ kux

)
χ

edm
s (η̄, B̄)
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where

ein
s (η̄, B̄) = B−1 1 + k̃(m)η̄

1 + 2η̄
Ts

edm
s (η̄, B̄) = (1 + µB̄)−1(

1 + η̄B̄
1+µB̄ kux

1 + 2 η̄B̄
1+µB̄ kux

)edm
s (0).

Note that the targets depend on the multiplier: the planner now internalizes that his monetary
policy may lead agents to pick undesirable positions. One can then replace back in (76), maximize
over B̄, get B̄(η̄) and then look for a fixed point of the home no-arbitrage equation (75) to find η̄.
If there is more than one solution for η̄, one may then compare them using the welfare function.
It is also important to check the second-order conditions of the inner problem with respect to the
exchange rate.

Clearly, this problem is significantly less tractable than the case with capital controls when
m < ∞. Perhaps surprisingly, one can show that when χ → 0 (i.e., flexible prices), the solution
converges to the cooperative solution.59

C Appendix: Quantitative analysis

In this section, I provide additional sensitivity analysis and show how the results change with the
availability of savings taxes.

C.1 Savings taxes and bond duration

In all the previous experiments, I found that the taxes were very small. This suggests their avail-
ability is not very important for the optimal policy. Table 3 confirms these results: portfolios,
weights, and welfare are in general quite similar if they are not available. The analysis in Section
4 suggests this could be tightly related to the duration of the bonds. Column 7 in Table 3 shows
the results when I assume home-currency bonds have a duration of 1 year rather than 4.85 years.
Savings taxes are now much more important: While the insurance weight without them is only
11%, once savings taxes are allowed, the weight increases almost four-fold to 43%. Accordingly,
agents expand their positions from 34% to 58% and the planner achieves 52% of the potential wel-
fare gains from completing markets, compared to only 37% without savings taxes. Finally, note
that welfare gains under demand-management targeting are now larger, which is a result of the
higher correlation between returns and transfers implied by short bonds (they are less sensitive to
liquidity shocks).

C.2 Other sensitivity analysis

I start by varying the complementarity between tradable and nontradable goods (columns 1 and 2
in table 4). I adopt two values, which correspond to the bounds on the estimates in the literature

59One must be careful with randomization in these environments without capital controls. While the cooperative
solution solves the approximate problem when prices are flexible, I found that with CRRA the planner may approximate
the solution with capital controls arbitrarily closely by randomizing and putting a vanishing probability on c = 0. (The
argument relies on higher order derivatives, so it does not show up if one approximates the problem first, i.e., with
quadratic utility randomization is not optimal).
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Table 4: Sensitivity analysis.

ρ = 0.4 ρ = 1.5 α = 0.4 α = 0.7 γ = 10 β = 0.98 1y bond
B̄: Inflation-targeting −16.8% −15.2% −16.6% −15.6% −20.4% −19.3% −33.5%

B̄: Optimal Policy (savings
tax)

−25.0% −21.3% −22.2% −26.3% −33.8% −32.7% −58.4%

B̄: Optimal Policy (no
savings tax)

−23.0% −20.9% −20.9% −25.4% −31.8% −31.5% −41.0%

ω: savings tax 9.79% 6.36% 6.19% 13.4% 12.1% 11.3% 43.3%
ω: no tax 6.93% 5.92% 4.57% 12.0% 9.83% 9.97% 11.3%

Welfare: Inflation-targeting 12.9% 10.5% 12.6% 11.2% 11.2% 9.93% 30.7%
Welfare: Optimal Policy

(savings tax)
18.9% 14.7% 16.8% 18.8% 18.1% 16.4% 52.2%

Welfare: Optimal Policy (no
savings tax)

17.4% 14.4% 15.9% 18.1% 17.0% 15.8% 37.3%

Note: Columns (1) and (2) change the elasticity of substitution between tradable and nontradable goods, columns (3)
and (4) change the share of tradables in consumption, column (5) changes risk-aversion, column (6) changes the dis-
count factor, and column (7) modifies the duration of bonds to 1 year. In every case I re-calibrated m and σψ to match
the exchange volatility and a portfolio of −15% over annual GDP. Welfare gains are measured as the steady-state-
consumption-equivalent gains under such a policy with respect to the demand-management B̄ = 0 economy as a share
of the total potential gains under the first-best: wel f (policy)−wel f are(B=0)

wel f are( f irstbest)−wel f are(B̄=0)%.

(see Akinci (2011) for a survey): ρ = 0.4 and ρ = 1.5. A lower elasticity of substitution decreases the
pass-through of the exchange rate to the output gap, which lowers the cost of providing insurance.
In this range, however, the effects are modest: portfolios, insurance weights, and welfare gains
vary only a few percentage points from one extreme to the other. More interestingly, a low elasticity
of substitution also increases the effects of savings’ manipulation on bond returns since shifts in
tradable consumption create large movements in demand for nontradable goods. As a result, the
lower the elasticity, the more effective capital controls are.

Next, I vary openness increasing and decreasing it by 15pp (columns 3 and 4). In very open
economies, the inefficiencies affect a smaller share of the economy in our model. Put differently,
deviating from demand-management to provide insurance is less costly from a welfare perspective
because the planner cares less about the output gap and pricee dispersion compared to smoothing
tradable consumption. As a result, the weight on insurance increases. Indeed, when tradables rep-
resent 70% of the economy, the insurance weight almost doubles, reaching over 13%. Accordingly,
the planner achieves a larger share of the insurance gains of being able to issue home-currency
debt.60

Next, I vary risk aversion (column 5). I set γ = 10 - the upper bound of the range considered
by Mehra and Prescott (1985). A higher risk aversion naturally makes insurance more important.
However, while it increases the weight to around 12%, the realized share of the gains compared to
demand-management is only slightly larger.

Finally, I change the discount factor (column 6). For illustrative purposes, I set β=0.98, which
is very low for a model at the quarterly frequency. Ceteris paribus the shocks, a higher discount
factor implies transfers become more valuable, as their present value increases. It has a similar
effect to risk aversion: while it increases the weight to 11%, the realized share of the gains is only
slightly larger compared to demand-management.

60For this it becomes important where one introduces the price-rigidity. This result is likely to be less sensitive to
openness if there is also stickiness in the tradable sector.
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