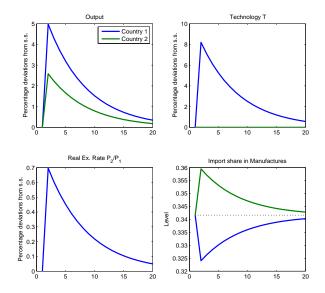
# Trade and Synchronization in a Multi-Country Economy Luciana Juvenal and Paulo Santos Monteiro

#### Discussion by Roc Armenter, **FRB Philadelphia**

SCIEA, FRB Atlanta April 28, 2011


## Introduction

- Does trade lead to business cycle synchronization?
  - Empirical evidence says it does.
  - But trade models typically predict a tenuous relationship.
- This paper develops a model with
  - Ricardian trade a la Eaton-Kortum,
  - Pricing-to-market and variable markups,
  - Calibrated iceberg trade costs,
  - and 21 countries!
- The model doubles the effect from Kose and Yi (2006), although there still quite some way to go.

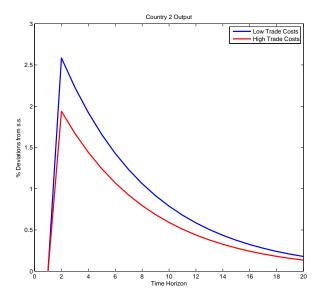
## Transmission

- Standard IRBC will have two channels
  - Trade,
  - Finance.
- This paper assumes financial autarky and focuses on trade:
  - Although trade is not necessarily balanced for the intermediate manufactured goods.
  - Heathcote and Perri (2002)
- Let's see how trade alone transmits shocks across countries.

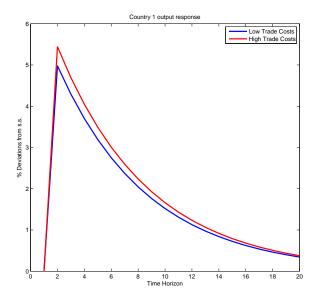
#### Country 1 Productivity Shock



#### Real exchange rate


.

Output and RER are tightly connected:


$$\frac{Y_{it}}{Y_{jt}} = A^{ij} \left( Q_t^{ij} \right)^{\frac{\nu+1}{\nu}}$$

- We run into the Backus-Smith puzzle.
- Output correlation and RER volatility are the two sides of the same coin.
  - How does this relationship look in the data?
  - Note it bypasses trade intensities.

## Trade costs decrease synchronization



#### Trade costs amplify shocks



## Pricing to Market?

• Technology and the price level are given by

$$P_{it} = \kappa \Phi_{it}^{-\frac{1}{\theta}}$$

where

$$\Phi_{it} = \sum_{j} T_{jt} \left( \omega_j \tau_{ij} \right)^{-\theta}.$$

• Pricing-to-market and variable markups determine the constant  $\kappa$ .

## Pricing to Market?

• Technology and the price level are given by

$$P_{it} = \kappa \Phi_{it}^{-\frac{1}{\theta}}$$

where

$$\Phi_{it} = \sum_{j} T_{jt} \left( \omega_j \tau_{ij} \right)^{-\theta}.$$

- Pricing-to-market and variable markups determine the constant  $\kappa$ .
- However, market competition seems irrelevant for correlations

$$Q_t^{ij} = \left(\frac{\Phi_{it}}{\Phi_{jt}}\right)^{\frac{1}{\theta}}.$$

#### Trade linkages

Log-output is

$$y_{it} = S_i + \frac{\nu + 1}{\nu \theta} \log \left( \sum_j T_{jt} \left( \omega_j \tau_{ij} \right)^{-\theta} \right)$$

• A first-order approximation around s.s. delivers

$$\hat{y}_{it} \propto \sum \lambda_{ij} \hat{T}_{jt}$$

where  $\lambda_{ij}$  is the import share from country j in s.s.

· What matters is the correlation of trade linkages

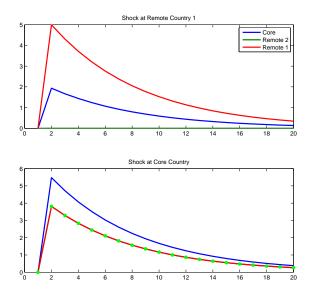
$$\rho\left(\hat{y}_{it}, \hat{y}_{kt}\right) = \frac{\sum_{j} \lambda_{ij} \lambda_{kj}}{\sqrt{\sum_{j} \lambda_{ij}^2} \sqrt{\sum_{j} \lambda_{kj}^2}} = \rho\left(\lambda_{ij}, \lambda_{kj}\right)$$

### Closer or Similar?

• For synchronization what matters is whether countries have similar trade patterns, not whether they trade much with each other.

## Closer or Similar?

• For synchronization what matters is whether countries have similar trade patterns, not whether they trade much with each other.


Consider two three-countries worlds:

- Isosceles world
  - Two core countries with bilateral trade cost  $\tau_l$ ,
  - A remote country with trade cost  $\tau_h > \tau_l$  with core.
- Linear world
  - A core country with trade cost au with periphery,
  - Two remote countries with no trade with each other.

#### Isosceles world



#### Linear world



## Conclusions

- It is a great idea to apply the Eaton-Kortum framework to output synchronization.
- The model has many interesting predictions:
  - Trade blocks,
  - Trade patterns,
  - Importance of core (and large) countries,
  - Output volatility and remoteness...
- Applications go well past the trade output correlation.
- The current version does not realize yet the full potential of the paper.