Key finding 00	Framework O	Calibration and solution	On solution methods O	Conclusions O
		Discussion of		
"New Keynesian Dynamics in a Low Interest Rate				

By R. Anton Braun and Lena Mareen Körber System Committee on International Economic Analysis Federal Reserve Bank of Atlanta

Environment"

Roberto M. Billi

Federal Reserve Bank of Kansas City

April 28, 2011

- Some recent studies show it is very large in New Keynesian models when the nominal interest rate is constant—notably, when the economy is stuck at the ZLB.
- Between 1999 and 2005, the Bank of Japan held its policy interest rate flat at zero.
- Yet this paper finds Japan's government spending multiplier was much smaller than other studies suggest. Why?

- Some recent studies show it is very large in New Keynesian models when the nominal interest rate is constant—notably, when the economy is stuck at the ZLB.
- Between 1999 and 2005, the Bank of Japan held its policy interest rate flat at zero.
- Yet this paper finds Japan's government spending multiplier was much smaller than other studies suggest. Why?

- Some recent studies show it is very large in New Keynesian models when the nominal interest rate is constant—notably, when the economy is stuck at the ZLB.
- Between 1999 and 2005, the Bank of Japan held its policy interest rate flat at zero.
- Yet this paper finds Japan's government spending multiplier was much smaller than other studies suggest. Why?

- Other studies omit resource costs of price changes, Δ_{π} , which are a "wedge" between output (*GNP*) and production (*Y*): $GNP \equiv C + I + G = Y(1 - \Delta_{\pi})$
- Consider the effects of an increase in G at the ZLB.
- This puts upward pressure on prices, and counters the deflationary pressure due to weak C + I. On net, Δ_{π} will fall, which implies Y rises less than *GNP*.

- Other studies omit resource costs of price changes, Δ_{π} , which are a "wedge" between output (*GNP*) and production (*Y*): $GNP \equiv C + I + G = Y(1 - \Delta_{\pi})$
- Consider the effects of an increase in G at the ZLB.
- This puts upward pressure on prices, and counters the deflationary pressure due to weak C + I. On net, Δ_{π} will fall, which implies Y rises less than GNP.

- Other studies omit resource costs of price changes, Δ_{π} , which are a "wedge" between output (*GNP*) and production (*Y*): $GNP \equiv C + I + G = Y(1 - \Delta_{\pi})$
- Consider the effects of an increase in G at the ZLB.
- This puts upward pressure on prices, and counters the deflationary pressure due to weak C + I. On net, Δ_{π} will fall, which implies Y rises less than *GNP*.

- Other studies omit resource costs of price changes, Δ_{π} , which are a "wedge" between output (*GNP*) and production (*Y*): $GNP \equiv C + I + G = Y(1 - \Delta_{\pi})$
- Consider the effects of an increase in G at the ZLB.
- This puts upward pressure on prices, and counters the deflationary pressure due to weak C + I. On net, Δ_{π} will fall, which implies Y rises less than GNP.

Standard New Keynesian model						
00	•	00		0		
Kev finding	Framework	Calibration and solution	On solution methods	Conclusions		

- The fiscal authority levies distortionary taxes on consumption, labor income, and capital income.
- The central bank follows a Taylor-type rule subject to a ZLB.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Standard New Keynesian model							
00	•	00		0			
Key finding	Framework	Calibration and solution	On solution methods	Conclusions			

- The fiscal authority levies distortionary taxes on consumption, labor income, and capital income.
- The central bank follows a Taylor-type rule subject to a ZLB.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The model is calibrated to Japanese data over 1981-2007.

- The shocks push the economy to the ZLB in 1999-2005.
- In the baseline, the private sector expects the ZLB episode to last for 2 years only.

- The model is calibrated to Japanese data over 1981-2007.
- The shocks push the economy to the ZLB in 1999-2005.
- In the baseline, the private sector expects the ZLB episode to last for 2 years only.

- The model is calibrated to Japanese data over 1981-2007.
- The shocks push the economy to the ZLB in 1999-2005.
- In the baseline, the private sector expects the ZLB episode to last for 2 years only.

Solution method						
00		0•				
Key finding	Framework	Calibration and solution	On solution methods	Conclusions		

- The model is solved for the period 1987-2007 using an "extended shooting algorithm."
- An advantage of this approach is that it determines the expected duration of a ZLB episode endogenously.
- A limitation is that, in forming expectations, the private sector is assumed to know the future outcome with certainty. This is likely to *understate* the effects of the ZLB, and, in turn, *understate* the size of the government spending multiplier.

・ロット (雪) (日) (日) (日)

Key finding	Framework	Calibration and solution	On solution methods	Conclusions		
00	O	○●	O	O		
Solution method						

- The model is solved for the period 1987-2007 using an "extended shooting algorithm."
- An advantage of this approach is that it determines the expected duration of a ZLB episode endogenously.
- A limitation is that, in forming expectations, the private sector is assumed to know the future outcome with certainty. This is likely to *understate* the effects of the ZLB, and, in turn, *understate* the size of the government spending multiplier.

Key finding	Framework	Calibration and solution	On solution methods	Conclusions		
00	O	⊙●	O	O		
Solution method						

- The model is solved for the period 1987-2007 using an "extended shooting algorithm."
- An advantage of this approach is that it determines the expected duration of a ZLB episode endogenously.
- A limitation is that, in forming expectations, the private sector is assumed to know the future outcome with certainty. This is likely to *understate* the effects of the ZLB, and, in turn, *understate* the size of the government spending multiplier.

- No uncertainty about the future state of the economy.
- Least difficult to implement
- See Fuhrer and Madigan (1997)

Stochastic simulations but imposing perfect foresight:

- Computational "trick": expectations are formed assuming there is no uncertainty about the future state of the economy.
 See Reifschneider and Williams (2000)
- Stochastic simulations:
 - There is uncertainty about the future state of the economy.

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010)

- No uncertainty about the future state of the economy.
- Least difficult to implement
- See Fuhrer and Madigan (1997)

Stochastic simulations but imposing perfect foresight:

 Computational "trick": expectations are formed assuming there is no uncertainty about the future state of the economy.
 See Reifschneider and Williams (2000)

Stochastic simulations:

There is uncertainty about the future state of the economy.

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010)

- No uncertainty about the future state of the economy.
- Least difficult to implement.
- See Fuhrer and Madigan (1997)

Ostochastic simulations but imposing perfect foresight:

- Computational "trick": expectations are formed assuming there is *no uncertainty* about the future state of the economy.
 See Relfachneider and Williams (2000)
- Stochastic simulations:
 - There is uncertainty about the future state of the economy.

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010)

- No uncertainty about the future state of the economy.
- Least difficult to implement.
- See Fuhrer and Madigan (1997)

Ostochastic simulations but imposing perfect foresight:

- Computational "trick": expectations are formed assuming there is no uncertainty about the future state of the economy.
 See Reifschneider and Williams (2000)
- Stochastic simulations:
 - There is uncertainty about the future state of the economy

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010)

- No uncertainty about the future state of the economy.
- Least difficult to implement.
- See Fuhrer and Madigan (1997)

② Stochastic simulations but imposing perfect foresight:

- Computational "trick": expectations are formed assuming there is *no uncertainty* about the future state of the economy.
 See Reifechneider and Williams (2000)
- Stachastic simulations:
 - There is uncertainty about the future state of the economy

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010)

- No uncertainty about the future state of the economy.
- Least difficult to implement.
- See Fuhrer and Madigan (1997)

2 Stochastic simulations but imposing perfect foresight:

Computational "trick": expectations are formed assuming there is *no uncertainty* about the future state of the economy.
See Reifschneider and Williams (2000)

Stochastic simulations:

There is uncertainty about the future state of the economy.

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010).

- Deterministic simulations:
 - No uncertainty about the future state of the economy.
 - Least difficult to implement.
 - See Fuhrer and Madigan (1997)
- **2** Stochastic simulations but imposing perfect foresight:
 - Computational "trick": expectations are formed assuming there is *no uncertainty* about the future state of the economy.
 - See Reifschneider and Williams (2000)
- Stochastic simulations:
 - There is uncertainty about the future state of the economy.

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010).

- Deterministic simulations:
 - No uncertainty about the future state of the economy.
 - Least difficult to implement.
 - See Fuhrer and Madigan (1997)
- **2** Stochastic simulations but imposing perfect foresight:
 - Computational "trick": expectations are formed assuming there is *no uncertainty* about the future state of the economy.
 - See Reifschneider and Williams (2000)
- Stochastic simulations:
 - There is uncertainty about the future state of the economy.

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010)

- Deterministic simulations:
 - No uncertainty about the future state of the economy.
 - Least difficult to implement.
 - See Fuhrer and Madigan (1997)
- **2** Stochastic simulations but imposing perfect foresight:
 - Computational "trick": expectations are formed assuming there is *no uncertainty* about the future state of the economy.
 - See Reifschneider and Williams (2000)
- Stochastic simulations:
 - There is *uncertainty* about the future state of the economy.

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010)

- Deterministic simulations:
 - No uncertainty about the future state of the economy.
 - Least difficult to implement.
 - See Fuhrer and Madigan (1997)
- **2** Stochastic simulations but imposing perfect foresight:
 - Computational "trick": expectations are formed assuming there is no uncertainty about the future state of the economy.
 - See Reifschneider and Williams (2000)
- Stochastic simulations:
 - There is *uncertainty* about the future state of the economy.

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010)

- Deterministic simulations:
 - No uncertainty about the future state of the economy.
 - Least difficult to implement.
 - See Fuhrer and Madigan (1997)
- **2** Stochastic simulations but imposing perfect foresight:
 - Computational "trick": expectations are formed assuming there is no uncertainty about the future state of the economy.
 - See Reifschneider and Williams (2000)
- Stochastic simulations:
 - There is *uncertainty* about the future state of the economy.

- Suffers the curse of dimensionality.
- See Adam and Billi (2006-) and Billi (2010)

• Smaller than suggested by studies that omit the resource costs of price changes.

• Perhaps larger than implied by studies in which the private sector is assumed to know the future state of the economy with certainty.

• Smaller than suggested by studies that omit the resource costs of price changes.

• Perhaps larger than implied by studies in which the private sector is assumed to know the future state of the economy with certainty.