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What this paper is doing.

• Puzzle: Models predict international consumption correlations are
larger than income correlations.

• Data: international consumption correlations are smaller than income
correlations.

This paper

• Build a small open economy LQ Permanent Income model.
1 Introduce doubts about the model and evaluate the model consumption

correlations ⇒ Correlations become smaller but not sufficiently enough.

2 Introduce Rational Inattention (RI) into a robust PI model ⇒ The
gradual response to shocks helps international consumption correlations
to come closer to the data.



Virtues of the paper

• Tractability: explicit solutions by remaining in the LQ framework.

• Calibrating doubts about the model seriously by using detection error
probabilities.

Discussion

• Highlight the exact mechanism that is introduced by doubts about the
model.

• Offer some suggestions about the RB-RI formulation.



Permanent income model with RE

• Small open economy with βR = 1.

max
ct,bt+1

Et

∞∑
t=0

βtu(ct)

s.t.

ct + bt+1 = Rbt + yt

• Quadratic utility u(c) = − 1
2 (c− c̄)2.

• Recast the problem in terms of Permanent Income (PI):

st ≡ bt +
1
R

Et

∞∑
i=0

1
Ri

yt+i



• Budget constraint in terms of PI:

st+1 = Rst − ct + ζt+1

where ζt+1 ≡ (Et+1 − Et)
∑∞

i=1
1

Ri yt+i: innovation in PV of future
labor income.

• Income process: yt = ρyt−1 + εt ⇒ ζt+1 = εt+1
R−ρ

• Euler equation

ct = Etct+1

• Optimal consumption

ct = (R− 1)st

• Consumption and PI dynamics

ct+1 − ct = (R− 1)ζt+1

st+1 − st = ζt+1
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International correlations

• Assume y∗t = ρ∗y∗t−1 + ε∗t+1, Corr(εt, ε
∗
t ) = η.

• corr(yt, y
∗
t ) = Πyη, Πy < 1.

• International correlation of consumption changes ∆c

corr(∆ct,∆c∗t ) = corr(εt, ε
∗
t ) =

1
Πy

corr(yt, y
∗
t ) > corr(yt, y

∗
t )

• Consumption correlations are larger than income correlations.
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Permanent income model with doubts about the model

v(st) = max
ct

{
u(ct) + β min

mt+1

[
Etmt+1v(st+1) + θEtmt+1 lnmt+1

]}
s.t.

st+1 = Rst − ct + ζt+1

• θ > 0 penalty parameter that captures doubts about the model.

• Perform minimization ⇒

mt+1 =
exp(− 1

θ )v(st+1)
Et exp(− 1

θ v(st+1))

• Assign high probability to low utility events.
• Euler equation (βR = 1)

u′(ct) = Etmt+1u
′(ct+1)
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• u: quadratic ⇒ ct = Etmt+1ct+1: Consumption is a martingale under
the worst-case model.

• LQG setup ⇒ worst-case model of ζt+1 ∼ N(µ̃t, σ̃
2
ζ ).

• Consumption function

ct = µ̃t︸︷︷︸
doubts about the model

+ (R− 1)st︸ ︷︷ ︸
no doubts

• Worst-case conditional mean

µ̃t = A + B1st

with A < 0 and B1 > 0 (A ≡ B1 ≡ 0 for no doubts about the model).

ct = A + (R− 1 + B1)st

• A < 0 : precautionary savings
• B1 > 0 extra sensitivity to a shock in st.



• u: quadratic ⇒ ct = Etmt+1ct+1: Consumption is a martingale under
the worst-case model.

• LQG setup ⇒ worst-case model of ζt+1 ∼ N(µ̃t, σ̃
2
ζ ).

• Consumption function

ct = µ̃t︸︷︷︸
doubts about the model

+ (R− 1)st︸ ︷︷ ︸
no doubts

• Worst-case conditional mean

µ̃t = A + B1st

with A < 0 and B1 > 0 (A ≡ B1 ≡ 0 for no doubts about the model).

ct = A + (R− 1 + B1)st

• A < 0 : precautionary savings
• B1 > 0 extra sensitivity to a shock in st.



• u: quadratic ⇒ ct = Etmt+1ct+1: Consumption is a martingale under
the worst-case model.

• LQG setup ⇒ worst-case model of ζt+1 ∼ N(µ̃t, σ̃
2
ζ ).

• Consumption function

ct = µ̃t︸︷︷︸
doubts about the model

+ (R− 1)st︸ ︷︷ ︸
no doubts

• Worst-case conditional mean

µ̃t = A + B1st

with A < 0 and B1 > 0 (A ≡ B1 ≡ 0 for no doubts about the model).

ct = A + (R− 1 + B1)st

• A < 0 : precautionary savings
• B1 > 0 extra sensitivity to a shock in st.



Consumption dynamics and correlations

• Evolution of st and ct

st+1 − st = ζt+1 − µ̃t

ct+1 − ct = (R− 1 + B1)(ζt+1 − µ̃t)

• Consumption and PI are random walks under the worst-case model.

• However, under the reference model they become stationary processes

ct+1 = A(1−R) + (1−B1)ct + (R− 1 + B1)ζt+1

st+1 = −A + (1−B1)st + ζt+1

• Consumption correlations

Corr(ct, ct∗) =
Πs

Πy
corr(yt, y

∗
t )

• Potential to reduce consumption correlations.
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Rational inattention and robustness

• RI: DM have finite information capacity⇒ choose optimally to allocate
their attention to higher utility activities.

• choose π(c|x) (instead of c(x) with infinite capacity).

• Theorem(Sims): In LQG models the optimal π(c|x) is gaussian ⇒ DM
acts as if he observes a signal with endogenous noise s = x + noise and
sets the action as function of the signal c(s) .

• RB-RI problem that LNY setup:

v̂(ŝt) = max
ct

min
νt

{
u(c) + βEt

(
v̂(ŝt+1) + θν2

t

)}
s.t.

st+1 = Rst − ct + ζt+1 + νt

ŝt+1 = (1−Θ)(Rŝt − ct + νt) + Θ(st+1 + ξt+1)︸ ︷︷ ︸
s∗t+1
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Comments and questions

• What is the proper way to introduce RI into an economy with model
uncertainty? Not trivial if we want to stay close to the spirit of both
RI and RB.

• Is the information capacity constraint involving the worst-case model?

• Do the LQG theorems hold?
• In the particular formulation: Given the RI endogenous signal

extraction problem, LNY assume that the are misspecified state
dynamics only and no misspecification doubts in the signal dynamics.

• A more natural formulation would consider misspecification in both
state and signal dynamics.

• More generally: Why not attacking the problem with a variant of
robust filtering?

• For example, the income process can consist of transitory and
persistent components and the agents is trying to filter, considering
mispecification in his state-signal dynamics.

• Clarify also the connections of the LNY setup with the robust filtering
setup of Kasa(2006).
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A RI formulation from first principles

• x: state, y: control, U : return function, e.g. U = −(y − x)2

max
π(y|x)

∑
x

π(x)
∑

y

π(y|x)U(x, y)

s.t.

∑
y

π(y|x) = 1

I(X, Y ) =
∑

x

∑
y

π(x, y) ln
π(x, y)

π(x)π(y)
≤ κ (µ)

• optimality condition for conditional density

π(y|x)
π(y)

=
exp( 1

µU(x, y))∑
y π(y) exp( 1

µU(x, y))

• Agent assigns more attention to events with high utility.
• µ →∞⇒ π(y|x) = π(y), so y becomes independent of x.
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Potential formulation of RI with RB I: Doubts about the
exogenous state but no doubts about the capacity channel.

max
π(y|x)

min
m(x)≥0

∑
x

m(x)π(x)
∑

y

π(y|x)U(x, y) + θ
∑

x

π(x)m(x) ln m(x)

s.t.

∑
y

π(y|x) = 1

I(X, Y ) ≤ κ∑
x

π(x)m(x) = 1



• Worst-case model of x

m(x) =
exp(−1

θ

∑
y π(y|x)U(x, y))∑

x π(x) exp(−1
θ

∑
y π(y|x)U(x, y))

• Optimality condition for conditional density

π(y|x)
π(y)

=
exp( 1

µm(x)U(x, y))∑
y π(y) exp( 1

µm(x)U(x, y))

• Agent wants to allocate attention to high utility events, but adjusts the
likelihood of these events in a conservative way due to doubts about
the distribution of x.

• Potential formulation II: Include doubts about the model in the
capacity constraint:

Ĩ(X, Y ) ≡
∑

x

∑
y

π(y, x) ln
π(y, x)

π(y)π̃(x)

where π(y, x) = π(y|x)π̃(x) and π̃(x) = π(x)m(x).

• lose convenient risk-sensitive adjustment but more consistent with the
spirit of model uncertainty.
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