Introduction Model Calibration Results Conclusion

A Bridge to Equality: How Investing in Infrastructure Affects the Distribution of Wealth

John Gibson¹ Felix Rioja²

Georgia State University

November 22, 2014

Motivation

How does investing in infrastructure affect the distribution of wealth in a country?

- Could reduce inequality by boosting wages
- Could increase inequality by boosting interest rates
- Testing this requires a quantitative model

Infrastructure affects individual choice through many channels

- We consider two: production and utility
- Understanding which channel drives results is important

Literature

Infrastructure Investment and Growth:

- Empirical literature generally finds a positive effect of infrastructure on economic growth
 - Aschauer (1989), Bom and Lighthart (2009) and Romp and Den Haan (2007)
- Theoretical literature supports this finding
 - Barro (1990), Glomm and Ravikumar (1994) and Rioja (1999, 2003)

Common Consensus: Infrastructure increases growth

Literature

Infrastructure Investment and Inequality:

- Empirical literature finds mixed results:
 - Reduce Inequality: Calderon and Severn (2004), Calderon and Chong (2004)
 - Increase Inequality: Khanderker and Koolwal (2010) and Artadi and Sala-i-Martin (2004)
- Theoretical literature also finds mixed results:
 - No Effect: Glomm and Ravikumar (1994b)
 - Reduce Inequality: Ferreira (1995) and Klenert et al (2014)
 - Increase Inequality: Chatterjee and Turnovsky (2012)

No common consensus on infrastructure and inequality

Our Contribution

Modify Aiyagari (1994) to include:

- Endogenous labor supply decision
- Infrastructure impacts both production and utility

Our modeling strategy allows us to:

- Focus on ex post rather than ex ante heterogeneity
- Calibrate our model using income data
- Consider both quantitative as well as qualitative results

Determine which channel (production or utility) drives the distributional results

Preview of Results

Increase infrastructure investment from 2% to 5% of GDP

- Large effects when both channels are operational
 - Aggregate output increases by 128% on average
 - Wealth concentration falls by 13.4% on average
- Small effects when utility channel is shut down
 - Aggregate output increases by 18% on average
 - Wealth concentration increases by 3% on average

Distributional effects transmitted through utility channel

Model Setup

Extended version of Aiyagari (1994)

- Agents are ex ante identical
- Idiosyncratic shocks to labor productivity
- Partially insure against shocks by accumulating assets

Infrastructure affects choices through two channels:

- Production: Affects both output and factor prices
- Utility: Affects total and marginal utility

Role of Infrastructure

Infrastructure impacts the economy through the following channels:

- Production
 - $Y(K_G, K, N) = K_G^{\phi} K^{\alpha} N^{1-\alpha}$
 - Infrastructure directly affects output and factor prices
- Utility
 - $U(c,L) = \frac{1}{\gamma}[c^{-\xi} + \eta L^{-\xi}]^{\frac{\gamma}{\xi}}$
 - L denotes effective leisure, $L = IK_G$
 - Infrastructure directly affects marginal utility of leisure

Household's Problem

$$V(a,\theta) = \max_{c,n,l,a'} \left[\frac{1}{\gamma} \left(c^{-\xi} + \eta L^{-\xi} \right)^{-\frac{\gamma}{\xi}} + \beta \sum_{\theta'} \pi(\theta'|\theta) V(a',\theta') \right]$$

s.t.

$$(1+\tau_c)c+a' \le \left\{ \begin{array}{ll} (1+(1-\tau_a)r)a+(1-\tau_n)wn\theta & \text{if employed} \\ (1+(1-\tau_a)r)a+b & \text{if unemployed} \end{array} \right\}$$

$$n+l < 1, a' > 0 \text{ and } L = lK_G$$

Solving this yields the following labor supply:

$$n = \frac{1 + \tau_c + \left[\frac{\eta(1 + \tau_c)}{K_G^{\xi}(1 - \tau_n)w\theta}\right]^{\frac{1}{1 + \xi}} \left[g(a, \theta) - (1 + (1 - \tau_a)r)a\right]}{1 + \tau_c + \left[\frac{\eta(1 + \tau_c)}{K_G^{\xi}(1 - \tau_n)w\theta}\right]^{\frac{1}{1 + \xi}} (1 - \tau_n)w\theta}$$

Household's Problem (without utility channel)

$$V(a,\theta) = \max_{c,n,l,a'} \left[\frac{1}{\gamma} \left(c^{-\xi} + \eta l^{-\xi} \right)^{-\frac{\gamma}{\xi}} + \beta \sum_{\theta'} \pi(\theta'|\theta) V(a',\theta') \right]$$

s.t.

$$(1+\tau_c)c+a' \le \left\{ \begin{array}{ll} (1+(1-\tau_a)r)a+(1-\tau_n)wn\theta & \text{if employed} \\ (1+(1-\tau_a)r)a+b & \text{if unemployed} \end{array} \right\}$$

$$n+l < 1 \text{ and } a' > 0$$

Solving this yields the following labor supply:

$$n = \frac{1 + \tau_c + \left[\frac{\eta(1 + \tau_c)}{(1 - \tau_n)w\theta}\right]^{\frac{1}{1 + \xi}} \left[g(a, \theta) - (1 + (1 - \tau_a)r)a\right]}{1 + \tau_c + \left[\frac{\eta(1 + \tau_c)}{(1 - \tau_n)w\theta}\right]^{\frac{1}{1 + \xi}} (1 - \tau_n)w\theta}$$

Firm's Problem

The representative firm solves a standard problem

- Choose aggregate capital, K, and aggregate labor, N, to maximize π
- $\pi = K_G^{\phi} K^{\alpha} N^{1-\alpha} wN (r+\delta)K$

Solving the problem yields standard marginal conditions:

•
$$r = \alpha K_G^{\phi} \left(\frac{K}{N}\right)^{\alpha - 1} - \delta$$

•
$$\mathbf{w} = (1 - \alpha) K_G^{\phi} \left(\frac{K}{N}\right)^{\alpha}$$

Government Problem

The government is assumed to do the following:

- Invest in infrastructure, K_G
 - $\delta_G K_G = x K_G^{\phi} K^{\alpha} N^{1-\alpha}$
- Provide unemployment benefits, B
 - $B = \int_0^{\bar{a}} bf(a, \theta = 0) da$
- Engage in government consumption, G

The government is assumed to run a balanced budget

$$B + \delta_G K_G + G = \tau_c C + \tau_n w N + \tau_a r K$$

Calibration

Model is calibrated to an annual frequency

Parameter values taken from literature

Income shock process is calibrated using survey data from Mexico

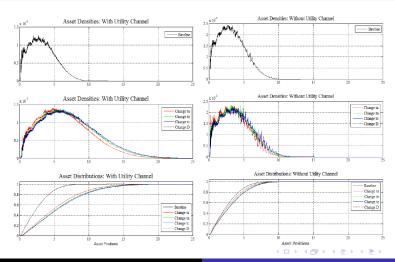
- Mexico National Institute of Statistics and Geography (INEGI)
- National Survey of Occupation and Employment (ENOE)
- Survey 100,000 households in 48 metropolitan and rural areas in Mexico every year

Calibration

Table 1: Model Parameters

$$\beta = 0.96 \quad \eta = 0.75 \quad \gamma = -1.50 \quad \xi = 1.50$$

$$\alpha = 0.36 \quad \phi = 0.15 \quad \delta = 0.06 \quad \delta_G = 0.04$$


Table 2: Productivity Shock Process

$\theta_1 = 0.000$		$\theta_2 = 0.331$	$\theta_3 = 0.588$	$\theta_4 = 0.878$	$\theta_5 = 2.203$	
	θ_1	θ_2	θ_3	θ_4	θ_5	
θ_1 :	0.200	0.800	0.000	0.000	0.000	
θ_2 :	0.032	0.551	0.247	0.115	0.055	
θ_3 :	0.032	0.240	0.397	0.244	0.087	
θ_4 :	0.032	0.113	0.235	0.402	0.218	
θ_5 :	0.032	0.056	0.085	0.207	0.620	

Average Growth Results

With Utility Channel						Without Utility Channel					
Baseline	$\Delta \tau_a$	$\Delta \tau_n$	$\Delta \tau_c$	ΔD		Baseline	$\Delta \tau_a$	$\Delta \tau_n$	$\Delta \tau_c$	ΔD	
0.020	0.050	0.050	0.050	0.050		0.020	0.050	0.050	0.050	0.050	
2.660	5.383	5.813	6.035	5.905		2.670	2.918	3.119	3.231	3.158	
0.325	0.508	0.509	0.512	0.503		0.326	0.304	0.300	0.301	0.295	
0.287	1.593	1.648	1.681	1.643		0.288	0.834	0.851	0.865	0.843	
0.574	1.275	1.318	1.345	1.314		0.576	0.667	0.681	0.692	0.675	
0.324	0.714	0.724	0.732	0.752		0.326	0.367	0.366	0.368	0.380	
1.132	1.605	1.658	1.682	1.674		1.133	1.407	1.451	1.472	1.465	
0.018	0.025	0.022	0.020	0.020		0.018	0.022	0.019	0.017	0.017	
0.100	0.364	0.100	0.100	0.100		0.100	0.414	0.100	0.100	0.100	
0.150	0.150	0.150	0.209	0.150		0.150	0.150	0.150	0.216	0.150	
0.100	0.100	0.148	0.100	0.100		0.100	0.100	0.153	0.100	0.100	
	Baseline 0.020 2.660 0.325 0.287 0.574 0.324 1.132 0.018 0.100 0.150	$\begin{array}{c cccc} \textbf{Baseline} & \Delta \tau_a \\ \hline 0.020 & 0.050 \\ 2.660 & 5.383 \\ 0.325 & 0.508 \\ 0.287 & 1.593 \\ 0.574 & 1.275 \\ 0.324 & 0.714 \\ 1.132 & 1.605 \\ 0.018 & 0.025 \\ 0.100 & 0.364 \\ 0.150 & 0.150 \\ \hline \end{array}$	Baseline $\Delta \tau_a$ $\Delta \tau_n$ 0.020 0.050 0.050 2.660 5.383 5.813 0.325 0.508 0.509 0.287 1.593 1.648 0.574 1.275 1.318 0.324 0.714 0.724 1.132 1.605 1.658 0.018 0.025 0.022 0.100 0.364 0.100 0.150 0.150 0.150	Baseline $\Delta \tau_a$ $\Delta \tau_n$ $\Delta \tau_c$ 0.020 0.050 0.050 0.050 2.660 5.383 5.813 6.035 0.325 0.508 0.509 0.512 0.287 1.593 1.648 1.681 0.574 1.275 1.318 1.345 0.324 0.714 0.724 0.732 1.132 1.605 1.658 1.682 0.018 0.025 0.022 0.020 0.100 0.364 0.100 0.100 0.150 0.150 0.150 0.209	Baseline $\Delta \tau_a$ $\Delta \tau_n$ $\Delta \tau_c$ ΔD 0.020 0.050 0.050 0.050 0.050 2.660 5.383 5.813 6.035 5.905 0.325 0.508 0.509 0.512 0.503 0.287 1.593 1.648 1.681 1.643 0.574 1.275 1.318 1.345 1.314 0.324 0.714 0.724 0.732 0.752 1.132 1.605 1.658 1.682 1.674 0.018 0.025 0.022 0.020 0.020 0.150 0.150 0.150 0.209 0.150	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Distributional Results

Distributional Results

	With Utility Channel					Without Utility Channel				
	Baseline	$\Delta \tau_a$	$\Delta \tau_n$	$\Delta \tau_c$	ΔD	Baseline	$\Delta \tau_a$	$\Delta \tau_n$	$\Delta \tau_c$	ΔD
Wealth Gini	0.380	0.368	0.363	0.364	0.364	0.386	0.393	0.385	0.388	0.388
Quintile 1	3.95	4.44	4.52	4.50	4.50	3.94	3.79	3.89	3.84	3.81
Quintile 2	10.36	10.93	11.14	11.09	11.05	10.50	10.16	10.47	10.34	10.25
Quintile 3	17.71	17.72	17.77	17.80	17.86	17.70	17.65	17.91	17.72	17.85
Quintile 4	26.54	25.88	26.01	25.93	25.88	26.48	26.48	26.66	26.54	26.72
Quintile 5	41.43	41.03	40.57	40.68	40.72	41.37	41.91	41.06	41.56	41.37
Quintile 5 Quintile 1	10.48	9.24	8.98	9.04	9.06	10.50	11.06	10.56	10.81	10.85

Conclusions

Investing in infrastructure can increase growth and reduce inequality

- Wealth share of lower quintiles increases
- Wealth share of higher quintiles falls

Choice of financing method does not matter much

Interest income tax performs the worst

Distributional effects operate through utility channel

 Wealth distribution barely changes when utility channel is shut down

